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BOUNDARY TRACE OF POSITIVE SOLUTIONS

OF SUPERCRITICAL SEMILINEAR ELLIPTIC

EQUATIONS IN DIHEDRAL DOMAINS

MOSHE MARCUS AND LAURENT VERON

Abstract. We study the generalized boundary value problem for (E)
−∆u+ |u|q−1u = 0 in a dihedral domain Ω, when q > 1 is supercritical.
The value of the critical exponent can take only a finite number of values
depending on the geometry of Ω. When µ is a bounded Borel measure in
a k-wedge, we give necessary and sufficient conditions in order it be the
boundary value of a solution of (E). We also give conditions which ensure
that a boundary compact subset is removable. These conditions are
expressed in terms of Bessel capacities Bs,q′ in RN−k where s depends on
the characteristics of the wedge. This allows us to describe the boundary
trace of a positive solution of (E).
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1. Introduction

Let Ω be a bounded domain in RN , ρ the first eigenfunction of −∆ in
W 1,2

0 (Ω) with supremum 1 and λ the corresponding eigenvalue, and let q > 1.
If ∂Ω is C2, a very long-term research on the equation

(1.1) −∆u+ |u|q−1u = 0 in Ω,

has been carried out since twenty years by probabilistic or analytic methods.
The associated Dirichlet problem

(1.2) −∆u+ |u|q−1u = 0 in Ω, u = µ in ∂Ω

where µ is a Radon measure on ∂Ω has played a fundamental role in these
studies. By a (weak) solution u := uµ to the Dirichlet problem (1.2) we
mean a function u ∈ Lq

ρ(Ω) such that, for any η ∈ X(Ω, there holds

(1.3)

∫

Ω

(
−u∆η + |u|q−1u

)
dx = −

∫

Ω
K[µ]∆ηdx,

where X(Ω) is the space of test functions

(1.4) X(Ω) =
{
η ∈W 1,2

0 (Ω) : ρ−1∆η ∈ L∞(Ω)
}

and K[µ] the harmonic function in Ω with boundary trace µ. The following
two observations are fundamental in this regard:

1- For any admissible bounded Borel measure µ on ∂Ω, i.e. which satisfies

(1.5)

∫

Ω
(K[|µ|])q ρdx <∞,

there exists a (unique) solution to (1.2).

2- Any positive solution has a boundary trace ν in the class of outer regular
Borel measures on ∂Ω, not necessarily locally bounded[13], [16].

The complementary problem associated to 1 is to find condition on a
bounded Borel measure µ so that (1.5) is satisfied. It leads naturally to
existence of a threshold of criticality corresponding to a particular exponent
qc = N+1

N−1 . When 1 < q < qc, i.e. in the subcritical case, every bounded
Borel measure is admissible, while this is no longer valid in the supercritical
case, that is when q ≥ qc. It is shown in that case that the Dirichlet problem
(1.5) with µ ≥ 0 can be solved if and only if µ(E) = 0 for any Borel subset
E ⊂ ∂Ω such that C 2

q
,q′(E) = 0 where q′ = q

q−1 and C 2
q
,q′ denotes the Bessel

capacity in RN−1. The complementary problem to 2 is, given an arbitrary
outer regular Borel measure ν on ∂Ω, to find if there exists a positive solution
u of (1.1) with boundary trace ν. In the subcritical case 1 < q < qc it was
shown by LeGall [13], by probabilistic methods in the case N = q = 2
and Marcus and Véron (N ≥ 2, 1 < q < qc) [16] that the boundary trace
establishes a one to one correspondence between the positive solutions of
(1.1) and the set of outer regular Borel measures. When q ≥ qc a compact
subset E of ∂Ω is removable if and only if C 2

q
,q′(E) = 0; it means that any
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positive solution u ∈ C(Ω\K) of (1.1) which vanishes on ∂Ω\K is identically
zero [13], [6], [16]. Actually, Marcus and Véron obtained necessary and
sufficient conditions of compatibility between the locally bounded part of
ν and its singular part in order there exists a maximal solution of (1.1)
with boundary trace ν. Morevover uniqueness in general no longer holds,
which leads to the introduction of new tools for describing the boundary
trace. The culmination of the study of equation (1.1) has been carried out
by Mselati [23] when q = 2 and Marcus [15] when q ≥ qc who obtain a
complete description of the set of positive solutions via the notion of fine
trace or precise trace.

When ∂Ω is no longer smooth it is still possible to define a boundary
trace with the help of the harmonic measure however the situation becomes
much more complicated since the critical exponent qc,y which depends of the
opening of the domain at each boundary point y. The subcritical case of
equation (1.1) which corresponds to the fact that the exponent q is smaller
that any qc,y is completely described in [22], without the use of any Bessel
capacity.

We recall here some elements of local analysis when Ω = CS ∩ B1 where
CS is a cone with vertex 0 and the opening S is a Lipschitz domain of SN−1.
Denote by λS the first eigenvalue and by φS the first eigenfunction of −∆′

in W 1,2
0 (S) (normalized by maxφ

S
= 1). Put

(1.6) αS =
1

2
(N − 2 +

√
(N − 2)2 + 4λS)

and

Φ1(x) =
1

γ
x−α

Sφ
S
(x/ |x|)

where γ is a positive number; Φ1 is a harmonic function in CS vanishing
on ∂CS \ {0} and γ = γS is chosen so that the boundary trace of Φ1 is δ0
(=Dirac measure on ∂CS with mass 1 at the origin).

(i) If q ≥ 1 + 2
αS

, it was shown in [8] that, there is no solution of (1.1) in

ΩS with isolated singularity at 0.
(ii) If 1 < q < 1 + 2

αS
, then for any k > 0 there exists a unique solution

u := uk to problem (1.2) with µ = kδ0. Furthermore [22, Theorem 5.7]

(1.7) uk(x) = kΦ1(x)(1 + o(1)) as x→ 0.

The function u∞ = limk→∞ uk is a positive solution of (1.1) in ΩS which
vanishes on ∂Ω \ {0} and satisfies

(1.8) u∞(x) = |x|−
2

q−1ωS(x/|x|)(1 + o(1)) as x→ 0

where ω is the (unique) positive solution of

(1.9) −∆′ω − λ
N,q
ω + |ω|q−1 ω = 0
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on SN−1 with

(1.10) λ
N,q

=
2

q − 1

(
2q

q − 1
−N

)
.

Finally the following classification holds [22, Theorem 5.9]: if u ∈ C(Ω̄S\{0})
is a positive solution of (1.1) vanishing on (∂C

S
∩Br0(0))\{0}, then it satisfies

either (1.7) for some k ≥ 0 or (1.8).

If Ω is Lipschitz and ξ ∈ ∂Ω, qξ is the critical value for (1.1) at ξ if, for
1 < q < qξ, problem (1.2) admits a solution with µ = δξ (and kδξ for any
k > 0) while, for q > qξ no such solution exists. The secondary critical value

q♯ξ at ξ is defined by the fact that for 1 < q < q♯ξ there exists a non-trivial

solution of (1.1) which vanishes on ∂Ω \ {ξ} but for q > q♯ξ no such solution
exists.

In the case of smooth domains, qξ = q♯ξ = (N + 1)/(N − 1) for every

boundary point ξ. If Ω is a polyhedron, qξ = q♯ξ at every point and the

function ξ → qξ obtains only a finite number of values. In fact it is constant
on each open face and each open edge, of any dimension. In addition, if
q = qξ, an isolated singularity at ξ is removable.

A. On the action of Poisson type kernels with fractional dimension.
In preparation for the study of supercritical boundary value problems

we establish an harmonic analytic result, extending a well known result
on the action of Poisson kernels on Besov spaces with negative index (see
[26, 1.14.4.] and [20]). We first quote the classical result for comparison
purposes.

Proposition 1.1. Let 1 < q < ∞ and s > 0. Then, for any bounded Borel
measure µ in Rn−1,

(1.11) I(µ) =

∫

Rn
+

|Kn[µ](y)|q e−y1ysq−1
1 dy ≈ ‖µ‖q

B−s,q(Rn−1)
.

Here Kn[µ] denotes the Poisson potential of µ in Rn = R+×Rn−1, namely,

(1.12) Kn[µ](y) = γny1

∫

Rn−1

dµ(z)
(
y21 + |ζ − z|2

)n/2 ∀y = (y1, ζ) ∈ Rn
+

where γn is a constant depending only on n. The notation I ≈ J means
that c−1I ≤ J ≤ cI for some c > 0.

In this paper we prove,

Theorem 1.2. Let 1 < q, m a positive integer and ν ∈ R such that m+1 ≤
ν. For every s ∈ (0,m/q′) there exists a positive constant c such that, for
every bounded positive measure µ supported in Rm ∩BR/2(0), R > 1,

(1.13)

1

c
‖µ‖qB−s,q(Rm) ≤

∫ R

0

(∫

|ζ|<R
|Kν,m[µ](τ, ζ)|q dζ

)
τ sq−1 dτ

≤ cR(s+ν−m)q+1 ‖µ‖q
B−s,q(Rm)

.
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Here

(1.14) Kν,m[µ](τ, ζ) =

∫

Rm

τν−mdµ(z)

(τ2 + |ζ − z|2)ν/2 ∀τ ∈ [0,∞).

This also holds when s = m/q′, provided that the diameter of suppµ is
sufficiently small.

This is proved in Section 2 (see Theorem 3.8) using a slightly different
notation. Note that

Kn[µ] = γnKn,n−1[µ].

B. The admissibility condition and the critical value in a k-wedge.

The next step towards the study of boundary value problems in a poly-
hedron is the treatment of such problems in a k-wedge (or k-dihedron) i.e.,
the domain defined by the intersection of k hyperplanes in RN , 1 < k < N .
The edge is an (N − k) dimensional space. We note that the case k = N
corresponds to a cone while the case N = 1 (i.e. a half space) corresponds
to the smooth case. Both cases have already been treated.

We denote by DA a k-wedge such that, its edge dA is identified with RN−k

and the ’opening’ of the wedge is A = DA∩Sk−1. If SA denotes the spherical
domain

(1.15) SA = {x ∈ RN : |x| = 1, x ∈ A×
N−1∏

j=k

[0, π]} ⊂ SN−1}

then
DA = {x = (r, σ) : r > 0, σ ∈ SA}, DA,R = DA ∩ ΓR

where
ΓR = {x = (x′, x′′) ∈ Rk × RN−k : |x′| < r, |x′′| < R}.

Let λA be the first eigenvalue of −∆
SN−1

in W 1,2
0 (SA) and denote

(1.16)
κ+ =

1

2

(
2−N +

√
(N − 2)2 + 4λA

)

κ− =
1

2

(
2−N −

√
(N − 2)2 + 4λA

)
.

One can show that the Martin kernel KA in DA relative to points z ∈ dA
is given by

(1.17) KA(x, z) = c
A

|x′|κ+ω{N−k+1}(σN−k+1)

|x− z|(N−2+2κ+)
,

where ω{N−k+1} is a related eigenfunction in A and x = (x′, x′′) ∈ Rk ×
RN−k. Using this formula we obtain the admissibility condition for a mea-
sure µ ∈ M(dA) such that suppµ ⊂ BR(0):

(1.18)

∫

ΓR

( ∫

RN−k

|x′|κ+d|µ|(z)
(|x′|2 + |x′′|2)(N−2+2κ+)/2

)q
|x′|κ+dx <∞
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where ΓR := {x = (x′, x′′) ∈ Rk × RN−k : |x′| < R, |x′′| < R}.
Using this expression we show that the condition

(1.19) 1 < q < qc :=
κ+ +N

κ+ +N − 2
.

is necessary and sufficient in order that the Dirac measure µ = δP , supported
at a point P ∈ dA, be admissible.

