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Spectral diffusion corresponds to random spec-

tral jumps of a narrow line as a result of fluc-

tuating environment. It is a prominent issue in

spectroscopy since the observed spectral broad-

ening prevents access to intrinsic line properties.

On the other hand, its characteristic parameters

provide local information on the environment of

a light emitter embedded in a solid matrix, or

moving within a fluid, with numerous applications

in physics or biology. We present a new experi-

mental technique for measuring spectral diffusion

based on photon correlations within a spectral

line. Autocorrelation on half of the line as well

as cross-correlation between the two halves give

a quantitative value of the spectral diffusion time

with a resolution only limited by the correlation

set-up. We have measured spectral diffusion of

the photoluminescence of a single light emitter

with 90 ps time resolution, exceeding by four or-

ders of magnitude the best reported resolution.

Spectral diffusion (SD) was first studied in spin reso-
nance experiments [1] and observed since then in various
light emitting systems such as rare-earth ions [2], ruby
[3], molecules [4, 5] or semiconductor quantum dots [6–
10]. SD of a single emitter results from its fluctuating
environment [4–10]. It is generally due to Stark effect
caused by randomly trapped charges in the vicinity of
the emitter [10]. In this work we are interested in light
emitting semiconducting nanostructures and more specif-
ically in quantum dots (QDs). Such nanostructures are
very promising objects for quantum information or laser
physics. Understanding their luminescence linewidth is
obviously of primary importance in either of these appli-
cations where such an emitter is to be coupled to another
emitter or to an optical cavity. Optical coherent control
of a single qubit encoded on the spin of a QD can be
implemented only in the absence of SD. The SD charac-
teristic time gives the maximum time under which the
system can be considered as SD-free. More generally, if
one wants to reduce this diffusion, it requires a good un-
derstanding of its origin and therefore an accurate mea-
surement of its temporal behaviour.

The usual method to evidence SD of a single emitter is
to record a time series of spectra and to visualize directly
the spectral wandering [4, 6–9]. The time resolution of

this method is limited by the ability of acquiring a spec-
trum in a short time. The counting rate from a single
emitter can hardly exceed 105s−1 and it is therefore im-
possible to extract a spectrum on a time scale shorter
than 10−5 seconds. In practise, single photon counting
charged coupled devices (CCD) can not supply more than
1000 images per second, so the time resolution can not
be better than a few ms.

Better SD time resolution has been obtained on in-
homogeneously broadened ensembles of semiconducting
nanocrystals by measuring a modulation frequency de-
pendent linewidth in a spectral hole burning experiment
[11]. With this technique the time resolution is set by
the modulation frequency and Palinginis et al [11] have
obtained a resolution in the 100µs range. Another tech-
nique relying also on resonant absorption was developed
by Zumbusch et al [5] for a single emitter. The absorption
of a narrow laser line is fluctuating owing to the spectral
fluctuations of the emitter line via which the resonant
excitation is performed. The emitted fluorescence light
undergoes therefore intensity fluctuations that are then
measured by photon correlation. In their work, Zum-
busch et al [5] report an ideal time resolution of 200ns
but their integration time sets a practical limit of 1µs.

Reaching short time resolution with individual emit-
ters has been achieved recently by using photon-
correlation Fourier spectroscopy (PCFS) [12, 13]. This
technique is based on the intensity correlations at the two
outputs of a Michelson interferometer. The fringe pat-
terns at the two outputs are complementary for a given
wavelength. Spectral jumps can cause a bright fringe to
become dark on one output and appear bright on the
other. This leads to changes in the output intensities on
a characteristic time given by the SD time. The theo-
retical time resolution is given by the photon correlation
set-up as in the method we present here. However PCFS
requires interferometric stability and Coolen et al [14]
have only reached a time resolution of 20µs owing to
drift problems in their set-up.

