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Abstract

This paper analyses price competition in the case of two firms operating

under constant returns to scale with more than one production factor. Factors

are chosen sequentially in a two-stage game generating a soft capacity constraint

and implying a convex short term cost function in the second stage of the game.

We show that tacit collusion is the only predictable result of the whole game i.e.

the unique payoff-dominant pure strategy Nash equilibrium. Technically, this

paper bridges the capacity constraint literature on price competition and that of

the convex cost function.
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Panthéon Sorbonne, Adress: Ens Cachan, 61 avenue du Président Wilson, 94230 Cachan, France.
(drouhin@ecogest.ens-cachan.fr)

1



1 Introduction.

The literature on Industrial Organization emphasizes the role of threats and retaliations

in a dynamic game framework to explain tacit collusion (Friedman, 1971; Abreu, 1986;

Benoit and Krishna, 1987; Feuerstein, 2005). This paper gives an example of a market

in which the collusive outcome arises as a predictable result of a non-repeated price

competition duopoly with two stages. This is consistent with the experimental findings

of a remarkable degree of coordination around a collusive price by two firms (Abbink

and Brandts, 2008). Following Ivaldi et al. (2003), tacit collusion needs not to involve

any collusion in the legal sense, and, in particular, no communication between the

parties. “It is referred to as tacit collusion only because the outcome (in terms of prices

set or quantities produced, for example) may well resemble that of explicit collusion or

even of an official cartel”.

We start from the Bertrand competition model initiated by Dastidar (1995)1 and

extended recently by Baye and Morgan (2002); Novshek and Chowdhury (2003); Ho-

ernig (2007); Bagh (2010). In this setting, firms face convex costs and are committed to

satisfying the full demand. By lowering its price, a firm increases its revenue by higher

sales. But, costs being convex, they will increase even more, making this deviation

non-profitable. For this reason, a continuum of prices above the competitive price can

be sustained as Nash equilibria in pure strategies2, inducing a coordination problem in

a non-repeated framework. To claim the possibility of tacit collusion in this framework,

two questions still need to be answered: 1) Is the collusive outcome within the set of

the Nash equilibria? 2) Is there a plausible selection procedure to achieve the collusive

outcome as the unique solution? Dastidar (2001) answers the first question, but only

in the symmetric case. As far as we know, the second question has not been treated

explicitly.

According to Harsanyi and Selten (1988), two criteria can be used to solve the

coordination issue: The payoff dominance criterion which appears to be the natural
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criterion when it is common knowledge that both players are fully rational3, and the

risk dominance criterion that can be invoked when payoff dominance is insufficient to

provide uniqueness. Unfortunately, risk dominance may not be applied in the context

of Bertrand competition with convex costs, because of the infinity of equilibria.

In this paper, we will add a sequential choice of production factors into Dastidar’s

(1995) approach of Bertrand competition. As we will demonstrate, this plays a key role

in the coordination mechanism that leads to tacit collusion. Our model starts from a

constant returns to scale production function with two substitutable production factors

chosen sequentially. In the first stage, the firms invest i.e. they choose the quantity of

the fixed factors, quantity that will be invariable over the second stage. In the second

stage, firms compete on price and determine the quantity of variable factors needed

to satisfy the demand they will face. This implies that, when the first factor is fixed,

the short run marginal cost is convex in the second stage4. The sequential choice of

the production factors is certainly the central hypothesis of our approach. On the one

hand, it is a standard hypothesis in economic analysis, a textbook case renewing the

Marshallian tradition of distinguishing between short and long term cost functions. On

the other hand, as far as we know, it appears that it has not been used in the recent

literature about price competition. However, we want to point out that this assumption

is a natural generalization of the notion of capacity constraints initiated by Edgeworth

(1925). There is a long tradition in Industrial Organization of considering firms that

are capacity constrained (Vives, 1980; Kreps and Scheinkman, 1983; Allen and Hellwig,

1986; Davidson and Deneckere, 1986; Allen et al., 2000). In those models, the constraint

is drastic (i.e. it is impossible to produce above the capacity). In our model, the choice

of the fixed factor corresponds to the choice of the production capacity. But the usual

way to model capacity constraints is equivalent, in our setting, with an assumption of

perfect complementarity of fixed and variable factors. In this case, when the capacity

of production is binding in the second stage, it is impossible to produce more, whatever

the quantity of variable factor. Our hypothesis of substitutability between fixed and
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variable factors introduces a less drastic (soft) notion of capacity constraints5, and in

many cases a more realistic one. For example, we can take, as an illustration, the

retailing sector. The fixed factor refers to the surface needed to sell and the length of

the shelves used to display the products, whereas the variable factor can be interpreted

as the number of employees needed to fill up the shelves. For a given surface of the

store, there exists an optimal number of employees minimizing the long-term average

cost. But if demand is superior to the output corresponding to this optimal number,

the shelves will be emptied more quickly, and you will need more employees to fill up

the shelves continuously and to satisfy this supplementary demand.