In addition we show that the condition

(1.20) 1 < q < q∗c := 1 +
2− k +

√
(k − 2)2 + 4λA − 4(N − k)κ+
λA − (N − k)κ+

is necessary and sufficient for the existence of a non-trivial solution u of
(1.1) in DA which vanishes on ∂DA \ dA. Furthermore, when this condition
holds, there exist admissible non-trivial positive bounded measures µ on dA,
i.e., measures such that K[µ] ∈ Lq

ρ(ΓR ∩DA).
Finally we have the following removability result:

Theorem 1.3. Assume that qc ≤ q < q∗c . A measure µ ∈ M(∂DA), with
compact support contained in dA, is good relative to (1.2) in DA if and only

if µ vanishes on every Borel set E ⊂ dA such that CN−k
s,q′ (E) = 0, where

s = 2− k+κ+

q′ and CN−k
s,q′ is the Bessel capacity with the indicated indices in

RN−k (which we identify with the edge dA).

Note that µ is a good measure if the specified equation possesses a solution
with boundary data µ. The above result implies in particular that sets with
CN−k
s,q′ -capacity zero are conditionally removable. However we obtain a much

stronger result later on.

C. Boundary value problems in a polyhedron: the supercritical case.

In the final part of the paper (Sections 4) we study boundary value prob-
lems in the supercritical case in polyhedrons, with trace given by bounded
measures. For such domains Ω we provide a complete characterization of
’good measures’, i.e., measures µ on ∂Ω such that (1.1) possesses a (unique)
solution with boundary trace µ. We also provide a complete characteriza-
tion of removable sets. These results, with rather obvious modifications,
also apply to piecewise C2 domains. The case of general Lipschitz domains
and boundary trace given by unbounded Borel measures will be treated in
a subsequent paper.

Theorem 1.4. Let Ω be an N -dimensional polyhedron. Let L denote one
of the faces, or edges, or vertices of Ω and let QL denote the half space with
boundary L, or the wedge with edge L, or the cone with vertex L such that
Ω ⊂ DL and ∂QL is determined by the faces of Ω adjacent to L. Thus ∂Ω
is the union of the sets ∂Ω ∩ ∂QL.

Denote by AL the opening of QL so that, in the notation of G, QL = DAL

and denote by κ+(L), qc(L) etc. the various notations introduced in G
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relative to AL. In particular let k(L) denote the co-dimension of the linear
space spanned by L and put

s(L) = 2− k(L) + κ+(L)

q′
.

Let µ be a bounded measure on ∂Ω, (possibly a signed measure). Then µ
is a good measure relative to (1.2) in Ω, if and only if, for every L as above
and every Borel set E ⊂ L the following condition holds.

If 1 ≤ k = codimL < N then

(1.21)
CN−k
s(L),q′(E) = 0 =⇒ µ(E) = 0 if qc(L) ≤ q < q∗c (L)

q ≥ q∗c (L) =⇒ µ(L) = 0 if q ≥ q∗c (L)

and if k = N (i.e., L is a vertex)

(1.22) q ≥ qc(L) =
N + 2 +

√
(N − 2)2 + 4λAL

N − 2 +
√

(N − 2)2 + 4λAL

=⇒ µ(L) = 0.

In all cases, if 1 < q < qc(L) then there is no restriction on µχL.

D. Characterization of removable sets.

Let Ω be an N-dimensional polyhedron. Theorem 1.4 provides a necessary
and sufficient condition for the removability of a singular set E relative to
the family of solutions u such that

∫

Ω
|u|qρ dx <∞.

The next result provides a necessary and sufficient condition for remov-
ability in the sense that the only non-negative solution u ∈ C(Ω̄ \ E) which
vanishes on Ω̄ \E is the trivial solution u = 0.

Theorem 1.5. Let Ω be an N-dimensional polyhedron and let E be a com-
pact subset of ∂Ω. A nonempty compact set E ⊂ ∂Ω is removable if and
only if, for every L as in G such that 1 ≤ k = codimL < N the following
condition holds:
either

qc(L) ≤ q < q∗c (L) and CN−k
s(L),q′(E) = 0

or q ≥ q∗c (L). In the case k = N the condition is q ≥ q∗c (L) = qc(L).

2. The Martin kernel and critical values for a cone.

2.1. The geometric framework. An N-dim polyhedra P is the bounded
domain bordered by a finite number of hyperplanes. Thus characteristic
elements of the boundary of P are the faces (subsets of an hyperplane), the
vertex (intersection of N hyperplanes) and a wide variety of N-k dimen-
sional edges, where k ranges from 2 to N. An N-k dimensional edge, i.e. an
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intersection of k hyperplanes, will be described by the characteristic angles
of these hyperplanes.

We recall that the spherical coordinates in RN = {x = (x1, ...xN )} are
expressed by

(2.1)





x1 = r sin θN−1 sin θN−2... sin θ2 sin θ1
x2 = r sin θN−1 sin θN−2... sin θ2 cos θ1
x3 = r sin θN−1 sin θN−2... cos θ2
.
.
.
xN−1 = r sin θN−1 cos θN−2,
xN = r cos θN−1

where θ1 ∈ [0, 2π] and θℓ ∈ [0, π] for ℓ = 2, 3, ..., N − 1 (the θj are the
Euler angles). Thus the ”angular” component σ ∈ SN−1 of the spherical
coordinates (r, σ) of x ∈ RN is denoted by σ = (θ1, ..., θN−1).

We consider an unbounded non-degenerate k-dihedron defined as follows.
Let k ∈ [2, N ] ∩ N and let A be given by

A =

{
(0, α1)×

∏k−1
j=2(αj , α

′
j) if k > 2

(0, α1) if k = 2

where

0 < α1 < 2π, 0 < αj < α′
j < π j = 2, ..., k − 1.

We denote by SA the spherical domain

(2.2) SA = {x ∈ RN : |x| = 1, σ ∈ A×
N−1∏

j=k

[0, π]} ⊂ SN−1}

and by DA the corresponding k-dihedron,

DA = {x = (r, σ) : r > 0, σ ∈ SA}.
The edge of DA is the (N-k)-dimensional space

(2.3) dA = {x : x1 = x2 = ... = xk = 0}.

2.2. Separable harmonic functions and the Martin kernel in a k-

dihedron. In the system of spherical coordinates, the Laplacian takes the
form

∆u = ∂rru+
N − 1

r
∂ru+

1

r2
∆

SN−1
u

where the Laplace-Beltrami operator ∆
SN−1

is expressed by induction by

(2.4)

∆
SN−1

u =
1

(sin θN−1)N−2

∂

∂θN−1

(
(sin θN−1)

N−2 ∂u

∂θN−1

)

+
1

(sin θN−1)2
∆

SN−2
u.
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and

(2.5) ∆
S1u = ∂θ1θ1u

If we compute the positive harmonic functions in the k-dihedron DA of the
form

v(x) = v(r, σ) = rκω(σ) in DA, v = 0 in ∂DA \ {0}.
we find that κ satisfies the algebraic equation

(2.6) κ2 + (N − 2)κ− λA = 0

where λA is the first eigenvalue of −∆
SN−1

in W 1,2
0 (SA) and ω is the corre-

sponding normalized eigenfunction:

(2.7)

{
∆

SN−1
ω + λAω = 0 in SA

ω = 0 on ∂SA.

Thus

(2.8)
κ+ =

1

2

(
2−N +

√
(N − 2)2 + 4λA

)

κ− =
1

2

(
2−N −

√
(N − 2)2 + 4λA

)
.

Since

(2.9) SN−1 =
{
σ ∈ RN−1 × R : σ = (σ2 sin θN−1, cos θN−1), σ2 ∈ SN−2

}
,

we look for ω := ω{1} of the form

ω{1}(σ) = (sin θN−1)
κ+ω{2}(σ2), θN−1 ∈ (0, π), σ2 ∈ SN−2.

Here SN−2 = SN−1 ∩ {xN = 0} and we denote

S
{N−2}
A = SA ∩ {xN = 0}, D

{N−2}
A := DA ∩ {xN = 0} ⊂ RN−1.

Then (2.8) jointly with relation (2.4) implies

(2.10)





∆
SN−2

ω{2} + (λA − κ+)ω
{2} = 0 on S

{N−2}
A

ω{2} = 0 on ∂S
{N−2}
A .

Since we are interested in ω{2} positive, λ
{2}
A := λA − κ+ must be the first

eigenvalue of −∆
SN−2

in W 1,2
0 (S

{N−2}
A ).

Next we look for positive harmonic functions ũ in D
{N−2}
A such that

ũ(x1, . . . , xN−1) = rκ
′
ω(σ2), ũ = 0 on ∂D

{N−2}
A

The algebraic equation which gives the exponents is

(κ′)2 + (N − 3)κ′ − λ
{2}
A = 0.

Denote by κ′+ the positive root of this equation. By the definition of λ
{2}
A ,

κ2+ + (N − 3)κ+ − λ
{2}
A = κ2+ + (N − 2)κ+ − λA = 0.
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Therefore κ′+ = κ+. Accordingly, if k ≥ 3, we set

ω{2}(σ2) = (sin θN−2)
κ+ω{3}(σ3),

an find that ω{3} satisfies

(2.11)





∆
SN−3

ω{3} + (λA − 2κ+)ω
{3} = 0 in S

{N−3}
A

ω{3} = 0 on ∂S
{N−3}
A ,

where
S
{N−3}
A = SA ∩ {xN = xN−1 = 0}.

Performing this reduction process (N-k) times, we obtain the following re-
sults.

(i) If k > 2 then

(2.12) ω(σ) = (sin θN−1 sin θN−2... sin θk)
κ+ω{N−k+1}(σN−k+1)

where

σN−k+1 ∈ Sk−1 = SN−1 ∩ {xN =, xN−1 = · · · = xk+1 = 0},
and ω′ := ω{N−k+1} satisfies

(2.13)





∆
Sk−1

ω′ + (λA − (N − k)κ+)ω
′ = 0, in S

{k−1}
A

ω′ = 0, on ∂S
{k−1}
A ,

S
{k−1}
A = SA ∩ {xN = xN−1 = ... = xk+1 = 0} ≈ A

and λA − (N − k)κ+ is the first eigenvalue of the problem. In such a case,

it is usually impossible to determine more explicitly ω{N−k+1} and λA −
(N − k)κ+, except for some very specific values of αj and α′

j, associated to
consecutive zeros of generalized Legendre functions.

(ii) If k = 2 then

(2.14) ω(σ) = (sin θN−1 sin θN−2... sin θ2)
κ+ω{N−1}(θ1)

where σN−1 ∈ S1 ≈ θ1 ∈ (0, 2π), and ω{N−1} satisfies

(2.15)





∆
S1ω

{N−1} + (λA − (N − 2)κ+)ω
{N−1} = 0 on S

{1}
A

ω{N−1} = 0 on ∂S
{1}
A ,

with ∂S
{1}
A ≈ (0, α). In this case

(2.16) κ+ =
π

α
, ω{N−1}(θ1) = sin(πθ1/α),

and

(2.17) λA − (N − 2)κ+ =
π2

α2
=⇒ λA =

π2

α2
+ (N − 2)

π

α
.