In this letter, we present a new and simple photon cor-
relation technique to access characteristic SD times of a
single emitter with a subnanosecond resolution. This is,
to our knowledge, four orders of magnitude better than
the best time resolution so far [5, 14]. Our technique is
very robust since it is phase-insensitive and relies on lin-
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Figure 1: Spectral diffusion measurements with photon correlations. (a), Experimental set-up. BS1 and BS2 are
beamsplitters with transmission T1=70% and T2=50% respectively. TCSPC is for Time Correlated Single Photon Counting
data acquisition card. APD is for Avalanche Photodiode. (b), Photoluminescence spectrum of the charged exciton transition
of a single QD integrated during 1 s. The two halves of the line are labeled L and H. (c), Representation of the photon time
distribution in the two halves of the profile (d), Auto-correlation of the whole profile. (e), Auto-correlation of one half of the
profile showing the bunching due to SD (τd = 4 ns) and the narrower single photon antibunching. (f), Cross-correlation between
the two halves of the profile displaying the antibunching due to SD with the same characteristic time τd = 4 ns as above. All
data (d-f) shown in this figure have been obtained on the same QD with the same excitation power. In (e,f) the solid lines are
fits with the model explained in the text and the Supplementary information.

ear optics. It is based on correlations of photons emitted
within a spectral window narrower than the SD broad-
ened inhomogeneous line (cf fig. 1(a-c)). Owing to the
wandering of the homogeneous line, the emission peak
stays a limited time within this spectral window leading
to photon bunching with the characteristic time τd on
the autocorrelation on one half of the line (see fig. 1(e)),
and to photon antibunching with the same characteristic
time τd for the cross-correlation between the two halves
of the profile (see fig. 1(f)). The resolution is then only
limited by the photon correlation set-up (see Methods).
The minimum time delay between photons is of the order
of τCX = 600ps and leads to the narrow antibunching dip
in (d) and (e).

We have applied this technique to individual semicon-
ducting quantum dots (QDs) embedded in a nanowire
(NW). Just like semi-conducting nanocrystals [6, 10, 11,
14], these QDs suffer from ultrafast fluctuations caused
by the vicinity of surface states, as opposed to usual en-
capsulated self-assembled QDs. Details on the growth
of the CdSe/ZnSe NWs can be found in [15]. Exciton
(X), biexciton (XX) and charged exciton (CX) transitions
have been identified unambiguously using photon corre-
lation spectroscopy [16]. The radiative lifetimes of these
transitions are respectively τX = 700 ps, τXX = 400 ps,
τCX = 600 ps. The luminescence wavelength is around
550 nm with a high count rate of 25000 counts per second
at T = 4K. This system has demonstrated single photon
operation up to a temperature of 220 K [17]. The mi-
crophotoluminescence experimental set-up is described in
the Methods section.

In this work we have been focusing first on the CX line
shown in fig 1(b). A series of spectra taken every 0.15 s
during 25 s does not exhibit any visible SD. The lineshape
is better fitted with a Gaussian than with a Lorentzian.
A Gaussian shape is characteristic for an inhomogeneous
broadening mechanism like SD [18]. In fig. 1(d), the
autocorrelation of the whole profile exhibits the charac-
teristics antibunching dip of a single photon source. It
is not very pronounced since the timing resolution of the
experimental set-up (800 ps) is of the same order as the
emitter’s lifetime (τCX = 600 ps). The slight bunching is
due to the hopping between the neutral and the charged
state of the QD. All these features have been discussed
in detail on data obtained with a 90 ps resolution set-up
[16]. Fig. 1(e) displays the result of auto-correlation on
one half of the emission peak. In addition to the clear
antibunching dip (width ∼ τCX) characteristic of single
photon emission, it exhibits a clear bunching feature that
is significantly larger than that obtained with the whole
line profile in fig. 1(d). This demonstrates that the
homogeneous line remains during a characteristic time
τd = 4 ns within one half of the SD broadened line as
illustrated in fig. 1(c). Fig 1(f) shows cross-correlation
measurements between the low and high energy sides of
the emission spectrum. It exhibits a broad antibunching
on the same time scale τd as the bunching peak of fig
1(e). This is different from the single photon antibunch-
ing and is a clear signature of SD showing that it takes a
characteristic time τd for the intrinsic line to move from
one half of the spectral profile to the other (cf fig 1(c)).

Autocorrelation and cross-correlation methods yield
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the same SD time τd for the emitter regardless of the
width and position of the non-overlapping spectral win-
dows, provided that the widths and energy difference
of the latter are larger than the intrinsic homogeneous
linewidth of the wandering line, which is generally the
case. This makes this technique very robust. We have
checked this non-trivial property experimentally (cf fig
2), and a theoretical analysis is given in the Supplemen-
tary Information. This property can be understood by
considering the fact that the characteristic time of photon
correlation measurements is given by short time events.