In this paper, we will show that the standard selection criterion of payoff dominance

is not sufficient to assure uniqueness of equilibrium. But if we add our notion of

soft capacity constraint, the uniqueness is guaranteed in the two-stage game and the

equilibrium chosen is a collusive one.

The paper is organized as follows. Section 2 presents the model. Reasoning back-

wards, the second stage of the game is solved in Section 3 and the first one in Section

4. The final section concludes.

2 The model.

There are two identical firms in a market for a homogeneous good. Consider a two-

stage game where firms invest in the first stage and simultaneously choose the price in

the second stage. We introduce the following assumptions:

1. Firms rely on a technology represented by a two-factor constant returns to scale

production function. The first factor is fixed in the second stage, while the

second one varies to satisfy the demand faced by the firm6. For the firm i, the

fixed factor will be denoted zi and the variable one, vi. The fixed factor price

is w1, and the variable one is w2. For readability, we will use a Cobb-Douglas

production function yi = azi
αv1−α

i with i = 1, 2 and i 6= j, where a is a positive
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constant, and α, the elasticity of the production according to the level of the fixed

factor, is a constant between 0 and 1. The total cost function can be written.

C(yi; zi; vi) = w1zi + w2vi = w1zi + w2
yi

1
1−α

a
1

1−α zi
α

1−α

Viewed from the second stage, the first term of the righthand side is sunk and

the second term is the short-run cost function. It is continuous, increasing and

convex.

2. The demand is continuous, twice differentiable and decreasing.

D : R+ −→ R
+ with D(pmax) = 0, D(0) = Qmax. Classically, we denote the price

elasticity of demand: E(p) = pD′(p)
D(p)

.

3. Firms have to supply all the demand they face. The demand function is defined

as follows:

Di(pi; pj) =































0 if pi > pj

1
2
D(pi) if pi = pj

D(pi) if pi < pj

We can now express the profit πi for each firm i.

πi(pi, pj, zi) = pDi(pi, pj)− Ci (Di(pi, pj), zi)

πi(pi, pj, zi) =































−w1zi if pi > pj

pD(p)
2

− w1zi − w2
(D(p)

2 )
1

1−α

a
1

1−α zi
α

1−α

def
= π̂(p, zi) if pi = pj = p

pD(p)− w1zi − w2
D(p)

1
1−α

a
1

1−α zi
α

1−α

def
= π(p, zi) if pj > pi = p

The function π̂(p, zi) represents the profit of the firm i when both firms quote

the same price and the function π(p, zi), represents the profit of firm i when it

quotes the lowest price and supplies the market alone.
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4. The demand is such that π̂(p, zi) and π(p, zi) are strictly concave in p and strictly

concave in z, i. e. ∂2π̂(p, z)/∂p2 < 0, ∂2π̂(p, z)∂z2 < 0, ∂2π(p, z)/∂p2 < 0,

∂2π(p, z)∂z2. After trivial calculations, it can be shown that ∂2π̂(p, z)/∂p∂z < 0.

We define p̄i(zi) that solves π̂(p, zi) = π(p, zi). Thus p̄i(zi) must be interpreted as the

critical price for which the firm is indifferent between operating in the market alone or

with its competitor. After calculation, we obtain

p̄i(zi) =
w2

a
1

1−α zi
α

1−α

(

D(p̄i)

2

)
α

1−α

(2
1

1−α − 1) (1)

In the second stage, the fixed cost, w1zi, is sunk, and the firm will quote a price only

if the variable part of the profit is positive i. e. π̂(p, zi) ≥ −w1zi. Thus, we also define

p̂i, that solves π̂(p, zi) = −w1zi for a given zi, the minimum price compatible with a

decision to produce in the second stage.

p̂i(zi) =
w2

a
1

1−α zi
α

1−α

(

D(p̂i)

2

)

α
1−α (2)

Finally, we define p∗i , the price that maximises the profit of firm i when both firms

operate in the market. As a shortcut, this price can be interpreted as the cartel price

when both firms have chosen the same level of fixed factors in the first stage.

p∗i (zi)
def
= argmax

p

{π̂(p, zi)} =
1

1 + 1
E(p∗

i
)

1

1− α

w2

a
1

1−α zi
α

1−α

(

D(p∗i )

2

)

α
1−α (3)

Let us note that, for a given zi, p
∗(zi) is different from pm(zi), the monopoly price

which maximises the profit of a firm alone in the market.

In the rest of the paper, when reasoning with a given zi, we will denote π̂(p, zi) =

π̂i(p) and π(p, zi) = πi(p).

