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This article details work aiming at evaluating the quality of the manual annotation of gene renaming couples in scientific abstracts, which generates sparse annotations. To evaluate these annotations, we compare the results obtained using the commonly advocated inter-annotator agreement coefficients such as S, κ and π, the less known R, the weighted coefficients κω and α as well as the F-measure and the SER. We analyze to which extent they are relevant for our data. We then study the bias introduced by prevalence by changing the way the contingency table is built. We finally propose an original way to synthesize the results by computing distances between categories, based on the produced annotations.

Introduction

Manual corpus annotation is often needed prior to Natural Language Processing (NLP) tasks, not only to train tools, but also to create a reference for evaluation. If it was demonstrated, among others by [START_REF] Alex | The Impact of Annotation on the Performance of Protein Tagging in Biomedical Text[END_REF] and [START_REF] Reidsma | Reliability Measurement Without Limits[END_REF], that incoherent annotations lead to limited performance of the tools trained with them, the quality of the reference is seldom justified. Only few campaigns provide details on its creation and when inter-annotator agreement measures are given, they are in the form of a de facto standard, the "kappa", from [START_REF] Cohen | A Coefficient of Agreement for Nominal Scales[END_REF] or Carletta (1996), generally without any more precision. 1Di [START_REF] Di | The Kappa Statistic: a Second Look[END_REF] showed the sensitivity of these coefficients to inter-annotator bias and to prevalence and the discussion remains open regarding the representativity of these coefficients and the necessity to present several [START_REF] Passonneau | Measuring Agreement on Set-Valued Items (MASI) for Semantic and Pragmatic Annotation[END_REF]. [START_REF] Artstein | Inter-Coder Agreement for Computational Linguistics[END_REF] produced a very interesting and complete review of the different computation modes for the inter-annotator agreement and discussed their usage in NLP tasks. However, it remains difficult to know which coefficient to use according to the characteristics of the data. We present in this article the evaluation we conducted on a manual annotation campaign, applying and comparing different methods. We then propose a new way to synthesize the results by computing similarities between categories based on the produced annotations.

Overview of the Annotation Campaign

Within the framework of the Quaero program2 , experts were asked to manually annotate Bacillus Subtilis gene renaming couples in a 1,843 abstracts corpus. These abstracts were selected from Medline by a partner of the project, using gene names databases and a set of keywords denoting gene renaming relations. The resulting corpus includes more than 400,000 tokens. This annotation aimed at, first, building a database of Bacillus Subtilis gene renaming couples, and second, training and evaluating automatic extraction tools. It was used for the BioNLP 2011 shared task3 and is available for use for non-profit research purposes (see license). This campaign allowed for the manual identification of approximately 200 renaming couples, such as: "Inactivation of a previously unknown gene, yqzB (renamed ccpN for control catabolite protein of gluconeogenic genes [..]".

