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3 Université de Lorraine, Institut Elie Cartan de Nancy, Vandœuvre, F-54506, France

Abstract—It is described a complete benchmark designed
for testing performances of an electric vehicle in terms of
consumption during the European Shell Eco-marathon race. A
model of the electric vehicle built for the race is first obtained.
Then, a low consumption driving strategy is derived. The tracking
performances are tested on the electric Vir’Volt benchmark
prototype, wherein a Model Predictive real-time Controller has
been implemented. The experimental result are detailed.

Index Terms—Electric vehicle, Model Predictive Control, real-
time application

I. INTRODUCTION

The principle of hybridization is to use several different
modes of power supply together or separately according to
the power requirements. The main of those requirements is
to reduce harmful emissions. Research of energy efficiency in
the field of transport has been carried out from few decades in
the industry (diesel-electric locomotives) and more recently for
the general public market (private hybrids cars are available
for sale since 1997) [1] [2]. Many specific engineering issues
arise, the more recent are energetic efficiency and real time
implementation. Of special interest is the problem of how
using the different energy sources so that the energy efficiency
can be maximize or, in other words, how the vehicle must be
driven so that the minimum quantity of fuel is used, the real
time implementation constraints being taken into account [1]
[3].

With the aim of promoting the research and innovation
around the solution of the low consumption problem, the
European Shell Eco-Marathon brings together over 200 teams
from high schools and universities from all over Europe,
in a race involving ecological and economical vehicles. The
principle of the race is to go through a number of kilometres
in a limited time and with the lower consumption. Several
categories are distinguished according to the energy source:
fuel cell (hydrogen), battery, solar energy.

The Ecole Supérieure des Sciences et Technologies de
l’Ingénieur de Nancy (ESSTIN), has been involved in the
European Shell Eco-marathon race since 12 years in the
respective category fuel cell and battery. The performances
of the team called EcoMotionTeam have been improved very
significantly over the years and now regularly reach places of
honour in the contest. In addition, the team was often awarded
with special prizes such as the price of technical innovation,
the price of the security or the price of National Education.

Motivated by higher ambitious results, researchers from
IECN, CRAN and INRIA have joined the EcomotionTeam
this year. The aim of this paper is to show the effectiveness,
in terms of consumption, of a Model Predictive Control
implemented into the vehicle and tested on a benchmark which
is intended to reproduce as close as possible the vehicles
during the race. The motivation of resorting to a MPC-based
controller lies in that they are known to have appealing ability
to ensure robustness despite the uncertainties in the model
and are amenable to incorporate constraints (saturation of the
actuators for example) [1].

This paper is organized as follows: In Sections II and III, the
context of the present investigation and the prototype called
Vir’Volt are presented. Section IV details the MPC algorithm
that will achieve the tracking of the driving strategy. Finally,
Section V presents the implementation of the low consumption
strategy and the MPC real time controller into the vehicle
and benchmark, and the experimental results are provided.
Section VI is devoted to a conclusion and sketches future
works.

II. CONTEXT

The EcoMotionTeam has developped successive vehicles
over the past 12 years. The prototype named Vir’Volt is the fifth
generation of vehicles developed by the EcoMotionTeam. This
recent prototype (see Figure 1) has been ranked last year 2nd
in the Plug-in (battery) category among 12 others vehicles and
7th among the 100 participants of the European competition
with a result of 532km/kWh (equivalent to 4732km with one
litre of fuel). The prototype is a three wheels vehicle, the
direction is made by the front wheel and the propulsion by
one of the two rear wheels. It can reach the speed of 35km/h
and the energy is given by a 24V battery to an electric motor
which develops 0, 4Nm. This vehicle has many electronics
systems in order to communicate with the pit stop. The total
weight of the car is 40kg, the pilot needs to weight at least
50kg according to the Shell Eco-marathon rules, thus total
mass of the vehicle is 90kg.

So far, the driving strategy proposed by the EcoMotionTeam
was a stop-and-go one. It merely reduced to manually turn
on or off the engine by the pilot according to whether the
vehicle was going up or down respectively. However, the
new and ambitious challenges in terms of the consumption
strategy requires more complex driving strategies and the



Fig. 1. The Vir’Volt prototype in the Shell Eco-marathon 2011.

accuracy of the tracking is decisive in the final performances.

