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          Abstract.  

 

This paper deals with the problem of shaking force balancing of high-speed 

manipulators. The known solutions of this problem are carried out by an optimal 

redistribution of moving masses which allows the cancellation or the reduction of 

the variable loads on the manipulator frame. In this paper an innovative solution is 

developed which is based on the optimal control of the robot links centre of masses. 

Such a solution allows the reduction of the acceleration of the total mass centre of 

moving links and, consequently, the considerable reduction in the shaking forces. 

The efficiency of the suggested method is illustrated by the numerical simulations 

carried out for different trajectories: for examined planar two and three links serial 

manipulators the shaking force reduction reaches up to 77%. This approach is also a 

more appealing alternative to conventional balancing methods because it allows the 

reduction of the shaking force without counterweights. As a result, the input torques 

are also decreased, which is shown using dynamic simulation software.       

  
Keywords: Shaking force, balancing, high-speed robots, optimal motion planning. 

 

 

1 Introduction 

 

A mechanical system with unbalance shaking force/moment transmits substantial vibration to 

the frame. Thus, a primary objective of the balancing is to cancel or reduce the variable 

dynamic loads transmitted to the frame and surrounding structures. Different approaches and 

solutions devoted to this problem have been developed and documented for one degree of 

freedom mechanisms [1], [2]. A new field for their applications is the design of mechanical 

systems for fast manipulation, which is a typical problem in advanced robotics.  
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The balancing of a mechanism is generally carried out by two steps: (i) the cancellation (or 

reduction) of the shaking force and (ii) the cancellation (or reduction) of the shaking moment. 

Traditionally, the cancellation of the shaking force transmitted to the manipulator frame can be 

achieved via adding counterweights in order to keep the total centre of mass of moving links 

stationary [1], via additional structures [1], [3] or by elastic components [4].  

With regard to the shaking moment balancing of manipulators, the following approaches 

were developed: (i) balancing by counter-rotations [5]–[9], (ii) balancing by adding four-bar 

linkages [10]–[12], (iii) balancing by creating redundant mechanism which generates optimal 

trajectories of moving links [13]–[15] (vi) balancing by prescribed rotation of the end-effector 

[16]–[18] and (vii) balancing by adding an inertia flywheel rotating with a prescribed angular 

velocity [19], [20].  

In the present paper we consider a simple and effective balancing method, which allows the 

considerable reduction of the shaking force of non-redundant manipulators without adding 

counterweights. It is based on the optimal control of the acceleration of the total mass centre of 

moving links. To the best of the authors’ knowledge, this problem is addressed for the first time.    

 

 

2 Minimization of the Shaking Forces via an Optimal Motion Planning of the Total Mass 

Centre of Moving Links  

 

2.1. Definition of the optimal trajectory 

 

The shaking forces f
sh

 of a manipulator can be written in the form: 

 

 
sh

i Smf x  (1) 

 

where  im  is the total mass of the moving links of the manipulator and Sx  is the acceleration 

of  the total mass centre. The classical balancing approach consists in adding counterweights in 

order to keep the total mass centre of moving links stationary. In this case, Sx = 0 for any 

configuration of the mechanical system. But, as a consequence, the total mass of the 

manipulator is considerably increased. Thus, in order to avoid this drawback, in the present 

study, a new approach is proposed, which consists of the optimal control of the total mass centre 

of moving links. Such an optimal motion planning allows the reduction of the total mass centre 

acceleration and, consequently, the reduction of the shaking force.  

Classically, manipulator displacements are defined considering either articular coordinates q 

or Cartesian variables x. Knowing the initial and final manipulator configurations at time t0 and 

tf, denoted as q0 = q(t0) and qf = q(tf), or x0 = x(t0) and xf = x(tf) , in the case of the control of the 

Cartesian variables, the classical displacement law may be written in the form: 

 

  ( ) ( )qt s t  f 0 0q q q q  (2a) 

or 

  ( ) ( )xt s t  f 0 0x x x x  (2b) 

 

where sq(t) and sx(t) may be polynomial (of orders 3, 5 and higher), sinusoidal, bang-bang, etc. 

motion profiles [21]. 