Observe that 1
2 ≤ κ+ with equality holding only in the degenerate case

α = 2π (which we exclude).
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In either case, we find a positive harmonic function vA in DA, vanishing
on ∂DA, of the form

vA(x) = |x|κ+ ω(x/ |x|)
with ω as in (2.12) (for k > 2) or (2.16) (for k=2).

Similarly we find a positive harmonic function in DA vanishing on ∂DA \
{0}, singular at the origin, of the form

K ′
A(x) = |x|κ− ω(x/ |x|), κ− = 2−N − κ+.

Because of the uniqueness of the kernel function (see e.g. [3]), K ′
A(x) is, up

to a multiplicative constant cA, the Martin kernel of the Laplacian in DA,
with singularity at 0. The Martin kernel, with singularity at a point z ∈ dA,
is given by

(2.18) KA(x, z) = c
A

(sin θN−1 sin θN−2... sin θk)
κ+ω{N−k+1}(σN−k+1)

|x− z|N−2+κ+

for every x ∈ DA. From (2.1)

sin θN−1 sin θN−2... sin θk = |x− z|−1
√
x21 + x22 + ...+ x2k.

Therefore, if we write x ∈ RN in the form x = (x′, x′′), x′ = (x1, ..., xk),
x′′ = (xk+1, · · · , xN ), we obtain the formula,

(2.19)

KA(x, z) = c
A

|x′|κ+ω{N−k+1}(σN−k+1)

|x− z|(N−2+2κ+)

= c
A

|x′|κ+ω{N−k+1}(σN−k+1)

(|x′|2 + |x′′ − z|2)(N−2+2κ+)/2
.

Therefore, the Poisson potential of a measure µ ∈ M(dA) is expressed by

(2.20)

K[µ](x) = c
A
|x′|κ+ω{N−k+1}(σN−k+1)

×
∫

RN−k

dµ(z)

(|x′|2 + |x′′ − z|2)(N−2+2κ+)/2
.

2.3. The admissibility condition. Consider the boundary value problem

(2.21)

{
−∆u+ |u|q−1 u = 0 in DA

u = µ ∈ M(∂DA).

Let r′ = |x′|, r′′ = |x′′|,
(2.22) ΓR = {x = (x′, x′′) : r′ ≤ R, r′′ ≤ R}
and let ρR denote the first (positive) eigenfunction in DA,R := DA ∩ ΓR.

By (1.5), the admissibility condition for a measure µ ∈ M(dA∩ΓR) relative
to (2.21) in DA,R is

(2.23)

∫

DA,R

KR[|µ|](x)qρ
R
(x)dx <∞.
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where KR is the Martin kernel of −∆ in DA,R. Near dA this kernel behaves
like the Martin kernel of the dihedron DA. Furthermore, the first eigenfunc-
tion ρ

R
of −∆ inW 1,2

0 (DA,R) behaves like the regular harmonic function vA.
Therefore

(2.24) ρ
R
(x) ≈ (r′)κ+ω{N−k+1}(σN−k+1)

and the admissibility condition for a measure µ ∈ M(dA) is

(2.25)

∫

ΓR∩DA

K[|µ|](x)|qρ(x)dx <∞ ∀R > 0,

with ΓR as in (2.22). By (2.20),

(2.26) K[|µ|](x) ≤ c
A
(r′)κ+

∫

RN−k

j(x′, x′′ − z)d|µ|(z)

where

(2.27) j(x) = |x|−N+2−2κ+ ∀x ∈ RN .

Therefore, using (2.24), condition (2.25) becomes

(2.28)

∫ R

0

∫

|x′′|<R

(∫

RN−k

j(x′, x′′−z)d|µ|(z)
)q

(r′)(q+1)κ++k−1dx′′dr′ <∞

for every R > 0.

2.4. The critical values. Relative to the equation

(2.29) −∆u+ |u|q−1u = 0

there exist two thresholds of criticality associated with the edge dA.
The first is the value q∗c such that, for q∗c ≤ q the whole edge dA is

removable relative to this equation, but for 1 < q < q∗c there exist non-
trivial solutions in DA which vanish on ∂DA \ dA. The second qc < q∗c
corresponds to the removability of points on dA. For q ≥ qc points on dA
are removable while for 1 < q < qc there exist solutions with isolated point
singularities on dA. In the next two propositions we determine these critical
values.

Proposition 2.1. Assume q > 1, 1 ≤ k < N . Then the condition

(2.30) q < q∗c := 1 +
2− k +

√
(k − 2)2 + 4λA − 4(N − k)κ+
λA − (N − k)κ+

is necessary and sufficient for the existence of a non-trivial solution u of
(2.29) in DA which vanishes on ∂DA\dA. Furthermore, when this condition
holds, there exist non-trivial positive bounded measures µ on dA such that
K[µ] ∈ Lq

ρ(ΓR ∩DA).
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Remark. The statement remains true in the case k = N , which is the case
of the cone. In this case qc = q∗c = 1+ (2/αS) (defined in (1.6). However, in
the present notation, αS = −κ− and a straightforward computation yields:

(2.31) qc =
N + 2 +

√
(N − 2)2 + 4λA

N − 2 +
√

(N − 2)2 + 4λA
.

Proof. Recall that λA−(N−k)κ+ is the first eigenvalue in S
{k−1}
A (see (2.13)

and the remarks following it). Let κ′+, κ
′
− be the two roots of the equation

X2 + (k − 2)X − (λA − (N − k)κ+) = 0,

i.e.

κ′± =
1

2

(
2− k ±

√
(k − 2)2 + 4(λA − (N − k)κ+

)
.

Then, by (1.7) and (1.8), if 1 < q < 1 − (2/κ′−) (note that because of a
change in notation the entity denoted by αS in (1.6) is the same as −κ′−
in the present section) there exists a unique solution of (2.29) in the cone

CSk−1
A

i.e. the cone with opening Sk−1
A ⊂ Sk−1 ⊂ Rk with trace aδ0 (where

δ0 denotes the Dirac measure at the vertex of the cone and a > 0). By (1.8)
this solution satisfies

(2.32) ua(x) = a |x|−α φ(x/ |x|)(1 + o(1)) as x→ 0,

where φ is the first positive eigenfunction of −∆′ in W 1,2
0 (Sk−1

A ) normalized
so that u1 possesses trace δ0.

The function u given by

ũa(x
′, x′′) = ua(x

′) ∀(x′, x′′) ∈ DA = CSk−1
A

× RN−k,

is a nonzero solution of (2.29) in DA which vanishes on ∂DA \ dA and has
bounded trace on dA.

A simple calculation shows that 1− (2/κ−) equals q∗c as given in (2.30).

Next, assume that q ≥ q∗c and let u be a solution of (2.29) in DA which
vanishes on ∂DA \ dA.

Given ǫ > 0 let vǫ be the solution of (2.29) in D
{N−k−1}
A \{x′ ∈ Rk : |x′| ≤

ǫ} such that

vǫ(x
′) =

{
0, if x′ ∈ ∂D

{N−k−1}
A

∞, if |x′| = ǫ.

Given R > 0 let w
R
be the maximal solution in {x′′ ∈ RN−k : |x′′| < R}.

Then the function u∗ given by

u∗(x′, x′′) = vǫ(x
′) + w

R
(x′′)

is a supersolution of (2.29) in DA \ {(x′, x′′) : |x′| > ǫ, |x′′| < R} and
it dominates u in this domain. But w

R
(x′′) → 0 as R → ∞ and, by [8],

vǫ(x
′) → 0 as ǫ→ 0. Therefore u+ = 0 and, by the same token, u− = 0. �
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Proposition 2.2. Let A be defined as before. Then

(2.33) K[µ] ∈ Lq
ρ(ΓR ∩DA) ∀µ ∈ M(dA), ∀R > 0

if and only if

(2.34) 1 < q < qc :=
κ+ +N

κ+ +N − 2
.

This statement is equivalent to the following:
Condition (2.34) is necessary and sufficient in order that the Dirac mea-

sure µ = δP , supported at a point P ∈ dA, satisfy (2.33).

Proof. It is sufficient to prove the result relative to the family of measures µ
such that µ is positive, has compact support and µ(dA) = 1. Let R > 1 be
sufficiently large so that the support of µ is contained in ΓR/2. The measure
µ can be approximated (in the sense of weak convergence of measures) by
a sequence {µn} of convex combinations of Dirac measures supported in
dA ∩ ΓR/2. For such a sequence K[µn] → K[µ] pointwise and {K[µn]} is
uniformly bounded in DA \ Γ3R/4. Therefore it is sufficient to prove the
result when µ = δ0. In this case the admissibility condition (1.5)) is

∫ R

0

∫

|x′′|<R
j(x)q(r′)(q+1)κ++k−1dx′′dr′ <∞,

i.e.,
∫ R

0

∫ R

0
|x|q(2−N−2κ+)(r′)(q+1)κ++k−1(r′′)N−k−1dr′′dr′ <∞.

Substituting τ := r′′/r′ the condition becomes

∫ R

0

∫ R/r′

0
(1 + τ2)

q

2
(2−N−2κ+)

(r′)q(2−N−κ+)+κ++N−1τN−k−1dτ dr′ <∞.

This holds if and only if q < (κ+ +N)/(κ+ +N − 2). �

Remark. It is interesting to notice that k does not appear explicitly in (2.34).
Furthermore, we observe that

(2.35)
2

qc − 1

(
2qc
qc − 1

−N

)
= λA ⇐⇒ κ+(κ+ +N − 2) = λA,

which follows from (2.8). This implies that there does not exist a nontrivial
solution of the nonlinear eigenvalue problem

(2.36)
−∆

SN−1
ψ − 2

q − 1

(
2q

q − 1
−N

)
ψ + |ψ|q−1ψ = 0 in S

DA

ψ = 0 in ∂S
DA

which, in turn, implies that there does not exists a nontrivial solution of
(2.29) of the form u(x) = u(r, σ) = |x|−2/(q−1)ψ(σ), and also no solution
of this equation in DA which vanishes on ∂DA \ {0}. This is the classical
ansatz for the removability of isolated singularities in dA.
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3. The harmonic lifting of a Besov space B−s,p(dA).

Denote by W σ,p(Rℓ) (σ > 0, 1 ≤ p ≤ ∞) the Sobolev spaces over Rℓ. In
order to use interpolation, it is useful to introduce the Besov space Bσ,p(Rℓ)
(σ > 0). If σ is not an integer then

(3.1) Bσ,p(Rℓ) =W σ,p(Rℓ).

If σ is an integer the space is defined as follows. Put

∆x,yf = f(x+ y) + f(x− y)− 2f(x).

Then

(3.2) B1,p(Rℓ) =

{
f ∈ Lp(Rℓ) :

∆x,yf

|y|1+ℓ/p
∈ Lp(Rℓ × Rℓ)

}
,

with norm

(3.3) ‖f‖B1,p = ‖f‖Lp +

(∫ ∫

Rℓ×Rℓ

|∆x,yf |p
|y|ℓ+p

dx dy

)1/p

,

(with standard modification if p = ∞) and

(3.4)
Bm,p(Rℓ) =

{
f ∈Wm−1,p(Rℓ) :

Dα
xf ∈ B1,p(Rℓ) ∀α ∈ Nℓ, |α| = m− 1

}

with norm

(3.5) ‖f‖Bm,p = ‖f‖Wm−1,p +




∑

|α|=m−1

∫ ∫

Rℓ×Rℓ

|Dα
x∆x,yf |p
|y|ℓ+p

dx dy




1/p

.