We organized the campaign using the methodology proposed in [START_REF] Bonneau-Maynard | Semantic Annotation of the French Media Dialog Corpus[END_REF] and computed the inter-annotator agreement at the very beginning of the annotation process, in order to identify as early as possible the disagreements between annotators and modify the guidelines accordingly. To achieve this, we had two expert annotators (here A1 and A2) annotate the same sample of 93 files, i.e. more than 19,000 tokens, from which we then computed the inter-annotator agreement. It is important to note that no automatic pre-annotation was performed, as, to our knowledge, no present tool can recognize all the gene names and we did not want to risk missing some not preannotated renaming couples. Those couples were manually annotated using Cadixe [START_REF] Alphonse | Event-based Information Extraction for the Biomedical the CADERIGE Project[END_REF], an interface designed for named entity annotation, that does not allow for the direct annotation of relations. We therefore annotated the original name of the gene (Former), then its new name (New), with corresponding ids. The rest of the text is not annotated.It has to be noted that we are here in a very specific situation, where the relation is so simple that it can be reduced to tokens with ids and where the random baseline can be identified (which is often not the case, see for example [START_REF] Alex | Agile corpus annotation in practice: An overview of manual and automatic annotation of cvs[END_REF] on named entities). Obviously, some files (more than a third) do not contain any renaming, while others detail several. We obtained in average one renaming per file. Comparing two annotations with standard inter-annotator agreement measures also requires to define what the markables are, i.e. what is potentially "annotatable". In our case, this definition is reasonably simple: all the tokens are potentially marked. So, for each annotator, we associate the implicit category Nothing with all the unannotated tokens. The contingency table 1 is already quite informative, as it reveals the predominance of the baseline Nothing category, that represents more than 99% of the corpus, and thus shows that the annotated items are largely scattered. This is a situation of great prevalence of one category. It also shows that some renaming relations were incomplete, as, for both annotators, the number of Former and New is not equal (86 and 90 for A1 and 107 and 92 for A2). Furthermore, this imbalance is more important for A2 than for A1. The two annotators annotated almost the same number of tokens as New (90 for A1 vs 92 for A2), but A2 annotated a lot more tokens with the Former category than A1 did ( 86 for A1 vs 107 for A2). A1 is more likely to annotate Nothing than A2 and A2 is more likely to annotate Former than A1. Part of this can be explained by the fact that we considered that gene names are simple tokens, whereas in some rare cases, in particular operons (clusters of genes), one annotator chose to select more than one token.

Evaluating the Produced Annotations using Coefficients

We will use in the rest of the article the notations and the formulas from [START_REF] Artstein | Inter-Coder Agreement for Computational Linguistics[END_REF] concerning the inter-annotator agreement measures and formulas.

Using S, π and κ Coefficients

The most obvious measure for the inter-annotator agreement is the observed agreement (A o ), which corresponds to the proportion of items on which the annotators agree, i.e. the total number of items on which they agree divided by the total number of items, that is, in our case:

A o = 71 + 69 + 18, 840 19, 054 = 0.996116

The result is extremely high, but cannot be used as such, as it does not take into account the possibility that the annotators select the same category for the same item by chance (A e , expected agreement). To analyze our results we will use here coefficients described in [START_REF] Artstein | Inter-Coder Agreement for Computational Linguistics[END_REF] taking this expected agreement into account: S [START_REF] Bennett | Communications through Limited Questioning[END_REF], κ [START_REF] Cohen | A Coefficient of Agreement for Nominal Scales[END_REF]π (Scott, 1955). The three of them are computed using the same formula:

S, κ, π = A o -A e 1
-A e These coefficients differ in the way the expected agreement (A e ) is computed, according to hypotheses on the behavior of the annotators, in case they annotate by chance. S assumes that the expected agreement follows a uniform distribution in the various categories (here 3). In our case, the expected agreement for S, A S e , is therefore computed in the following way:

A S e = 1 3 = 0.333333 S = 0.99417
The most important bias of this coefficient is that it is directly correlated to the number of categories and that, consequently, the higher the number of categories, the lower the expected agreement. It has to be noticed that it is generally low, as its maximum value is 1/2 (0.5) for two categories. We only present S here to show its proximity with Finn's R (see sub-section 3.2. below). π [START_REF] William | Reliability of Content Analysis: The Case of Nominal Scale Coding[END_REF], also known as K in [START_REF] Siegel | Nonparametric Statistics for the Behavioral Sciences[END_REF] or kappa in (Carletta, 1996) , also considers that the distributions made by the annotators by chance are equivalent, but it assumes that the items are not uniformly distributed into the categories and that this distribution can be estimated using the average category assignment realized by the annotators. In our case, the expected agreement for π, A π e , is therefore computed in the following way:

A π e = (( 86+107 
2

) 2 + ( 90+92 2 ) 2 + ( 18,878+18,855 2 ) 2 ) 19, 054 2 = 0.980464 π = 0.8012
As for κ [START_REF] Cohen | A Coefficient of Agreement for Nominal Scales[END_REF], it assumes in the way it models chance, that the distribution of items between categories may differ for each annotator. In this case, the probability for an item to be assigned to a category is the product of the probability that each annotator assigns it to this category. In our case, the expected agreement for κ, A κ e , is therefore computed in the following way: If we compare the 3 coefficients, we observe that S is slightly lower than the observed agreement, and π and κ are similar, while being lower than A o and S, which is coherent with the order S π and π κ described in [START_REF] Artstein | Inter-Coder Agreement for Computational Linguistics[END_REF]. The high S value shows that the items are annotated according to a rationale that has nothing to do with chance. For a constant observed agreement, S only depends on the number of categories, it is therefore not sensitive to the items' distribution between categories, as opposed to π and κ [START_REF] Di | The Kappa Statistic: a Second Look[END_REF]. The authors of this article show that when categories are skewed, despite a high agreement on the dominant category, π and κ are sensitive to disagreements on small categories. According to the latest interpretations of inter-annotator reliability scales that state that "if a threshold needs to be set, 0.8 is a good value" [START_REF] Artstein | Inter-Coder Agreement for Computational Linguistics[END_REF], our κ and π can be considered as good, which is reassuring concerning the agreement reached on the two minority but meaningful categories.

Using Finn's R Coefficient

Faced with the same disproportion between categories in their annotation campaign, [START_REF] Laignelet | Repérer automatiquement les segments obsolescents à l'aide d'indices sémantiques et discursifs[END_REF] followed a suggestion from [START_REF] Hripcsak | Measuring Agreement in Medical Informatics Reliability Studies[END_REF] and used the R coefficient [START_REF] Finn | A Note on Estimating the Reliability of Categorical Data[END_REF], that is proposed in the software environment for statistical computing R4 . The R coefficient is computed in the following way: R = 1 -Observed V ariance Expected V ariance the observed variance being the average variance on the annotated items and the expected variance being the variance of the uniform discrete distribution with n categories (hereafter nb categories), i.e.:5 

Expected V ariance = (nb categories) 2 -1 12

In our case, we obtain R = 0.9943713. This value, very close to that of S (0.99417) can be explained by the fact that this coefficient models chance the same way S does, considering a uniform distribution of the categories. It is therefore no more affected than S by the distribution of items in the categories. We therefore claim that Finn's R is no more informative than S in cases of scattered annotations and asymmetry of categories.

Using Weighted Coefficients

According to [START_REF] Artstein | Inter-Coder Agreement for Computational Linguistics[END_REF], π and κ process all disagreements the same way and only weighted coefficients allow for giving more importance to some disagreements.

They describe two weighted coefficients: the weighted κ, κ ω [START_REF] Cohen | Weighted Kappa: Nominal Scale Agreement with Provision for Scaled Disagreement or Partial Credit[END_REF]) and α [START_REF] Krippendorff | Content Analysis: An Introduction to Its Methodology[END_REF][START_REF] Krippendorff | Content Analysis: An Introduction to Its Methodology[END_REF]. The two coefficients are based on interannotator disagreements and use a distance between categories describing to which extent two categories are distinct. [START_REF] Artstein | Inter-Coder Agreement for Computational Linguistics[END_REF] discuss how to define this distance according to the annotation type, as it allows, among others, to process the annotation of complex structures by introducing several values of distances between annotations. The inconvenient of this method is that it makes the interpretation of the results more complex.

We have in our case, two meaningful categories, Former and New, and one less meaningful, Nothing. We consider that it is more important to identify the gene names couples than to determine the precedence of a name as compared to the other. Therefore, for us, the distance between Former and New should be less than that between these and Nothing. If we consider that it is twice as large, we will obtain the distances between categories described in table 2 (in the [0,1] interval): The weighted coefficients κ ω and α are computed using the formula:

κ ω , α = 1 - D 0 D e
where D 0 stands for the observed disagreement between the annotators and D e represents the expected disagreement, i.e. the disagreement appearing if the distribution is done by chance alone. The expected disagreement for κ ω and α follows the same rationale as κ and π respectively, and includes the notion of distance between categories. 6From the distances of the table 2, we obtain α = 0.8292 and κ ω = 0.8291, values that are higher than π and κ. The weighted coefficients express the same disagreement but with lower values, hence raising the inter-annotator agreement.

