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Abstract

This article details work aiming at evaluating the quality of the manual annotation of gene renaming couples in scientific abstracts,

which generates sparse annotations. To evaluate these annotations, we compare the results obtained using the commonly advocated

inter-annotator agreement coefficients such as S, κ and π, the less known R, the weighted coefficients κω and α as well as the F-measure

and the SER. We analyze to which extent they are relevant for our data. We then study the bias introduced by prevalence by changing

the way the contingency table is built. We finally propose an original way to synthesize the results by computing distances between

categories, based on the produced annotations.
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1. Introduction

Manual corpus annotation is often needed prior to Nat-

ural Language Processing (NLP) tasks, not only to train

tools, but also to create a reference for evaluation. If it

was demonstrated, among others by Alex et al. (2006)

and Reidsma and Carletta (2008), that incoherent annota-

tions lead to limited performance of the tools trained with

them, the quality of the reference is seldom justified. Only

few campaigns provide details on its creation and when

inter-annotator agreement measures are given, they are in

the form of a de facto standard, the “kappa”, from Cohen

(1960) or Carletta (1996), generally without any more pre-

cision.1

Di Eugenio and Glass (2004) showed the sensitivity of

these coefficients to inter-annotator bias and to prevalence

and the discussion remains open regarding the representa-

tivity of these coefficients and the necessity to present sev-

eral (Passonneau, 2006). Artstein and Poesio (2008) pro-

duced a very interesting and complete review of the differ-

ent computation modes for the inter-annotator agreement

and discussed their usage in NLP tasks. However, it re-

mains difficult to know which coefficient to use according

to the characteristics of the data. We present in this article

the evaluation we conducted on a manual annotation cam-

paign, applying and comparing different methods. We then

propose a new way to synthesize the results by computing

similarities between categories based on the produced an-

notations.

1For more details, refer to the introduction of (Artstein and

Poesio, 2008).

2. Overview of the Annotation Campaign

Within the framework of the Quæro program2, experts were

asked to manually annotate Bacillus Subtilis gene renam-

ing couples in a 1,843 abstracts corpus. These abstracts

were selected from Medline by a partner of the project,

using gene names databases and a set of keywords denot-

ing gene renaming relations. The resulting corpus includes

more than 400,000 tokens.

This annotation aimed at, first, building a database of Bacil-

lus Subtilis gene renaming couples, and second, training

and evaluating automatic extraction tools. It was used for

the BioNLP 2011 shared task3 and is available for use for

non-profit research purposes (see license).

This campaign allowed for the manual identification of ap-

proximately 200 renaming couples, such as:

“Inactivation of a previously unknown gene,

yqzB (renamed ccpN for control catabolite pro-

tein of gluconeogenic genes [..]”.

We organized the campaign using the methodology pro-

posed in (Bonneau-Maynard et al., 2005) and computed

the inter-annotator agreement at the very beginning of the

annotation process, in order to identify as early as possi-

ble the disagreements between annotators and modify the

guidelines accordingly. To achieve this, we had two expert

annotators (here A1 and A2) annotate the same sample of

93 files, i.e. more than 19,000 tokens, from which we then

computed the inter-annotator agreement. It is important to

note that no automatic pre-annotation was performed, as, to

our knowledge, no present tool can recognize all the gene

2http://quaero.org/
3http://www-tsujii.is.s.u-tokyo.ac.jp/

GENIA/BioNLP-ST/downloads/downloads.shtml



names and we did not want to risk missing some not pre-

annotated renaming couples.

Those couples were manually annotated using

Cadixe (Alphonse et al., 2004), an interface designed

for named entity annotation, that does not allow for the

direct annotation of relations. We therefore annotated the

original name of the gene (Former), then its new name

(New), with corresponding ids. The rest of the text is not

annotated.It has to be noted that we are here in a very

specific situation, where the relation is so simple that it

can be reduced to tokens with ids and where the random

baseline can be identified (which is often not the case, see

for example (Alex et al., 2010) on named entities).

Obviously, some files (more than a third) do not contain

any renaming, while others detail several. We obtained in

average one renaming per file. Comparing two annotations

with standard inter-annotator agreement measures also re-

quires to define what the markables are, i.e. what is poten-

tially “annotatable“. In our case, this definition is reason-

ably simple: all the tokens are potentially marked. So, for

each annotator, we associate the implicit category Nothing

with all the unannotated tokens.