It is important to understand how those profit functions π̂(p, zi) and π(p, zi) and

those prices p̂, p∗ and p̄ are organized together.
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Lemma 1 (Geometry of profit functions for a given zi).

p̂i < p̄i (4a)

∀p > p̂i, π̂i(p) > −w1zi (4b)

∀p ∈ [p̂i; p̄i], ∀µ ∈ (0, p], π̂i(p) > πi(p) > πi(p− µ) (4c)

zi > zj ⇒























p̂j > p̂i

p̄j > p̄i

p∗j > p∗i

(4d)

Proof : Following equations (1), (2) and (3), (4a),(4b),(4c) are obvious. Taking the

total differential of expressions (1), (2) and (3), we can show that ∀z, dp̂(z)/dz < 0,

dp̄(z)/dz < 0 and dp∗(z)/dz < 0, proving (4d). �

The prices p̄(z) and p∗(z) will play an important role in the resolution of the game

and we have to settle the question of their relative position.

Lemma 2 (Comparison between p̄(z) and p∗(z)).

∀α ∈ (0, 1), ∃!z̃,

z = z̃ ⇔ p̄(z) = p∗(z) ≡ p̃ ⇔
1

1− α

1

2
1

1−α − 1
= 1 +

1

E(p̃)
(5a)

z < z̃ ⇔ p̄(z) > p∗(z) ⇔
1

1− α

1

2
1

1−α − 1
< 1 +

1

E(p̄(z))
(5b)

Proof : in the appendix. �

z̃ is exogenous, only determined by the special form of the demand and production

functions. If the firm chooses a level of z lower than z̃, then p̄(z) will be above p∗(z).

However, if the firm chooses a higher level, then p̄(z) will be lower than p∗(z). So when

solving the first stage of the game, z will be endogenous, and we have to keep in mind

the qualitative implications for the resolution of the second stage. For a given demand
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function, α is the sole determinant of p̃ position. When α tends to 1, the condition

(5-b) is more easily satisfied.

p
i

p̂
i

π̂
i

p( )

p
maxp

i
*

π
i

p( )

p
i

p̂
i

π̂
i

p( )

p
maxp

i
*

π
i

p( )

Figure 1: z > z~ z < z~Figure 2:

πi
π

i

Figure 1 and Figure 2 illustrate the geometry of the profit functions. Considering

just one firm with a definite level of the fixed factor, (4a), (4b) and (4c) allow us to

draw the functions π̂i(p) and πi(p).

These functions are parameterized by the level of the fixed factors. What happens

if this level increases? (4d) shows that the curves will be transformed with p̂j, p̄j and

p∗ moving to the left.

The two-stage game is solved by backward induction. First, we analyze the price

competition in the second stage of the game, for a given fixed input at levels z1 and

z2. Secondly, the firms optimally choose their fixed input levels in the first stage of the

game.

3 The second stage of the game: price competition

In this section, we take the firms’ fixed input levels as given and look for the Nash

equilibrium in prices. Thus, to simplify the exposition, we omit the z variable when

denoting the price. For reasons that will become clearer when we resolve the first stage

of the game in the next section, we will consider the possibility that z1 and z2, chosen

in the first stage, can be different but ”not too much”. More precisely, we will assume
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that z1 and z2 are such that [p̂1, p̄1] ∩ [p̂2, p̄2] 6= ∅.

3.1 Nash Equilibria

Proposition 1. In the second stage, (p1, p2) is a pure strategy Nash equilibrium if and

only if p1 = p2 = pN , with pN ∈ [p̂1, p̄1] ∩ [p̂2, p̄2] = [max(p̂1, p̂2),min(p̄1, p̄2)] 6= ∅.

Proof : in the appendix �

The Nash equilibrium prediction in the second stage game is basically the one of

Dastidar (1995), with the same drawback. With the exception of the very special

case p̄i = p̂j, in which there is a unique Nash equilibrium, all the other cases are

characterized by an infinite number of equilibria, with a minimum zero short-term

profit equilibrium price and a maximum above the competitive price.

3.2 Equilibrium selection

In this subsection, we will use payoff dominance criterion to reduce the set of equilibria

and discuss the uniqueness problem. An equilibrium point is said to be payoff-dominant

if it is not strictly dominated by an other equilibrium point, i.e. there exists no other

equilibrium in which payoffs are higher for all players.

Proposition 2. In the second stage, (p1, p2) is a payoff-dominant pure strategy Nash

equilibrium if and only if: p1 = p2 = pPDN ,

with pPDN ∈ I = [max(p̂1, p̂2,min(p∗1, p
∗

2, p̄1, p̄2)),min(max(p∗1, p
∗

2), p̄1, p̄2)]

Proof : in the appendix �

Proposition 2 reduces the set of predictable outcomes of the game but does not imply

uniqueness. However, the following corollaries will prove that uniqueness prevails in
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some important cases. They will also provide a better understanding of Proposition 2.

Corollary 2-A. When firms have chosen the same level of factor z then p∗1 = p∗2
def

= p∗,

p̄1 = p̄2
def

= p̄ and the symmetric profile (min(p∗, p̄),min(p∗, p̄)) is the unique payoff-

dominant pure strategy Nash equilibrium in the second stage of the game.