The resulting coefficients are very high and show little bias. However, they seem to us somewhat uncertain, as they consider very heterogeneous categories in a similar way: two meaningful but minority categories (Former and New) and a less meaningful, majority one (Nothing). The problem here is therefore to ensure that these coefficients, computed on the three categories, reflect a significant agreement on the two meaningful categories, Former and New.

Using the F-measure and Slot Error Rate

The fact that we use all the tokens (or even only the gene names) as random baseline is an approximation: the Nothing category includes irrelevant tokens, the number of which is not precisely known. This situation is not unusual and is generally dealt with using other metrics, in particular the F-measure (see, for example [START_REF] Alex | Agile corpus annotation in practice: An overview of manual and automatic annotation of cvs[END_REF]).

The recall, precision and F-measure, as defined in the information retrieval field, are performance metrics that require only the annotated elements and no random baseline (as they do not take chance into account). According to Hripcsak and Heitjan ( 2002), the F-measure, i.e. the weighted harmonic mean of precision and recall, is equivalent to the average positive specific agreement among the annotators, here:

F = 2C 2C + 2S + 2 (1+α) D + 2α
1+α I where C is the number of correct slots or agreement, S is the number of substitutions (incorrect slots), D is the number of deletions (missing slots), I is the number of insertions (spurious slots), with α = 1, the most popular value, which is well adapted to our case as it allows us to use D and I in a symmetric way. In our case, this corresponds to:

F = 2 × (71 + 69) (2 × (71 + 69)) + (2 × (13 + 8)) + 23 + 15 + 7 + 8
An interesting variant, that we call here F ′ , implies that substitutions are considered half-correct when computing precision and recall, giving, for the balanced case:

F ′ = 2C + S 2C + 2S + D + I
In our case, this corresponds to:

F ′ =
(2 × (71 + 69)) + 13 + 8 (2 × (71 + 69)) + (2 × (13 + 8)) + 23 + 15 + 7 + 8

An interesting characteristic of this variant is that it corresponds to the limit of the κ coefficient when the count of Nothing tends towards infinity [START_REF] Hripcsak | Agreement, the f measure, and reliability in information retrieval[END_REF]. Using these formulas, we end up, for Table 1, with F = 0.747 and F ′ = 0.803. The F ′ measure points out the interest of weighting different types of error differently, which has long been recognized in the systems evaluation side, giving birth to the Slot Error Rate [START_REF] Makhoul | Performance measures for information extraction[END_REF][START_REF] Galibert | Named and Specific Entity Detection in Varied Data: the Quaero Named Entity Baseline Evaluation[END_REF]. This metric corresponds to an error enumeration methodology, where, for each error, a cost is given, and the total cost is divided by the number of annotations in the reference. We follow here the same rule as above, giving a half-point cost to substitution (considering there is something to annotate is half the work) and a full point for insertions and deletions.

SER = 0.5S + D + I Ref erence entity count

In our case, no annotation can be considered as a reference, so we propose to use the arithmetic mean of the number of annotations as the divider. We end up with a symmetric-SER of 0.339: SER = 0.5 × (13 + 8) + 23 + 15 + 7 + 8 0.5 × (86 + 90 + 107 + 92))

Mathematically, the symmetric-SER is the harmonic mean of the two oriented SERs, giving a structure similar to the F-measure. Instead, if we had chosen to give a full point cost to substitutions, the result would have been 0.395.