From expression (1), we can see that the shaking force, in terms of norm, is minimized if the 

norm Sx  of the masses centre acceleration is minimized along the trajectory. This means that 

if the displacement xS of the manipulator centre of masses is optimally controlled, the shaking 



force will be minimized. As a result, the first problem is to define the optimal trajectory for the 

displacement xS of the manipulator centre of masses. 

For this purpose, let us consider the displacement xS of a point S in the Cartesian space. First, 

in order to minimize the masses centre acceleration, the length of the path followed by S should 

be minimized, i.e. point S should move along a straight line passing through its initial and final 

positions, denoted as xS0 and xSf, respectively. 

Then, the motion profile used on this path should be optimized. It is assumed that, at any 

moment during the displacement, the norm of the maximal admissible acceleration the point S 

can reach is constant and denoted as max

Sx . Taking this maximal value for the acceleration into 

consideration, it is known that the motion profile that minimize the time interval (t0, tf) for going 

from position xS0 = xS(t0) to position xSf = xS(tf) is the “bang-bang” profile [21], given by (Fig. 

1a) 
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(a) “Bang-bang” profile (b) Trapezoidal profile 

Figure 1. Motion profiles used for the shaking force minimization. 



Consequently, if the time interval (t0, tf) for the displacement between positions xS0 and xSf is 

fixed, the “bang-bang” profile is the trajectory that minimizes the value of the maximal 

acceleration max

Sx . Thus, in order to minimize Sx  for a displacement during the fixed time 

interval (t0, tf), the “bang-bang” profile has to be applied on the displacement xS on the 

manipulator total mass centre. 

 

 

2.2. Observations about the modification of the optimal trajectory for taking into account the 

actuators properties 

 

It should be mentioned that the given “bang-bang” profile (Fig. 1a) is based on theoretical 

considerations. In reality, the actuators are unable to achieve discontinuous efforts. Therefore, 

this motion profile should be modified by a trapezoidal profile (Fig. 1b) in order to take into 

account the actuators properties in terms of maximal admissible effort variations. 

For a given time interval (t0, tf), the trapezoidal profile, as we define it, is characterized by 

two parameters: t1, t2 (Fig. 1b). In order to find the optimal values for t1 and t2, the following 

problem should be considered: 

 

 
1 2

max

,
minS
t t

x   (5) 

under the constraints 

  
max

max i
i

d

dt


  (6) 

 

where i is the input effort of the actuator i and  
maxi  the maximal admissible input effort 

variation for the actuator i. This problem is highly non linear, therefore it can be solved by 

numerical optimization methods. It should be mentioned that in the illustrative examples given 

in section 3, the trapezoidal profile taking into account the actuators properties has been found 

using the optimisation function “fgoalattain” of Matlab. 

 

 

2.3. Expression of the manipulator coordinates as a function of the mass centre parameters 

 

Once the displacement of the manipulator centre of masses is defined, the second problem is 

to find the articular (or Cartesian) coordinates corresponding to this displacement. For this 

purpose, let us consider a manipulator composed of n links. The mass of the link i is denoted as 

mi (i = 1, …, n) and the position of its centre of masses as xSi. Once the articular coordinates q 

or Cartesian variables x are known, the values of xSi may easily be obtained using the 

manipulator kinematics relationships. As a result, the position of the manipulator centre of 

masses, defined as 

 

 
1

1 n

S i Si

itot

m
m 

 x x , where 
1

n

tot i

i

m m


  (7) 

 

may be expressed as a function of x or q. But, in order to control the manipulator, the inverse 

problem should be solved, i.e. it is necessary to express variables q or x as a function of xS. 

Here, two cases should be distinguished:  

 



(i) dim(xS) = dim(q), i.e. the manipulator has got as many actuators as controlled variables 

for the displacements xS of the centre of masses (two variables for planar cases, three 

variables for spatial problems). In such case, the variables q or x can be directly expressed 

as a function of xS using (7), i.e. q = f(xS). 

