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BOUNDARY TRACE OF POSITIVE SOLUTIONS
OF SUPERCRITICAL SEMILINEAR ELLIPTIC
EQUATIONS IN DIHEDRAL DOMAINS

MOSHE MARCUS AND LAURENT VERON

ABSTRACT. We study the generalized boundary value problem for (E)
—Au+ |u|?""u = 0 in a dihedral domain Q, when ¢ > 1 is supercritical.
The value of the critical exponent can take only a finite number of values
depending on the geometry of (2. When p is a bounded Borel measure in
a k-wedge, we give necessary and sufficient conditions in order it be the
boundary value of a solution of (E). We also give conditions which ensure
that a boundary compact subset is removable. These conditions are
expressed in terms of Bessel capacities B, o in RY~* where s depends on
the characteristics of the wedge. This allows us to describe the boundary
trace of a positive solution of (E).
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1. INTRODUCTION

Let © be a bounded domain in RY, p the first eigenfunction of —A in
VVO1 ’2(9) with supremum 1 and A the corresponding eigenvalue, and let ¢ > 1.
If 99 is C?, a very long-term research on the equation

(1.1) ~Au+ulTlu =0 in Q,

has been carried out since twenty years by probabilistic or analytic methods.
The associated Dirichlet problem

(1.2) —Au+ufflu=0 in Q u=p in N

where 4 is a Radon measure on 92 has played a fundamental role in these

studies. By a (weak) solution u := u, to the Dirichlet problem (1.2) we
mean a function u € L}(2) such that, for any n € X (€, there holds

(1.3) / (—uln + |u|q_1u) dr = —/K[M]Andaz,
Q Q

where X (Q2) is the space of test functions

(1.4) X(Q) = {77 e WH(Q): p Ay € LOO(Q)}

and K[u] the harmonic function in 2 with boundary trace p. The following
two observations are fundamental in this regard:

1- For any admissible bounded Borel measure p on 0, i.e. which satisfies

(15) |l iz < .

there exists a (unique) solution to (1.2).

2- Any positive solution has a boundary trace v in the class of outer regular
Borel measures on 052, not necessarily locally bounded[13], [16].

The complementary problem associated to 1 is to find condition on a
bounded Borel measure p so that (1.5) is satisfied. It leads naturally to
existence of a threshold of criticality corresponding to a particular exponent
Qe = % When 1 < ¢ < ¢, i.e. in the subcritical case, every bounded
Borel measure is admissible, while this is no longer valid in the supercritical
case, that is when g > ¢.. It is shown in that case that the Dirichlet problem
(1.5) with g > 0 can be solved if and only if u(E) = 0 for any Borel subset

E C 0Q such that C2 ,(E) = 0 where ¢’ = -5 and C2 , denotes the Bessel
q’ q’

capacity in RV~1. The complementary problem to 2 is, given an arbitrary
outer regular Borel measure v on 952, to find if there exists a positive solution
uw of (1.1) with boundary trace v. In the subcritical case 1 < g < ¢, it was
shown by LeGall [13], by probabilistic methods in the case N = ¢ = 2
and Marcus and Véron (N > 2, 1 < ¢ < g.) [16] that the boundary trace
establishes a one to one correspondence between the positive solutions of
(1.1) and the set of outer regular Borel measures. When ¢ > ¢. a compact
subset F of 9 is removable if and only if C' 2 q/(E) = 0; it means that any
q
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positive solution u € C'(Q\ K) of (1.1) which vanishes on 92\ K is identically
zero [13], [6], [16]. Actually, Marcus and Véron obtained necessary and
sufficient conditions of compatibility between the locally bounded part of
v and its singular part in order there exists a maximal solution of (1.1)
with boundary trace v. Morevover uniqueness in general no longer holds,
which leads to the introduction of new tools for describing the boundary
trace. The culmination of the study of equation (1.1) has been carried out
by Mselati [23] when ¢ = 2 and Marcus [15] when ¢ > ¢. who obtain a
complete description of the set of positive solutions via the notion of fine
trace or precise trace.

When 02 is no longer smooth it is still possible to define a boundary
trace with the help of the harmonic measure however the situation becomes
much more complicated since the critical exponent g, , which depends of the
opening of the domain at each boundary point y. The subcritical case of
equation (1.1) which corresponds to the fact that the exponent ¢ is smaller
that any ¢., is completely described in [22], without the use of any Bessel
capacity.

We recall here some elements of local analysis when 2 = C's N B; where
Cy is a cone with vertex 0 and the opening S is a Lipschitz domain of SN~1,
Denote by Ag the first eigenvalue and by ¢4 the first eigenfunction of —A’
in W01’2(S) (normalized by max ¢, = 1). Put

(1.6) g = %(N—2+\/(N—2)2+4)\S)
and
B1(2) = ~a% by (o] |o])
1 N S

where v is a positive number; ®; is a harmonic function in Cg vanishing
on 0Cg \ {0} and v = 7g is chosen so that the boundary trace of ®; is dy
(=Dirac measure on dCs with mass 1 at the origin).

(i) Ifg>1+ a—QS, it was shown in [8] that, there is no solution of (1.1) in
Qg with isolated singularity at 0.

i) fl<g<l+ %, then for any k > 0 there exists a unique solution
u := uy, to problem (1.2) with u = kdp. Furthermore [22, Theorem 5.7]

(1.7) up(z) = k®1(z)(1+o0(1)) as z—0.

The function us = limg_,o ug is a positive solution of (1.1) in Qg which
vanishes on 9\ {0} and satisfies

(1.8) Uso(T) = |x|_q%1ws(x/|x|)(1 +o(l)) as z—0
where w is the (unique) positive solution of

(1.9) —Aw -, w4 lwlftw=0
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on SNV with

2 2q
1.1 =——|——-N|.
(1.10) Ava =0T (q—l )

Finally the following classification holds [22, Theorem 5.9]: if u € C'(Qg\{0})

is a positive solution of (1.1) vanishing on (0C;NB,,(0))\{0}, then it satisfies
either (1.7) for some k& > 0 or (1.8).