In 2011, the race was held in Lausitz, Germany. The
Lausitz’s track could be considered like a straight line since
their was no deceleration or complex curves. Then the driving
instructions corresponding to the strategy could be follow
easily by the pilot. The only strategy was so to maintain a
fixed average speed along the track. The efficiency of the
converter/motor being better when working at full regime,
the strategy consisted in driving around an average value by
accelerating at maximum until a maximum speed was reached
and then decelerating until the vehicle reached a minimum
speed.

On the other hand, in the Rotterdam’s 2012 street circuit,
the new track require high decelerations due to chicanes and
to deal with an expected resulting high traffic. Then, it is
clear that an advanced strategy and a control are required in
order to gain efficiency.

Achieving a low consumption requires three central works.
First, it must be obtained a valuable model of the vehicle.
Secondly, deriving a reference driving trajectory in terms of
expected position and velocity all along the circuit. Both tasks
can be performed off-line. Finally, a powerful tracking strategy
must be designed and implemented so that it can works in
real-time. The following sections addressed all of these tasks.
For the identification of the vehicle and the computation of
the reference trajectory, an application called SimStrat (see
examples of captured screens of the graphical interface in
Figure 2) has been developed by the EcoMotionTeam.

III. MODELING

The dynamics of the vehicle can be described in terms
of the internal forces acting over the vehicle and given by
the force of traction Ftraction[N] due to the engine, and the
external forces due to the aerodynamics Faerodynamics[N],
the rolling resistance (contact wheel-ground) Frolling[N], and
the slope resistance Fslope[N]. All this forces are related by
Newton’s law involving the mass m[kg] of the vehicle and its

(a) User interface.

(b) Parameter estimation window.

Fig. 2. Graphical user interface SimStrat designed by the EcoMotionTeam
to estimate the vehicle model and find the driving strategy.

acceleration dx2(t)
dt [m/s2] as [3]:

m
dx2(t)

dt
=Ftraction − Faerodynamics − Frolling − Fslope

m
dx2(t)

dt
=Ftraction − 1

2
ρCxSx2(t)2 −mgNr − gx2(t)

dθ

dx1(t)
(1)

with x1(t) the position in [m] and x2(t) the velocity of
the vehicle in [m/s]. The aerodynamic force Faerodynamics

is given in terms of the frontal area S[m2] of the vehicle,
the aerodynamic drag coefficient Cx, and the air density
ρ[kg/m3]. The rolling force Frolling is given in terms of the
rolling resistance coefficient Nr, and the slope resistance force
Fslope is given in terms of the variation of the slope θ. g[m/s2]
is the gravitation acceleration.

The traction force is given by the torque applied by the en-
gine and the resistance of the connecting rod in the crankshaft.
This resistance in given by Cpivot/R, with Cpivot[Nm] the
bearing resistance and the R[m] the radius of the wheel.
When the engine is working, the torque due to the motor is
Cmot[Nm], and if it is not working the new torque applied is
Cmin[Nm]. By introducing the input u(t) ∈ [0, 1] (duty cycle),
such as u(t) is the portion of a switching period in which the
engine is on, and (1 − u(t)) the portion of period while the



engine is off, then the traction force can be written by:

Ftraction =
u(t)Cmot + (1 − u(t))Cmin

R
− Cpivot

R
(2)

Considering that the path profile has no elevations (flat path)
or that the slope remains always constant, from (1) and (2), the
nonlinear dynamics of the vehicle can be written as follows:

ẋ1 = x2 (3)

ẋ2 =
u(t)Cmot + (1 − u(t))Cmin − Cpivot

mR
−Nrg −

1

2

ρCxS

m
x2

2

(4)

A. The linear discrete model

For practical purposes, a discrete model should be obtained.
To this end, the nonlinear model (3)-(4) is discretized by using
the Euler’s Forward difference numerical approximation that
is written in an explicit way, and not in an implicit way like
the Tustin’s method or Euler’s backward discretizing method
e.g [4].

Forward differentiation Euler’s Method: ẋ(tk) =
x(tk+1) − x(tk)

Ts

Backward differentiation Euler’s Method: ẋ(tk) =
x(tk) − x(tk−1)

Ts
(5)

with Ts the sample time. The Euler’s Forward difference
method makes easier the discretizing process of nonlinear
functions since gives an explicit or isolated expression for the
state variable x(t) in an direct way [4].