 

(ii) dim(xS) < dim(q), i.e. the manipulator has got more actuators than controlled variables. In 

such case, the problem is under-determined as there are more parameters in variables q or 

x than in xS. In order to solve it, let us consider that p0 parameters of vector q0 (or x0) and 

pf parameters of vector qf (or xf) are fixed. In a first task, it is necessary to define the m–p0 

and m–pf other parameters of the initial and final manipulator configurations (m = 

dim(q)). The way to fix it is to find the manipulator initial and final configurations, taking 

into account the p0 initial and pf final fixed parameters, that will allow minimizing the 

norm of the vector S Sf 0x x , i.e. the length of the displacement of the manipulator centre 

of masses. Then, the second task is to choose m–k articular variables among the m 

possible of vector q (k = dim(xS)). These m–k variables, denoted as qm–k will be controlled 

using some classical displacement law given at (2) or can be used in order to minimize 

some other performance criteria, such as the shaking moments or some other interesting 

performance criterion (see section 3.2). The k other variables, denoted as qk, should be 

expressed as a function of xS and qm–k using (7), i.e. qk = f(xS, qm–k). 

 

In order to demonstrate the proposed balancing method, two illustrative examples are 

given in the following section. 

 

 

3. Illustrative examples 

 

3.1. The planar 2R serial manipulator 

 

Let us consider the shaking force minimization of a 2R serial manipulator (Fig. 2). This 

manipulator is controlled using two rotary actuators having two input parameters which are 

denoted as q1 and q2. For simulations the following parameters have been used: 

- lOA = 0.5 m, lAB = 0.3 m, where lOA and lAB are the lengths of segments OA and AB, 

respectively; 

- r1 = 0.289, where lOS1 = r1 lOA and r2 = 0.098, where lAS2 = r2 lAB, lOS1 and lAS2 being the 

lengths of segments OS1 and AS2, respectively. 

 

 

 

Figure 2. Schematics of the 2R serial manipulator. 

 

 

 



The mass and inertia parameters are: 

- m1 = 24.4 kg and m2 = 8.3 kg, where mi is the mass of element i (i = 1, 2); 

- mtool = 5 kg, where mtool is the payload; 

- I1 = 1.246 kg.m² and I2 = 0.057 kg.m², where Ii is the axial moment of inertia of 

element i. 

 

Let us now express the articulated joint positions q = [q1, q2]
T
 as a function of the position xS 

of the manipulator centre of masses. From (7), we obtain: 
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This relationship leads to: 

 

 
2 2 2

1 1 1 1 2( cos ) ( sin ) 0S eq S eq eqx l q y l q l      (9) 

 

where 
1 1 1 2( ) /eq tool OA totl m r m m l m    and 

2 2 2( ) /eq tool AB totl m r m l m  .  

Replacing cos q1 and sin q1 by 2 2

1 1(1 ) /(1 )t t   and 2

1 12 /(1 )t t (t1 = tan(q1/2)), respectively, 

and developing (9), we obtain: 

 

 
2 2 2

1

1 2 tan
b b c a

q
c a


    

  
 
 

 (10) 

where  

 
12 eq Sa l x  , 

12 eq Sb l y   and 
2 2 2 2

1 2S S eq eqc x y l l    . (11) 

 

In (10), the sign ± stands for the two possible working modes of the manipulator (for 

simulations, the working mode with the “+” sign is used). Once q1 is known, q2 may easily be 

found from (8): 

 

 
1 11
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Let us now test the proposed approach. In order to show the efficiency of this optimal 

planning, several trajectories are tested. These trajectories are defined as follows. First, the 

maximal inscribed square inside of the workspace is found (Fig. 3). For this manipulator, it is a 

square of length 0.55 m, of which centre E is located at x = 0 m and y = 0.475 m. Then, in order 

to avoid problems due to the proximity of singular configuration, the tested zone is restricted to 

a square centred in E of edge length equal to 0.45 m (in grey on Fig. 3). Finally, we discretize 

each edge into four segments delimited by the points Pi (i = 1 to 16). The tested trajectories will 

be the segments P1P13, P2P12, P3P11, P4P10, P5P9, P15P7, P14P8 and P13P9. Each trajectory will 

have duration of 0.5 s and, for each trajectory, three different kinds of motion profiles are 

applied: 