If € is Lipschitz and £ € 09, ¢¢ is the critical value for (1.1) at ¢ if, for
1 < ¢q < g¢, problem (1.2) admits a solution with u = d¢ (and kd¢ for any
k > 0) while, for ¢ > g¢ no such solution exists. The secondary critical value

qg at & is defined by the fact that for 1 < ¢ < qg there exists a non-trivial

solution of (1.1) which vanishes on 9Q \ {{} but for ¢ > qg no such solution
exists.
In the case of smooth domains, g¢ = qg = (N +1)/(N —1) for every

boundary point §. If € is a polyhedron, gz = qg at every point and the

function £ — g¢ obtains only a finite number of values. In fact it is constant
on each open face and each open edge, of any dimension. In addition, if
q = q¢, an isolated singularity at £ is removable.

A. On the action of Poisson type kernels with fractional dimension.

In preparation for the study of supercritical boundary value problems
we establish an harmonic analytic result, extending a well known result
on the action of Poisson kernels on Besov spaces with negative index (see
[26, 1.14.4.] and [20]). We first quote the classical result for comparison
purposes.

Proposition 1.1. Let 1 < ¢ < 0o and s > 0. Then, for any bounded Borel
measure ju in R" 1,

) T = [ Ryl oy
+

Here K,,[¢1] denotes the Poisson potential of 4 in R” = Ry x R"~!, namely,

(112) K lly) = | dute)
R (yf +1C - 2?)
where 7, is a constant depending only on n. The notation I ~ J means
that ¢ 1I < J < ¢I for some ¢ > 0.
In this paper we prove,

n/2 Vy:(ylaC)eRi

Theorem 1.2. Let 1 < q, m a positive integer and v € R such that m+1 <
v. For every s € (0,m/q’) there exists a positive constant ¢ such that, for
every bounded positive measure p supported in R™ N Br/5(0), R > 1,

Lo f q 1
- —s, m S Kl/,m T, C dC qui dT
gy < [ ([ il O )

< cR(s+ufm)(I+1 HMHqBﬂ,q(Rm) _

(1.13)
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Here

TV M du(z)
1.14 Ky lpl(1,¢) =
( ) 5 [IU,]( C) /I\Qm (7_2 _|_ |<- _ Z|2)V/2
This also holds when s = m/q’, provided that the diameter of supp p is
sufficiently small.

V7 € [0, 00).

This is proved in Section 2 (see Theorem 3.8) using a slightly different
notation. Note that

Knlp] = 1K n—1[p]-
B. The admissibility condition and the critical value in a k-wedge.

The next step towards the study of boundary value problems in a poly-
hedron is the treatment of such problems in a k-wedge (or k-dihedron) i.e.,
the domain defined by the intersection of k& hyperplanes in RV, 1 < k < N.
The edge is an (N — k) dimensional space. We note that the case k = N
corresponds to a cone while the case N =1 (i.e. a half space) corresponds
to the smooth case. Both cases have already been treated.

We denote by D4 a k-wedge such that, its edge d4 is identified with RN —F
and the ’opening’ of the wedge is A = D4NS*~1. If S 4 denotes the spherical
domain

N—1
(1.15) Sa={zeRV:|z|=1zecAx [][0,x]} c S¥ 1}
=k
then
Dy={z=(r,0):r>0,0€ 84}, Dar=DsNIp
where

I'r={z=(2,2") e RF xRN"*: |2/| < r, |2"| < R}.
Let A4 be the first eigenvalue of —ASN_I in Wol’2(SA) and denote

/<;+:%(2—N+\/(N—2)2+4)\A)

(1.16)

1
Ro=3 (Z—N—\/(N—2)2+4)\A).
One can show that the Martin kernel K4 in D 4 relative to points z € dy

is given by

’1./’11+w{N7k+1} (O'kaJrl)
|z — 2| (V—2+2n) ’

(1.17) Ka(z,z) =c,
where w{VN=F+1} is a related eigenfunction in A and z = (2/,2") € RF x

RN=k . Using this formula we obtain the admissibility condition for a mea-
sure p € M(d4) such that supp pu C Br(0):

|2'|"* | (2) a9
(1.18) /FR </szk (|a'|2 + |xl/|2)(N2+2/i+)/2) |2 [+ dx < o0
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where T'g := {z = (2/,2") e R¥ x RN=F . |2/| < R, |2"| < R}.
Using this expression we show that the condition

K4 + N

1.19 1<g¢<qi=—"7"7—.

( ) 9 % K4 + N -2

is necessary and sufficient in order that the Dirac measure yu = dp, supported
at a point P € d4, be admissible.
In addition we show that the condition

2—k++/(k—22+4 s — 4(N — k)r

)\A - (N - k)l/v'+
is necessary and sufficient for the existence of a non-trivial solution u of
(1.1) in D4 which vanishes on 0D 4 \ d4. Furthermore, when this condition
holds, there exist admissible non-trivial positive bounded measures p on d 4,

i.e., measures such that K[u] € L}(TrN Da).
Finally we have the following removability result:

(1.20) l<g<q =1+

Theorem 1.3. Assume that q. < q < ¢¢. A measure p € M(ODy), with
compact support contained in da, is good relative to (1.2) in D4 if and only
if i vanishes on every Borel set E C da such that CéVqu(E) = 0, where

s=2— k”;# and CéVqu 1s the Bessel capacity with the indicated indices in

RN=F (which we identify with the edge d).

Note that p is a good measure if the specified equation possesses a solution
with boundary data u. The above result implies in particular that sets with
C S]\f qu—capaCity zero are conditionally removable. However we obtain a much
stronger result later on.

C. Boundary value problems in a polyhedron: the supercritical case.

In the final part of the paper (Sections 4) we study boundary value prob-
lems in the supercritical case in polyhedrons, with trace given by bounded
measures. For such domains {2 we provide a complete characterization of
'good measures’, i.e., measures p on 9S2 such that (1.1) possesses a (unique)
solution with boundary trace u. We also provide a complete characteriza-
tion of removable sets. These results, with rather obvious modifications,
also apply to piecewise C? domains. The case of general Lipschitz domains
and boundary trace given by unbounded Borel measures will be treated in
a subsequent paper.

Theorem 1.4. Let Q) be an N-dimensional polyhedron. Let L denote one
of the faces, or edges, or vertices of 2 and let Q1 denote the half space with
boundary L, or the wedge with edge L, or the cone with vertex L such that
Q C Dy, and 0Qy, is determined by the faces of ) adjacent to L. Thus 02
is the union of the sets 0Q N OQy.