Corollary 2-B. When firms have not chosen the same level of factor z and max(z1, z2) >

z̃, then there exists i ∈ {1, 2} such that p̄i = min(p∗1, p
∗

2, p̄1, p̄2) and the symmetric pro-

file (p̄i, p̄i) is the unique payoff-dominant pure strategy Nash equilibrium at the second

stage of the game.

Corollary 2-C. When firms have not chosen the same level of factor z and max(z1, z2) <

z̃ and p̄i 6= p̂j then there exists i ∈ {1, 2} such that p∗i = min(p∗1, p
∗

2, p̄1, p̄2) and the inter-

val I is an non degenerated continuum of payoff-dominant pure strategy Nash equilibria

in the second stage of the game.

Corollary 2-D. When p̄i = p̂j then the symmetric profile (p̄i, p̄i)) is the unique (payoff-

dominant) pure strategy Nash equilibrium in the second stage of the game.

The following Table presents the results of the price competition in the different

configurations.

min(p̄1, p̄2) 6 min(p∗1, p
∗

2)

⇔ max(z1, z2) > z̃

min(p̄1, p̄2) > min(p∗1, p
∗

2)

⇔ max(z1, z2) < z̃

z1 = z2

2A

Stage 2: Uniqueness

pPDN = p̄1 = p̄2 ≡ p̄

2A

Stage 2: Uniqueness

pPDN = p∗1 = p∗2 ≡ p∗

z1 6= z2

2B

Stage 2: Uniqueness

pPDN = min(p̄1, p̄2)

2C (if p̄i 6= p̂j)

Stage 2: Multiplicity

pPDN ∈ I

2D (if p̄i = p̂j)

Stage 2: Uniqueness

pPDN = min(p̄1, p̄2)

Table 1: The different cases of price competition.
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Figures 3 and 4 illustrate respectively Case 2B and 2C.

pp
1

p̂
1

p
maxp

1
*

π
1
p( )

pp
2

p̂
2

π̂
2
p( )

p
maxp

2
*

π
2
p( )

p

pN

pPDN

π
1

π
2

π̂
1
p( )

Figure 3: Case 2B

pp
1p̂

1

π̂
1
p( )

p
max

p
1
*

π
1
p( )

pp
2

p̂
2

π̂
2
p( )

p
maxp

2
*

π
2
p( )

p

pN

π
2

π
1

pPDN

Figure 4: Case 2C

The payoff dominance criterion is insufficient to achieve the solution’s uniqueness in

the second stage. The corollary 2-C shows that the coordination problem (multiplicity

of equilibria) follows from the profits geometry. But the corollary 2-A shows that the

coordination problem may be solved in the endogenous way by the agents’ decisions

upstream, whatever the special values of the parameters.

4 The first stage of the game

In this section, firms determine their level of fixed factors anticipating the effect on

the price equilibria at the second stage of the game. As we are in price competition,

the profit function of the first stage of the game inherits the potential discontinuity

of the profit function in the second stage of the game. Thus, for each outcome of the

game, we will have to look for the consequences of unilateral deviation in z on the profit

function. Two problems may arise. First, we have to consider the potential asymmetry

between the effect of a deviation in z on the market price, i.e. it is the fixed factor level

of the firm with the highest one that alone determines the market price. Secondly, a

deviation in the level of the fixed factors can also modify the nature of the equilibrium
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because, as we have shown in Lemma 2, the relative position of p̄(z) and p∗(z) depends

on the position of z according to z̃. So, before explicitly resolving the equilibrium in

the first stage of the game, we have to go back to the geometry of the profit function.

4.1 The geometry of the profit function, once again

Let us define: Π∗(z)
def
= π̂(p̄(z), z) and Π∗∗(z)

def
= π̂(p∗(z), z). We define, z∗ = argmax{Π∗(z)}

and z∗∗ = argmax{Π∗∗(z)}. Finally, we define the function Π(z) satisfying:











Π(z) = Π∗∗, ∀z ∈ (0, z̃]

Π(z) = Π∗, ∀z ∈ (z̃,+∞)

Π(z) characterizes the profit function of both firm when they choose the same level of

fixed factor. When z > z̃, it also characterizes the profit of the firm with the highest

level of fixed factor.

