
HAL Id: hal-00709140
https://hal.science/hal-00709140v1

Submitted on 18 Jun 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A modeling language for 3D process plant layout
representation, exchange and visualization

Thomas Paviot, Virginie Fortineau, Samir Lamouri, Ludovic Louis-Sidney

To cite this version:
Thomas Paviot, Virginie Fortineau, Samir Lamouri, Ludovic Louis-Sidney. A modeling language for
3D process plant layout representation, exchange and visualization. 9th International Conference on
Product Lifecycle Management (PLM), Jul 2012, Montreal, QC, Canada. pp.478-487, �10.1007/978-
3-642-35758-9_43�. �hal-00709140�

https://hal.science/hal-00709140v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


A modeling language for 3D process plant layout
representation, exchange and visualization

Thomas Paviot1, Virginie Fortineau1, Samir Lamouri1 and Ludovic
Louis-Sidney2

LCPI/Arts et Métiers ParisTech, Paris, France.
2 LISMMA/Supméca, Saint-Ouen, France.

Abstract. In the nuclear industry, achieving Long Term Data Preserva-
tion is a requirement for nuclear power plants to be safely built, operated
over five or six decades and retired. Among them, CAD data suffers from
some strong dependencies on the software vendors and its data model
thus leading to a possible weakness in the preservation workflow. This
paper presents a modeling language, suitable for the 3D representation
of a process plant layout, based upon a procedural Constructive Solide
Geometry (CSG) approach. The language execution, as well as the layout
rendering and exchange, are experimented using a platform independent
implementation, based on free software and open standards.

Keywords: 3D Plant Layout, Computer Aided-Design, Constructive
Solid Geometry, STEP, COLLADA, WebGl.

1 Industrial context

In the nuclear industry, designing power plants requires to ensure the long term
data preservation (LTDP) of the 3D Computer Aided-Design (CAD) data that
are generated by the engineering teams, due to strong safety regulations and
because of the long lifecycle nature of this complex system (around one hundred
years from early design, to building, operation and maintenance up to the final
retirement). This research focuses on some specific stage of the early power plant
engineering: the layout design. According to Theodosiou et al. [1], the layout of
complex products and systems “describes the system’s structure and components
as well as related procedures and constraints”. Facilities layout is concerned with
the spatial arrangement of a set of departments or equipment items . This is an
important stage at the design level, which often results in a complex problem
due to the high number of decisions involved [2]. This layout design takes place
at the conceptual design stage [3] and is used for early design reviews related
to regulation checks, first design decisions or preliminary simulations. The main
asumption of this paper is that the 3D representation of the layout only needs
simple boundary volumes that constraint all the subcomponents that are further
part of the plant.

As underlined by Lorie [4], the challenge of LTDP is “to ensure that the
information, generated today, can survive long term changes in storage media,



devices and data formats”. This paper focuses on the latter: how to keep control
over the 3D data format representing the plant layout? In other words, the
purpose is to get free from any CAD package vendor for this representation.

Open standards are known to be a priori suitable regarding this issue [5]. For
instance, The STandard for the Exchange of Product data (STEP) [6] provides
a Boundary Representation (BRep) description of a shape topology/geometry
that can be transfered from one CAD package to another. However, this transfer
is not conservative from a semantical viewpoint: a lot of information is lost dur-
ing the conversion, especially the design intent or parametric representation of
the shape. This semantic loss occurs whatever the standardized neutral format
may be (IGES for surfacic representation, STL and VRML mesh based repre-
sentation etc.), i.e. these standards only allows to exchange a snapshot of the
3D model without any information about the design process that led to this
topological/geometrical state. These models are “difficult or impossible to edit”
[7] which is in contradiction with Lorie’s challenge. Other approaches then need
to be investigated.

As a consequence, the paper is structured as follows: section 2 deals with the
literature review related to macro parametric and procedural approaches in the
CAD area. Section 3 proposes a modeling language suitable for the 3D layout de-
sign. The language, its execution and a visualization workflow are experimented
in section 4. Finally, section 5 concludes the paper.