Denote by Ay, the opening of Qr, so that, in the notation of G, Qr, = Da,
and denote by ki (L), q.(L) etc. the various notations introduced in G
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relative to Ar. In particular let k(L) denote the co-dimension of the linear
space spanned by L and put

k(L) 4+ k4 (L)
q '
Let p be a bounded measure on OS2, (possibly a signed measure). Then p
is a good measure relative to (1.2) in Q, if and only if, for every L as above

and every Borel set E C L the following condition holds.
If 1 <k =codimL < N then

N—k _ —
way OB =0 = ) -
q > q.(L) = p(L) =

and if k = N (i.e., L is a vertez)
CN+2+ /(N —-2)2 44Xy,
N—2+/(N—-2)2+4\,
In all cases, if 1 < q < q.(L) then there is no restriction on pxy.

s(L)=2—

if qo(L) < q<q:(L)
if ¢>qi(L)

(1.22) q>qc(L) u(L) = 0.

D. Characterization of removable sets.

Let  be an N-dimensional polyhedron. Theorem 1.4 provides a necessary
and sufficient condition for the removability of a singular set E relative to
the family of solutions u such that

/ lul?pdr < oo.
Q

The next result provides a necessary and sufficient condition for remov-
ability in the sense that the only non-negative solution v € C'(Q2\ F) which
vanishes on {2\ E is the trivial solution u = 0.

Theorem 1.5. Let 2 be an N-dimensional polyhedron and let E be a com-
pact subset of 0. A nonempty compact set E C 02 is removable if and
only if, for every L as in G such that 1 < k = codimL < N the following
condition holds:

either

(L) <qg<q(L) and CS]\(fL_fq/(E) =0

orq>q:(L). In the case k = N the condition is ¢ > g (L) = q.(L).

2. THE MARTIN KERNEL AND CRITICAL VALUES FOR A CONE.

2.1. The geometric framework. An N-dim polyhedra P is the bounded
domain bordered by a finite number of hyperplanes. Thus characteristic
elements of the boundary of P are the faces (subsets of an hyperplane), the
vertex (intersection of N hyperplanes) and a wide variety of N-k dimen-
sional edges, where k ranges from 2 to N. An N-k dimensional edge, i.e. an
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intersection of k hyperplanes, will be described by the characteristic angles
of these hyperplanes.

We recall that the spherical coordinates in RY = {x = (21,..xx)} are
expressed by

( . . . .
r1 =7rsinfy_1sinfn_s...sin 05 sin 61

To = rsinfy_1sinfn_s...sin b cos 61
T3 =7rsinfy_1sinfy_s...cos by

(2.1)

TN_1 =7sinfy_1cosOy_o,
TN =rcosfn_1

\
where 61 € [0,2n] and 6, € [0,7] for £ = 2,3,...,N — 1 (the 6; are the
Euler angles). Thus the ”angular” component o € SV~! of the spherical
coordinates (r, o) of x € RY is denoted by o = (1,...,0n_1).

We consider an unbounded non-degenerate k-dihedron defined as follows.
Let k € [2, N]NN and let A be given by

Ao (0, 1) % H;?;Ql(aj,a;) if k> 2
(0’ al) ifk=2
where
0<ar<2m, O<aqj<a;j<m j=2,.,k—1
We denote by S4 the spherical domain
N-1
(2.2) Sy={zecRY:|jz|=1,0€ Ax H[O,?T]}CSN_l}
j=k
and by D4 the corresponding k-dihedron,
Dy={zx=(r,0):r>0,0 € Sa}.
The edge of D4 is the (N-k)-dimensional space
(2.3) da={z:x21 =29 =...=121 =0}

2.2. Separable harmonic functions and the Martin kernel in a k-
dihedron. In the system of spherical coordinates, the Laplacian takes the

form
sN—-1 U

N -1 1
Au = Oppu+ ——0u+ A
r r

where the Laplace-Beltrami operator AS is expressed by induction by

N-1
1 0 ou
A — : _ N—-2
sn-1¥ (sinHN_l)N—Q 00n_1 <(Sln9N 1) 8(9]\[_1)
(2.4) !
A U

(sin GN_l)Q sN=2 7"
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and
(2.5) A u= 0ppu
If we compute the positive harmonic functions in the k-dihedron D4 of the
form
v(z) =v(r,o) =r"w(c) inDs, v=0 in0dD4\ {0}.
we find that x satisfies the algebraic equation
(2.6) K24+ (N =2)k—Xs=0

where A4 is the first eigenvalue of —A_, , in WO1 ’2(5 4) and w is the corre-
sponding normalized eigenfunction:

A, w+daw=0 in Sy

(27) { ’ w=0 on dSy.
Thus

1

Ky = —(2—N+\/ +4)\A)

(2.8) %

-3 (2 ~N-/(N-22+ 4AA)
Since

(2.9) SN—1 — {a ERVIXxR:0= (o2sinOn_1,co80n_1), 09 € SN_Q} ,
we look for w := w{l} of the form
w (o) = (sinOy_1)*wi(02), On_1 € (0,7), o9e SN2
Here SN=2 = SN=1n {2y = 0} and we denote
SN — g n{ay =0}, DY :=Dyn{zy =0} cRVL
Then (2.8) jointly with relation (2.4) implies
AsN72w{2} + M —r)w =0 on SI{L‘N_Z}

2.10
( ) w2t =0 on 8S£1N_2}.

Since we are interested in w{?} positive, )\;{42} = A4 — k4 must be the first
eigenvalue of —A_, , in I/V0 (S{N 2})

Next we look for positive harmonic functions @ in DEN_Q} such that
@(xy,... . xn_1) =1 w(oy), @=0on (9D1{4N72}
The algebraic equation which gives the exponents is
()2 + (N = 3)s' = AP =0,

Denote by /{’+ the positive root of this equation. By the definition of )\:{42},

+ (N —3)kt — A {2}—n++(N—2)n+—)\A:O.
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Therefore x/, = k4. Accordingly, if k£ > 3, we set
w{z}(Uz) = (sin GN_Q)K+W{3}(03),
an find that w3} satisfies
AsN73w{3} + (A4 — 2n+)w{3} =0 in SEN_g}

2.11
( ) w3 =0 on 853\[73},

where

SilN_g} =S4N {.%'N =IN_1= 0}.
Performing this reduction process (N-k) times, we obtain the following re-
sults.