Table 1: Contingency table computed from all the tokens
A1

Former New Nothing Total

A2

Former 71 13 23 107

New 8 69 15 92

Nothing 7 8 18,840 18,855

Total 86 90 18,878 19,054

The contingency table 1 is already quite informative, as

it reveals the predominance of the baseline Nothing cate-

gory, that represents more than 99% of the corpus, and thus

shows that the annotated items are largely scattered. This

is a situation of great prevalence of one category. It also

shows that some renaming relations were incomplete, as,

for both annotators, the number of Former and New is not

equal (86 and 90 for A1 and 107 and 92 for A2). Further-

more, this imbalance is more important for A2 than for A1.

The two annotators annotated almost the same number of

tokens as New (90 for A1 vs 92 for A2), but A2 annotated

a lot more tokens with the Former category than A1 did (

86 for A1 vs 107 for A2). A1 is more likely to annotate

Nothing than A2 and A2 is more likely to annotate Former

than A1. Part of this can be explained by the fact that we

considered that gene names are simple tokens, whereas in

some rare cases, in particular operons (clusters of genes),

one annotator chose to select more than one token.

3. Evaluating the Produced Annotations

using Coefficients

We will use in the rest of the article the notations and the

formulas from (Artstein and Poesio, 2008) concerning the

inter-annotator agreement measures and formulas.

3.1. Using S, π and κ Coefficients

The most obvious measure for the inter-annotator agree-

ment is the observed agreement (Ao), which corresponds

to the proportion of items on which the annotators agree,

i.e. the total number of items on which they agree divided

by the total number of items, that is, in our case:

Ao =
71 + 69 + 18, 840

19, 054
= 0.996116

The result is extremely high, but cannot be used as such, as

it does not take into account the possibility that the annota-

tors select the same category for the same item by chance

(Ae, expected agreement). To analyze our results we will

use here coefficients described in (Artstein and Poesio,

2008) taking this expected agreement into account: S (Ben-

nett et al., 1954), κ (Cohen, 1960) and π (Scott, 1955). The

three of them are computed using the same formula:

S, κ, π =
Ao −Ae

1−Ae

These coefficients differ in the way the expected agreement

(Ae) is computed, according to hypotheses on the behavior

of the annotators, in case they annotate by chance. S as-

sumes that the expected agreement follows a uniform dis-

tribution in the various categories (here 3). In our case, the

expected agreement for S, AS
e , is therefore computed in the

following way:

AS
e =

1

3
= 0.333333

S = 0.99417

The most important bias of this coefficient is that it is di-

rectly correlated to the number of categories and that, con-

sequently, the higher the number of categories, the lower

the expected agreement. It has to be noticed that it is gen-

erally low, as its maximum value is 1/2 (0.5) for two cate-

gories. We only present S here to show its proximity with

Finn’s R (see sub-section 3.2. below).

π (Scott, 1955), also known as K in (Siegel and Castellan,

1988) or kappa in (Carletta, 1996) , also considers that the

distributions made by the annotators by chance are equiv-

alent, but it assumes that the items are not uniformly dis-

tributed into the categories and that this distribution can be

estimated using the average category assignment realized

by the annotators. In our case, the expected agreement for

π, Aπ
e , is therefore computed in the following way:

Aπ
e =

(( 86+107
2 )2 + ( 90+92

2 )2 + ( 18,878+18,855
2 )2)

19, 0542

= 0.980464

π = 0.8012

As for κ (Cohen, 1960), it assumes in the way it models

chance, that the distribution of items between categories

may differ for each annotator. In this case, the probabil-

ity for an item to be assigned to a category is the product

of the probability that each annotator assigns it to this cat-

egory. In our case, the expected agreement for κ, Aκ
e , is

therefore computed in the following way:

Aκ
e =

(86× 107) + (90× 92) + (18, 878× 18, 855)

19, 0542

= 0.980463



κ = 0.80121

If we compare the 3 coefficients, we observe that S is

slightly lower than the observed agreement, and π and κ are

similar, while being lower than Ao and S, which is coher-

ent with the order S > π and π 6 κ described in (Artstein

and Poesio, 2008). The high S value shows that the items

are annotated according to a rationale that has nothing to

do with chance. For a constant observed agreement, S only

depends on the number of categories, it is therefore not sen-

sitive to the items’ distribution between categories, as op-

posed to π and κ (Di Eugenio and Glass, 2004). The au-

thors of this article show that when categories are skewed,

despite a high agreement on the dominant category, π and κ

are sensitive to disagreements on small categories. Accord-

ing to the latest interpretations of inter-annotator reliability

scales that state that ”if a threshold needs to be set, 0.8 is a

good value“ (Artstein and Poesio, 2008), our κ and π can

be considered as good, which is reassuring concerning the

agreement reached on the two minority but meaningful cat-

egories.