2 Macro-parametric design methodology

This section explores the macro-parametric approach as a potential solution
to the issue presented above. According to Yang et al. [8], a macroparametric
method describes the parametric information of a CAD model as “a design com-
mand sequence”, here defined as a procedural approach. Past researches dealing
with this topic can be classified into two categories:

1. Product data exchange or macroparametric approach as a way to exchange
models between different CAD packages: for instance, Choi et al. [9] proposed
a macroparametric approach to exchange CAD models in an heterogenous
environment. This approach is further extended to a feature-based macrofile
format supporting the representation of the history-based parametric design
[10]. These works are based upon an XML files description. Pratt et al. [7]
enriched the STEP standard semantics with parametric modeling features
[11].

2. Synchronized collaborative design or macroparametric approach as a way
to enable wide scale and real-time design collaboration: the exchange of
a command sequence is here considered as an efficient way to reduce the
necessary network bandwith compared with the one required to transfer
netural format files. For instance, Li et al. [12] introduce a set of neutral
CAD modeling command for real-time and wide collaboration.

Researchers who developed MP approaches used Parametric Feature Modeling
(PFM) concepts and defined a set of commands that map a small common subset



from the most famous CAD packages available on the market. These works suffer
from three major drawbacks:

– incompleteness of the set of commands: whether it is to exchange models
or to enable wide-scale real-time collaboration in an heterogeneous environ-
ment, the common features between CAD packages are restricted to basic
operations (for instance Sketch, Protrusion, Revolution etc.). Indeed beyond
basic functions proposed by every CAD package, many advanced functions
are specific to a software: the receiver system won’t be able to rebuild the
model since it is missing the function,

– the PFM approach results in a high number set of commands that rely on
a complex data model: the XML or ASCII file size that describes a model
instance might be huge,

– the XML description is not human readable, as well as a set of EXPRESS
instances serialized to an plain-text ASCII or XML file. These files cannot
be edited and modified by a designer who would like to modify the geometry
of the model. The modification has to be done from a CAD software.

For these reasons, current MP approaches are not judged suitable for the present
research: the plant layout 3D model should be described in a simple way, be
human readable and modified from outside any CAD package. The next section
proposes a solution to overcome these issues.

3 Constructive Solid Geometry modeling language for
3D preliminary design

This section introduces a procedural Constructive Solide Geometry (CSG) [13]
modeling language. The idea of CSG is to combine simple 3D shapes to more
complex ones with boolean operations in 3-dimensional space. CSG modeling
has been superseded by PFM in most of the usual current CAD packages, how-
ever CSG is interesting in the current study case because only basic shapes are
needed for the plant layout representation and because CSG is based upon a
small set of shapes/transformations leading to a lightweight model specification.
Subsection 3.1 introduces the language semantics and subsection 3.2 deals with
its syntax.

3.1 Model semantics

The semantics of the language is based upon the geometry foundation, the ge-
ometry factory and the layout factory.

The Layout Factory: this is the top-level component, composed of the base
Layout class, which is a container for the geometry, sublayouts, and their abso-
lute placements in the 3D space.



The geometry foundation: composed of ten basic classes: Point (a cartesian
point (x, y, z)), Vector (from its cartesian coordinates (vx, vy, vz)), Matrix (a
4∗4 array), and six basic shapes (Box, Cylinder, Sphere, Cone, Torus, Wedge)
that inherit from an abstract Shape class (see figure 1).

box(dx,dy,dz) sphere(radius) cylinder(radius,height)

cone(radius, height) torus(radius_1, radius_2) wedge(wx,wy,wz,angle)

Fig. 1. Geometry factory: basic shapes instanciation

The geometry factory: a set of functions enabling a procedural treatment. These
functions allow to instanciate classes, create geometry and perform boolean op-
erations to generate the final geometry. The geometry factory provides three
boolean operations that take two shapes as arguments and return the result
shape: fuse, cut, common. Table 1 illustrates the boolean operations of two over-
lapping shapes A and B utilising Venn diagrams. A set of three transformations
(translate, rotate, scale) allows to moving or deforming shapes. Table 2 il-
lustrates these 3D shape transformations (they are presented on a 2D projection
view on table 2).