1. a fifth order polynomial profile is applied on the displacement of the manipulator end-

effector; 

2. a “bang-bang” profile is applied on the displacement of the manipulator centre of masses; 

3. a trapezoidal acceleration variation is applied on the displacement of the manipulator 

centre of masses, taking into account that, for each actuator, the input effort variation is 

limited by 3.10
4
 Nm/s. 

 

 

Table 1. Maximal value of the shaking force norm for the tested trajectories of the 2R serial 

manipulator. 

 

  Followed path 

  P1P13 P2P12 P3P11 P4P10 P5P9 P15P7 P14P8 P13P9 

max(|| ||)sh
f  

(N) 

Case 1 194.7 165.3 178.8 178.2 155.3 218.7 201.3 195.4 

Case 2 121.0 85.0 47.5 41.5 44.3 136.3 121.7 111.8 

Case 3 124.0 86.0 48.0 41.8 44.7 137.7 123.2 113.1 

% of 

reduction 

Cases 2/1 37.8 48.6 73.4 76.7 71.5 37.8 39.5 42.8 

Cases 3/1 36.3 48.0 73.2 76.5 71.2 37.0 38.9 42.1 

 

 

 

Figure 3. The tested trajectories of the 2R serial manipulator. 

 



  

(a) (b) 

Figure 4. Manipulator end-effector displacements along the trajectory P5P9: (a) for case 1 and 

(b) for cases 2 and 3. 

 

Figure 5. Variations of the shaking forces in the case of the trajectory P5P9:  case 1 (black full 

line), case 2 (black dashed line) and case 3 (grey full line). 

The displacements of the end-effector and manipulator links centre of masses for the 

trajectory P5P9 are shown in Fig. 4. These trajectory parameters are implemented into ADAMS 

software and it is computed the variations of shaking forces. Fig. 5 presents the shaking force 

transmitted by the manipulator for trajectory P5P9. The obtained results for the whole paths are 

summarized in table 1. It is shown that the optimal trajectory planning (“bang-bang profile”) 

allows the reduction of the shaking force from 36% up to 76.7 %. Moreover, it appears that for 

given actuator parameters, the minimizations obtained in the cases of the “bang-bang” and 

trapezoidal profiles are very close (less than 1 %). It is due to the fact that the actuators can 

apply high input effort variations during a displacement. However, such a result depends on the 

actuator power capacity and it will be variable for each type of actuator. 

Obviously, the rate of reduction depends on the design parameters of the robot. For each 

system, it will be different 

Let us now consider the second example. 



3.2. The planar 3R serial manipulator 

 

This manipulator is controlled using three rotary actuators (Fig. 6), with three input 

parameters which are denoted as q1, q2 and q3. The link parameters are the following: 

- lOA = 0.5 m, lAB = 0.3 m, lBC = 0.1 m, where lOA, lAB and lBC are the lengths of segments 

OA , AB and BC, respectively; 

- r1 = 0.289, where lOS1 = r1 lOA, r2 = 0.098, where lAS2 = r2 lAB, and r3 = 0.5, where lBS3 = 

r3 , lBC, lOS1, lAS2 and lBS3 being the lengths of segments OS1, AS2 and BS3, respectively. 

Its mass and inertia parameters are: 

- m1 = 24.4 kg, m2 = 8.3 kg and m3 = 2 kg, where mi is the mass of element i (i = 1, 2, 

3); 

- mtool = 5 kg, where mtool is the payload; 

- I1 = 1.246 kg.m², I2 = 0.057 kg.m² and I3 = 0.025 kg.m², where Ii is the axial moment 

of inertia of element i. 