The SER allows for a much finer control on what is considered important in the annotation, which is very interesting from a system evaluation point-of-view, but on the other hand is hard to interpret, as there are no traditionally accepted limits above which the annotation is considered good enough. Suppose now that we consider that gene names correspond to a specific subset of tokens in the texts, we could then use as total the number of gene names occurrences, that is 1,165 (case 2).7 Note that this choice is questionable as, first, the reliability of the results depend on the exhaustivity of the dictionary, which, given the constant progress in the field, will never be sufficient and second, because it would mean neglecting the fact that the annotators often have to read the whole text to make decisions, the renaming being confirmed only at the end of the abstract.

Changing Points of View

Table 3 shows the contingency table generated using the number of gene names occurrences to define the Nothing category. From this table, we obtain S = 0.90472, π = 0.77557, κ = 0.77571. F-measure and SER do not change from table 1 given that the cases "Nothing/Nothing" and "genes/genes" are not taken into account. Note that we were unable to compute Finn's R as we depend on partners for the gene names dictionary and that this intermediary result was not available. The three coefficients result in lower values and show the same differences between them. This demonstrates that, even if the role of items distribution and of the behavior of the annotators seems constant, the size of the category Nothing has an influence on the inter-annotator agreement. A second possible redesign of the contingency We obtain, in this case, S = 0.73913, R = 0.73913, π = 0.73909 and κ = 0.73934. These values are still high but lower than the previous one. The number of elements in each category is also rather small, which makes the disagreements more visible. In this case, the agreement on the 2 categories is important, F-measure then equals the observed agreement. Finally, table 5 shows the results obtained by grouping together the two meaningful categories, Former and New (case 4). We then get S = 0.99444, R = 0.99444, π = 0.85726, κ = 0.85727 and F = 0.85867. These values are higher than the various coefficients obtained from the complete contingency table 1, which is not surprising as in this configuration, there is very little ambiguity left. Note that κ is again very similar to the F-measure as the number of Nothing is still very high.

Analyzing the Obtained Results

All the results we obtained are summarized in table 6. Note that the SER, with its error typing, is relevant only for the complete localization and typing task. This table shows that R and S are very close in all cases. This confirms our remarks in section 3.1.: R does not bring any more information than S. This table also shows that the values of π and κ, computed from all the contingency tables are very close. The way chance is modeled in π implies that the distribution into categories is the same for both annotators, whereas in κ, chance is modeled in such a way that this distribution differs from one annotator to the other. Similar values of π and κ reflect that both annotators generate the same distribution into categories, which can be seen in the similar marginal distributions. This means that our data show little annotator bias [START_REF] Artstein | Inter-Coder Agreement for Computational Linguistics[END_REF].

If we consider, on the one hand S, and on the other hand κ and π, we can see that their values are quite different in all the three cases taking into account the Nothing category, whereas they are similar in the case taking only Former and New into account. This can be explained by the fact that the distribution of the annotations into the three categories (including Nothing) is not homogeneous. κ and π use this distribution in the way they model chance, which is not the case for S. This does not appear in case 3, where the annotations are homogeneously distributed in the two categories (but again, we removed some of the annotations in this case). Table 5 (case 4) can be used to check if the gene renaming couples are correctly identified in the texts.

The values of the coefficients we obtained with this table are the highest, we can therefore conclude that this identification is done without problem. The coefficients computed from case 1 and 2, when compared, show the impact of the Nothing category. The fact that the values of the coefficients are higher for case 1 than for case 2, in which the Nothing category is much smaller, shows that these coefficients are influenced by the prevalence in the annotations.

In this case, F-measure and SER are more adapted to evaluate the inter-annotator agreement, even though κ and π are sensitive to disagreements on small categories. The coefficients obtained in case 3 present the lower values.

They show in a more precise way the difficulties encountered when distinguishing between Former and New. In this table, the four coefficients are almost identical, which shows that the (partial) inter-annotator agreement is not biased by the different models. Therefore, the inter-annotator agreement reaches higher values when annotators have to identify gene name couples involved in a renaming relationship than when they have to identify as Former and New these gene names within these couples.