(i) If k > 2 then
(2.12) w(o) = (sinOy_1 sinOy_o...sin O )+t F 1 oy 0)
where
ON_k+1 € Gkl — gN=1 {zny =,zny_1 =+ =z =0},
and o' := wN=F+1} gatisfies
A, w+Aa—(N—-k)kp)w' =0, in S(gk*l}

(2.13) s
w' =0, on 8529_1},

Silk—l} =San{ey =2y 1=...=23,1 =0} ~ A

and Ay — (N — k)r4 is the first eigenvalue of the problem. In such a case,
it is usually impossible to determine more explicitly wi¥ =5t} and Ay —
(N — k)k, except for some very specific values of a; and a;-, associated to
consecutive zeros of generalized Legendre functions.

(ii) If £ = 2 then

(2.14) w(o) = (sinOy_1sin Oy _...sin B)+w N1 (0))
where on_1 € S' &~ 0 € (0,27), and wIN=1} satisfies

Aslw{Nfl} + s - (N=2k )1 =0 on Sill}

2.15
(219) w1} =0 on 851{41},

with BSE} ~ (0, ). In this case

(2.16) Ky = g w1(8,) = sin(n6; /o),
and
7T2 7T2 s

Observe that % < k4 with equality holding only in the degenerate case
a = 27 (which we exclude).
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In either case, we find a positive harmonic function v4 in D4, vanishing
on 9D 4, of the form

va(x) = |2[** w(z/ |2])
with w as in (2.12) (for k& > 2) or (2.16) (for k=2).

Similarly we find a positive harmonic function in D4 vanishing on 0D 4 \
{0}, singular at the origin, of the form

Ky(@) = o] w(/|al), k- =2-N—ry.

Because of the uniqueness of the kernel function (see e.g. [3]), K'i(x) is, up
to a multiplicative constant c4, the Martin kernel of the Laplacian in D 4,
with singularity at 0. The Martin kernel, with singularity at a point z € d4,
is given by

(sinfy_1sinfn_s...sin Hk)"f”*w{N*kJrl}(O'N,kJrl)

(2.18)  Ku(z,z)=c, |z — 2|N-2Fhs

for every € D 4. From (2.1)

sinfy_1sinfy_s...sin by = |z — z\_l\/x% + 23+ ..+l
Therefore, if we write 2 € RY in the form z = (2/,2"), 2’ = (z1, ..., 21),
2" = (Tg41, -+ ,ZN), we obtain the formula,
‘x/’H+w{N7k+1}(UN7k+1)
|z — 2|(N-2F2k)
e oy )
—*A (|x/|2 + |x” _ Z|2)(N—2+2f-;+)/2'

Ka(z,z)=c,
(2.19)

Therefore, the Poisson potential of a measure p € M(d4) is expressed by

Klul(z) = c,|o/|*+ 0N on_pp)

(2.20) du(z)
<L (

’x/‘Z + ‘x// _ Z‘Q)(N—2+2f€+)/2.

2.3. The admissibility condition. Consider the boundary value problem

~Au+u/tu=0 inDy
2.21
(221) { u=p€MODy).

Let v/ = |x/|’ P = |x//|’

(2.22) Ip={xz= " 2" 7" <R+ <R}
and let pr denote the first (positive) eigenfunction in Dy g := Dg NTg.

By (1.5), the admissibility condition for a measure u € MM(d AN R) relative
to (2.21) in D g is

(2.23) K[|l (2)° py (2)dee < oc.

Dar
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where K% is the Martin kernel of —A in D A,r- Near d 4 this kernel behaves
like the Martin kernel of the dihedron D 4. Furthermore, the first eigenfunc-

tion p, of —A in VVO1 ’2(D A,r) behaves like the regular harmonic function v4.
Therefore

(2.24) pa(@) ~ ()W (o)

and the admissibility condition for a measure p € M(dy) is

(2.25) / K[|pl](x)]9p(x)dz < 00 VR > 0,
TrND4

with I'p as in (2.22). By (2.20),

(2.26) Kllpl(z) < e ()™ /RN_kj(SC',SU" — 2)d|ul(2)

where

2.27 j(x) = |x|VT22R+ v e RY.

(2.27) j(x) = |x]

Therefore, using (2.24), condition (2.25) becomes

R
(228) /0 /| | R( /R - ja' 2" = 2)d|ul(2)) " () < oo
x| < -
for every R > 0.

2.4. The critical values. Relative to the equation
(2.29) —Au+ |u|Ttu =0

there exist two thresholds of criticality associated with the edge d4.

The first is the value ¢} such that, for ¢ < ¢ the whole edge d4 is
removable relative to this equation, but for 1 < ¢ < ¢} there exist non-
trivial solutions in D4 which vanish on 0Dy4 \ d4. The second ¢. < ¢}
corresponds to the removability of points on da4. For ¢ > ¢, points on d4
are removable while for 1 < g < g, there exist solutions with isolated point
singularities on d4. In the next two propositions we determine these critical
values.

Proposition 2.1. Assume ¢ > 1,1 < k < N. Then the condition

2—k+/(k—2)2+4 s — 4(N — k)r
AA— (N—]C)I{+

(2.30) g<qi=1+

is necessary and sufficient for the existence of a non-trivial solution u of
(2.29) in D4 which vanishes on 0D a\da. Furthermore, when this condition
holds, there exist non-trivial positive bounded measures p on da such that
Klu] € LATrN Dy).
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Remark. The statement remains true in the case k¥ = N, which is the case
of the cone. In this case ¢. = ¢& = 1+ (2/ag) (defined in (1.6). However, in

the present notation, ag = —k_ and a straightforward computation yields:
N+2+44/(N—-2)24+4x4
(2.31) G =
— 24 /(N 24404

Proof. Recall that Ay — (N —k)r is the first eigenvalue in S(gk*l} (see (2.13)
and the remarks following it). Let !, k" be the two roots of the equation

X2+ (k=2)X —(Ma— (N —k)ky) =0,

i.e.

(2—ki\/ )2 +4(Aa — (N — k)ry).