 

 

 

Figure 6. Schematics of the 3R serial manipulator. 

 

In order to have the possibility to control the manipulator, let us express the relation between 

the articulated joint positions q = [q1, q2, q3]
T
 and the position xS of the manipulator centre of 

masses. From (7), we obtain: 

 

 

1 1 1 21 1 2
2

1 1 1 2

1 1 23
3

1 1 2

cos cos cos( )

sin sin sin( )

cos cos( ) cos

sin sin( ) sin

S OA
S OA AB

S tot tot

OA AB BC

tot

tool

tot

x q q q qm rl m
l r l

y q q q qm m

q q qm
l l r l

q q qm

m
l

m





        
           

        

      
        

      



x

1 1 2

1 1 2

cos cos( ) cos

sin sin( ) sin
OA AB BC

q q q
l l

q q q





      
       

      

 (13) 

 

where 1 2 3q q q    . 

In (13), there are three unknowns q1, q2, q3 for two fixed parameters xS and yS. Therefore, as 

mentioned in section 2, a way to solve this problem is to consider that one parameter, for 

example , is used to minimize some objective function. Then the expressions of q1, q2 and q3 

can be found as a function of xS, yS and . In the remainder of the paper, angle  is used in order 

to minimize the shaking moment m
sh

 of the robot. Obviously, if necessary, it can be replaced by 

another criterion, such the energy, the torques, etc. 

 (13) leads to the following loop closure equation: 
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where 
1 1 1 2 3( ) /eq tool OA totl m r m m m l m    , 
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Replacing cos q1 and sin q1 by 2 2
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and developing (14), we obtain: 
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where  

 
1 32 ( cos )eq S eqa l x l    ,  (16a) 

 
1 32 ( sin )eq S eqb l y l     ,  (16b) 

 
2 2 2 2

3 3 1 2( cos ) ( sin )S eq S eq eq eqc x l y l l l       . (16c) 

 

In expression (15), the sign ± stands for the two possible working modes of the manipulator 

(for simulations, the working mode with the “+” sign is used). Once q1 is known, q2 and q3 may 

easily be found from (13): 
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 3 1 2q q q    (18) 

 

Let us now test the proposed approach with this manipulator. The tested trajectories are 

defined as follows. First, the maximal inscribed square inside of the workspace, for any end-

effector orientation, is found (Fig. 7). For this manipulator, it is a square of length 0.375 m, of 

which centre E is located at x = 0 m and y = 0.487 m. Then, in order to avoid problems due to 

the proximity of singular configuration, the tested zone is restricted to a square centred in E of 

edge length equal to 0.3 m (in grey on Fig. 7). Finally, we discretize each edge into four 

segments delimited by the points Pi (i = 1 to 16). The tested trajectories will be the segments 

P1P13, P2P12, P3P11, P4P10, P5P9, P15P7, P14P8 and P13P9. It should be noted that in this case 

there is an independent parameter which can be defined from complementary condition 

describing the orientation of the end-effector. For numerical simulations, it is chosen to begin 

the tested trajectories with an end-effector orientation 0 = 0 deg and to finish it at f = 120 deg.  

The simultaneous minimization of the shaking force and the shaking moment cannot be done 

without using an optimization algorithm in order to solve the following problem: 

 

 max( ) minshm


  (19) 

under the constraints 

 0 0( ) , ( )f ft t      (20a) 

 0( ) ( ) 0ft t    (20b) 



 0( ) ( ) 0ft t    (20c) 

 0( )S St  0x x , ( )S f St  fx x  (20d) 

 

Several motion profiles for  can be tested. Here it is proposed to use polynomials. Our 

observations showed that the polynomial function that makes it possible to obtain optimal 

results is of degree 8. 

Each trajectory will have duration of 0.5 s and, for each trajectory three different kinds of 

motion profile are applied: 

1. a fifth order polynomial profile is applied on the displacement (translation and rotation) of 

the manipulator end-effector; 

2. a “bang-bang” profile is applied on the displacement of the manipulator centre of masses 

and the angle  is optimized in order to minimize the shaking moment; 

3. a trapeze acceleration profile is applied on the displacement of the manipulator centre of 

masses, taking into account that, for each actuator, the input effort variation is limited by 

3.10
4
 Nm/s; the trajectory for angle  optimized in the previous case is used in order to 

compute the actuator displacements. 