3.2 Syntax definition

The purpose is to make the previous set of commands be computer-interpretable,
the definition of an unamiguous syntax is thus mandatory. The syntax of a pro-
gramming language is the set of rules that define the combinations of symbols
that are considered to be correctly structured programs in that language [14]
(variable affectation, conditionnal expressions etc). The resulting model has to
be human readable, easily understandable and usable by a design engineer and



A B C = fuse(A, B)

C = common(A, B) C = cut(A, B) C = cut(B, A)
Table 1. Geometry factory: boolean operations

Original shape translate rotate scale
Table 2. Geometry factory: shape transformations

must produce the smallest program size as possible, in order to ensure that
the 3D layout definition is actually robust over a long time period (it must be
reusable for decades). The definition of a specific syntax requires the develop-
ment of a robust lexer and parser: developping a new syntax from scratch or
use an existing one has to be balanced regarding this effort and the previous
criterions. High level programming languages, such as Java, Scheme or Python,
are potential candidates: they provide a strong abstraction over machine lan-
guage and a robust and mature platform-independant implementation. This is
experimented in the next section.

4 Experiments

Experiments presented in this section deal with a basic example (4.2), measure-
ment of the language intepreter performance (4.3) and an exchange/visualization
workflow (4.4). Results are discussed in subsection 4.5.

4.1 Language syntax choice

As discussed at the end of the previous section, the decision was took to use the
syntax of some existing high-level interpreted language: the Python program-
ming language [15], depicted by Dubois [16] as “clear and intuitive for engineers



and scientists”. The language interpreter was implemented using only free and
open source software libraries: pythonOCC1 and OpenCascadeTM Technology li-
brary2. Following tests were performed on a Mac OSX machine running 2 64bit
cores.

4.2 Basic test for the CSG engine

The simple following model aims to represent a cooling tower, considered as the
result of a set boolean operations involving a cylinder and a torus. The following
program produces the output as presented on figure 2 (units are in meter). Figure
2(a) shows the basic shapes (cylinder,torus, presented in a wireframe mode) that
are passed to the cut operation, the output shape is shown on figure 2(b).

cyl = cylinder(13,13)
tor = translate(torus(20,15),vector(0,0,10))
external_volume = cut(cyl,tor)
volume_to_remove = scale(external_volume,point(0,0,0),0.9)
cooling_tower_geometry = cut(external_volume,volume_to_remove)

(a) (b)

Fig. 2. Model for a cooling tower

4.3 Measure of the CSG interpreter performance

A plant layout may be composed of thousands of components, each of them being
the result of some shape creation, transformation and boolean operations. As a
consequence, a fast and robust CSG engine is required. Two different stress tests
were conducted: the first one deals with the boolean operations performance
in terms of computing time and topology consitency, the second one with the
creation of thousands of elementary shapes in terms of computing time and
memory consumption.

1 http://www.pythonocc.org
2 http://www.opencascade.org



Boolean operations stress test: a recursive boolean cut with a sphere was per-
formed from an initial cube. The results are presented on figure 3: figure 3(a) is
a screenshot of the final result after removing 20 random spheres. Since sphere
radius and location are randomly setted, the resulting geometry looks different
each time the test is processed: the topology consistency has been checked for all
runs. Figure 3(b) presents a chart that reports the computing time tc in seconds
according to the number n of requested boolean operations, i.e. the algorithm
depth. tc(n) appears to be an exponential function, which can be explained by
the fact the topology complexity increases, by a factor f , each time a new cut
operation is performed over the previous topological state.