We recall that the following inclusions hold ([25, p 155])

(3.6)
Wm,p(Rℓ) ⊂ Bm,p(Rℓ) if p ≥ 2

Bm,p(Rℓ) ⊂Wm,p(Rℓ) if 1 ≤ p ≤ 2.

When 1 < p <∞, the dual spaces ofW s,p and Bm,p are respectively denoted
by W−s,p′ and B−m,p′.

The following is the main result of this section.

Theorem 3.1. Suppose that qc < q < q∗c and let A be defined as in subsec-
tion 2.1. Then there exist positive constants c1, c2, depending on q,N, k, κ+,
such that for any R > 1 and any µ ∈ M+(dA) with support in BR/2:

(3.7)

c1 ‖µ‖qB−s,q(RN−k)

≤
∫

DA,R

K[|µ|]q(x)ρ(x)dx ≤ c2(1 +R)β ‖µ‖q
B−s,q(RN−k)

,

where s = 2− κ++k
q′ , β = (q + 1)κ+ + k− 1 and DA,R = DA ∩ ΓR. If q = qc

the estimate remains valid for measures µ such that the diameter of suppµ
is sufficiently small (depending on the parameters mentioned before).
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Remark. When q ≥ 2 the norms in the Besov space may be replaced by the
norms in the corresponding Sobolev spaces.

Recall the admissibility condition for a measure µ ∈ M+(dA):∫

DA,R

K[µ]q(x)ρ(x)dx <∞ ∀R > 0

and the equivalence (see (2.25)–(2.28))
∫

DA,R

K[µ]q(x)ρ(x)dx ≈ JA,R(µ) :=(3.8)

∫ R

0

∫

B′′
R

( ∫

RN−k

dµ(z)

(τ2 + |x′′ − z|2)|)(N−2+2κ+)/2

)q
τ (q+1)κ++k−1dx′′dτ,

where x = (x′, x′′) ∈ Rk×RN−k, τ = |x′| and B′′
R = {x′′ ∈ RN−k : |x′′| < R}.

We denote,

(3.9) ν = N − 2 + 2κ+.

If 2κ+ is an integer, it is natural to relate (3.8) to the Poison potential of
µ in Rn

+ = R+ × Rn−1 where n = N − 2 + 2κ+. We clarify this statement
below.

Assuming that 2 ≤ n+ k −N , denote

y = (y1, ỹ, y
′′) ∈ Rn, ỹ = (y2, · · · , yn+k−N), y′′ = (yn+k−N+1, · · · , yn).

The Poisson kernel in Rn
+ = R+ × Rn−1 is given by

(3.10) Pn(y) = γny1|y|−n y1 > 0,

for some γn > 0, and the Poisson potential of a bounded Borel measure µ
with support in

d := {y = (0, y′′) ∈ Rn : y′′ ∈ RN−k}
is

(3.11) Kn[µ](y) = γny1

∫

RN−k

dµ(z)
(
y21 + |ỹ|2 + |y′′ − z|2

)n/2 ∀y ∈ Rn
+.

In particular, for ỹ = 0,

(3.12) Kn[µ](y1, 0, y
′′) = γny1

∫

RN−k

dµ(z)
(
y21 + |y′′ − z|2

)n/2 .

The integral in (3.12) is precisely the same as the inner integral in (3.8).
In fact, it will be shown that, if we set

(3.13) n := {ν} = inf{m ∈ N : m ≥ ν},
this approach also works when 2κ+ is not an integer. We note that, for n
given by (3.13),

(3.14) n−N + k ≥ 2,



BOUNDARY TRACE IN DIHEDRAL DOMAINS 17

with equality only if k = 3 and κ+ ≤ 1/2 or k = 2 and κ+ ∈ (1/2, 1]. Indeed,

n−N + k = k + {2κ+} − 2

and (as κ+ > 0) {2κ+} ≥ 1. If k = 2 then κ+ > 1/2 and consequently
{2κ+} ≥ 2. These facts imply our assertion.

We also note that κ+ is strictly increasing relative to λA and

(3.15) κ+





= 1, if DA = RN
+ ,

< 1, if DA $ RN
+ ,

> 1, if DA % RN
+ .

Finally we observe that γ := λA − (N − k)κ+ > 0 (see (2.13)) and, by (2.8)
and (2.30):

(3.16) γ = κ2+ + (k − 2)κ+, q∗c = 1 +
−(k − 2) +

√
(k − 2)2 + 4γ

γ
.

Therefore q∗c is strictly decreasing relative to γ and consequently also relative
to κ+.

The proof of the theorem is based on the following important result proved
in [26, 1.14.4.]

Proposition 3.2. Let 1 < q < ∞ and s > 0. Then for any bounded Borel
measure µ in Rn−1 there holds

(3.17) I(µ) =

∫

Rn
+

|Kn[µ](y)|q e−y1ysq−1
1 dy ≈ ‖µ‖q

B−s,q(Rn−1)
.

In the first part of the proof we derive inequalities comparing I(µ) and
JA,R(µ). Actually, it is useful to consider a slightly more general expression
than I(µ), namely:

(3.18) Im,j
ν,σ (µ) :=

∫

Rm+j
+

∣∣∣∣∣

∫

Rm

y1dµ(z)(
y21 + |ỹ|2 + |y′′ − z|2

)ν/2

∣∣∣∣∣

q

e−y1yσq−1
1 dy,

where ν is an arbitrary number such that ν > m, j ≥ 1 and σ > 0. A point

y ∈ Rm+j
+ is written in the form y = (y1, ỹ, y

′′) ∈ R+ × Rj−1 × Rm. We
assume that µ is supported in Rm. Note that,

(3.19) I(µ) = γqnI
m,j
n,s where m = N − k, j = n−m = n−N + k.

Put

(3.20) Fν,m[µ](τ) :=

∫

Rm

∣∣∣∣
∫

Rm

dµ(z)

(τ2 + |y′′ − z|2)ν/2

∣∣∣∣
q

dy′′ ∀τ ∈ [0,∞).

With this notation, if j ≥ 2 then

(3.21) Im,j
ν,σ (µ) :=

∫ ∞

0

∫

Rj−1

Fν,m[µ](
√
y21 + |ỹ|2 )e−y1y

(σ+1)q−1
1 dỹ dy1
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and if j = 1

(3.22) Im,1
ν,σ (µ) :=

∫ ∞

0
Fν,m[µ](y1)e

−y1y
(σ+1)q−1
1 dy1

Lemma 3.3. Assume that m < ν, 0 < σ, 2 ≤ j and 1 < q < ∞. Then
there exists a positive constant c, depending on m, j, ν, σ, q, such that, for
every bounded Borel measure µ with support in Rm:

(3.23)
1

c

∫ ∞

0
Fν,m[µ](τ)hσ,j(τ)dτ ≤ Im,j

ν,σ (µ) ≤ c

∫ ∞

0
Fν,m[µ](τ)hσ,j(τ)dτ,

where Fν,m is given by (3.20) and, for every τ > 0,

(3.24) hσ,j(τ) =





τ (σ+1)q+j−2

(1 + τ)(σ+1)q
, if j ≥ 2,

e−ττ (σ+1)q−1, if j = 1.

Proof. There is nothing to prove in the case j = 1. Therefore we assume
that j ≥ 2.

We use the notation y = (y1, ỹ, y
′′) ∈ R × Rj−1 × Rm. The integrand in

(3.21) depends only on y1 and ρ := |ỹ|. Therefore, Im,j
ν,σ can be written in

the form

Im,j
ν,σ (µ) = cm,j

∫ ∞

0

∫ ∞

0
Fν,m[µ](

√
y21 + ρ2)e−y1y

(σ+1)q−1
1 dy1ρ

j−2dρ.

We substitute y1 = (τ2 − ρ2)1/2, then change the order of integration and
finally substitute ρ = rτ . This yields,

c−1
m,jI

m,j
ν,σ (µ)

=

∫ ∞

0

∫ ∞

ρ
Fν,m[µ](τ)ρj−2e−

√
τ2−ρ2(τ2 − ρ2)(σ+1)q/2−1τ dτ dρ

=

∫ ∞

0

∫ τ

0
Fν,m[µ](τ)ρj−2e−

√
τ2−ρ2(τ2 − ρ2)(σ+1)q/2−1τ dρ dτ

=

∫ ∞

0

∫ 1

0
Fν,m[µ](τ)τ j−2+(σ+1)qe−τ

√
1−r2f(r)dr dτ,

where

f(r) = rj−2(1− r2)(σ+1)q/2−1.

We denote

Ijσ(τ) =

∫ 1

0
e−τ

√
1−r2f(r)dr,

so that

(3.25) Im,j
ν,σ (µ) = cm,j

∫ ∞

0
Fν,m[µ](τ)τ j−2+(σ+1)qIjσ(τ)dτ.
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To complete the proof we estimate Ijσ. Since j ≥ 2, f ∈ L1(0, 1) and Ijσ is
continuous in [0,∞) and positive everywhere. Hence, for every α > 0, there
exists a positive constant cα = cα(σ) such that

(3.26)
1

cα
≤ Ijσ ≤ cα in [0, α).

Next we estimate Ijσ for large τ . Since j ≥ 2,

Ijσ ≤ 2(σ+1)q/2−1

∫ 1

0
(1− r)(σ+1)q/2−1e−τ

√
1−rdr.

Substituting r = 1− t2 we obtain,

(3.27) Ijσ ≤ 2(σ+1)q/2

∫ 1

0
t(σ+1)q−1e−tτdt = c(σ, q)τ−(σ+1)q .

On the other hand, if τ ≥ 2,

(3.28)

Ijσ(τ) =

∫ 1

0
(1− t2)(j−3)/2t(σ+1)q−1e−τtdt

= τ−(σ+1)q

∫ τ

0
(1− (s/τ)2)(j−3)/2s(σ+1)q−1e−sds

≥ τ−(σ+1)q2−(j−3)

∫ 1

0
s(σ+1)q−1e−sds.

Combining (3.25) with (3.26)–(3.28) we obtain (3.23). �

Next we derive an estimate in which integration over Rn
+ = Rj

+ × Rm is
replaced by integration over a bounded domain, for measures supported in
a fixed bounded subset of Rm.

Let Bj
R(0) and B

m
R (0) denote the balls of radius R centered at the origin,

in Rj and Rm respectively. Denote

(3.29) FR
ν,m[µ](τ) =

∫

Bm
R

∣∣∣∣
∫

Rm

dµ(z)

(τ2 + |y′′ − z|2)ν/2

∣∣∣∣
q

dy′′ ∀τ ∈ [0,∞)

and, if j ≥ 2,

(3.30) Im,j
ν,σ (µ;R) =

∫

Bj
R∩{0<y1}

FR
ν,m[µ](

√
y21 + |ỹ|2 )e−y1yσq−1

1 dỹ dy1.

where (y1, ỹ) ∈ R× Rj−1. If j = 1 we denote,

(3.31) Im,1
ν,σ (µ;R) =

∫ R

0
FR
ν,m[µ](y1)e

−y1yσq−1
1 dy1.

Similarly to Lemma 3.3 we obtain,

Lemma 3.4. If j ≥ 1, there exists a positive constant c such that, for any
bounded Borel measure µ with support in Rm ∩BR
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(3.32)

c−1

∫ R

0
FR
ν,m[µ](τ)hσ,j(τ)dτ ≤ Im,j

ν,σ (µ;R) ≤ c

∫ R

0
FR
ν,m[µ](τ)hσ,j(τ)dτ

with hσ,j as in (3.24).