3.2. Using Finn’s R Coefficient

Faced with the same disproportion between categories in

their annotation campaign, Laignelet and Rioult (2009) fol-

lowed a suggestion from Hripcsak and Heitjan (2002) and

used the R coefficient (Finn, 1970), that is proposed in the

software environment for statistical computing R4. The R

coefficient is computed in the following way:

R = 1−
Observed V ariance

Expected V ariance

the observed variance being the average variance on the an-

notated items and the expected variance being the variance

of the uniform discrete distribution with n categories (here-

after nb categories), i.e.:5

Expected V ariance =
(nb categories)2 − 1

12

In our case, we obtain R = 0.9943713. This value, very

close to that of S (0.99417) can be explained by the fact

that this coefficient models chance the same way S does,

considering a uniform distribution of the categories. It is

therefore no more affected than S by the distribution of

items in the categories. We therefore claim that Finn’s R

is no more informative than S in cases of scattered annota-

tions and asymmetry of categories.

3.3. Using Weighted Coefficients

According to (Artstein and Poesio, 2008), π and κ process

all disagreements the same way and only weighted coeffi-

cients allow for giving more importance to some disagree-

ments.

4http://www.r-project.org/
5Finn (1970) does not detail the computation of the

expected variance, but it can be found in the sources

of the irr library of R. For a more thorough expla-

nation, see: http://mathworld.wolfram.com/

DiscreteUniformDistribution.html.

They describe two weighted coefficients: the weighted κ,

κω (Cohen, 1968) and α (Krippendorff, 1980; Krippen-

dorff, 2004). The two coefficients are based on inter-

annotator disagreements and use a distance between cate-

gories describing to which extent two categories are dis-

tinct. Artstein and Poesio (2008) discuss how to define

this distance according to the annotation type, as it allows,

among others, to process the annotation of complex struc-

tures by introducing several values of distances between an-

notations. The inconvenient of this method is that it makes

the interpretation of the results more complex.

We have in our case, two meaningful categories, Former

and New, and one less meaningful, Nothing. We consider

that it is more important to identify the gene names couples

than to determine the precedence of a name as compared to

the other. Therefore, for us, the distance between Former

and New should be less than that between these and Noth-

ing. If we consider that it is twice as large, we will obtain

the distances between categories described in table 2 (in the

[0,1] interval):

Table 2: Example of distances between categories
Former New Nothing

Former 0 0,5 1

New 0,5 0 1

Nothing 1 1 0

The weighted coefficients κω and α are computed using the

formula:

κω, α = 1−
D0

De

where D0 stands for the observed disagreement between

the annotators and De represents the expected disagree-

ment, i.e. the disagreement appearing if the distribution is

done by chance alone. The expected disagreement for κω

and α follows the same rationale as κ and π respectively,

and includes the notion of distance between categories.6

From the distances of the table 2, we obtain α = 0.8292
and κω = 0.8291, values that are higher than π and κ. The

weighted coefficients express the same disagreement but

with lower values, hence raising the inter-annotator agree-

ment.

The resulting coefficients are very high and show little bias.

However, they seem to us somewhat uncertain, as they con-

sider very heterogeneous categories in a similar way: two

meaningful but minority categories (Former and New) and

a less meaningful, majority one (Nothing). The problem

here is therefore to ensure that these coefficients, computed

on the three categories, reflect a significant agreement on

the two meaningful categories, Former and New.

3.4. Using the F-measure and Slot Error Rate

The fact that we use all the tokens (or even only the

gene names) as random baseline is an approximation: the

Nothing category includes irrelevant tokens, the number of

which is not precisely known. This situation is not unusual

6It has to be noticed that if all the categories are perfectly dis-

tinct, α = π and κω = κ.



and is generally dealt with using other metrics, in partic-

ular the F-measure (see, for example (Alex et al., 2010)).