Then, by (1. ) and (1.8), if 1 < ¢ < 1—(2/r_) (note that because of a
change in notation the entity denoted by ag in (1.6) is the same as —r’
in the present section) there exists a unique solution of (2.29) in the cone
ng_l i.e. the cone with opening Sf(l c §*=1 ¢ R* with trace ady (where
Jdo denotes the Dirac measure at the vertex of the cone and a > 0). By (1.8)
this solution satisfies

(2.32) ug(x) = alz| *o(z/|z])(1 +0(1)) asz — 0,

where ¢ is the first positive eigenfunction of —A’ in VVO (Sfl_l) normalized
so that uq possesses trace dy.
The function u given by

g (', 2") = ua(2") V(2 2") € Da = ngq x RN,

is a nonzero solution of (2.29) in D4 which vanishes on 0Dy \ d4 and has
bounded trace on dy4.

A simple calculation shows that 1 — (2/k_) equals ¢} as given in (2.30).

Next, assume that ¢ > ¢} and let u be a solution of (2.29) in D4 which
vanishes on 9D 4 \ d4.

Given € > 0 let v be the solution of (2.29) in DgN_k_l}\{x/ ceRF: 2| <
€} such that

oo, if |2/|=e.

e {N—k—1}
(el = {o, if o/ € 9D

Given R > 0 let w, be the maximal solution in {2 € RN=F . |2”| < R}.
Then the function u* given by

is a supersolution of (2.29) in Dy \ {(2/,2") : |2/| > ¢, |2”| < R} and
it dominates u in this domain. But w,(2”) — 0 as R — oo and, by [8],
ve(x') = 0 as € = 0. Therefore uy = 0 and, by the same token, u_ = 0. O
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Proposition 2.2. Let A be defined as before. Then
(2.33) Klu] € LI{TrN Da) Vp€M(da), VR>0
if and only if
Ky + N
ky + N —2
This statement is equivalent to the following:

Condition (2.34) is necessary and sufficient in order that the Dirac mea-
sure g = dp, supported at a point P € dy, satisfy (2.33).

(2.34) 1<q<q :=

Proof. 1t is sufficient to prove the result relative to the family of measures
such that p is positive, has compact support and p(dg) = 1. Let R > 1 be
sufficiently large so that the support of p is contained in I'g /5. The measure
u can be approximated (in the sense of weak convergence of measures) by
a sequence {u,} of convex combinations of Dirac measures supported in
da N Tgsy. For such a sequence K[u,] — K[u] pointwise and {K[u,]} is
uniformly bounded in Da \ I'3p/4. Therefore it is sufficient to prove the
result when g = dp. In this case the admissibility condition (1.5)) is

R
/ / j(x)q(T/)(q+1)m++k—1dx//drl < 0,
0 |z |<R
i.e.,
R rR
/ / |x|q(2—N—2f;+)(T/)(q+1)n++k—1(T//)N—k—ldrudr/<OO‘
0 Jo

Substituting 7 := " /r’ the condition becomes

R rR/r 9o N_on
/ / / (1+ 7'2)2(2 N2 +)(7“')‘1(27]\[7’”)Jr'“rJrN*17']\[4“1d7’ dr’ < oo.
0 0

This holds if and only if ¢ < (k4 + N)/(k+ + N — 2). O

Remark. Tt is interesting to notice that k does not appear explicitly in (2.34).
Furthermore, we observe that

2 2

(235) ( de —N) :)\A<:>H+(/€++N—2):)\A,
¢e—1\g—1

which follows from (2.8). This implies that there does not exist a nontrivial

solution of the nonlinear eigenvalue problem

2 2q _ .
(2.36) _ASle_q—1<q—1_N>w+W =0 inSp,

Y=0 in 3SDA
which, in turn, implies that there does not exists a nontrivial solution of
(2.29) of the form u(z) = u(r,o) = |z|72/(¢=Dy(0), and also no solution
of this equation in D4 which vanishes on 9D 4 \ {0}. This is the classical
ansatz for the removability of isolated singularities in d 4.
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3. THE HARMONIC LIFTING OF A BESOV SPACE B™*P(dy).

Denote by WP(RY) (0 > 0, 1 < p < oo) the Sobolev spaces over R, In
order to use interpolation, it is useful to introduce the Besov space B (R")
(0 > 0). If o is not an integer then

(3.1) B7P(RY) = WP (RY).
If o is an integer the space is defined as follows. Put

Apyf=flz+y) + flz—y) —2f(2).

Then
i
(3.2) BYP(R) = {f € LP(RY) : » ‘H—yﬁ/p € PR x RY) ¢,
with norm
1/p
63 s = I+ ([ o)

(with standard modification if p = co) and

B (RY) = {f € WrThI(RY)
(3.4)
DYf € BW(RY) Va e N, |a| =m — 1}

with norm

DeA, , fIP
3.5 = . § | DY dad
(3.5) 1 £l gme = Il fllym-1 + //fow |y[C+p Y

la|=m
We recall that the following inclusions hold ([25, p 155])
WmP(RY) c B™P(RY) if p>2
B™P(RY) c W™P(RY) if 1 <p<2.

When 1 < p < oo, the dual spaces of W*P and B™P are respectively denoted
by W57 and B—mr

The following is the main result of this section.

1/p

(3.6)

Theorem 3.1. Suppose that q. < q < q; and let A be defined as in subsec-
tion 2.1. Then there exist positive constants cy,co, depending on q, N, k, k4,
such that for any R > 1 and any p € My (da) with support in Br/y:

Cl ||Iu’||fos,q(]RN7k)

< K[lul)(@)p(z)dz < c2(1+ R)? ol av-s)

Dar

(3.7)

where s =2 — 8 8 = (¢ 4+ 1)ky +k—1 and Dag=DaNTx. If g =g

the estimate remains valid for measures v such that the diameter of supp u
is sufficiently small (depending on the parameters mentioned before).
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Remark. When ¢ > 2 the norms in the Besov space may be replaced by the
norms in the corresponding Sobolev spaces.

Recall the admissibility condition for a measure p € M, (d4):

K[p]¥(z)p(z)dr < oo VR >0

Da,r

and the equivalence (see (2.25)—(2.28))

(3.8) /D K] (z)p(z)dx ~ J4F(p) =

f du(z) a
(q+ 1)k k=14 1
/0 /B;; (/RN (7% + \x”—zP)!)(N—?Hm)m) T dz”dr,

where z = (2/,2") € RExRN=F 7 = |2/| and BY, = {2 e RN~F . |2"| < R}.
We denote,

(3.9) v=N—2+42k,.

