Indoor Location Tracking **Based on a Discrete Event Model**

Mickaël Danancher^(a,b), Jean-Jacques Lesage^(a) and Lothar Litz^(b)

^(a) Automated Production Research Laboratory (LURPA), ENS Cachan, 61 av. du Président Wilson, 94235 Cachan Cedex, France ^(b) Institute of Automatic Control, University of Kaiserslautern, P.O. Box 3049, 67653 Kaiserslautern, Germany **E-mails**: danancher@lurpa.ens-cachan.fr, lesage@lurpa.ens-cachan.fr, litz@eit.uni-kl.de

Introduction

- Location Tracking for Ambient Assisted Living
 - A new approach is proposed
 - For single inhabitant location tracking
 - For houses instrumented with binary and non invasive sensors
 - Using finite automaton to model the instrumented house
 - Using a model-based location tracking algorithm
- A case study
 - Apartment in Kaiserslautern (Germany)
 - Topology: 5 rooms (A,B,C,D and E)
 - Instrumentation: 15 sensors
 - Door Sensor (DS)
 - Windows Sensors (WS)
 - Switches (SW)
 - Motion Detectors (MD)

Systematic generation of a model for location tracking

Overview of the proposed approach

- Based only on the topology of the house (rooms and paths between rooms), a topology graph is built
- 2. Starting from the topology and each possible instrumentation, a Detectable Motion Automaton (DMA) is systematically generated
- The best instrumentation is chosen 3.
- 4. Location tracking is performed online

Finite automaton formalism

- A finite automaton (FA) is a quadruplet <Q, Σ , T, Q₀> with
 - Q a set of states (Q = {A,B,C,D,E,Out} for the case study),
 - Σ a set of input events, (for instance the event MD_D_1 is the rising edge of the motion detector MD_D)
 - $T \subseteq Q \times \Sigma \times Q$ a transition relation between states labeled with input events,

- $Q_0 \subseteq Q$ a set of initial states ($Q_0 = \{D\}$ for the case study).

Detectable Motion Automaton for the case study

Location tracking based on finite automata

- Model-based single inhabitant location tracking algorithm
 - **Require:** $Det_{DMA} = \langle Q_D, \Sigma, \delta_D, Q_{0_D} \rangle$
 - (the deterministic FA equivalent to the DMA)
 - 1: Initialization of the monitoring:
 - Current state S = Initial state $\{Q_{0_D}\}$
 - 2: while Monitor is active do
 - Wait for a new event e3:
 - New event e is observed 4:
 - $S' = \delta_D(S, e)$ 5:
 - Update current state S = S'
 - 7: end while

- Example for a typical day of the case study
 - At 10:00:00, the location tracker is started, current location S is initialized as being {D} (D is the initial state). **S** = {D}
 - At 10:00:10, the event $MD_{D_{1}}$ is observed. Update: **S** = {**D**}
 - At 10:00:52, MD_A_1 is observed. Update: **S** = {A}
 - At 10:01:43, SW_{A1} is observed. Update: **S** = {**A**,**D**}, the current location is inaccurate
 - At 10:02:11, WS_{D1}_1 is observed, Update: **S** = {**D**}, the location is <u>accurate</u> again
 - etc...

Conclusion and future work

- Conclusion
 - A formalism to model instrumented houses: finite automata
 - A systematic approach for model building
 - A model-based location tracking algorithm

Future Work

- Inactivity monitoring based on location tracking
- Multiple inhabitants location tracking

Poster presented at ICOST 2012, 10th International Conference On Smart homes and health Telematics, 12-15 June 2012, Artimino, Italy

Laboratoire Universitaire de Recherche en Production Automatisée – ENS Cachan 61, av. du Président Wilson – 94235 Cachan cedex – France http://www.lurpa.ens-cachan.fr/