 

The displacements of the end-effector and manipulator links centre of masses for the 

trajectory P15P7 are shown in Fig. 8. Fig. 9 presents the shaking force and shaking moment for 

the path P15P7. The obtained results for the whole paths are summarized in table 2 and 3. It is 

shown that the optimal trajectory planning (“bang-bang” profile) allows the reduction of the 

shaking forces from 48 % up to 62.2 %. Moreover, with a simultaneous optimal control of angle 

, the shaking moment can be reduced from 37.2 % up to 61 %. 

As previously mentioned, these results depend on the design parameters of the used robot. 

For another manipulator, they will be different. But, in any case the shaking force and moment 

shall be decreased. 

 

 

Table 2. Maximal value of the shaking force norm for the tested trajectories on the 3R serial 

manipulator. 

 

  Followed path 

  P1P13 P2P12 P3P11 P4P10 P5P9 P15P7 P14P8 P13P9 

max(|| ||)sh
f  

(N) 

Case 1 158.7 144.9 133.6 119.6 103.1 321.3 266.3 238.7 

Case 2 81.8 77.2 68.8 58.1 47.9 121.1 105.5 92.2 

Case 3 82.3 77.6 69.0 58.3 48.0 122.3 106.5 93.0 

% of 

reduction 

Cases 2/1 48.4 46.7 48.5 51.4 53.5 62.3 60.3 61.4 

Cases 3/1 48.1 46.4 48.3 51.2 53.4 61.9 60.0 61.0 

 

 

 

 

 

 

 

 

 



Table 3. Maximal value of the shaking moment for the tested trajectories on the 3R serial 

manipulator. 

 

  Followed path 

  P1P13 P2P12 P3P11 P4P10 P5P9 P15P7 P14P8 P13P9 

max( )shm  

(N.m) 

Case 1 70.0 63.2 58.3 50.7 42.3 154.0 130.8 119.6 

Case 2 43.9 37.7 30.3 22.4 16.4 72.3 64.8 57.0 

Case 3 4.39 37.7 30.3 22.4 16.5 73.0 64.8 52.3 

% of 

reduction 

Cases 2/1 37.2 40.4 48.1 55.8 61.1 53.1 50.5 57.0 

Cases 3/1 37.2 40.4 48.1 55.8 61.0 52.6 50.5 52.2 

 

 

 

 
 

Figure 7. The tested trajectories of the 3R serial manipulator. 

 

 



  

(a) (b) 

Figure 8. Manipulator end-effector displacements along the trajectory P15P7: (a) for case 1 and 

(b) for optimal cases 2 and 3. 

 

Figure 9. Variations of the shaking forces in the case of the trajectory P15P7: case 1 (black full 

line), case 2 (black dashed line) and case 3 (grey full line). 



 

Figure 10. Variations of the shaking moment in the case of the trajectory P15P7: case 1 (black 

full line), case 2 (black dashed line) and case 3 (grey full line). 

3.3. Observations about input torques 

 

The main drawback of the shaking force balancing by counterweights is the increase of 

the inertia of moving links caused by adding masses, and consequently, the increase of input 

torques. The advantage of the suggested balancing method is in the fact that the shaking 

forces are only reduced by optimal control of moving links, without adding counterweights. It 

results in the fact that the input torques are considerably lower than in the case of balancing 

by counterweights. To illustrate this advantage for examined 2R serial manipulator, three 

kinds of simulations have been carried out using dynamic simulation software: (a) unbalanced 

manipulator carrying out a straight line trajectory along P5P9 (Fig. 4) using a fifth order 

polynomial motion profile; (b) manipulator balanced by counterweights along the same 

trajectory
1
; (c) manipulator controlled via optimal centre of mass displacement between points 

P5 and P9. 