Proof. In the case j = 1 there is nothing to prove . Therefore we assume
that j ≥ 2.

From (3.30) we obtain,

Im,j
ν,σ (µ;R) = cm,j

∫ R

0

∫ √
R2−ρ2

0
FR
ν,m[µ](

√
y21 + ρ2)e−y1y

(σ+1)q−1
1 dy1ρ

j−2dρ.

Substituting y1 = (τ2 − ρ2)1/2, then changing the order of integration and
finally substituting ρ = rτ we obtain,

c−1
m,jI

m,j
ν,σ (µ;R) =

∫ R

0

∫ 1

0
FR
ν,µ[µ](τ)τ

j−2+(σ+1)qe−τ
√
1−r2f(r)dr dτ.

where

f(r) = rj−2(1− r2)(σ+1)q/2−1.

The remaining part of the proof is the same as for Lemma 3.3. �

Lemma 3.5. Let 1 < q, 0 < σ and assume that m < νq and 0 ≤ j − 1 <
ν. Then there exists a positive constant c̄, depending on j,m, q, σ, ν, such
that, for every R ≥ 1 and every bounded Borel measure µ with support in
BR/2(0) ∩ Rm,

(3.33)

∣∣∣∣
∫ ∞

0
Fν,m[µ](τ)hσ,j(τ)dτ −

∫ R

0
FR
ν,m[µ](τ)hσ,j(τ)dτ

∣∣∣∣

≤ c̄R(σ+1−ν)q+m+j−1 ‖µ‖q
M

with hσ,j as in (3.24).

Proof. We estimate,

(3.34)

∣∣∣∣
∫ ∞

0
Fν,m[µ](τ)hσ,j(τ)dτ −

∫ R

0
FR
ν,m[µ](τ)hσ,j(τ)dτ

∣∣∣∣ ≤
∫ ∞

R
|Fν,m[µ]| (τ)hσ,j(τ)dτ +

∫ R

0

∣∣Fν,m[µ]− FR
ν,m[µ]

∣∣ (τ)hσ,j(τ)dτ.

For every τ > 0,

(3.35) |Fν,m[µ]| (τ) ≤ τ−νq ‖µ‖q
M
.
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Since j − 1 < νq, it follows that

(3.36)

∫ ∞

R
|Fν,m[µ]| (τ)hσ,j(τ)dτ ≤ ‖µ‖q

M

∫ ∞

R
τ−νqhσ,j(τ)dτ

≤ c(σ, q) ‖µ‖q
M

∫ ∞

R

τ (σ+1)q+j−2−νq

(1 + τ)(σ+1)q
dτ

≤ c(σ, q)

νq − j + 1
‖µ‖q

M
Rj−1−νq.

Since, by assumption, suppµ ⊂ BR/2, we have

(3.37)

∫ R

0

∣∣Fν,m[µ]− FR
ν,m[µ]

∣∣ (τ)hσ,j(τ)dτ

≤
∫ R

0

∫

|y′′|>R

∣∣∣∣
∫

Rm

dµ(z)

(τ2 + |y′′ − z|2)ν/2

∣∣∣∣
q

dy′′hσ,j(τ)dτ

≤ ‖µ‖q
M

∫ R

0

∫

|ζ|>R/2
(|τ2 + |ζ|2)−νq/2 dζ hσ,jdτ

≤ c(m, q) ‖µ‖q
M

∫ R

0

∫ ∞

R/2
(τ2 + ρ2)−νq/2ρm−1 dρ hσ,jdτ

≤ c(m, q) ‖µ‖q
M

∫ R

0
τm−νq

∫ ∞

R/2τ
(1 + η2)−νq/2ηm−1 dη hσ,jdτ

≤ c(m, q)

νq −m
‖µ‖q

M
Rm−νq

∫ R

0
τ (σ+1)q+j−2 dτ

≤ c(m, q)

(νq −m)((σ + 1)q + j − 1)
‖µ‖q

M
R(σ+1)q+j−1+m−νq.

Combining (3.34)–(3.37) we obtain (3.33). �

Corollary 3.6. For every R > 0 put

(3.38) Jm,j
ν,σ (µ;R) :=

∫ R

0
FR
ν,m[µ](τ)τ (σ+1)q+j−2dτ.

Then

(3.39)

1

c
Im,j
ν,σ (µ)− c̄Rβ ‖µ‖q

M
≤ Jm,j

ν,σ (µ;R) ≤ cR(σ+1)qIm,j
ν,σ (µ),

β = (σ + 1− ν)q + j +m− 1,

for every R > 1 and every bounded Borel measure µ with support in Bm
R/2(0) :=

BR/2(0) ∩ Rm.

Proof. This is an immediate consequence of Lemma 3.5 and Lemma 3.3. �

Lemma 3.7. Let m, j be positive integers such that j ≥ 1 and let 1 < q,
0 < σ. Put n := m+ j.
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Then there exist positive constants c, c̄, depending on j,m, q, σ, such that,
for every R > 1 and every measure µ ∈ M+(B

m
R/2(0)),

(3.40)

1

c
‖µ‖q

B−σ,q(Rn−1)
− c̄R

q
(

σ−n−1
q′

)

‖µ‖q
M

≤ Jm,j
n,σ (µ;R)

≤ cR(σ+1)q ‖µ‖q
B−σ,q(Rn−1)

.

If σ < n−1
q′ , there exists R0 > 1 such that, for all R > R0

(3.41)
1

2c
‖µ‖q

B−σ,q(Rn−1)
≤ Jm,j

n,σ (µ;R).

If σ = n−1
q′ then, there exists a > 0 such that the inequality remains valid

for measures µ such that diam(suppµ) ≤ a.

If, in addition, j−1
q′ < σ then

(3.42)
1

2c
‖µ‖q

B−s,q(Rm)
≤ Jm,j

n,σ (µ;R) ≤ cR(σ+1)q ‖µ‖q
B−s,q(Rm)

,

where s := σ − j−1
q′ .

Remark. Assume that µ ≥ 0. Then:
(i) If µ ∈ B−σ,q(Rn−1) and j−1

q′ ≥ σ then µ(Rm) = 0.

(ii) If µ ∈ B−s,q(Rm) and σ > (n − 1)/q′ then s > m/q′ and therefore

Bs,q′(Rm) can be embedded in C(Rm).

Proof. Inequality (3.40) follows from (3.39) and Proposition 3.2 (see also
(3.19)).

For positive measures µ,

‖µ‖
M

= µ(Rn−1) ≤ ‖µ‖q
B−σ,q(Rn−1)

.

Therefore, if σ < n−1
q′ , (3.40) implies that there exists R0 > 1 such that

(3.41) holds for all R > R0.
If σ = n−1

q′ (3.40) implies that

1

c
‖µ‖q

B−σ,q(Rn−1)
− c̄ ‖µ‖q

M
≤ Jm,j

n,σ (µ;R).

But if µ is a positive bounded measure such that diam(suppµ) ≤ a then

‖µ‖
M
/ ‖µ‖q

B−σ,q(Rn−1)
→ 0 as a→ 0.

The last inequality follows from the imbedding theorem for Besov spaces ac-
cording to which there exists a continuous trace operator T : Bσ,q′(Rn−1) 7→
Bs,q′(Rm) and a continuous lifting T ′ : Bs,q′(Rm) 7→ Bσ,q′(Rn−1) where
s = σ − n−m−1

q′ . �
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If ν ∈ N and σ = s+ ν−m−1
q′ ,

Jm,ν−m
ν,σ (µ;R) =

∫ R

0
FR
ν,m[µ](τ)τ (σ+1)q+ν−m−2 dτ

=

∫ R

0
FR
ν,m[µ](τ)τ (s+ν−m)q−1 dτ.

However, if µ is positive, the expression

(3.43) Mm
ν,s(µ;R) :=

∫ R

0
FR
ν,m[µ](τ)τ (s+ν−m)q−1 dτ,

is meaningful for any real ν > m and s > 0. Furthermore, as shown below,
the results stated in Lemma 3.7 can be extended to this general case.

Theorem 3.8. Let 1 < q, ν ∈ R and m a positive integer. Assume that
1 ≤ ν − m and 0 < s < m/q′. Then there exists a positive constant c
such that, for every bounded positive measure µ supported in Rm ∩BR/2(0),
R > 1,

(3.44)
1

c
‖µ‖q

B−s,q(Rm)
≤Mm

ν,s(µ;R) ≤ cR(s+ν−m)q+1 ‖µ‖q
B−s,q(Rm)

.

This also holds when s = m/q′, provided that the diameter of suppµ is
sufficiently small.

Proof. If ν is an integer and j := ν − m then this statement is part of
Lemma 3.7. Indeed the condition s > 0 means that σ = s+ j−1

q′ > j−1
q′ and

the condition s < m/q′ means that σ < n−1
q′ .

Therefore we assume that ν 6∈ N. Let n := {ν} and θ := n − ν so that
0 < θ < 1. Our assumptions imply that 1 ≤ n−m− 1 because (as ν is not
an integer) ν −m > 1 and consequently n−m ≥ 2.

If a, b are positive numbers, put

Aν :=
a(s+ν−m)q−1

(a2 + b2)νq/2
.

Obviously Aν decreases as ν increases. Therefore, An ≤ Aν ≤ An−1 which
in turn implies,

Mm
n,s ≤Mm

ν,s ≤Mm
n−1,s.

By Lemma 3.7, the assertions of the theorem are valid in the case that ν = n
or ν = n − 1. Therefore the previous inequality implies that the assertions
hold for any real ν subject to the conditions imposed. �

By (3.8),

JA,R =

∫ R

0
FR
ν,m(τ)τ (q+1)κ++k−1dτ,

where m = N − k and ν = N − 2 + 2κ+. Consequently, by (3.38),

JA,R =Mm
ν,s
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where s is determined by,

(s+ ν −m)q − 1 = (q + 1)κ+ + k − 1, k = ν −m+ 2− 2κ+.

It follows that

sq = −(k − 2 + 2κ+)q + (q + 1)κ+ + k = k(1− q) + 2q − κ+(q − 1)

and therefore

s = 2− k + κ+
q′

.

Proof of Theorem 3.1.
Put

(3.45) ν := N − 2 + 2κ+, s := 2− κ+ + k

q′
, m := N − k.

Recall that in the case k = 2 we have κ+ > 1/2. Therefore

(3.46) ν −m− 1 = k − 3 + 2κ+ > 0.

Furthermore,

(s+ ν −m)q − 1 = (q + 1)κ+ + k − 1, k = ν −m+ 2− 2κ.

Thus

JA,R =

∫ R

0
FR
ν,m(τ)τ (q+1)κ++k−1dτ =Mm

ν,s.

Next we show that 0 < s ≤ m/q′. More precisely we prove

(3.47) 0 < s ≤ m/q′ ⇐⇒ qc ≤ q < q∗c .

Let µ be a bounded non-negative Borel measure in B−s,q(Rm). If s ≤ 0,
B−s,q(Rm) ⊂ Lq(Rm). Therefore, in this case, every bounded Borel measure
on Rm is admissible i.e. satisfies (2.33). Consequently, by Proposition 2.2,
q < qc. As we assume q ≥ qc it follows that s > 0.