From (3)-(4) and (5), the discrete state space model is ob-
tained for the position and the velocity, considered respectively
as the first and the second component of the state vector
and denoted x1(k) and x2(k), by using the Euler’s Forward
method as:

x1(k) = x1(k − 1) + Tsx2(k − 1) (6)

x2(k) = x2(k − 1)+Ts
(Cmot − Cmin)u(k − 1) + Cmin − Cpivot

mR

− TsNrg − Ts
1

2

ρCxS

m
x2(k − 1)2

(7)

When the discretizing process is implemented, a zero holder
is usually considered and introduces a delay Ts/2. This delay
can influence the stability of the system if it is too large. In
[4], it is demonstrated that the effect of the time delay over the
system stability is tolerable if the time delay Ts/2 is smaller
than one tenth of the rise time tr (63% rise time rule) of the
system, i.e:

Ts ≤
tr
5

(8)

As can be seen in (7), a nonlinear differential equation
produces a nonlinear difference equations. By taking ue ∈
co({0, 1}) as the duty cycle of the averaged input that takes
(7) to the equilibrium point x2e:

x2e =

√
2 · ue − (Cpivot +NrgmR)

ρCxSR
(9)

Then the linearized discrete-time state space dynamics is given
by:

x̂(k) = Ax̂(k − 1) + Bû(k − 1) (10)

where x̂(k) = [x1(k), x2(k) − x2e]
T ∈ Rn (with n = 2),

û(k) = u(k)− ue and:

A =

[
1 Ts
0 1− 2bTs

m x2e

]
B =

[
0

(Cmot−Cmin)
mR Ts

]
The output equation is the linearized velocity x̂2(k) =

x2(k)− x2e and reads

y(k) = Cx̂(k − 1), where C =
[
0 1

]
(11)

In Figure 3 are plotted the velocity x2e with respect to the
controls ue in the admissible range [0, 1] and corresponds to
the nonlinear characteristic (9). An example of linearization
around a control operating point is also depicted.

Fig. 3. Velocity x2e with respect to control ue for the nonlinear model
(continuous line) and the linearized model (dashed line)

IV. MODEL PREDICTIVE CONTROL

A. Driving Strategy

For a prescribed circuit, the driving strategy is a collec-
tion of finite numbers of pairs (x∗1(k), x∗2(k)) where x∗2(k)
corresponds to the required velocity assigned to the position
x∗1(k) in the circuit at time k, so as a minimal consumption
is achieved. We define the driving strategy state vector as

x∗(k) = [x∗1(k), x∗2(k)]T (12)

The search for the driving strategy is an iterative procedure
which, given the model of the vehicle, the road profile (slope,
curves, . . . ) and the constraints in terms of maximum velocity
allowed at each curve, maximum time of the race, total number
of kilometers, . . . , must return (12) for every k. Then, for
each x∗2(k), the corresponding required control u∗(k) which
guarantees that the actual velocity x2(k) is as close as possible
of x∗2(k) (tracking) can be derived by solving (9) with x2e =
x∗2(k) and ue = u∗(k), at each k. An example of driving
strategy is depicted in the captured screen of Figure 4.



Fig. 4. Rotterdam’s 2012 street circuit (Courtesy of Shell) and a correspond-
ing low consumption driving strategy.

B. Tracking
This subsection addresses the problem of driving the vehicle

in real-time in order to guarantee that the state x(k) =
[x1(k), x2(k)]T ∈ R2 of the vehicle remains as close as
possible to the driving strategy x∗ (12). As pointed out in
the introduction, a Model Predictive Control approach is well
suited for that purpose.

Let us define ∆ũ(k) = u(k)−u∗(k) as the distance between
the predicted input u(k) and the control solution u∗(k) at the
instant k. Since at every sampling instant k, the state x(k) can
be measured, then for a prediction horizon of length Np, the
vector ∆U ∈ RNp×1 which should achieve the tracking can
be defined as:

∆U = [∆ũ(k),∆ũ(k+1),∆ũ(k+2), . . . ,∆ũ(k+Np−1)]T (13)

Furthermore, let us define ∆x̃(k) = x(k) − x∗(k) as the
distance between the predicted state x(k) and the state solution
x∗(k) at the instant k. The predicted state variables are then
given by:

∆X = [∆x̃(k+1)T ,∆x̃(k+2)T ,∆x̃(k+3)T , . . . ,∆x̃(k+Np)T ]T

(14)
The relationship between ∆X ∈ RnNp×1 and ∆U is given by:

∆X = F(x(k)− x∗(k)) + Φ∆U (15)

with F ∈ RnNp×n and Φ ∈ RnNp×Np (with n = 2) where:

F =


A
A2

A3

...
ANp

 Φ =


B 0 0 . . . 0

AB B 0 . . . 0
A2B AB B . . . 0

...
...