The obtained results are given in Figure 11. The software simulations showed that in 

comparison with mass balanced manipulator a 92% reduction in input torque is achieved, and, 

in comparison with unbalanced manipulator a 73% reduction in input torque is achieved.  

Finally, we would like to mention that the method proposed in this paper focused 

exclusively on the force balancing because it is carried out by optimisation of the trajectory of 

the manipulator’s center of mass. However, as was shown above, it also allows the reduction 

of the shaking moment and the input torques. Such a result has been observed for many 

simulated manipulators. But it is not possible to pretend in any way that this will be true for 

any manipulator. 

 

                                                 
1
 The counterweights are located at 0.2 m and 0.35 m from the joints centres A and O, respectively. 



  

(a) input torque 1 (b) input torque 2 

Figure 11. Manipulator input torques for trajectory P5P9 corresponding to the three simulated 

models: (i) unbalanced manipulator carrying out a straight line trajectory of the end-effector 

using a fifth order polynomial motion profile (black full line); (ii) manipulator balanced by 

counterweights along the same trajectory (grey full line); (iii) manipulator controlled via 

optimal centre of mass displacement (black dashed line). 

 

4. Conclusions 

 

In this paper, we have presented a new approach, based on an optimal trajectory planning, 

which allows the considerable reduction of the shaking force. This simple and effective 

balancing method is based on the optimal control of the acceleration of the manipulator centre 

of masses. For this purpose, the “bang-bang” profile has been used. The aim of the suggested 

method consists in the fact that the manipulator is controlled not by applying end-effector 

trajectories but by planning the displacements of the total mass centre of moving links. The 

trajectories of the total mass centre of moving links are defined as straight lines and are 

parameterized with “bang-bang” profile. Such a control approach allows the reduction of the 

maximum value of the centre of mass acceleration and, consequently, the reduction in the 

shaking force. It should be mentioned that such a solution is also very favourable for reduction 

of input torques because it is carried out without adding counterweights. The proposed 

balancing method has been illustrated via two examples. The numerical simulations showed that 

considerable reduction in shaking force and input torques were achieved.  
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Figures captions 

 

Figure 1. Motion profiles used for the shaking force minimization. 

Figure 2. Schematics of the 2R serial manipulator. 

Figure 3. The tested trajectories of the 2R serial manipulator. 

Figure 4. Manipulator end-effector displacements along the trajectory P5P9: (a) for case 1 and 

(b) for cases 2 and 3. 

Figure 5. Variations of the shaking forces in the case of the trajectory P5P9:  case 1 (black full 

line), case 2 (black dashed line) and case 3 (grey full line). 

Figure 6. Schematics of the 3R serial manipulator. 

Figure 7. The tested trajectories of the 3R serial manipulator. 

Figure 8. Manipulator end-effector displacements along the trajectory P15P7: (a) for case 1 and 

(b) for optimal cases 2 and 3. 

Figure 9. Variations of the shaking forces in the case of the trajectory P15P7: case 1 (black full 

line), case 2 (black dashed line) and case 3 (grey full line). 

Figure 10. Variations of the shaking moment in the case of the trajectory P15P7: case 1 (black 

full line), case 2 (black dashed line) and case 3 (grey full line). 

Figure 11. Manipulator input torques for trajectory P5P9 corresponding to the three simulated 

models: (i) unbalanced manipulator carrying out a straight line trajectory of the end-effector 

using a fifth order polynomial motion profile (black full line); (ii) manipulator balanced by 

counterweights along the same trajectory (grey full line); (iii) manipulator controlled via 

optimal centre of mass displacement (black dashed line). 

 

 

 

Tables captions 

 

Table 1. Maximal value of the shaking force norm for the tested trajectories of the 2R serial 

manipulator. 

Table 2. Maximal value of the shaking force norm for the tested trajectories on the 3R serial 

manipulator. 

Table 3. Maximal value of the shaking moment for the tested trajectories on the 3R serial 

manipulator. 

 

 