The recall, precision and F-measure, as defined in the infor-

mation retrieval field, are performance metrics that require

only the annotated elements and no random baseline (as

they do not take chance into account). According to Hripc-

sak and Heitjan (2002), the F-measure, i.e. the weighted

harmonic mean of precision and recall, is equivalent to the

average positive specific agreement among the annotators,

here:

F =
2C

2C + 2S + 2
(1+α)D + 2α

1+α
I

where C is the number of correct slots or agreement, S is

the number of substitutions (incorrect slots), D is the num-

ber of deletions (missing slots), I is the number of inser-

tions (spurious slots), with α = 1, the most popular value,

which is well adapted to our case as it allows us to use D

and I in a symmetric way. In our case, this corresponds to:

F =
2× (71 + 69)

(2× (71 + 69)) + (2× (13 + 8)) + 23 + 15 + 7 + 8

An interesting variant, that we call here F ′, implies that

substitutions are considered half-correct when computing

precision and recall, giving, for the balanced case:

F ′ =
2C + S

2C + 2S +D + I

In our case, this corresponds to:

F ′ =
(2× (71 + 69)) + 13 + 8

(2× (71 + 69)) + (2× (13 + 8)) + 23 + 15 + 7 + 8

An interesting characteristic of this variant is that it corre-

sponds to the limit of the κ coefficient when the count of

Nothing tends towards infinity (Hripcsak and Rothschild,

2005). Using these formulas, we end up, for Table 1, with

F = 0.747 and F ′ = 0.803. The F ′ measure points out

the interest of weighting different types of error differently,

which has long been recognized in the systems evaluation

side, giving birth to the Slot Error Rate (Makhoul et al.,

1999; Galibert et al., 2010). This metric corresponds to

an error enumeration methodology, where, for each error, a

cost is given, and the total cost is divided by the number of

annotations in the reference. We follow here the same rule

as above, giving a half-point cost to substitution (consider-

ing there is something to annotate is half the work) and a

full point for insertions and deletions.

SER =
0.5S +D + I

Reference entity count

In our case, no annotation can be considered as a reference,

so we propose to use the arithmetic mean of the number of

annotations as the divider. We end up with a symmetric-

SER of 0.339:

SER =
0.5× (13 + 8) + 23 + 15 + 7 + 8

0.5× (86 + 90 + 107 + 92))

Mathematically, the symmetric-SER is the harmonic mean

of the two oriented SERs, giving a structure similar to the

F-measure. Instead, if we had chosen to give a full point

cost to substitutions, the result would have been 0.395.

The SER allows for a much finer control on what is con-

sidered important in the annotation, which is very inter-

esting from a system evaluation point-of-view, but on the

other hand is hard to interpret, as there are no traditionally

accepted limits above which the annotation is considered

good enough.

4. Changing Points of View

4.1. Analyzing the Impact of Prevalence

4.1.1. Rebuilding the Contingency Table

To build the contingency table 1, we chose to take into

account the total number of tokens (strings of characters

separated by whitespace, annotation markers excluded), i.e.

19,054 (case 1).

Suppose now that we consider that gene names correspond

to a specific subset of tokens in the texts, we could then

use as total the number of gene names occurrences, that

is 1,165 (case 2).7 Note that this choice is questionable

as, first, the reliability of the results depend on the exhaus-

tivity of the dictionary, which, given the constant progress

in the field, will never be sufficient and second, because

it would mean neglecting the fact that the annotators of-

ten have to read the whole text to make decisions, the re-

naming being confirmed only at the end of the abstract.

Table 3 shows the contingency table generated using the

number of gene names occurrences to define the Noth-

ing category. From this table, we obtain S = 0.90472,

π = 0.77557, κ = 0.77571. F-measure and SER do not

change from table 1 given that the cases ”Nothing/Nothing”

and ”genes/genes” are not taken into account. Note that we

were unable to compute Finn’s R as we depend on partners

for the gene names dictionary and that this intermediary re-

sult was not available. The three coefficients result in lower

values and show the same differences between them. This

demonstrates that, even if the role of items distribution and

of the behavior of the annotators seems constant, the size of

the category Nothing has an influence on the inter-annotator

agreement. A second possible redesign of the contingency

Table 3: Contingency table computed from identified gene

names

A1

Former New Nothing Genes

A2

Former 71 13 23 107

New 8 69 15 92

Nothing 7 8 951 966

Genes 86 90 989 1,165

table is to consider only the meaningful categories, Former

and New (case 3), as shown in table 4. Note that completely

removing the Nothing category implies removing part of

the results (the items annotated by only one annotator). We

only use this redesign to eliminate the prevalence effect of

7Results obtained by application of a gene names dictionary.



the Nothing category and to focus on the Former/New inver-

sions. The obtained results should therefore be interpreted

with caution.