...
. . .

...
ANp−1B ANp−2B ANp−3B . . . B


(16)

The MPC-based controller, which is intended to be embedded
on-board during the race, must guarantee the tracking of the
driving strategy despite unpredictable events like emergency
brakes, wind, . . . . The control must be the solution of the
following quadratic criterion:

min
∆U

(J = ∆XTQ∆X + ∆UTP∆U)

s.t. ∆X = F(x(k)− x∗(k)) + Φ∆U
x(0) = xini u ∈ [0, 1]

(17)

with P ∈ RNp×Np and Q ∈ RnNp×nNp diagonal matrices.
Plugging (15) into (17), it can be shown after some basic

manipulations that the minimization problem (17) can be
reformulated in a strictly equivalent way and reads:

min
∆U

1

2
∆UT H∆U + fT ∆U

s.t. M∆U ≤ N
(18)

where H ∈ RNp×Np and f ∈ RNp×1 are given by:

H = ΦTQΦ + P and f = ΦTQF(x(k)− x∗k) (19)

The constraint M∆U ≤ N in (18) must be written in
terms of the constraints required for the state (related to
the reference tracking error) and the constraints required for
the input (related to requirement u(k) ∈ [0, 1]). Firstly, the
constrains of the state are expressed as:

Mx∆X ≤ Nx (20)

where Mx ∈ R2nNp×nNp and Nx ∈ R2nNp×1 are given by:

Mx =



In×n 0 . . . 0
0 In×n . . . 0
...

...
. . .

...
0 0 . . . In×n

−In×n 0 . . . 0
0 −In×n . . . 0
...

...
. . .

...
0 0 . . . −In×n


Nx =



max∆x

max∆x

...
max∆x

min∆x

min∆x

...
min∆x


(21)

with In×n ∈ Rn×n the identity matrix, and max∆x ∈ Rn×1

and min∆x ∈ Rn×1 the upper and lower limits desired for
the tracking error ∆x̃(k), such as:

min∆x ≤ ∆x̃(k) = x(k)− x∗(k) ≤ max∆x (22)

By using (15), the inequality in (20) can be rewritten in terms
of ∆U, as:

MxΦ∆U ≤ Nx −MxF∆x̃(k) (23)

On the other hand, the constrains for the input can be written
as:

Mu∆U ≤ Nu (24)

where Mu ∈ R2Np×Np and Nu ∈ R2Np×1 are given by:

Mu =

[
INp×Np

−INp×Np

]
Nu =



max∆u

...
max∆u

min∆u

...
min∆u


(25)

with INp×Np
∈ RNp×Np the identity matrix, and max∆u ∈

R1×1 and min∆u ∈ R1×1 such as:

min∆u ≤ ∆ũ(k) ≤ max∆u (26)

The values max∆u and min∆u must be expressed such as the
condition u(k) ∈ [0, 1] is always satisfied. By making:

min∆u = 0− u∗(k) and max∆u = 1− u∗(k) (27)



then, from (26) it is obtained:

0 ≤ u(k) ≤ 1 (28)

Finally from (23) and (24), M and N in (18) are expressed
as:

M =

[
MxΦ
Mu

]
N =

[
Nx −MxF∆x̃(k)

Nu

]
(29)

V. EXPERIMENTAL RESULTS

A. Parameter estimation

The nonlinear model (1) involves two unknown parameters
Cx and Nr. For the estimation of those parameters, multiple
decelerations to zero have been performed for the Vir’Volt ve-
hicle. It has been done by turning off the motor (Ftraction = 0)
after accelerating the vehicle until a maximum velocity V elini
in a low slope variations road and without curves.

For the Vir’Volt vehicle and its environment, the physical
known parameters are the gravity acceleration g = 9.81[m/s2],
the wheel radius R = 0.24m, the frontal surface S =
0.275m2, the total mass m = 90kg, the air density ρ =
1.225[kg/m3], Cpivot being neglected. The initial velocity is
V elini = 40km/h. The data bank and the corresponding best
fitting in terms of Mean Square Error (MSE) regarding (1) is
depicted in Figure 5.