In autocorrelation experiments, the homogeneous line
does not move for time scales shorter than τd. After a
time larger than τd the memory of the spectral position
is lost so the number of autocorrelation events drops as
can be seen in fig. 1(e). As demonstrated in the Sup-
plementary Information, the width of the bunching peak
does not depend on the size of the spectral window; only
the height of the peak does.

In a similar manner, the cross-correlation function ex-
hibits a lack of events for |τ | < τd (antibunching dip in
fig. 1(f)) corresponding to situations where the homoge-
neous line has not had time to hop to a position within
the other spectral window. As shown in fig. 2(a), we
have experimentally checked that the diffusion time τd
extracted from the data does not depend on the widths
of the two spectral windows, as derived in the Supplemen-
tary Information in the case of spectral windows larger
than the homogeneous linewidth.

We also observed in fig. 2(d) that the energy sepa-
ration between the two spectral windows in the cross-
correlation set-up has no influence. This is due to the
fact that, at each spectral jump, the new position is in-
dependent of the former and is randomly distributed over
the whole inhomogeneous profile with a Gaussian proba-
bility.

The diffusion time τd is extracted by fitting experi-
mental data, and its value is more accurate if τd is of
same order or larger than the lifetime of the emitter.
The principle of the model is depicted in fig. 3 in the
simplified case of two complementary spectral windows.
Each spectral window is modeled as a two-level system.
Each level is connected to its counterpart with a "jump"
rate γi (i = L,H). As shown in the Supplementary In-
formation, the SD rate is given by γd =

∑

i γi and is
extracted directly from the time-width of the correlation
measurement. In practice, the fitting model allows for
non-complementary spectral windows, and uses a multi-
level system to account for the neutral (X) and charged
(CX) excitons, dark exciton, and neutral biexciton (see
Supplementary Information and [16]).

An extra feature of this photon correlation technique
is that it allows the investigation of correlated spectral
diffusion between different lines coming either from the
same emitter or from different emitters. This possibility
gives information on the energy shift of different lines
caused by a common change in their environment. We
have performed cross-correlation between one half of the

Figure 2: Influence of the width (a-c) and position (d-f)
of the spectral windows in cross correlations. (a), The
red (resp. blue) trace is the cross correlation between spectral
windows of width 0.3meV (resp. 1.0meV), as depicted in (b)
(resp.(c)). (d), Cross correlation between spectral windows
with different energy separations. The red (resp. blue) trace
corresponds to the situation depicted in (e) (resp.(f)). In (a)
and in (d), the red and blue traces are superimposed and
yield therefore the same characteristic time τd. Note that the
pumping power for (a) is higher (15µW) than in (d) (10µW).
These different experimental conditions are the reason for the
different τd value between (a) and (d).

exciton (X) line and one half of the biexciton (XX) line
of the same quantum dot. This experiment has been
performed with fast APDs leading to a correlation timing
resolution of 90 ps (see Methods). The results are shown
in fig. 4 for the H half of the X line correlated either
with the H half of XX line (fig. 4(a)) or with its L half
(fig. 4(b)). The characteristic cross-correlation peak of
the biexciton-exciton cascade [19] can clearly be seen in
fig. 4(a) for the same halves of the profile, whereas it
is missing in fig. 4(b). This shows clearly that the sign
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Figure 3: Simplified level scheme used for the rate
equation model of SD. The QD emits photons either on
the low (L) or high (H) energy side of the emission peak. The
QD emission energy diffuses with a rate γH (resp γL) from the
L (resp. H) to the H (resp. L) part. On each energy side, the
QD is modeled with two levels containing respectively zero,
or one exciton. Note that other levels are included for the
fits (see text). The quantities r and γ are respectively the
incoherent pumping rate and the exciton decay rate.
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Figure 4: Correlated spectral diffusion between two
lines. (a), Cross-correlation between the high energy sides
(H) of the exciton (X) and the biexciton (XX) (see inset)
exhibiting the characteristic biexciton-exciton cascade peak.
(b), Cross-correlation between the low energy sides (L) of the
exciton (X) and the high energy side (H) of the biexciton (XX)
lines (see inset). The absence of the characteristic cascade
peak shows that two photons originating from different halves
are not part of the same cascade. For (a,b), the solid line is
a fit based on the model depicted in fig. 3 of the letter where
extra levels have been added as done in [16].

of the energy shifts of the X and XX lines due to the
fluctuating environment is the same, as already observed
in [9] at slower time scales.