Table 4: Contingency table without the Nothing category

A1

Former New Total

A2

Former 71 13 84

New 8 69 77

Total 79 82 161

We obtain, in this case, S = 0.73913, R = 0.73913,

π = 0.73909 and κ = 0.73934. These values are still

high but lower than the previous one. The number of ele-

ments in each category is also rather small, which makes

the disagreements more visible. In this case, the agreement

on the 2 categories is important, F-measure then equals the

observed agreement.

Table 5: Contingency table with grouped meaningful cate-

gories

A1

Former/New Nothing Total

A2

Former/New 161 38 199

Nothing 15 18,840 18,855

Total 176 18,878 19,054

Finally, table 5 shows the results obtained by grouping

together the two meaningful categories, Former and New

(case 4). We then get S = 0.99444, R = 0.99444,

π = 0.85726, κ = 0.85727 and F = 0.85867. These val-

ues are higher than the various coefficients obtained from

the complete contingency table 1, which is not surprising

as in this configuration, there is very little ambiguity left.

Note that κ is again very similar to the F-measure as the

number of Nothing is still very high.

4.1.2. Analyzing the Obtained Results

All the results we obtained are summarized in table 6. Note

that the SER, with its error typing, is relevant only for the

complete localization and typing task.

This table shows that R and S are very close in all cases.

This confirms our remarks in section 3.1.: R does not bring

any more information than S.

This table also shows that the values of π and κ, computed

from all the contingency tables are very close. The way

chance is modeled in π implies that the distribution into

categories is the same for both annotators, whereas in κ,

chance is modeled in such a way that this distribution dif-

fers from one annotator to the other. Similar values of π and

κ reflect that both annotators generate the same distribution

into categories, which can be seen in the similar marginal

distributions. This means that our data show little annotator

bias (Artstein and Poesio, 2008).

If we consider, on the one hand S, and on the other hand κ

and π, we can see that their values are quite different in all

the three cases taking into account the Nothing category,

whereas they are similar in the case taking only Former

and New into account. This can be explained by the fact

that the distribution of the annotations into the three cate-

gories (including Nothing) is not homogeneous. κ and π

use this distribution in the way they model chance, which

is not the case for S. This does not appear in case 3, where

the annotations are homogeneously distributed in the two

categories (but again, we removed some of the annotations

in this case). Table 5 (case 4) can be used to check if the

gene renaming couples are correctly identified in the texts.

The values of the coefficients we obtained with this table

are the highest, we can therefore conclude that this identifi-

cation is done without problem. The coefficients computed

from case 1 and 2, when compared, show the impact of the

Nothing category. The fact that the values of the coeffi-

cients are higher for case 1 than for case 2, in which the

Nothing category is much smaller, shows that these coeffi-

cients are influenced by the prevalence in the annotations.

In this case, F-measure and SER are more adapted to evalu-

ate the inter-annotator agreement, even though κ and π are

sensitive to disagreements on small categories.

The coefficients obtained in case 3 present the lower values.

They show in a more precise way the difficulties encoun-

tered when distinguishing between Former and New. In

this table, the four coefficients are almost identical, which

shows that the (partial) inter-annotator agreement is not bi-

ased by the different models. Therefore, the inter-annotator

agreement reaches higher values when annotators have to

identify gene name couples involved in a renaming rela-

tionship than when they have to identify as Former and New

these gene names within these couples.

Comparing various coefficients is therefore useful to esti-

mate the biases induced by the distribution of the anno-

tations and the behavior of the annotators. Table 6 also

shows the influence of prevalence on the coefficients, which

means that the way we choose to consider the categories in

the contingency table has a significant impact on the re-

sults. We therefore claim that it is fundamental, when giv-

ing inter-annotator agreement results, not only to present

the contingency table that was used to compute the coeffi-

cients, but also to justify the choices that were made.