Fig. 5. Decelerating data bank in circles and best fitting in dashed line for
the Vir’Volt vehicle.

The experiments gives Cx = 0.085 and Nr = 0.0029.
In Figure 6 is depicted the simulated step response of the
resulting nonlinear model (4) for a step input of u = 0.045.
The 63% response time of the nonlinear system in tr = 935.5s.
From now on Cmot = 6.228[Nm] and Cmin = 0[Nm].

Fig. 6. Nonlinear system step response.

Finally, the linear dicrete model (10) has been obtained by
considering a sampled time Ts = 0.2s which fulfills (8), and
the operating point ue = 0.040 and x2e = 11km/h in (9).

B. Benchmark

In order to assess the efficiency of the control law, a
benchmark emulating both the vehicle and the circuit profile
has been built (see Figure 7). The benchmark is composed

(a) Vir’Volt vehicle, benchmark and DAQ system.

(b) CAD benchmark.

Fig. 7. Benchmark.

of two inertia wheels over which the vehicle is placed. The
inertia wheels allows for emulating the intertia of the vehicle.
This benchmark has an electric brake and a motor in order
to simulate slopes, wind and others disturbances such as the
friction torque in the wheels. The benchmark is also equipped
by a a torque-meter. The energy consumed by the vehicle is
measured by plugging an energy-meter onto the battery.

The data acquisition system (DAQ) used to probe the
velocity and the current position of the vehicle consists in a
National Instruments analog DAQ system (USB-6289) which
receives data from the vehicle (such as velocity, position,
current, voltage, . . . ). The MPC computation, in particular
the quadratic solver corresponding to (19) is developed by
a python script based on the mathematics C library CVXOPT,
BLAS and LAPACK. The MPC is run on a Linux-embedded
computer named APF51 developed by the company Armadeus.
This embedded computer is based on an ARMv7 (working
frequency 800Mhz) processor and will, after computation,



send a command to the motor according to the velocity and
position of the car.

C. Tracking experimental results

The Rotterdam 2012 circuit has a total length of 16.3km and
five 90◦curves with lengths between 19m and 44m. The result-
ing driving strategy obtained by means of the aforementioned
application SimStrat is depicted in Figure 8a. The constraints
were: maximum motor current value 8A (and thus Cmot),
maximum velocity regulation 13km/h, minimum velocity reg-
ulation 10km/h and velocity in curves 8km/h. The estimated
consumption for this driving strategy is 9.2kJ (equivalent to
640km/kWh or 6278km/1Lfuel) and the average velocity is
11km/h.

(a) Driving strategy.

(b) Estimated energy consumption.

Fig. 8. Low consumption driving strategy with total consumption 9.2kJ.
x2[km/h] is the velocity and x1[km] is the position.

The MPC real-time controller has been tested firstly for
the tracking of a non-variable reference and secondly for the
tracking of the low consumption strategy found in Figure 8,
with the MPC state restrictions set as min∆x = −5km/h and
max∆x = 5km/h (see (22)). The matrices Q and P in (17)
are unitary matrices.

Results shown in Figure 9 are achieved for the velocity
and the control signal for the tracking of a reference of
x2ref = 15km/h from initial condition x2ini = 0km/h.
The total consumption was 3, 5676kJ. As it can be observed
the control signal in Figure 9b accomplishes the control con-
straints imposed by (28). The stable state error is 0.44km/h,
that corresponds to 2.93%. The time response of the controller
is 7s.

The results shown in Figure 10 point out a good tracking of
the driving strategy. The measured energy consumption was
12.1kJ (equivalent to 480km/kWh or 4780km/1Lfuel). The
difference in the total consumption is due to the fact that

(a) Measured velocity x2. In dashed line is the reference.

(b) Measured control u.

Fig. 9. Tracking experiment for a nonvariable reference.

the efficiency of the engine is not considered here and to the
transients before exact tracking.

(a) Measured velocity x2. In dashed line is the reference.

(b) Measured control u.

Fig. 10. Tracking experiment for the driving strategy.

VI. CONCLUSIONS AND FUTURE WORK

A benchmark for testing a low consumption driving strategy
of a vehicle with battery source energy supply has been built.
The benchmark is able to emulate the race conditions. A
model of the vehicle has been obtained and used to design a
Model Predictive Control tracking strategy. The controller has



been implemented in the vehicle and achieves good tracking
performances. As future work, the controller will be tested on
board for the actual race.
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