To summarize, we have presented a simple and robust
method to measure spectral diffusion of single emitters
with a resolution of 90 ps. As shown experimentally, this
technique enables the probing of the fluctuations of the
nanoenvironment of a single emitter with a time resolu-
tion improved by four orders of magnitude compared to
existing achievements.

Methods

Experimental set-up. It is based on a standard mi-
crophotoluminescence experiment operating at a temper-
ature of T=4K. The sample is excited by a continuous
wave diode laser emitting at 405 nm. The luminescence
is split by a 50/50 beamsplitter and each beam is sent to
a monochromator (resolution δE = 0.2 meV or δλ = 0.05
nm) whose output slit is imaged on an avalanche photo-
diode (APD). The width of the output slit can be var-
ied allowing us to choose the spectral window within the
SD inhomogeneously broadened line. The voltage pulses
of each APD are sent to a time-correlated single pho-
ton module that builds an histogram of the time delays
between photons. This allows us to perform either auto-
correlation when the two monochromators are tuned to
the same wavelength or cross-correlation otherwise. Ex-
cept for the results of fig. 4, the work presented here
has been obtained with high quantum efficiency APDs
(η = 60% at 550 nm). High detection efficiency is im-
portant when performing correlation experiments since
the integration time is proportional to η2. The price to
pay is their slower timing resolution. With these APDs,
the measured timing resolution of the whole set-up is 800
ps (full width at half maximum). This rather slow time
resolution is not a limitation in our case since the SD
times that we are investigating are in the 10 ns range.
The results shown in fig. 4 have been obtained with fast
APDs to allow the observation of the temporally narrow
structures. In that case the measured time resolution of
the set-up is 90 ps, and the APD quantum efficiency is
(η = 30%).
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Supplementary Information : Analysis of the
influence of the size of the spectral windows

In this supplementary information, we discuss theoret-
ically the effect on correlation functions of the fact that
the spectral detection windows defined by the two spec-
trometers are not exactly complementary and may have
different sizes. This corresponds namely to the two sit-
uations depicted in Fig. S1: (a) the two windows do
not cover the whole line and do not overlap, (b) the two
windows cover the whole line and overlap. In the sec-
tions A and B below, we will consider the common situa-
tion in which the sizes of the spectral windows are larger
than the intrinsic homogeneous linewidth of the wander-
ing line. In section C, we will address the case in which
the spectral windows are narrower than the homogeneous
linewidth.

A. Rate equations in the large spectral window
limit

The scheme shown in Fig. 5 involves three parts corre-
sponding to different spectral regions. Each part consists
in a two-level system with a ground and an excited state
connected by the pumping rate r and the spontaneous
emission rate γ. Each part diffuses to the other two parts
with a rate γi, (i = L,H,R) depending on the part to
which the diffusion occurs. In this section, we assume
that the sizes of the different parts are larger than the
homogeneous linewidth.

The six rate equations corresponding to the scheme
shown in Fig. 5(c) can be written in the following form
after straight forward algebra :

dn0i

dt
= −rn0i + γn1i − γdn0i + γiN0,

dn1i

dt
= −γn1i + rn0i − γdn1i + γiN1, (1)

where i = L,H,R. The quantity n0i (resp. n1i) is the
population of the level |0, i〉 (resp. |1, i〉). We define
N0 =

∑

i n0i and N1 =
∑

i n1i, with N0 + N1 = 1. The
quantity γi is the rate towards spectral window i. We also
define γd =

∑

i γi. The individual rate γi, (i = L,H,R) is
proportional to the line area defined by part i and fulfills
γi/γd = Ni(t = ∞). It depends therefore on the window
size and position. But, as it will appear below, only the
sum γd =

∑

i γi shows up in the time scale involved in
the expressions of the correlation functions. The quantity
γd turns out to be the intrinsic rate corresponding to the
spectral diffusion of the light emitter under consideration.

Straight forward algebra leads to the following simple
differential equation for N0 and N1 :

dN1

dt
= −γN1 + rN0. (2)

Figure 5: (a) Situation corresponding to two non-overlapping
windows that do not cover the whole line. The central region
R is not detected by any of the spectrometers. (b) Situation
corresponding to two overlapping spectral windows that cover
the whole line. The central part R corresponds here to the
overlap region. In this case, the spectral window covered by
the first (resp. second) spectrometer is L+R (resp. H+R).
(c) Level scheme used for the rate equation model (see text).