Comparing various coefficients is therefore useful to estimate the biases induced by the distribution of the annotations and the behavior of the annotators. Table 6 also shows the influence of prevalence on the coefficients, which means that the way we choose to consider the categories in the contingency table has a significant impact on the results. We therefore claim that it is fundamental, when giving inter-annotator agreement results, not only to present the contingency table that was used to compute the coefficients, but also to justify the choices that were made.

Using Similarities Between Categories

We saw that in the computation of weighted coefficients, distances between categories are defined from prior knowledge of the annotation task. As tempting as it may seem, computing distances from the annotated data themselves would imply some kind of circularity. However, such distances could prove useful to get some information on the categories themselves, independently from the annotators. We showed that the Former and New categories tend to be more difficult to identify within gene names couples than these couples from the whole text. The role of coefficients is not to provide this type of interpretation, which corresponds more to similarities between categories. We therefore propose to directly evaluate these similarities according to the difficulty the annotators have to distinguish between categories. In order to do this, we use the contingency table 1. We consider that two categories are distinct 

P (C 2 |C 1 ) = n 1C1,2C2 + n 2C1,1C2 n C1
with n 1C1,2C2 representing the number of items assigned by annotator 1 to the C 1 category while annotator 2 assigned them to the C 2 category; n C1 represents the sum of the items assigned in the category C 1 by both annotators. When this probability is low, the C 2 category is highly dissimilar to C 1 and the risk of getting a different annotation is low. We obtain here: P (N ew|F ormer) = 13 + 8 107 + 86 = 0.108808

Table 7 presents the values of the probabilities computed for our case. The diagonal results give an estimate of the agreement for each category. We can see that it is very important for Nothing and less so for the others (73% for Former and 75% for New). The other cells in the table can be used to estimate the disagreement between annotators, category by category. These probabilities are very low, which means that their are highly dissimilar. We can also notice that the probabilities are asymmetrical. The values P (F ormer|N othing) and P (N ew|N othing) are very low (<1‰), therefore, the chance of annotating an item with the Former or New category when it has already been annotated Nothing is close to zero. Conversely, the chance of annotating an item with the Nothing category when it has already been annotated Former or New is higher (15% and 12%). The probabilities being asymmetrical, this formula cannot be used as such. We will assume that the annotators would produce similar distributions of items among categories. We therefore define the associated similarity as the average of the oriented probabilities (computed from table 7), using: In table 8, we notice that Sim(F ormer, N ew) is higher than Sim(F ormer, N othing) and Sim(N ew, N othing), implying that Former and New are closer to each other than to Nothing. To our knowledge, this kind of table has never been used before, although it proves quite useful, in particular during the preliminary stages of the annotation campaign, when the categories are tested and questioned, as it allows for the identification of subsets of categories that might be ambiguous. Moreover, it allows for a synthetic view of the data, even with more than 2 annotators. From this point of view, it shows a higher usability than the table presented by [START_REF] Krippendorff | Content Analysis: An Introduction to Its Methodology[END_REF], and a solution to the impossibility to show a contingency table when more than 2 annotators are involved.

Sim(C 1 , C 2 ) = P (C 2 |C 1 ) + P (C 1 |C 2 ) 2

Conclusion

We used the results from a real annotation campaign to analyze several computation modes of the inter-annotator agreement. A characteristic of this campaign is the highly scattered annotations, inducing a bias due to the prevalence of the unannotated tokens. We confirmed in this article that whenever possible, the first result to present is the contingency table [START_REF] Hripcsak | Measuring Agreement in Medical Informatics Reliability Studies[END_REF] , with precise explanations about the choices that were made. Our results indicate a good agreement on the two minority but meaningful categories. Comparing the coefficients and studying their evolution according to the way the contingency table is built allowed us to check that there was no bias due to the annotators and to quantify the prevalence bias.