Lemma 3 (Geometry of the profit function).

dΠ∗

dz
(z) =

∂π̂

∂p
(p̄(z), z)

dp̄

dz
(z) +

∂π̂

∂z
(p̄(z), z) (6a)

dΠ∗∗

dz
(z) =

∂π̂

∂z
(p∗(z), z) (6b)

∀z 6= z̃,Π∗∗(z) > Π∗(z) (6c)

Π∗∗(z̃) = Π∗(z̃)and
dΠ∗∗

dz
(z̃) =

dΠ∗

dz
(z̃) =

∂π̂

∂z
(p∗(z̃), z̃) (6d)

Proof : (6a) is obtained by taking the total differential of the definition. For (6b)

and (6c), we use the fact that p∗(z) maximise π̂(p, z) for a given z. (6d) is straightfor-

ward. �

The relative position of z∗ and z∗∗, on the one hand, with z̃, on the other hand,

will depend on the property of the demand function and the value of the elasticity

of the production according to the level of the fixed factor (the parameter α). We
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can have two cases: z∗ > z̃ (it will also hold for z∗∗) or z∗ 6 z̃. Both cases are

possible and are illustrated respectively in Figures 6-a and 6-b. For example, with a

linear demand function, case 6-a occurs when α is low. Those figures also illustrate the

general property enunciated in Lemma 3.

z
~ z

Figure 5-a: > Figure 5-b:

z*

Π(z)

Π   (z)**

Π   (z)**

Π (z)*

Π (z)*

Π(z)

z
~z* z** z**

z* z~ z
~

z*

z

We can now solve the first stage of the game.

4.2 Equilibrium prediction for the first stage game

The cases 5-a and 5-b determine the equilibrium prediction of the first stage game.

Proposition 3. There exists a unique payoff dominant pure strategy Nash equilibrium

in the first-stage of the game.

i) If z∗ > z̃ (Fig. 6-a), there exists an infinity of pure strategy Nash equilibria in the

first-stage of the game, with (z∗, z∗) the unique payoff dominant one.

ii) If z∗ 6 z̃ (Fig. 6-b), there exists an infinity of pure strategy Nash equilibria in the

first-stage of the game with (z∗∗, z∗∗) the unique payoff dominant one.

Proof : in the appendix �

Three points have to be noticed. First, the equilibrium prediction of the first stage

is unique. Even if there is a multiplicity of Nash Equilibria in this setting, the payoff

13



dominance criterion is sufficient to achieve uniqueness. Secondly, the equilibrium pre-

diction of the first stage is symmetric i.e. the firms choose the same level of the fixed

factors. It implies that the cases 2B and 2C (Table 1) never occur in the second stage.

The choice of the level of the fixed factor allows the firms to endogenously solve the

problem of coordination in the second stage. When considering the whole game, we

can now predict a unique outcome price in the second stage. The sequential choice of

the production factors is thus, by itself, a powerful mean of coordination. However,

and it will be our last point, the qualitative properties of the equilibrium prediction for

the whole game depend on the geometry of the profit function (the relative position of

z∗ and z̃). As we have shown, this geometry is determined by the shape of the demand

function and the convexity of the short-term cost function, captured by the parameter

α. Proposition 3 distinguishes two cases. For a given demand function and for a given

α (possibly low), both firms choose z∗ in the first stage and quote p̄(z∗). For other

values of α (possibly high), both firms choose z∗∗ in the first stage and quote p∗(z∗∗).

Thus, it appears that firms coordinate on a ”high price”. Let us now examine if this

price corresponds to a collusive one.

4.3 The collusive nature of the equilibrium

We define the collusive outcome as the solution of the joint-profit maximization pro-

gram of two firms equally sharing the production. Because it is impossible for firms to

legally enforce an explicit agreement, we add a constraint of non-profitable deviation.

This program can be written:











max
p,z

2π̂(p, z)

s.t. p ≤ p̄(z)

As a simple application of the envelope theorem, and because of the geometry of the

profit function, the results are as follows. When the constraint is binding, the solution
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of joint-profit maximization problem is (z∗, p̄(z∗)), which corresponds to a second best

from the point of view of the firms. When the constraint is slack, (z∗∗, p∗(z∗∗)) is the

solution, corresponding to the cartel capacity and price.

Thus, the unique equilibrium prediction of the whole game corresponds to a collusive

outcome. Our model provides a setting in which tacit collusion occurs in the sense

of Ivaldi et al. (2003), and this result is obtain in a non-repeated two-stage game

interaction. It is not the possibility of retaliation that drives the existence of tacit

collusion.

Dastidar (2001) has discussed the possibility for the collusive outcome to be a Nash

equilibrium of Bertand competition in a single-shot game. This paper goes further. Not

only because we prove that our solution is a subgame perfect Nash equilibrium, but

also because, combining a clear mechanism of equilibrium selection with a sequential

choice of production factors with soft capacity constraint, we show that tacit collusion

is the only predictable outcome of the whole game.

5 Conclusion

Our objective was to provide an example of a market in which tacit collusion can be

obtained as a predictable result of a non-repeated framework. To do this, we have built

a model with assumptions very close to the canonical textbook model of Bertrand com-

petition: price competition, non-repeated interaction, homogeneity, constant returns to

scale. Our only departure from this setting is that we rely on a two-factor production

function chosen sequentially.