4.2. Using Similarities Between Categories

We saw that in the computation of weighted coefficients,

distances between categories are defined from prior knowl-

edge of the annotation task. As tempting as it may seem,

computing distances from the annotated data themselves

would imply some kind of circularity. However, such dis-

tances could prove useful to get some information on the

categories themselves, independently from the annotators.

We showed that the Former and New categories tend to be

more difficult to identify within gene names couples than

these couples from the whole text. The role of coefficients

is not to provide this type of interpretation, which corre-

sponds more to similarities between categories. We there-

fore propose to directly evaluate these similarities accord-

ing to the difficulty the annotators have to distinguish be-

tween categories. In order to do this, we use the contin-

gency table 1. We consider that two categories are distinct



Table 6: Ao, S, R, π, κ, F-measure and SER using various contingency tables
Contingency tables Ao S R π κ F-measure SER

Former/New/Nothing (case 1) 0.99611 0.99417 0.99437 0.8012 0.80121 0.74667 0.33867

Former/New/Nothing gene names (case 2) 0.93648 0.90472 n/a 0.77557 0.77571 0.74667 0.33867

Former/New (case 3) 0.86956 0.73913 0.73913 0.73909 0.73934 0.86957 -

Former+New/Nothing (case 4) 0.99722 0.99444 0.99444 0.85726 0.85727 0.85867 -

if there is little chance of distribution error between them.

More precisely, let us consider two categories C1 and C2

from the considered categories, P (C2|C1) represents the

probability that an annotator assigned an item in the cate-

gory C2 while a second annotator assigned it in the category

C1. It is computed in the following way:

P (C2|C1) =
n1C1,2C2

+ n2C1,1C2

nC1

with n1C1,2C2
representing the number of items assigned

by annotator 1 to the C1 category while annotator 2 as-

signed them to the C2 category; nC1
represents the sum of

the items assigned in the category C1 by both annotators.

When this probability is low, the C2 category is highly dis-

similar to C1 and the risk of getting a different annotation

is low. We obtain here:

P (New|Former) =
13 + 8

107 + 86
= 0.108808

Table 7 presents the values of the probabilities computed

for our case. The diagonal results give an estimate of the

agreement for each category. We can see that it is very

important for Nothing and less so for the others (73% for

Former and 75% for New). The other cells in the table

can be used to estimate the disagreement between anno-

tators, category by category. These probabilities are very

low, which means that their are highly dissimilar. We can

also notice that the probabilities are asymmetrical. The

values P (Former|Nothing) and P (New|Nothing) are

very low (<1‰), therefore, the chance of annotating an

item with the Former or New category when it has already

been annotated Nothing is close to zero. Conversely, the

chance of annotating an item with the Nothing category

when it has already been annotated Former or New is higher

(15% and 12%).

Table 7: Table of Probabilities
ւ Former New Nothing

Former 0.735751 0.108808 0.155440

New 0.115385 0.758242 0.126374

Nothing 0.000795 0.000609 0.998595

The probabilities being asymmetrical, this formula cannot

be used as such. We will assume that the annotators would

produce similar distributions of items among categories.

We therefore define the associated similarity as the aver-

age of the oriented probabilities (computed from table 7),

using:

Sim(C1, C2) =
P (C2|C1) + P (C1|C2)

2

Table 8: Similarities between categories
Sim

Sim(Former,New) 0.112096

Sim(Former,Nothing) 0.078117

Sim(New,Nothing) 0.063491

In table 8, we notice that Sim(Former,New) is higher

than Sim(Former,Nothing) and Sim(New,Nothing),
implying that Former and New are closer to each other than

to Nothing. To our knowledge, this kind of table has never

been used before, although it proves quite useful, in partic-

ular during the preliminary stages of the annotation cam-

paign, when the categories are tested and questioned, as

it allows for the identification of subsets of categories that

might be ambiguous. Moreover, it allows for a synthetic

view of the data, even with more than 2 annotators. From

this point of view, it shows a higher usability than the table

presented by Krippendorff (2004), and a solution to the im-

possibility to show a contingency table when more than 2

annotators are involved.