(a) (b)

Fig. 3. CSG engine stress test for boolean operations

Multiple instanciation stress test: this test aims to checking the ability of the
engine to create many instances of elementary shapes in a reasonable time with a
reasonable memory consumption. “Reasonable” here means tha the test should be
performed on a personal computer in less than a few minutes while consuming
less than 1Gb of memory. This test case creates n random basic geometries
(toruses, boxes, spheres) and measures the computing time as well as the memory
consumption (see results in table 3). tc(n) and Mc(n) appear to be both linear
functions of n.

n 10 102 103 104 105

computing time tc in ms 2, 2 15 140 1, 47 15, 8

memory consumption MC in Mb 0, 47 0, 7 7 87, 7 903
Table 3. Multiple geometry instanciation in a 3D layout



4.4 Exchange and rendering of the 3D layout

Beyond checking the feasibility of the modeling language to deal with many com-
plex shapes, we investigated as well the possibility to exchange and visualize the
resulting layout, so that this modeling approach can be integrating into usual
design and checking PLM workflows. In this test case, we consider a basic layout
composed of one shop floor and a pressure vessel. The 3D model for the pres-
sure vessel is obtained from elementary volumes (spheres, cylinders and boxes).
Regarding the exchange with other CAD packages, STEP is the most famous
neutral format, especially the 203 and 214 Application Protocols. Moreoever, it
is natively supported by usual CAD softwares for a long time. Ding et al. [17]
report many different file formats for the exchange of tesselations. Among them,
JT, 3DXML or PDF3D are the most known, but COLLADA3 was further in-
vestigated since it the interest of being a free and open standard. At last, a way
of rendering this tesselation using open standards was also experimented. The
recent WebGl4 standard brings 3D to the internet together with COLLADA
[18]: we experimented the visualization of the 3D layout within a webbrowser
supporting this new feature. This leads to a plugin free online visualization,
which is much practical for distant project reviews or digital mockup investiga-
tion and inspection on computers that does not have any CAD package installed.
At last, it would allow to render the layout on lightweight mobile terminals (e.g.
smartphones, tablets) thus enabling in situ project reviews. The experiment re-
sult is presented on figure 4: the model, expressed using the modeling language
presented in section 3, is processed by the engine, which generates a STEP file,
a COLLADA 1.4 file (imported into Google SketchUp to demonstrate the file
consitency) as well as a WebGl JavaScript Object Network (JSON) object served
to a web client (Firefox 11).

4.5 Results and discussions

The stress tests demonstrated that it is possible to easily create a 3D bounding
volume and generate the geometry: topology consistency, computing time and
memory consumption allow running this kind of language on a personal com-
puter. The visualization workflow described in the last subsection shows it is
possible to store a tesselation using the COLLADA data model: the mesh size
however still has to be reduced in order to provide a ligthweight tesselation to
the renderer. The WebGl based renderer allows to checking the current WebGl
implementations of modern webbrowsers in this context: they appear to be in-
creadibly stable, mature and efficient, according to the other tests that were ran.
This global workflow although has to be experimented for huge layouts involv-
ing dozens of thousands of components. To conclude this discussion, the model
and the software prototype presented above provide a way to: describe a 3D
3 http://collada.org
4 http://www.khronos.org/webgl/



Model description

WebGl rendering (Firefox 11) Native OpenGl rendering

3D Layout engine

JSON 
object

COLLADA 1.4 
file

STEP 
AP203 or 
AP214 file

Third Part CAD Package

Sketchup 8 import

Fig. 4. Pressure vessel model ready for a PLM workflow

volume with a simple and human readable model, execute this model thanks
to a language based upon a high-level programming language syntax, generates
a platform independant visualization solution (WebGl/web browser) as well as
a neutral representation (STEP) ready for the exchange with third part CAD
tools and, at last, a COLLADA file ready for tesselation exchange. Although a
CAD kernel is still required for supporting this workflow, the dependency over
one specific CAD solution is removed: the control over all 3D layout assets is
ensured.

5 Conclusion - Further works

This paper introduced a modeling language suitable for 3D process plant layout
representation. This language uses a procedural Constructive Solid Geometry
approach. Experimentations demonstrated that it can be executed in order to
generate simple geometries intended to represent the boundary volume of com-
plex components. Morover, the paper also contributes a workflow to enable ex-
change of the resulting geometry as a STEP file, visualization storage using the
COLLADA standard as well as a webbrowser based visualization enabling on-
line rendering. Further research purposes are to reduce the tesselation size, add
parametric features in order to provide more flexibility and develop a business
object ontology on top of this model.