The conventional wisdom, based on Bertrand’s original result, is to believe that

price competition is a much more drastic form of competition than quantity. Even if

there are few firms in the market, Bertrand’s result shows that some form of imperfect

competition can lead to marginal cost pricing and thus to social optimality. Since Edge-

worth (1925), there has been a long-standing debate on this statement. By bridging
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two important lines of this literature distinguished by Vives (1999), the Bertrand-

Edgeworth approach with capacity constraints, and that of convex costs (Dastidar,

1995), our paper is also a contribution to the resolution of the Bertrand Paradox.

An interesting property of our approach with a two-factor production function

is that it disentangles any assumption about returns to scale from the convexity of

marginal cost in the second stage. A natural extension of this paper would be to

consider a more general form of the production function with possibly various types

of returns-to-scale. This generalization would certainly be the proper framework to

study the effect of the number of firms at the equilibrium and particularly the way

this interacts with the mechanism of coordination in the first stage. Dastidar (2001)

has shown that, when costs are convex, the effect of the number of firms can be very

counter-intuitive, because the cost penalty incurred by a firm unilaterally lowering its

price is increased when more firms operate in the market. Obviously, in our two-stage

approach, the number of firms will also have an influence on the equilibrium value of

the fixed factor, and thus on the geometry of the profit function. Those effects will not

necessarily be trivial, especially if we consider various production functions and various

returns to scale. A related point is the influence of fixed costs on the equilibrium’s

existence as discussed recently by Saporiti and Coloma (2010), Dastidar (2011a) and

Dastidar (2011b). In our model, the cost of the fixed factor can be interpreted as a

fixed cost in the second stage. But, because this cost is sunk, it will have no effect on

the existence of the equilibrium.
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Appendix 1: Proof of Lemma 2

Let us remark that p∗ solves π̂′(p) = 0. When p̄(z) = p∗(z)
def
= p̃, π̂′(p̄) = 0. After cal-

culations, we get the right part of (5-a). Due to the strict concavity of π̂ according to

p (assumption (4)), we have : p̄(z) > p∗(z) ⇔ π̂′(p̄) < 0. After some easy calculations,

we then get the right part of (5b).

Let’s now prove the uniqueness of p̃ and z̃. The left hand side of the expression

1
1−α

1

2
1

1−α−1
= 1 + 1

E(p)
is a constant between 0 and 1. For p ∈ (0, pmax), the right hand

side is strictly increasing, taking values between −∞ and 1. That proves the unique-

ness of p̃. Because p̄(z) is strictly decreasing on its definition set, the uniqueness of p̃

implies the uniqueness of z̃. �
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Appendix 2: Proof of Proposition 1

When we consider price competition, we can no longer resolve the game using the

reaction functions, because they are strongly discontinuous. Thus, we have to check

for each possible strategy profile whether it is a Nash equilibrium or not. Let’s first

investigate symmetric strategy profiles belonging to the interval. When the competitor

charges any price p ∈ [p̂i; p̄i], the best response for the firm i is to quote the same price.

When the firm i quotes the same price, it gets π̂i(p). We know that for all p > p̂i,

π̂i(p) > −TFC (see eq. (4b)). If the firm deviates (by quoting p−µ), it gets πi(p−µ).

We also know that for all p ∈ [p̂i; p̄i], π̂i(p) > πi(p) > πi(p − µ) (from eq (4c)). Since

the firm must supply all the demand it faces, the increase in additional revenue (from

higher sales) is less than the increase in costs: the firm must sell additional units at

excessive marginal costs. By quoting p + µ, the firm i obtains no demand and gets

zero variable profit. Hence it is optimal for each firm to quote the same price. There

are no incentives to deviate, which proves the implication in Proposition 1. It also

proves that all asymmetrical strategy profiles with at least one firm quoting a price in

the interval are not Nash equilibria. We now have to investigate all the other strategy

profiles, symmetric and asymmetric, in which none of the firms quote a price within

the interval. It is easy to check that for all symmetric or asymmetric strategy profiles

such that p < p̂, the firm has interest to increase its price. The firm has interest to

lower its price for symmetric profiles with p > p̄. Finally, for asymmetric profiles with

p > p̄, the firm with the highest price will improve its profit in matching the other’s

price. Thus, asymmetric strategy profiles cannot be Nash Equilibria.�

Appendix 3: Proof of Proposition 2

As shown in Proposition 1, all the Nash equilibria of the second stage are symmetric.

So we can, without loss of generality, consider only symmetric strategy profiles (p, p)

and the associated gains for both firms (π̂1(p), π̂2(p)).
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If we consider an open interval (pa, pb) such that, ∀p ∈ (pa, pb), ∀i ∈ {1, 2}, ∂π̂i(p)/∂p >

0, then the symmetric strategy profile (pb, pb) dominates all other profiles correspond-

ing to a price in the interval. Considering the geometry of the profit function, the

biggest open price interval with the profit of both firms being strictly increasing is

(0,min(p∗1, p
∗

2)). If we restrict ourselves to the set of Nash equilibria the biggest such

open interval is: I = (0, (min(p∗1, p
∗

2)))
⋂

{(p̂1, p̄1) ∩ (p̂2, p̄2)}

If max(p̂1, p̂2) ≥ min(p∗1, p
∗

2, p̄1, p̄2) then I = ∅.