If, s > 0 and sq′−m ≥ 0 then Cs,q′(K) = 0 for every compact subset of Rm

and consequently µ(K) = 0 for any such set. Conversely, if sq′−m < 0 then
there exist non-trivial positive bounded measures in B−s,q(Rm). Therefore,
by Proposition 2.1, sq′ < m if and only if q < q∗c .

In conclusion, 0 < s ≤ m/q′ and ν −m ≥ 1; therefore Theorem 3.1 is a
consequence of Theorem 3.8. �

Remark. Note that the critical exponent for the imbedding of B
2−κ++k

q′
,q′
(RN−k)

into C(RN−k) is again

q = qc =
N + κ+

N + κ+ − 2
.
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4. Supercritical equations in a polyhedral domain

In this section q is a real number larger than 1 and P an N-dim polyhedral
domain as described in subsection 6.1. Denote by {Lk,j : k = 1, . . . , N, j =
1, . . . , nk} the family of faces, edges and vertices of P . In this notation,
L1,j denotes one of the open faces of P ; for k = 2, . . . , N − 1, Lk,j denotes
a relatively open N − k-dimensional edge and LN,j denotes a vertex. For
1 ≤ k < N , the (N − k) dimensional space which contains Lk,j is denoted

by RN−k
j . If 1 < k < N , the cylinder of radius r around the axis RN−k

j will

be denoted by Γ∞
k,j,r and the subset Ak,j of Sk−1 is defined by

lim
r→0

1

r
(∂Γ∞

k,j,r ∩ P ) = Lk,j ×Ak,j.

Ak,j is the ’opening’ of P at the edge Lk,j. For k = N we replace in this
definition the cylinder Γ∞

N,j,r by the ball Br(LN,j). For 1 < k ≤ N and

A = Ak,j we use dA as an alternative notation for RN−k
j and denote by DA

the k-dihedron with edge dA and opening A as in subsection 6.1 (with SA
defined as in (2.2)). For k = 1, DA stands for the half space RN−1

j × (0,∞).

In what follows we denote by M
Ω
q the set of bounded measures µ on the

boundary of a Lipschitz domain Ω such that the boundary value problem

(4.1) −∆u+ uq = 0 in Ω, u = µ on ∂Ω

possesses a solution. A measure µ in this space is called a q-good measure.
Furthermore, if u is a positive solution of (1.1) in Ω such that

(4.2)

∫

Ω
uqρdx <∞,

it possesses a boundary trace which is a bounded Borel measure, and thus
a q-good measure [22, Proposition 4.1].

The following statements can be proved in the same way as in the case of
smooth domains. For the proof in that case see [17].

I. MΩ
q is a linear space and

µ ∈ M
Ω
q ⇐⇒ |µ| ∈ M

Ω
q .

II. If {µn} is an increasing sequence of measures in M
Ω
q and µ := limµn is

a finite measure then µ ∈ M
Ω
q .

Proposition 4.1. Let µ be a bounded measure on ∂P . (µ may be a signed
measure.) For i = 1, . . . , N, j = 1, . . . , ni, we define the measure µk,j on
dAk,j

by,

µk,j = µ on Lk,j, µk,j = 0 on dAk,j
\ Lk,j .

Then µ ∈ M
P
q , i.e., problem

(4.3) −∆u+ uq = 0 in P , u = µ on ∂P
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possesses a solution, if and only if, µk,j is a q-good measure relative to DAk,j

for all (k, j) as above.

Proof. In view of statement I above, it is sufficient to prove the proposition
in the case that µ is non-negative. This is assumed hereafter. If µ ∈ M

P
q

then any measure ν on ∂P such that 0 ≤ ν ≤ µ is a q-good measure relative
to P . Therefore

µ ∈ M
P
q =⇒ µ′k,j := µχLk,j

∈ M
P
q .

Assume that µ ∈ M
P
q and let uk,j be the solution of (4.3) when µ is replaced

by µ′k,j. Denote by u′k,j the extension of uk,j by zero to the k-dihedronDAk,j
.

Then u′k,j is a subsolution of (1.1) in DAk,j
with boundary data µk,j. In the

present case there always exists a supersolution, e.g. the maximal solution
of (1.1) in DAk,j

vanishing outside dAk,j
\ L̄k,j. Therefore there exists a

solution vk,j of this equation in DAk,j
with boundary data µk,j, i.e., µk,j is

q-good relative to DAk,j
.

Next assume that µ ∈ M(∂P ) and that µk,j is q-good relative to DAk,j
for

every (k, j) as above. Let vk,j be the solution of (1.1) inDAk,j
with boundary

data µk,j. Then vk,j is a supersolution of problem (4.3) with µ replaced by
µ′k,j and consequently there exists a solution uk,j of this problem. It follows
that

w := max{uk,j : k = 1, . . . , N, j = 1, . . . , nk}
is a subsolution while

w̄ :=
∑

k=1,...,N, j=1,...,nk

uk,j

is a supersolution of (4.3). Consequently there exists a solution of this
problem, i.e., µ ∈ M

P
q . �

4.1. Removable singular sets and ’good measures’, I.

Proposition 4.2. Let A be a Lipschitz domain on Sk−1, 2 ≤ k ≤ N − 1,
and let DA be the k-dihedron with opening A. Let µ ∈ M(∂DA) be a positive
measure with compact support contained in dA (= the edge of DA). Assume
that µ is q-good relative to DA. Let R > 1 be large enough so that suppµ ⊂
BN−k

R (0) and let u be the solution of (1.1) in DR
A with trace µ on dRA and

trace zero on ∂DR
A \ dRA. Then:

(i) For every non-negative η ∈ C∞
0 (BN−k

3R/4(0)),

(4.4)

(∫

dRA

ηq
′
dµ

)
≤ cM q′

∫

DR
A

uqρdx+

+ cM q′

(∫

DR
A

uqρdx

) 1
q (

1 +M−1 ‖η‖Lq′ (dRA)

)
.
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where M = ‖η‖
L∞ and ρ is the first eigenfunction of −∆ in DR

A normalized

by ρ(x0) = 1 at some point x0 ∈ DR
A. The constant c depends only on

N, q, k, x0, λ1, R where λ1 is the first eigenvalue.

(ii) For any compact set E ⊂ dA,

(4.5) CN−k
s,q (E) = 0 =⇒ µ(E) = 0, s = 2− κ+ + k

q′
,

where CN−k
s,q denotes the Bessel capacity with the indicated indices in RN−k.

Remark. If we replace DR
A by DR̃,R

A = DA ∩Bk
R̃
(0) ∩BN−k

R (0), R̃ > 1, then

the constant c in (i) depends on R̃ but not on R.

Proof. We identify dA with RN−k and use the notation

x = (x′, x′′) ∈ Rk × RN−k, y = |x′|.
Let η ∈ C∞

0 (RN−k) and let R be large enough so that supp η ⊂ BN−k
R/2 (0).

Let w = wR(t, x
′′) be the solution of the following problem in R+×BN−k

R (0):

(4.6)

∂tw −∆x′′w = 0 in R+ ×BN−k
R (0),

w(0, x′′) = η(x′′) in BN−k
R ,

w(t, x′′) = 0 on ∂BN−k
R (0).

Thus wR(t, ·) = SR(t)[η] where SR(t) is the semi-group operator correspond-
ing to the above problem. Denote,

(4.7) HR[η](x
′, x′′) = wR(|x′|2, x′′) = SR(y

2)[η](x′′), y := |x′|.
We assume, as we may, that R > 1. Let ρR be the first eigenfunction of

−∆x′′ in the ball BN−k
R (0) normalized by ρR(0) = 1 and let ρA be the first

eigenfunction of −∆x′ in CA (where CA denotes the cone with opening A
in Rk) normalized so that ρA(x

′
0) = 1 at some point x′0 ∈ SA. Then ρRρA

is the first eigenfunction of −∆ in {x ∈ DA : |x′′| < R}. Note that ρR ≤ 1
and ρR → 1 as R→ ∞ in C2(I) for any bounded set I ⊂ RN−k.

Let h ∈ C∞(R) be a monotone decreasing function such that h(t) = 1 for
t < 1/2 and h(t) = 0 for t > 3/4. Put

ψR(x
′) = h(|x′|/R)

and

(4.8) ζR := ρAψRHR[η]
q′ .

If ρRA is the first eigenfunction (normalized at x0) of D
R
A := DA ∩ ΓR (ΓR as

in (2.22)) then

(4.9) ρAψR ≤ cρRA

and ρRρRA is the first eigenfunction in DR
A.

Hereafter we shall drop the index R in ζR,HR, wR but keep it in the other
notations in order to avoid confusion.
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We shall verify that ζ ∈ DR
A. To this purpose we compute,

(4.10)

∆ζ =− λ1(ρAψR)H[η]q
′
+ (ρAψR)∆H[η]q

′
+ 2∇(ρAψR) · ∇H[η]q

′

=− λ1ζ + q′(ρAψR)(H[η])q
′−1∆H[η]

+ q(q′ − 1)(ρAψR)(H[η])q
′−2|∇H[η]|2

+ 2q′(H[η])q
′−1∇(ρAψR) · ∇H[η].

In addition,

∇H[η] = ∇x′H[η] +∇x′′H[η] = ∂yH[η]
x′

y
+∇x′′H[η]

= 2y∂tw(y
2, x′′)

x′

y
+∇x′′H[η](x′, x′′)

and consequently (recall that y stands for |x′|),
∇H[η] · ∇(ρAψR)

= 2∂tw(y
2, x′′)x′ ·

(
ψR

(
|x′|κ+−1(κ+

x′

y
ωk(x

′/y) + |x′|∇ωk(x
′/y))

)
+ ρA∇ψR

)

= 2κ+∂tw(y
2, x′′)|x′|κ+ωk(x

′/y) = 2∂tw(y
2, x′′)(κ+ρAψR + ρAx

′ · ∇ψR).

Since w = wR vanishes for |x′′| = R and η = 0 in a neighborhood of
this sphere, |∂tw(y2, x′′)| ≤ cρR. As ψR vanishes for |x′| > 3R/4 we have
ρA∇ψR ≤ cρRA. Therefore

|∇H[η] · ∇ρA| ≤ cρRρRA

and, in view of (4.10),

(4.11) |∆ζ| ≤ cρRρRA.

Thus ζ ∈ X(DR
A) and consequently

(4.12)

∫

DR
A

(−u∆ζ + uqζ) dx = −
∫

DR
A

K[µ]∆ζdx.

Since q(q′ − 1)ρA(H[η])q
′−2|∇H[η]|2 ≥ 0, we have

(4.13)

∣∣∣∣∣

∫

DR
A

u∆ζdx

∣∣∣∣∣

≤
∫

DR
A

u
(
λ1ζ + q′(H[η])q

′−1 (ρ|∆H[η]|+ 2|∇ρ.∇H[η]|)
)
dx

≤
∫

DR
A

u
(
λ1ζ + q′ζ1/q

(
ρ1/q

′ |∆H[η]|+ 2ρ−1/q|∇ρ.∇H[η]|
))

dx

≤
(∫

DR
A

uqζdx

)1
q


λ1

(∫

DR
A

ζdx

) 1
q′

+ q′ ‖L[η]‖Lq′ (DR
A
)



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where

(4.14) L[η] = ρ1/q
′ |∆H[η]|+ 2ρ−1/q|∇ρ.∇H[η]|.

By Proposition 5.2

(4.15) −
∫

DR
A

K[µ]∆ζdx =

∫

dRA

ηq
′
dµ.