If 2k is an integer, it is natural to relate (3.8) to the Poison potential of
pwin R? =Ry x R,y where n = N — 2 4+ 2k,. We clarify this statement
below.

Assuming that 2 < n + k — N, denote

y=uy") R, T= (2, Yntk-N), Y = Untk-N+1,7"  Un)-

The Poisson kernel in R} =R, x R,,_1 is given by

(3.10) Po(y) = vwylyl™ w1 >0,

for some v, > 0, and the Poisson potential of a bounded Borel measure p
with support in

d:={y=(0,y") eR": 3" e Ry_p}
s

dp(z)
B11) - Kalul(y) = rom /RN_k (7 + [92 + ly" — =I?)

2 Vy € RY.

In particular, for iy = 0,

du(z
(312) Ky [M](yh 0, y”) = ’Ynyl/ M( ) n/2"
RNk (y% + ’y// _ 2’2)

The integral in (3.12) is precisely the same as the inner integral in (3.8).
In fact, it will be shown that, if we set

(3.13) n:={v} =inf{m e N:m > v},

this approach also works when 2k is not an integer. We note that, for n
given by (3.13),

(3.14) n—N+k>2,
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with equality only if k = 3 and k1 < 1/2or k =2 and k4 € (1/2,1]. Indeed,
n—N+4+k=k+{2k:} -2

and (as ky > 0) {2k} > 1. If K = 2 then x4 > 1/2 and consequently
{2k4} > 2. These facts imply our assertion.
We also note that k. is strictly increasing relative to A4 and

=1, if Dy =RY,
(3.15) Ky <1, if Dy SRY,
> 1, lfDAng.

Finally we observe that v := Ag — (N — k)k4+ > 0 (see (2.13)) and, by (2.8)
and (2.30):

—(k=2)++/(k—2)2+ 4y
- :

Therefore ¢ is strictly decreasing relative to v and consequently also relative
to k4.

The proof of the theorem is based on the following important result proved
in [26, 1.14.4.]

(316)  y=rt+(k—2ry, @ =1+

Proposition 3.2. Let 1 < g < oo and s > 0. Then for any bounded Borel
measure pi in R"~1 there holds

Gan) 260 = [ Rl eyl g
+

In the first part of the proof we derive inequalities comparing I(x) and
J A’R(u). Actually, it is useful to consider a slightly more general expression
than I(u), namely:
q
—y1,,09—1
eyt dy,

mvj o—
18 I = [ -

/ 1dp(z)

— 2
B (g2 + (2 + y — 2[2)”
where v is an arbitrary number such that v > m, 7 > 1 and ¢ > 0. A point

Yy € RTH is written in the form y = (y1,7,vy") € Ry x RI~1 x R™. We
assume that p is supported in R™. Note that,

(3.19) I(M):'y?llgfg where m=N—-k, j=n—m=n—N+k.

Put
/ dp(2) !
o (724 [y = 22) 72

dy" V1 €|0,00).

(3.20)  Funlp)(r) = /

With this notation, if j > 2 then

(321)  I%(u // Fymlp y1+\y!2)e w1y T gy
RI—1

m
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and if j =1

(3.22) I () = /O ol (y)e 1 dy,

Lemma 3.3. Assume that m < v, 0 < 0,2 < j and 1 < q < co. Then
there exists a positive constant ¢, depending on m,j,v,o,q, such that, for
every bounded Borel measure u with support in R™:

1 o . o
623) ¢ [ Funlil by (r)r < 170 < ¢ [ Fuulplmhe ),
where F, , is given by (3.20) and, for every T >0,
o+ 1)g+j—2
(3.0 hasr) = { T 707
e~ Trleta—l - irg =1,

ifj =2,

Proof. There is nothing to prove in the case j = 1. Therefore we assume
that j > 2.

We use the notation y = (y1,7,%”) € R x R/~! x R™. The integrand in
(3.21) depends only on y; and p := |y]. Therefore, I)¥ can be written in
the form

I ( —cmj/ / W] (\/y? +p)6 vy gy =24,

We substitute y; = (72 — p )1/ 2 then change the order of integration and
finally substitute p = r7. This yields,
Cil m,] ( )

m,] I/O'

/ / Fym p] 2,-VT 2—p? (T2 . p2)(o+1)q/2717_d7_ dp
/ / Fym p] 2 7\/7—2 (7_2 . p2)(0+1)q/2717_dpd7_

7_] 2+(o+1)g 7T\/17T2f(’l“)d’l“ dr,

where
£l = P = g,
We denote
= /1 e*Tmf(r)dr
so that ’

(3.25) I3 (1) = ey / Fyom 1) (7)r 204 13 (7).
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To complete the proof we estimate IZ. Since j > 2, f € L'(0,1) and I is
continuous in [0, c0) and positive everywhere. Hence, for every a > 0, there
exists a positive constant ¢, = ¢4 (o) such that

1 .
(3.26) — < I} <e¢y in [0,a).
Ca

Next we estimate IZ for large 7. Since j > 2,

1
[ < 2letDa/2-1 / (1 — p)otDa/2-1 - rVITr g
0

Substituting r = 1 — ¢ we obtain,

1
(3.27) ]g < 2(U+1)q/2/ Hlo+1)g—1 —t7 gy _ (o, q)T—(O'—i—l)q‘
0

On the other hand, if 7 > 2,
1
(1) = / (1 — 2)U=3)/2ylot a1t gy
0
(3.28) = 7ot /T(l — (s/7)%)UB/25le+ a1 =5 g
0

1
> 7_(0+1)q2(j3)/ S(UJrl)qflefst.
0

Combining (3.25) with (3.26)—(3.28) we obtain (3.23). O
Next we derive an estimate in which integration over R” = Ri x R™ is
replaced by integration over a bounded domain, for measures supported in
a fixed bounded subset of R™.
Let B}(0) and B}}(0) denote the balls of radius R centered at the origin,
in R7 and R™ respectively. Denote

R N du(z)
s20) = [ |

q
dy" V1€ [0,00)

m
R

and, if 7 > 2,

B30 IR = [ ER /R e dd.
BLn{0<y1}
where (y1,7) € R x RI7L If j = 1 we denote,
R
(3.31) s B) = [ F e i .
0

Similarly to Lemma 3.3 we obtain,

Lemma 3.4. If j > 1, there exists a positive constant ¢ such that, for any
bounded Borel measure p with support in R™ N By
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(3.32)
R
—{/ Db < 127 i B < ¢ [ F oy (r)dr
0
with he; as in (3.24).