If max(p̂1, p̂2) < min(p∗1, p
∗

2, p̄1, p̄2) then I = (max(p̂1, p̂2),min(p∗1, p
∗

2, p̄1, p̄2))

Thus, all symmetric profiles (p, p) such that p < max(p̂1, p̂2,min(p∗1, p
∗

2, p̄1, p̄2)) can-

not be payoff-dominant pure strategy Nash equilibria.

Reasoning the same way, we can define the biggest open price interval with the profit

of both firms being strictly decreasing and such that the symmetric strategy profiles

corresponding to those prices are Nash equilibria, (min(max(p∗1, p
∗

2), p̄1, p̄2),min(p̄1, p̄2)).

Thus all symmetric profiles (p, p) such that p > min(max(p∗1, p
∗

2), p̄1, p̄2) cannot be

payoff-dominant pure strategy Nash equilibria.

Finally, over the closed interval [max(p̂1, p̂2,min(p∗1, p
∗

2, p̄1, p̄2)),min(max(p∗1, p
∗

2), p̄1, p̄2)]

all symmetric profiles corresponding to those prices are Nash equilibria, with the profit

of both firms varying in the opposite way. �

Appendix 4: Proof of Proposition 3

For a purpose of readability, we will denote by the subscript h the firm with the

highest level of fixed factor, by the subscript l the one with the lowest level (i.e.

zh = max(z1, z2) > zl = min(z1, z2)). Let’s start by demonstrating Proposition 3 i).

Step 1: Asymmetric strategy profiles cannot be Nash equilibria of the first stage game.

a) If we are in the case (zl < zh < z̃) then the equilibria of the second stage are

characterized by the Corollary 2-C. Firms have a coordination problem. They are not
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able to predict the price in the second stage. But, by choosing to match the other

firm’s fixed factor level, they can solve endogenously the coordination problem. So, for

asymmetric profiles of that kind, firms have an incentive to deviate. Those strategy

profiles cannot be Nash equilibria of the first stage game. b) If we are in the case

(z̃ 6 zh 6= z∗), the equilibrium of the second stage is characterized by the Corollary

2-B. The profit of the firm h is characterized by the function Π∗(zh). Thus, the firm

h has an incentive to deviate getting closer to z∗, the fixed factor level that maximises

Π∗(z). Those strategy profiles cannot be Nash equilibria of the first stage game. c) If

we are in the case (zl < zh = z∗), the firm h has no incentive to deviate. Because of the

definition of p∗, we have ∂π̂(p∗(z), z)/∂p = 0. Because z∗ > z̃, we have p∗(z∗) > p̄(z∗)

and thus because ∂2π̂(p, z)/∂p2 < 0 we have ∂π̂(p̄(z∗), z∗)/∂p > ∂π̂(p∗(z∗), z∗)/∂p = 0.

According to the definition of z∗, we have dΠ(z∗)/dz = 0. Using equation (6b), and

the fact that dp̄(z)/dz < 0, we deduce that ∂π̂(p̄(z∗), z∗)/∂z > 0. Finally, because

zl < z∗ and ∂2π̂(p, z)/∂z2 < 0, we have ∂π̂(p̄(z∗), zl)/∂z > 0. This last expression

characterizes the effect of an increase in z on the profit of l (i.e. there is no price effect,

only the cost effect). It implies that the firm l has always an incentive to deviate by

increasing its level of fixed factor. Those strategy profiles cannot be Nash equilibria of

the first stage game. a), b) and c) characterize all the possible asymmetric profiles of

the first stage game and proves step 1.

Step 2: (z∗, z∗) is a Nash Equilibrium of the first stage game.

If a firm unilaterally decide to increase its level of fixed factor to z+ > z∗, it will become

the only firm with the high level of fixed factor. Its profit will be Π∗(z+). But, because

Π∗(z) reach it’s maximum in z∗, we necessarily have Π∗(z∗) > Π∗(z+). Firms have

no interest to unilaterally increase the level of the fixed factor. If a firm unilaterally

decides to decrease its level of fixed factor to z− < z∗, its profit will be π̂(p̄(z∗), z−).

We have demonstrate in step 1c that ∀z < z∗, ∂π̂(p̄(z∗), z)/∂z > 0. Thus, we have

π̂(p̄(z∗), z−) < π̂(p̄(z∗), z∗). That proves step 2. Firms have no interest to unilaterally

decrease the level of the fixed factor. That ends the proof of step 2.
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Step 3: (z∗, z∗) dominates all the other symmetric strategy profiles of the first stage

game.