Its solution is given by

N1(t) =
r

r + γ
+ C exp(−(r + γ)t), (3)

where C is a constant depending on the initial conditions.
Let us focus now on the total population Ni = n0i+n1i

of window i (i = L,H,R). We obtain

dNi

dt
= −γdNi + γi. (4)

The solution of this equation is given by

Ni(t) =
γi
γd

+K exp(−γdt), (5)

where K is a constant depending on initial conditions.
It can be noticed that the only time scale describing the
population evolution Ni(t) of part i is the total spectral
diffusion rate γd.

It can easily be shown that the general solution to
equations 1 for n0i, and n1i is

n0i(t) = N0(t)Ni(t),

n1i(t) = N1(t)Ni(t), (6)
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B. Derivation of the correlation functions in the
large spectral window limit

1. Non-overlapping spectral windows

We discuss here the situation corresponding to Fig.
5(a). We will show here that the size of the non-
overlapping spectral windows do not affect the spectral
diffusion time τd measured by photon correlation. These
theoretical results support the experimental observation
shown in the main paper (Fig. 2).

a. Auto-correlation Let us derive the autocorre-
lation function on the L window. The intensity correla-
tion function is given by g(2)(L,L, τ) = n1L(τ)/n1L(∞),
with the initial condition n0L(0) = 1 corresponding to
the detection of a photon in this window. Using the re-
sults of the preceding section A, we obtain

g(2)(L,L, τ) =

[

1 +

(

γd
γL

− 1

)

exp(−γdτ)

]

× [1− exp(−(r + γ)τ)] .

(7)

The autocorrelation function is the product of a bunch-
ing envelope due to spectral diffusion (first term) and
the usual antibunching shape due to the single photon
nature of the source (second term). The bunching enve-
lope due to the spectral diffusion has a width given by
the spectral diffusion time τd = 1/γd independently of
the size of spectral window. As already mentioned the
size of window L affects the rate γL into this window and
therefore only the height (γd − γL)/γL of the bunching
peak. In the limit where the window L covers the whole
spectral line (γL → γd), the spectral diffusion bunching
peak disappears. In the case of a narrow spectral win-
dow (γL → 0) the bunching peak becomes very high and
scales as γd/γL.

b. Cross-correlation Let us derive now the cross-
correlation between windows L and H . We assume
that the first photon is detected in window L, so the
intensity cross-correlation is given by g(2)(L,H, τ) =
n1H(τ)/n1H(∞), with the initial condition n0L(0) = 1.
Using the results of section A, we obtain

g(2)(L,H, τ) = [1− exp(−γdτ)] [1− exp(−(r + γ)τ)] .
(8)

The cross-correlation function is the product of a broad
antibunching function corresponding to spectral diffu-
sion and, as for the auto-correlation, the usual anti-
bunching term due to the single photon nature of the
source. The expression of g(2)(L,H, τ) shows that the
cross-correlation does not depend on the sizes of the spec-
tral windows.

2. Overlapping spectral windows

a. Auto-correlation We consider here the situa-
tion where the auto-correlation is performed with two

spectrometers whose spectral windows might not match
perfectly. This means that the window of the first spec-
trometer corresponds to the L part and the window of
the second spectrometer the L and R parts.

The intensity auto-correlation corresponds to a first
detection in part L and a second detection in L or R
parts. It is given by g(2)(L,L + R, τ) = (n1L(τ) +
n1R(τ))/(n1L(∞) + n1R(∞)), with the initial condition
n0L(0) = 1. Using the results of eqs. 6 of section A, we
can write

n1L(τ) + n1R(τ) = N1(τ)[NL(τ) +NR(τ)] (9)

Taking into account the initial conditions, we have

N1(τ) =
r

r + γ
[1− exp(−(r + γ)τ)] , (10)

NL(τ) =
γL
γd

[

1 +

(

γd
γL

− 1

)

exp(−γdτ)

]

, (11)

NR(τ) =
γR
γd

[1− exp(−γdτ)] . (12)

The auto-correlation function writes then

g(2)(L,L+R, τ) =

[

1 +

(

γd
γR + γL

− 1

)

exp(−γdτ)

]

× [1− exp(−(r + γ)τ)] .
(13)

This expression is very close to eq. (7). Owing to the
imperfect matching between the two spectrometer win-
dows, the height of the spectral diffusion bunching peak
is reduced to γd/(γR + γL)− 1 compared to γd/γL − 1 in
eq. (7)).

b. Cross-correlation In the case of overlapping
spectral windows (cf Fig. 5(b)), the spectral region R
corresponds to the overlap between the spectral windows
of the two spectrometers. This means that the window of
the first spectrometer covers the L and R parts, whereas
the window of the other spectrometer covers the R and
H parts. Let us mention that in this case the whole line
is covered.