Proof. In the case j = 1 there is nothing to prove . Therefore we assume
that j > 2.
From (3.30) we obtain,

R2
m — o+1)g—1 i
I (s R —cmvg/ / (V52 + p2)e iyl dyy p2dp.

Substituting y; = (72 — ,02)1/2, then changing the order of integration and

finally substituting p = r7 we obtain,

C;nl] l/O' a / / 7'] 2+(0+1) T 1_r2f(7‘)d7‘ dr.
where
f(?“) _ 7“j72(1 N r2)(0+1)q/271.
The remaining part of the proof is the same as for Lemma 3.3. O

Lemma 3.5. Let 1 < ¢, 0 < ¢ and assume that m <vq and 0 < j—1 <
v. Then there exists a positive constant ¢, depending on j,m,q,o,v, such
that, for every R > 1 and every bounded Borel measure p with support in

Br(0) NR™,
A Pl (7)o w—/ oy (7)dr

SCR (o+1—v)g+m+j—1 H/‘Hq

(3.33)

with he; as in (3.24).

Proof. We estimate,

e R
| Bl Ohasm)r = [ (D (r)r
0 0

00 R
| 1Bl 0o (r)dr + [ Bl = L] (7)o e
R 0

(3.34)

For every 7 > 0,

(3.35) [Emp]| (1) < 777 |1l -
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Since j — 1 < vgq, it follows that

r

Bunltd] (Vs () < il [~ 7 hi(r)r

0+1 )g+7i—2—vq
(3.36) ¢(0,q) Hqum/ e
c(o,9) 1o
< Oy
Since, by assumption, supp i C Br/o, we have
f R
/0 | Fvmlte] = Fyin 1] (7) Do (T)dr
dp(2) Ry
dy"he ;(T)d
/ /u|>R /Rm (T2 + |y — Z|2)1//2 Y 7](7—) T

(3.37)

IN

IN

| /\

IN

“(wg—m)((c+1)g+j—1) [/l

il / / (7 + [CP)™9/2 dC by jdr
0 J[KI>R/2

R [’
e(m, q) |l / / (72 4 292 dp by sd

e(m, q) l%, / ma / Ly

C(m7Q) HMHq Rm—uq/ T(a+1)q+j—2 dr
vg—m m 0

c(m, q) q R(o‘—l—l)q—i—j—l—i—m—uq.

Combining (3.34)—(3.37) we obtain (3.33). O

Corollary 3.6. For every R > 0 put

(3.38)

Then

(3.39)

JmJ / (0+1)q+J 2.

1
EIS?’]( ) - CRﬁ H,uHm < vaj(u R) < cR(U-l-l)qu,]( )

B=(+1-v)g+j+m—1,

for every R > 1 and every bounded Borel measure p with support in BZL/Q(O) =
Bpr2(0) NR™.

Proof. This is an immediate consequence of Lemma 3.5 and Lemma 3.3. [

Lemma 3.7. Let m,j be positive integers such that 7 > 1 and let 1 < g,
0<o. Putn:=m+j.
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Then there exist positive constants c, ¢, depending on j,m, q, o, such that,
for every R > 1 and every measure ju € M1 (Bp (0)),

1 — U—n—_/l m
1l gy — BT iy < I s )

(3.40)
SCR(J+1 H/’LHB oq(Rn 1)
If o < 2 , , there exists Ry > 1 such that, for all R > Ry
(341) o, HMHB o.q(Rn—1) < J;ZL(,T](M’ R)

If o = ”q—fl then, there exists a > 0 such that the inequality remains valid
for measures such that diam(supp p) < a.
If, in addition, 152 < o then

(3.42) < JMJ(u; R) < cRETD

”MHB sa(Rm) Nl o gy »

i1

it

Remark. Assume that g > 0. Then:

(i) If p € B~79(R""!) and L% > o then u(R™) = 0.

(ii) If p € B~®4R™) and 0 > (n — 1)/¢ then s > m/q¢ and therefore
B%7(R™) can be embedded in C(R™).

where s := o —

Proof. Inequality (3.40) follows from (3.39) and Proposition 3.2 (see also
(3.19)).

For positive measures p,
H:U’HE);R :U’(Rn 1) < H/‘HB o.q(Rn—1)

Therefore, if o < "q, , (3.40) implies that there exists Ry > 1 such that
(3.41) holds for all R > Ry.
If o = 21 (3.40) implies that

- HMHB ca@n-ty — Clllliy < I (s R).

But if x is a positive bounded measure such that diam(supp p) < a then

”M”m/”MHB o.(Rn-1) —0 asa—0.

The last inequality follows from the imbedding theorem for Besov spaces ac-

cording to which there exists a continuous trace operator T : B% (R*~1)

B¢ (R™) and a continuous lifting 77 : B¢ (R™) — B%4 (R 1) where

n—m—1 O
¢

S=0 —



BOUNDARY TRACE IN DIHEDRAL DOMAINS 23

If v €Nand o= s+ =01 L

JlTéufm / (o+1)q+1/ m=2 g

/ (s+u m)g— L dr

However, if p is positive, the expression

(3.43) / yristy=ma=l gr

is meaningful for any real v > m and s > 0. Furthermore, as shown below,
the results stated in Lemma 3.7 can be extended to this general case.

Theorem 3.8. Let 1 < q, v € R and m a positive integer. Assume that
1 <v—mand 0 < s < m/q. Then there exists a positive constant c
such that, for every bounded positive measure p supported in R™ N Bg /o (0),
R>1,

(3.44) < M (s R) < eRETTI )|

= q
- H/’LHB—S,II(Rm) (R™) *

This also holds when s = m/q', provided that the diameter of suppp is
sufficiently small.

Proof. If v is an integer and j := v — m then this statement is part of
Lemma 3.7. Indeed the condition s > 0 means that o = s + ] LS ];, and

Therefore we assume that v ¢ N. Let n = {v} and 6 := n — v so that
0 < 6 < 1. Our assumptions imply that 1 <n —m — 1 because (as v is not
an integer) v —m > 1 and consequently n —m > 2.