5. Conclusion

We used the results from a real annotation campaign to

analyze several computation modes of the inter-annotator

agreement. A characteristic of this campaign is the highly

scattered annotations, inducing a bias due to the prevalence

of the unannotated tokens. We confirmed in this article that

whenever possible, the first result to present is the contin-

gency table (Hripcsak and Heitjan, 2002) , with precise ex-

planations about the choices that were made. Our results

indicate a good agreement on the two minority but mean-

ingful categories. Comparing the coefficients and studying

their evolution according to the way the contingency table

is built allowed us to check that there was no bias due to the

annotators and to quantify the prevalence bias.

Finally, to obtain an analysis of the real chance of error

between categories, we computed a table of similarities be-

tween them. This table, allowing for a synthetic view of

the data, even with more than 2 annotators, constitutes a

new tool for evaluation which, as a complement to coeffi-

cients like κ or F-measure, offers a different view on the

data, more category-oriented. New annotation campaigns

held within the same program should allow us to test the

different coefficients and the reproducibility of our propos-

als. These campaigns concern various domains and appli-

cations, such as the patents in pharmacology (named enti-

ties, terms) or soccer matches comments (named entities,

complex relations).



Acknowledgments

This work was realized as part of the Quæro Program8,

funded by OSEO, French State agency for innovation. We

want to thank here all the participants in the campaign, in

particular the INRA MIG team, as well as F. Tisserand and

B. Taliercio, the annotators from INIST-CNRS.

6. References

Beatrice Alex, Malvina Nissim, and Claire Grover. 2006.

The Impact of Annotation on the Performance of Pro-

tein Tagging in Biomedical Text. In Proceedings of the

Fifth International Conference on Language Resources

and Evaluation (LREC), pages 595–600, Genoa, Italy,

24-26 May.

Beatrice Alex, Claire Grover, Rongzhou Shen, and Mi-

jail Kabadjov. 2010. Agile corpus annotation in prac-

tice: An overview of manual and automatic annotation

of cvs. In Proceedings of the Fourth Linguistic Annota-

tion Workshop (LAW), pages 29–37, Uppsala, Sweden.

Association for Computational Linguistics.

Erick Alphonse, Sophie Aubin, Philippe Bessières, Gilles

Bisson, Thierry Hamon, Sandrine Laguarigue, Adeline

Nazarenko, Alain-Pierre Manine, Claire Nédellec, Mo-

hamed Ould Abdel Vetah, Thierry Poibeau, and Davy

Weissenbacher. 2004. Event-based Information Extrac-

tion for the Biomedical the CADERIGE Project. In

Proceedings of the JNLPBA COLING 2004 Workshop,

Geneva, Switzerland.

Ron Artstein and Massimo Poesio. 2008. Inter-Coder

Agreement for Computational Linguistics. Computa-

tional Linguistics, 34(4):555–596.

Edward M. Bennett, R. Alpert, and A. C.Goldstein. 1954.

Communications through Limited Questioning. Public

Opinion Quarterly, 18(3):303–308.

Hélène Bonneau-Maynard, Sophie Rosset, Christelle Ay-

ache, Anne Kuhn, and Djamel Mostefa. 2005. Semantic

Annotation of the French Media Dialog Corpus. In Pro-

ceedings of the InterSpeech, Lisboa, Portugal.

Jean Carletta. 1996. Assessing Agreement on Classifica-

tion Tasks: the Kappa Statistic. Computational Linguis-

tics, 22:249–254.

Jacob Cohen. 1960. A Coefficient of Agreement for Nom-

inal Scales. Educational and Psychological Measure-

ment, 20(1):37–46.

Jacob Cohen. 1968. Weighted Kappa: Nominal Scale

Agreement with Provision for Scaled Disagreement or

Partial Credit. Psychological Bulletin, 70(4):213–220.

Barbara Di Eugenio and Michael Glass. 2004. The Kappa

Statistic: a Second Look. Computational Linguistics,

30(1):95–101.

R. H. Finn. 1970. A Note on Estimating the Reliability of

Categorical Data. Educational and Psychological Mea-

surement, 30:71–76.

Olivier Galibert, Ludovic Quintard, Sophie Rosset, Pierre

Zweigenbaum, Claire Nédellec, Sophie Aubin, Laurent

Gillard, Jean-Pierre Raysz, Delphine Pois, Xavier Tan-
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