The intensity cross-correlation corresponds to a first
detection in regions L or R, and a second detection in
regions R and H . It is given by g(2)(L+ R,R+H, τ) =
(n1R(τ) + n1H(τ))/(n1R(∞) + n1H(∞)), with the initial
condition n0L(0) + n0R(0) = 1. Using the results of eqs.
6 of section A, we have

n1R(τ) + n1H(τ) = N1(τ)[NR(τ) +NH(τ)] (14)

Taking into account the initial conditions, we have

N1(τ) =
r

r + γ
(1− exp(−(r + γ)τ)) , (15)

NR(τ) =
γR
γd

[

1 +

(

γd
γR + γL

− 1

)

exp(−γdτ)

]

,(16)

NH(τ) =
γH
γd

[1− exp(−γdτ)] . (17)
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This leads to

g(2)(L +R,H +R, τ) =
[

1−
γL

(γL + γR)

γH
(γH + γR)

exp(−γdτ)

]

× [1− exp(−(r + γ)τ)] .

(18)

This expression is to be compared with eq. (8). The
first term corresponds to the antibunching caused by the
spectral diffusion with a characteristic time τd. Owing to
the overlap of the two spectral windows, this antibunch-
ing contrast is reduced. This contrast is unity when the
overlap is vanishing as in eq. (8). On the other hand,
when the overlap is maximum, this correlation term is
unity, and one is left with a the "single photon type"
antibunching.

C. Limit of vanishingly narrow spectral windows :
determination of the intrinsic linewidth

In this section we discuss qualitatively the situation in
which the spectral windows become vanishingly narrow,
and eventually reach a value smaller than the intrinsic
homogeneous linewidth. We will show that in this very
specific situation, the cross-correlation does depend on
the size of the spectral windows and their energy differ-
ence.

Let us consider the cross-correlation experiment with
both spectral windows narrower than the homogeneous
linewidth. When the energy difference between the
two spectral windows is larger than the homogeneous
linewidth, we are in the situation described in paragraph
B.1.b of this supplementary information, with the super-
position of the antibunching due to the single photon na-
ture of the source (time scale 1/(r+γ)) and the generally
broader antibunching due to the spectral diffusion (time
scale 1/γd). When the energy difference between the two
spectral windows is reduced and becomes smaller than
the homogeneous linewidth, the homogeneous line will
either include both spectral windows or none of them.

The contribution of the "spectral diffusion" type anti-
bunching will then vanish and only the "single photon"
type antibunching will remain. The energy difference cor-
responding to the transition between these two regimes
will give the homogeneous linewidth.

So our method allows in principle the determination
of the intrinsic homogeneous linewidth of the wandering
line. In practise however, this experiment is very diffi-
cult to achieve for two reasons : i) it requires a spec-
trometer with a resolution better than the homogeneous
linewidth, ii) the total number of counts through narrow
spectral windows will be very low, requiring very large
integration time to acquire a meaningful photon correla-
tion histogram.

Note that the photon correlation Fourier spectroscopy
(PCFS) method of refs [12,13] of the main text is bet-
ter suited for extracting the homogenous linewidth of a
narrow wandering line. In this method the two spectral
windows are complementary fringe patterns obtained at
the two outputs of a Michelson interferometer. The fringe
spectral spacing can be made arbitrarily small by increas-
ing the optical path difference between the two arms,
so that the resolution can be made arbitrarily high and
exceed the homogeneous linewidth (these are the same
reasons for which Fourier transform spectroscopy out-
performs conventional spectroscopy with respect to res-
olution). When the fringe spectral periodicity becomes
narrower than the homogeneous linewidth (ie the optical
path difference is large) the intensity noise is no longer
related to spectral diffusion. It is therefore possible to
identify this transition and evaluate the homogeneous
linewidth. Since in PCFS the two spectral windows are
complementary whatever the resolution, all the photons
are always detected and contribute to the photon corre-
lation histogram so that high resolution does not imply
long integration time. The PCFS method offers therefore
a real possibility of extracting the intrinsic homogeneous
linewidth. The price to pay is the drastic mechanical
stability requirement necessary to implement such inter-
ferometric experiments.