Finally, to obtain an analysis of the real chance of error between categories, we computed a table of similarities between them. This table, allowing for a synthetic view of the data, even with more than 2 annotators, constitutes a new tool for evaluation which, as a complement to coefficients like κ or F-measure, offers a different view on the data, more category-oriented. New annotation campaigns held within the same program should allow us to test the different coefficients and the reproducibility of our proposals. These campaigns concern various domains and applications, such as the patents in pharmacology (named entities, terms) or soccer matches comments (named entities, complex relations).

  107) + (90 × 92) + (18, 878 × 18, 855) 19, 054 2 = 0.980463 κ = 0.80121

Table 1 :

 1 Contingency table computed from all the tokens

					A1	
			Former New Nothing	Total
		Former	71	13	23	107
	A2	New Nothing	8 7	69 8	15 18,840	92 18,855
		Total	86	90	18,878	19,054

Table 2 :

 2 Example of distances between categories

		Former New Nothing
	Former	0	0,5	1
	New	0,5	0	1
	Nothing	1	1	0

Table 3 :

 3 Contingency table computed from identified gene names Nothing category and to focus on the Former/New inversions. The obtained results should therefore be interpreted with caution.

				A1		
			Former New Nothing Genes
		Former	71	13	23	107
	A2	New Nothing	8 7	69 8	15 951	92 966
		Genes	86	90	989	1,165

table is to consider only the meaningful categories, Former and New (case 3), as shown in table 4. Note that completely removing the Nothing category implies removing part of the results (the items annotated by only one annotator). We only use this redesign to eliminate the prevalence effect of the

Table 4 :

 4 Contingency table without the Nothing category

				A1	
			Former New Total
		Former	71	13	84
	A2	New	8	69	77
		Total	79	82	161

Table 5 :

 5 Contingency table with grouped meaningful categories

				A1	
			Former/New Nothing	Total
		Former/New	161	38	199
	A2	Nothing	15	18,840	18,855
		Total	176	18,878	19,054

Table 6 :

 6 A o , S, R, π, κ, F-measure and SER using various contingency tables More precisely, let us consider two categories C 1 and C 2 from the considered categories, P (C 2 |C 1 ) represents the probability that an annotator assigned an item in the category C 2 while a second annotator assigned it in the category C 1 . It is computed in the following way:

	Contingency tables	Ao	S	R	π	κ	F-measure	SER
	Former/New/Nothing (case 1)	0.99611 0.99417 0.99437	0.8012	0.80121	0.74667	0.33867
	Former/New/Nothing gene names (case 2) 0.93648 0.90472	n/a	0.77557 0.77571	0.74667	0.33867
	Former/New (case 3)	0.86956 0.73913 0.73913 0.73909 0.73934	0.86957	-
	Former+New/Nothing (case 4)	0.99722 0.99444 0.99444 0.85726 0.85727	0.85867	-
	if there is little chance of distribution error between them.						

Table 7 :

 7 Table of Probabilities

	ւ	Former	New	Nothing
	Former	0.735751 0.108808 0.155440
	New	0.115385 0.758242 0.126374
	Nothing 0.000795 0.000609 0.998595

Table 8 :

 8 Similarities between categories

		Sim
	Sim(Former,New)	0.112096
	Sim(Former,Nothing) 0.078117
	Sim(New,Nothing)	0.063491

For more details, refer to the introduction of (Artstein and Poesio,

2008).

http://quaero.org/

http://www-tsujii.is.s.u-tokyo.ac.jp/ GENIA/BioNLP-ST/downloads/downloads.shtml

http://www.r-project.org/

[START_REF] Finn | A Note on Estimating the Reliability of Categorical Data[END_REF] does not detail the computation of the expected variance, but it can be found in the sources of the irr library of R. For a more thorough explanation, see: http://mathworld.wolfram.com/ DiscreteUniformDistribution.html.

It has to be noticed that if all the categories are perfectly distinct, α = π and κω = κ.

Results obtained by application of a gene names dictionary.
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