Therefore

(4.16)

(∫

dRA

ηq
′
dµ

)
≤
∫

DR
A

uqζdx+

+

(∫

DR
A

uqζdx

) 1
q


λ1

(∫

DR
A

ζdx

) 1
q′

+ q′ ‖L[η]‖Lq′ (DR
A)


 .

Next we prove that

(4.17) ‖L[η]‖Lq′ (DR
A
) ≤ C ‖η‖W s,q′ (RN−k)

starting with the estimate of the first term on the right hand side of (4.14).

∆H[η] = ∆x′H[η] + ∆x′′H[η] = ∂2yH[η] +
k − 1

y
∂yH[η] + ∆x′′H[η]

= 2y2∂ttw(y
2, x′′) + k∂tw(y

2, x′′) + ∆x′′H[η]

= 2y2∂ttw(y
2, x′′) + (k + 1)∂tw(y

2, x′′).

Then

∫

RN

ρ |∆H[η]|q′ dx ≤ c

∫ 1

0

∫

RN−k

∣∣∂ttw(y2, x′′)
∣∣q′ dx′′yκ++2q′+k−1dy

+ c

∫ 1

0

∫

RN−k

∣∣∂tw(y2, x′′)
∣∣q′ dx′′yκ++k−1dy

≤ c

∫ 1

0

∫

RN−k

|∂ttw(t, x′′)|q
′

dx′′t(κ++k)/2+q′ dt

t

+ c

∫ 1

0

∫

RN−k

|∂tw(t, x′′)|q
′

dx′′t(κ++k)/2dt

t

≤ c

∫ 1

0

∥∥∥∥t
2−(1−κ++k

2q′
)) d2S(t)[η]

dt2

∥∥∥∥
q′

Lq′(RN−k)

dt

t

+ c

∫ 1

0

∥∥∥∥t
1−(1−κ++k

2q′
)dS(t)[η]

dt

∥∥∥∥
q′

Lq′(RN−k)

dt

t
.
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Put β = κ++k
2q′ and note that 0 < β = 1

2(2−s) < 1. By standard interpolation

theory, ∫ 1

0

∥∥∥∥t
1−(1−β) dS(t)[η]

dt

∥∥∥∥
q′

Lq′ (RN−k)

dt

t

≈ ‖η‖q′
[W 2,q′ ,Lq′ ]

1−β,q′

≈ ‖η‖q′
W 2(1−β),q′(RN−k)

,

and ∫ 1

0

∥∥∥∥t
2−(1−β)) d

2S(t)[η]

dt2

∥∥∥∥
q′

Lq′ (RN−k)

dt

t

≈ ‖η‖q′
[W 4,q′ ,Lq′ ] 1

2 (1−β),q′

≈ ‖η‖q′
W 2(1−β),q′(RN−k)

.

The second term on the right hand side of (4.14) is estimated in a similar
way:
∫

RN

ρ−q′/q |∇H[η] · ∇ρ|q′ dx ≤ c

∫ 1

0

∫

RN−k

∣∣∂tw(y2, x′′)
∣∣q′ dx′yκ++k−1dy

≤ c

∫ 1

0

∫

RN−k

∣∣∂tw(t, x′′)
∣∣q′ dx′t

κ++k

2
dt

t

≤ c

∫ 1

0

∥∥∥∥t
1−( 1

2
−β) dS(t)[η]

dt

∥∥∥∥
q′

Lq′ (RN−k)

dt

t

≈ ‖η‖q′
W 2(1−β),q′(RN−k)

.

This proves (4.17). Further, (4.16) and (4.17) imply (4.4).

We turn to the proof of part (ii). Let E be a closed subset of BN−k
R/2 (0)

such that CN−k
s,q′ (E) = 0. Then there exists a sequence {ηn} in C∞

0 (dA) such

that 0 ≤ ηn ≤ 1, ηn = 1 in a neighborhood of E (which may depend on n),

supp ηn ⊂ BN−k
3R/4(0) and ‖ηn‖W s,q′ → 0. Then, by (4.17),

‖L[ηn]‖Lq′(DR
A) → 0.

Furthermore
‖w‖

Lq′ ((0,R)×B
N−k
R

(0))
≤ c ‖ηn‖

Lq′ (BN−k
R

(0))

and consequently

H[ηn] → 0 in Lq′(DR
A).

(Here we use the fact that k ≥ 2.) In addition

0 ≤ H[ηn] ≤ 1, H[ηn] ≤ c(R − |x′|)
with a constant c independent of n. Hence (see (4.9))

ζn,R := ρAψRH[ηn]
q′ ≤ ρRρAψRH[ηn]

q′−1 ≤ ρRρRAH[ηn]
q′−1.

As uqρRρRA ∈ L1(DR
A) we obtain,

lim
n→∞

∫

DA

uqζndx = 0.
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This fact and (4.16) imply that
∫

dRA

ηq
′

n dµ → 0.

As ηn = 1 on a neighborhood of E in RN−k it follows that µ(E) = 0. �

Proposition 4.3. Let DA be a k-dihedron, 1 ≤ k < N . Let k+ be as in (2.8)
and let q∗c and qc be as in Proposition 2.1 and Proposition 2.2 respectively.
Assume that qc ≤ q < q∗c . A measure µ ∈ M(∂DA), with compact support
contained in dA, is q-good relative to DA if and only if µ vanishes on every

Borel set E ⊂ dA such that Cs,q′(E) = 0, where s = 2− k+κ+

q′ .

Remark. We shall use the notation µ ≺ Cs,q′ to say that µ vanishes on any
Borel set E ⊂ (dA) such that Cs,q′(E) = 0.

In the case k = N : DA = CA (= the cone with vertex 0 and opening A in

Rk) and qc = q∗c . By (1.7), qc = 1 − 2
κ−

= N+κ+

N+κ+−2 . (Note the difference in

notation; the entity denoted by κ− in section 6 and in the present section is
denoted by−αS in (1.6) and (2.8).) If 1 < q < qc then, again by Theorem ??,
there exist solutions for every measure µ = kδ0 on ∂CA.

In the case k = 1, q∗c = ∞, κ+ = 1 and qc =
N+1
N−1 . Thus s = 2/q and the

statement of the theorem is well known (see [18]).

Proof. In view of the last remark, it remains to deal only with 2 ≤ k ≤ N−1.
We shall identify dA with RN−k.

It is sufficient to prove the result for positive measures because µ ≺ Cs,q′

if and only if |µ| ≺ Cs,q′ . In addition, if |µ| is a q-good measure then µ is a
q-good measure.

First we show that if µ is non-negative and q-good then µ ≺ Cs,q′. If E is
a Borel subset of ∂Ω then µχE is q-good. If E is compact and Cs,q′(E) = 0
then, by Proposition 4.2, E is a removable set. This means that the only
solution of (4.1) such that µ(∂Ω \ E) = 0 is the zero solution. This implies
that µχE = 0, i.e., µ(E) = 0. If Cs,q′(E) = 0 but E is not compact then
µ(E′) = 0 for every compact set E′ ⊂ E. Therefore, we conclude again that
µ(E) = 0.

Next, assume that µ is a positive measure in M(∂DA) supported in a
compact subset of RN−k.

If µ ∈ B−s,q(RN−k) then, by Theorem 3.1, µ is admissible relative to
DA ∩ Γk,R, for every R > 0. (As before Γk,R is the cylinder with radius R

around the ’axis’ RN−k.) This implies that µ is q-good relative to DA.
If µ ≺ Cs,q′ then, by a theorem of Feyel and de la Pradelle [9] (see also

[2]), there exists a sequence {µn} ⊂ (B−s,q(RN−k))+ such that µn ↑ µ. As
µk is q-good, it follows that µ is q-good. �

Theorem 4.4. Let P be an N -dimensional polyhedron as described in Propo-
sition 4.1. Let µ be a bounded measure on ∂P , (may be a signed measure).
Let k = 1, . . . , N, j = 1, . . . , nk, and let Lk,j and Ak,j be defined as at the



32 MOSHE MARCUS AND LAURENT VERON

beginning of section 8. Further, put

(4.18) s(k, j) = 2− k + (κ+)k,j
q′

,

where (κ+)k,j is defined as in (2.8) with A = Ak,j. Then µ ∈ M
P
q , i.e., µ

is a good measure for (1.1) relative to P , if and only if, for every pair (k, j)
as above and every Borel set E ⊂ Lk,j:
If 1 ≤ k < N then

(4.19)
(qc)k,j ≤ q < (q∗c )k,j, C

N−k
s(k,j),q′(E) = 0 =⇒ µ(E) = 0

q ≥ (q∗c )k,j =⇒ µ(LN,j) = 0

and if k = N , i.e., L is a vertex,

(4.20) q ≥ (qc)k,j =
N + 2 +

√
(N − 2)2 + 4λA

N − 2 +
√

(N − 2)2 + 4λA
=⇒ µ(L) = 0.

Here (q∗c )k,j and (qc)k,j are defined as in (2.30) and (2.34)respectively, with
A = Ak,j.

If 1 < q < (qc)k,j then there is no restriction on µχLk,j
.

Proof. This is an immediate consequence of Proposition 4.1 and Proposi-
tion 4.3 (see also the Remark following it). In the case k = N , LN,j is a
vertex and the condition says merely that for q ≥ qc(LN,j , µ does not charge
the vertex. �

4.2. Removable singular sets II..

Proposition 4.5. Let A be a Lipschitz domain on Sk−1, 2 ≤ k ≤ N − 1,
and let DA be the k-dihedron with opening A. Let u be a positive solution of
(1.1) in DR

A, for some R > 0. Suppose that F = S(u) ⊂ dRA and let Q be an

open neighborhood of F such that Q̄ ⊂ dRA. (Recall that dRA = dA ∩BN−k
R (0)

is an open subset of dA.) Let µ be the trace of u on R(u).

Let η ∈W s,q′

0 (dRA) such that

(4.21) 0 ≤ η ≤ 1, η = 0 on Q.

Employing the notation in the proof of Proposition 4.2, put

(4.22) ζ := ρAψRHR[η]
q′ .

Then

(4.23)

∫

DR
A

uqζ dx ≤ c(1 + ‖η‖
Ws,q′ (dA)

)q
′
+ µ(dRA \Q)q,

c independent of u and η.

Proof. First we prove (4.23) for η ∈ C∞
0 (dRA). Let σ0 be a point in A and let

{An} be a Lipschitz exhaustion of A. If 0 < ǫ < dist (∂A, ∂An) = ǭn then

ǫσ0 + CAn ⊂ CA.
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Denote

DR′,R′′

A = DA ∩ [|x′| < R′] ∩ [|x′′| < R′′].

Pick a sequence {ǫn} decreasing to zero such that 0 < ǫn < min(ǭn/2
n, R/8).

Let un be the function given by

un(x
′x′′) = u(x′ + ǫnσ0, x

′′) ∀x ∈ DRn,R
An

, Rn = R− ǫn.

Then un is a solution of (1.1) in DRn,R
An

belonging to C2(D̄Rn,R
An

) and we
denote its boundary trace by hn. Let

ζn := ρAnψRHR[η]
q′ ,

with ψR and HR[η] as in the proof of Proposition 4.2. By Proposition 5.2

(4.24) −
∫

DRn,R
An

P[hn]∆ζndx =

∫

BN−k
R

(0)
ηq

′
hndωn

where ωn is the harmonic measure on dRAn
relative to DRn,R

An
. (Note that

dRAn
= dRA and we may identify it with BN−k

R (0).) Hence

(4.25)

∫

DRn,R
An

(−un∆ζn + uqnζn) dx = −
∫

BN−k
R (0)

ηq
′
hn dωn.