References

[1] Theodosiou, G., Sapidis, N.S.: Information models of layout constraints for product
life-cycle management: a solid-modelling approach. Computer-Aided Design 36(6)
(2004) 549–56

[2] Barbosa-Póvoa, A., Mateaus, R., Novais, A.Q.: Optimal 3D layout for industrial
facilities. International Journal of Production Research 40(7) (2002) 1669–1698

[3] Mantyla, M.: A modeling system for top-down design of assembled products. IBM
Journal of Research and Development 34(5) (1990) 636–659

[4] Lorie, R.A.: Long term preservation of digital information. Proceedings of the 1st
ACM/IEEE-CS joint conference on Digital libraries (2001) 346–352

[5] Rachuri, S., Subrahmanian, E., Bouras, A., Fenves, S., Foufou, S., Sriram, R.: Infor-
mation sharing and exchange in the context of product lifecycle management: Role
of standards. Computer-Aided Design 40(7) (2008) 789-–800

[6] Pratt, M.J.: Introduction to ISO 10303: the STEP standard for product data ex-
change. Journal of Computing and Information Science in Engineering 1 (2001)
102–104

[3] Cellary, W., Walczak, K.: Interactive 3D Content Standards. In Interactive 3D
Multimedia Content, ed. Cellary and Walczak, pub. Springer London, ISBN 978-
1-4471-2497-9 (2012) 13–35

[7] Pratt, M.J., Anderson, B.D., Ranger, T.: Towards the standardized exchange of
parameterized feature-based CAD models. Computer-Aided Design 37(12) (2005)
1251–1265

[8] Yang, J., Han, S., Cho, J., Kim, B., Lee, H.: An XML-based macro data rep-
resentation for a parametric CAD model exchange. Computer-Aided Design and
Applications 1 (1-4) (2004) 153–162

[9] Choi, G.-H., Mun, D., Han, S.: Exchange of CAD Part Models Based on the Macro-
Parametric Approach. International Journal of CAD/CAM 21 (2002) 13–-21

[10] Mun, D., Han, S., Kim, J., Oh, Y.: A Set of Standard Modeling Commands for
the History-Based Parametric Approach. Computer Aided Design 35(13) (2003)
1171–1179

[11] ISO 10303-111: Industrial automation systems and integration - Product data
representation and exchange - Part 111: Integrated application resource: Elements
for the procedural modelling of solid shapes, ICS: 25.040.40 (2007)

[12] Li, M., Gao, S., Wang: Real-time collaborative design with heterogeneous CAD
systems based on neutral modeling commands. Journal of Computing and Infor-
mation Science in Engineering 7 (2007) 113–126

[13] Lions, J.L., Pironneau, O.: Domain decomposition for CAD. Compte-rendu de
l’académie des Sciences, Series 1, Mathematics 328(1) (1999) 73–80

[14] Friedman, D.P., Wand, M.: Essentials of programming languages, 3rd edition. The
MIT Press ISBN-13 978-0-262-06279-4 (2008)

[15] Lutz, M., Van, G.: Programming Python: Object-Oriented Scripting. pub.
O’Reilly \& Associates, Inc. ISBN-10 0596000855 (2001)

[16] Dubois, P.F.: Ten good practices in scientific programming. Computing in Sci-
ence & Engineering 1 (1999) 7–11

[17] Ding, L., Ball, A., Matthews, J., McMahon, C.A. and Patel, M.: Product repre-
sentation in lightweight formats for product lifecycle management (PLM). Repre-
sentations September (2007) 19–21

[18] Milivojević, M., Antolović, I., Ranĉić, D.: Evaluation and visualization of 3D mod-
els using COLLADA parser and WebGL technology. Proceedings of the 2011 in-
ternational conference on Computers and computing (2011) 153–158