With the same reasoning as in the preceding steps, it can easily be demonstrated that

for ”small” ǫ, (z∗ + ǫ, z∗ + ǫ) are also Nash equilibria of the game. But because all the

Nash equilibria belong to the set of the symmetric strategy profiles and, because, in

the symmetric cases, the firms earn Π(z), when z∗ > z̃, z∗ maximise Π(z) and thus

(z∗, z∗) is payoff dominant.

Let’s turn now to Proposition 3 ii).

Step 1’: Asymmetric strategy profiles cannot be Nash equilibria of the first stage

game. Case a) If we are in the case (zl < zh < z̃), the reasoning is exactly same

as in step 1 a). b) If we are in the case (z̃ < zh), the equilibrium of the second

stage is characterized by the Corollary 2-B. The profit of the firm h is characterized

by the function Π∗(zh). Thus, the firm h has an incentive to deviate getting closer

to z̃ (Π∗(z) is strictly decreasing for z > z̃). Those profiles cannot be Nash equi-

libria of the first stage game. c) If we are in the case (zl < zh = z̃). Let’s define

z# = argmax{π̂(p̄(z̃), z)}, the optimal level of the fixed factor for the firm l,when

zh = z̃. Because of the concavity according to z of the function π̂ and the fact that,

when z∗ < z̃, ∂π̂(p̄(z̃), z̃)/∂z < 0, we have z# < z̃. We can distinguish two sub-

cases. c1) If zl 6= z#, then the firm l has an incentive to deviate, choosing z#. c2) If

zl = z#, we can show that the firm h has an incentive to deviate, choosing z#, because

Π∗∗(z#) > Π∗∗(z̃) = Π∗(z̃). For proving that, we have to notice that by definition of z#,

∂π̂(p̄(z̃), z#)/∂z = 0. z# < z̃ ⇒ p∗(z#) > p∗(z̃), and thus because ∂2π̂(p, z)/∂p∂z < 0,

we get ∂π̂(p∗(z#), z#)/∂z < ∂π̂(p∗(z̃), z#)/∂z = ∂π̂(p̄(z̃), z#)/∂z = 0. It implies that,

due to the strict concavity of the profit function Π∗∗ is strictly decreasing between z#

and z̃ and thus, Π∗∗(z#) > Π∗∗(z̃). Those profiles cannot be Nash equilibria of the first

stage game. a), b) c1) and c2) characterize all the possible asymmetric profiles of the

first stage game and proves step 1’ 7.

Step 2’: (z∗∗, z∗∗) is a Nash Equilibrium of the first stage game.
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If one of the two firms choose to unilaterally deviate, two cases are possible. If it

chooses z < z̃, the equilibria of the second stage are characterized by the Corollary

2-C. We go back to the coordination problem and the firm has no incentive to do that.

If the firm chooses z > z̃, it will become the only firm with the high level of fixed

factor. Its profit will be Π(z). But, because Π(z) reaches its maximum in z∗∗, the firm

has no incentive to do that.

Step 3’: (z∗∗, z∗∗) dominates all the other symmetric strategy profiles of the first stage

game.

If we define z̃− such that z̃− < z∗∗ and Π(z̃−) = Π(z̃), then all symmetric profiles

(z, z) such that z ∈ [z̃−, z̃] are Nash equilibria of the game. In those cases, the firms

have no incentive to unilaterally deviate choosing z′ < z̃, because the equilibrium of

the second stage is characterized by corollary 2-C, and we are back to the coordination

problem. Firms have also no incentive to unilaterally deviate choosing z′ > z̃ because

Π(z) > Π(z′).

Because all the Nash Equilibria belongs to the set of symmetric strategy profiles,

(z∗∗, z∗∗) is the only payoff dominant Nash Equilibrium of the game.�
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Notes

1See Vives (1999), section 5.1, pp 117-123.

2Other extensions with mixed-strategy equilibria and positive profit levels are pro-

vided by Baye and Morgan (1999), Kaplan and Wettstein (2000) and Hoernig (2002).

3In the sense of Aumann (1976), cf Harsanyi and Selten (1988) p. 359. There is

a huge literature on equilibrium selection in games, see Cooper et al. (1990), for an

introduction.

4For simplicity, we will use a Cobb-Douglas production function, but what deter-

mines our results is the convexity of the short term marginal cost which depends on

the decreasing marginal productivity of the variable factor, a universal assumption in

economics. Our results do not depend on the specification of the production function.

5Our model provides foundations for the notion of non-rigid capacity constraint

introduced by Chowdhury (2009) directly in the cost function.

6Dixon (1986) considers the same structure for the production function (case b).

However the price setting in the second stage differs from ours.

7For a specific value of α, we have z∗ = z∗∗ = z# = z̃. In this case zl = z# = z̃ = zh

is not an asymmetric outcome.
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