Further, ∫

BN−k
R (0)

ηq
′
hn dωn →

∫

BN−k
R (0)

ηq
′
dµ ≤ µ(dRA \Q),

because η = 0 in Q. By (4.13), (4.17) we obtain,

(4.26)

∣∣∣∣∣

∫

DRn,R
An

un∆ζn dx

∣∣∣∣∣ ≤

c
( ∫

DRn,R
An

uqnζndx
) 1

q
(( ∫

DRn,R
An

ζndx
) 1

q′

+ ‖η‖W s,q′(BN−k
R (0))

)
.

From the definition of ζn it follows that
∫

DRn,R
An

ζn dx ≤
∫

DRn,R
An

ρn dx→
∫

DR
A

ρ dx,

where ρ (resp. ρn) is the first eigenfunction of −∆ in DR
A (resp. DRn,R

An
)

normalized by 1 at some x0 ∈ DR1,R
A1

. Therefore, by (4.25),

∫

DRn,R
An

uqnζndx ≤ c
( ∫

DRn,R
An

uqnζndx
) 1

q (
1 + ‖η‖W s,q′(BN−k

R (0))

)
+ µ(dRA \Q).

This implies

(4.27)

∫

DRn,R
An

uqnζndx ≤ c
(
1 + ‖η‖W s,q′(BN−k

R (0))

)q′
+ µ(dRA \Q)q.
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To verify this fact, put

m =
( ∫

DRn,R
An

uqnζndx
)1/q

, b = µ(dRA \Q), a = c
(
1 + ‖η‖W s,q′(BN−k

R (0))

)

so that (4.27) becomes

mq − am− b ≤ 0.

If b ≤ m then

mq−1 − a− 1 ≤ 0.

Therefore,

m ≤ (a+ 1)
1

q−1 + b

which implies (4.27). Finally, by the lemma of Fatou we obtain (4.23) for

η ∈ C∞
0 . By continuity we obtain the inequality for any η ∈W s,q′

0 satisfying
(4.21). �

Theorem 4.6. Let A be a Lipschitz domain on Sk−1, 2 ≤ k ≤ N − 1, and
let DA be the k-dihedron with opening A. Let E be a compact subset of dRA
and let u be a non-negative solution of (1.1) in DR

A (for some R > 0) such

that u vanishes on ∂DR
A \E. Then

(4.28) CN−k
s,q′ (E) = 0, s = 2− κ+ + k

q′
=⇒ u = 0,

where CN−k
s,q′ denotes the Bessel capacity with the indicated indices in RN−k.

Proof. By Proposition 4.2, (4.28) holds under the additional assumption

(4.29)

∫

DR
A

uqρRρ
R
Adx <∞.

Indeed, by [22, Proposition 4.1], (4.29) implies that the solution u possesses
a boundary trace µ on ∂DR

A . By assumption, µ(∂DR
A \ E) = 0. Therefore,

by Proposition 4.3, the fact that CN−k
s,q′ (E) = 0 implies that µ(E) = 0. Thus

µ = 0 and hence u = 0.
We show that, under the conditions of the theorem, if CN−k

s,q′ (E) = 0 then

(4.29) holds.

By Proposition 4.5, for every η ∈ W s,q′

0 (dRA) such that 0 ≤ η ≤ 1 and
η = 0 in a neighborhood of E,

(4.30)

∫

DR
A

uqζ dx ≤ c
(
1 + ‖η‖W s,q′(BN−k

R (0))

)q′
,

for ζ as in (4.22). (Here we use the assumption that u = 0 on ∂DR
A \ E.)

Let a > 0 be sufficiently small so that E ⊂ BN−k
(1−4a)R(0). Pick a sequence

{φn} in C∞
0 (RN−k) such that, for each n, there exists a neighborhood Qn
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of E, Q̄n ⊂ BN−k
(1−3a)R(0) and

(4.31)

0 ≤ φn ≤ 1 everywhere, φn = 1 in Qn,

φ̃n := φnχ[|x′′|<(1−2a)R] ∈ C∞
0 (RN−k),

∥∥φ̃n
∥∥
W s,q′(RN−k)

→ 0 as n→ ∞

ηn := (1− φn)⌊[|x′′|<R]∈ C∞
0 (dRA),

ηn = 0 in [(1− a)R < |x′′| < R].

Such a sequence exists because CN−k
s,q′ (E) = 0. Applying (4.30) to ηn we

obtain,

(4.32) sup

∫

DR
A

uqζn dx ≤ c <∞,

where ζn = ρAψRH
q′

R [ηn] (see (4.22)). By taking a subsequence we may

assume that {ηn} converges (say to η) in Lq′(BN−k
R (0)) and consequently

H[ηn] → H[η] in the sense that

HR[ηn](x
′, ·) = wn,R(y

2, ·) → wR(y
2, ·) = HR[η](x

′, ·) in Lq′

uniformly with respect to y = |x′|. It follows that

(4.33)

∫

DR
A

uqζ dx <∞, ζ = ρAψRH
q′

R [η].

As φ̃n → 0 in W s,q′(RN−k) it follows that φn → 0 and hence ηn → 1 a.e.

in BN−k
(1−2a)R(0). Thus η = 1 in this ball, η = 0 in [(1 − a)R < |x′′| < R] and

0 ≤ η ≤ 1 everywhere.
Consequently, given δ > 0, there exists an N -dimensional neighborhood

O of dA ∩BN−k
(1−2a)R(0) such that

1− δ < HR[η] < 1 and 1− δ < ψR/ρ
R
A < 1 in O.

Therefore (4.33) implies that

(4.34)

∫

D
(1−3a)R
A

uqρRρRA dx ≤ c <∞.

Recall that the trace of u on ∂DR
A \d(1−4a)R

A is zero. Therefore u is bounded

in DR
A \D(1−3a)R

A . This fact and (4.34) imply (4.29). �

Definition 4.7. Let Ω be a bounded Lipschitz domain. Denote by ρ the first
eigenfunction of −∆ in Ω normalized by ρ(x0) = 1 for a fixed point x0 ∈ Ω.

For every compact set K ⊂ ∂Ω we define

Mρ,q(K) = {µ ∈ M(∂Ω) : µ ≥ 0, µ(∂Ω \K) = 0, K[µ] ∈ Lq
ρ(Ω)}

and



36 MOSHE MARCUS AND LAURENT VERON

C̃ρ,q′(K) = sup{µ(K)q : µ ∈Mρ,q(K),

∫

Ω
K[µ]qρ dx = 1}.

Finally we denote by Cρ,q′ the outer measure generated by the above func-
tional.

The following statement is verified by standard arguments:

Lemma 4.8. For every compact K ⊂ ∂Ω, Cρ,q′(K) = C̃ρ,q′(K). Thus Cρ,q′

is a capacity and,

(4.35) Cρ,q′(K) = 0 ⇐⇒ Mρ,q(K) = {0}.

Theorem 4.9. Let Ω be a bounded polyhedron in RN . A compact set K ⊂
∂Ω is removable if and only if

(4.36) Cs(k,j),q′(K ∩ Lk,j) = 0,

for k = 1, ·, N j = 1, · · · , nk, where s(k, j) is defined as in (4.18). This
condition is equivalent to

(4.37) Cρ,q′(K) = 0.

A measure µ ∈ M(∂Ω) is q-good if and only if it does not charge sets with
Cρ,q′-capacity zero.

Proof. The first assertion is an immediate consequence of Proposition 4.1
and Theorem 4.6. The second assertion follows from the fact that

Cρ,q′(K ∩ Lk,j) = Cs(k,j),q′(K ∩ Lk,j).

The third assertion follows from Theorem 4.4 and the previous statement.
�

5. Appendix

If Ω is a bounded Lipschitz domain we say that {Ωn} is Lipschitz exhaus-
tion of Ω if, for every n, Ωn is Lipschitz and

(5.1) Ωn ⊂ Ω̄n ⊂ Ωn+1, Ω = ∪Ωn, HN−1(∂Ωn) → HN−1(∂Ω).

If ωn (respectively ω) is the harmonic measure in Ωn (respectively Ω)
relative to x0 ∈ Ω1, then, for every Z ∈ C(Ω̄),

(5.2) lim
n→∞

∫

∂Ωn

Z dωn =

∫

∂Ω
Z dω.

[22, Lemma 2.1]. Furthermore, if µ is a bounded Borel measure on ∂Ω and
v := KΩ[µ], there holds

(5.3) lim
n→∞

∫

∂Ωn

Zv dωn =

∫

∂Ω
Z dµ,

by [22, Lemma 2.2]. The following estimates are proved in [22, Lemma 2.3]
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Proposition 5.1. Let µ be bounded Borel measures on ∂Ω). Then K[µ] ∈
L1
ρ(Ω) and there exists a constant C = C(Ω) such that

(5.4) ‖K[µ]‖L1
ρ(Ω) ≤ C ‖µ‖

M(∂Ω) .

In particular if h ∈ L1(∂Ω;ω) then

(5.5) ‖P[h]‖L1
ρ(Ω) ≤ C ‖h‖L1(∂Ω;ω) .

The nest result is useful in a k-dimensional dihedron in the case where µ
is concentrated on the edge. In such a case one can find, for every smooth
function on the edge, a lifting Z such that condition (5.6) holds.

Proposition 5.2. We denote by GΩn (respectively GΩ) the Green function
in Ωn (respectively Ω). Let v be a positive harmonic function in Ω with

boundary trace µ. Let Z ∈ C2(Ω) and let G̃ ∈ C∞(Ω) be a function that
coincides with x 7→ G(x, x0) in Q ∩ Ω for some neighborhood Q of ∂Ω and
some fixed x0 ∈ Ω. In addition assume that there exists a constant c > 0
such that

(5.6) |∇Z · ∇G̃| ≤ cρ.

Under these assumptions, if ζ := ZG̃ then

(5.7) −
∫

Ω
v∆ζ dx =

∫

∂Ω
Zdµ.

Proof. Let {Ωn} be a C1 exhaustion of Ω. We assume that ∂Ωn ⊂ Q

for all n and x0 ∈ Ω1. Let G̃n(x) be a function in C1(Ωn) such that G̃n

coincides with GΩn(·, x0) in Q ∩ Ωn, G̃n(·, x0) → G̃(·, x0) in C2(Ω \Q) and

G̃n(·, x0) → G̃(·, x0) in Lip (Ω). If ζn = ZG̃n we have,

−
∫

Ωn

v∆ζn dx =

∫

∂Ωn

v∂nζ dS =

∫

∂Ωn

vZ∂nG̃n(ξ, x0) dS

=

∫

∂Ωn

vZPΩn(x0, ξ) dS =

∫

∂Ωn

vZ dωn.

By (5.3), ∫

∂Ωn

vZ dωn →
∫

∂Ω
Z dµ.

On the other hand, in view of (5.6), we have

∆ζn = G̃n∆Z + Z∆G̃n + 2∇Z · ∇G̃n → ∆Z

in L1
ρ(Ω); therefore,

−
∫

Ωn

v∆ζn dx→ −
∫

Ω
v∆ζ dx.

�
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[21] M. Marcus, L. Véron, The precise boundary trace of positive solutions of the equa-

tion ∆u = uq in the supercritical case, Perspectives in nonlinear partial differential
equations, 345–383, Contemp. Math., 446, Amer. Math. Soc., Providence, RI,
2007.
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