If a,b are positive numbers, put

qlstr—m)g—1

Ay = 7(012 + b2)uq/2 .
Obviously A, decreases as v increases. Therefore, A, < A, < A,_1 which
in turn implies,
MrTs < M;TL,S < M:Ln—l,s
By Lemma 3.7, the assertions of the theorem are valid in the case that v = n
or v = n — 1. Therefore the previous inequality implies that the assertions
hold for any real v subject to the conditions imposed. O

By (3.8),
R
JA,R _ / Ffm(T)T(qul)/erJrkfldT,
0
where m = N — k and v = N — 2 + 2k. Consequently, by (3.38),
JA R Mm
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where s is determined by,
(s+v—m)g—1=(¢+Dry+k—-1, k=v—-—m+2-—2k4.
It follows that
sq=—(k=2+2r)q+ (q+ ks + b=kl —q) +29 — k(g —1)

and therefore

k
§=12— +/K+.
q
Proof of Theorem 3.1.
Put
k
(3.45) vi=N—-2+42,, s=2-"421% 1 N_k

q
Recall that in the case k = 2 we have ky > 1/2. Therefore

(3.46) v—-m—1=k—3+2ky >0.
Furthermore,
(s+v—m)gq—1=(q+ Dk +k—-1, k=v—m+2-2k
Thus
AR "R 1 k—1
JD :/0 Fl,7m(7')7'(‘1+ Yt th— dT:Mﬁfs.

Next we show that 0 < s < m/q’. More precisely we prove

(3.47) 0<s<m/d <= q¢<q<dq.

Let u be a bounded non-negative Borel measure in B~*4(R™). If s < 0,
B~#4(R™) c LY(R™). Therefore, in this case, every bounded Borel measure
on R™ is admissible i.e. satisfies (2.33). Consequently, by Proposition 2.2,
q < qe- As we assume ¢ > q. it follows that s > 0.

If, s > 0 and s¢'—m > 0 then C; , (K) = 0 for every compact subset of R™
and consequently u(K) = 0 for any such set. Conversely, if s¢' —m < 0 then
there exist non-trivial positive bounded measures in B~*%(R™). Therefore,
by Proposition 2.1, s¢’ < m if and only if ¢ < ¢.

In conclusion, 0 < s < m/q and v — m > 1; therefore Theorem 3.1 is a
consequence of Theorem 3.8. U

ko +k

Remark. Note that the critical exponent for the imbedding of B~ u (RN=FK)
into C(RV=F) is again
N —|— R4

QZQC:N+K+_2-
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4. SUPERCRITICAL EQUATIONS IN A POLYHEDRAL DOMAIN

In this section q is a real number larger than 1 and P an N-dim polyhedral
domain as described in subsection 6.1. Denote by {Ly; : k=1,...,N, j =
1,...,ng} the family of faces, edges and vertices of P. In this notation,
L1 ; denotes one of the open faces of P; for k =2,..., N — 1, L ; denotes
a relatively open N — k-dimensional edge and Ly ; denotes a vertex. For
1 <k < N, the (N — k) dimensional space which contains Ly ; is denoted
by R;y “* If1 <k < N, the cylinder of radius r around the axis R;y —F will

be denoted by onj , and the subset Ay ; of Sk=1 is defined by
o1
llir(l] ;(6 z(,)j,r N P) = Lk,j X Ak,j-

Ay, j is the 'opening’ of P at the edge Ly ;. For & = N we replace in this
definition the cylinder I'Y; = by the ball B,(Ly;). For 1 < k < N and

A = Ay j we use dq as an alternative notation for ]Ré.vfk and denote by D 4
the k-dihedron with edge d4 and opening A as in subsection 6.1 (with S4
defined as in (2.2)). For k = 1, D 4 stands for the half space Rj-v_l x (0, 00).

In what follows we denote by 9)?? the set of bounded measures p on the
boundary of a Lipschitz domain €2 such that the boundary value problem
(4.1) —Au+u!=0 inQ, u=p on dN

possesses a solution. A measure p in this space is called a ¢-good measure.
Furthermore, if u is a positive solution of (1.1) in Q such that

(4.2) /qudx < 00,
Q

it possesses a boundary trace which is a bounded Borel measure, and thus
a g-good measure [22, Proposition 4.1].

The following statements can be proved in the same way as in the case of
smooth domains. For the proof in that case see [17].

I. S)ﬁf; is a linear space and
Q Q
peEM; < |ul €,

IT. If {uy,} is an increasing sequence of measures in S)ﬁf; and p := lim pu,, is
a finite measure then p € S)ﬁf}.

Proposition 4.1. Let p be a bounded measure on OP. (n may be a signed
measure.) Fori=1,...,N, j =1,...,n;, we define the measure uj; on
dA,w. by,

pg = poon Lig, pg =0 onda;\ Ly -

Then u € 9)?5, i.e., problem

(4.3) —Au+u?=0 in P, u=p ondP
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possesses a solution, if and only if, uk j is a g-good measure relative to D a,
for all (k,j) as above.

Proof. In view of statement I above, it is sufficient to prove the proposition
in the case that u is non-negative. This is assumed hereafter. If u € zm§
then any measure v on JP such that 0 < v < pu is a g-good measure relative
to P. Therefore

w e 93?5 == uﬁw» = XL, € 9)15.

Assume that p € 9)?5 and let uy, ; be the solution of (4.3) when p is replaced
by py, ;- Denote by uj . the extension of uy, ; by zero to the k-dihedron Dy, ;.
Then u;w. is a subsolution of (1.1) in Dy, ; with boundary data p ;. In the
present case there always exists a supersolution, e.g. the maximal solution
of (1.1) in Dy, , vanishing outside da, ; \ Lg;. Therefore there exists a
solution vy ; of this equation in Dy, ; with boundary data py j, i.e., pk,j is
q-good relative to D4, ;.

Next assume that 4 € 9(JP) and that py ; is g-good relative to Dy, ; for
every (k, j) as above. Let vy ; be the solution of (1.1) in D4, , with boundary
data py ;. Then vy ; is a supersolution of problem (4.3) with p replaced by
'u;% j and consequently there exists a solution uy ; of this problem. It follows
that

wi=max{uy;:k=1,....,N, j=1,...,n4}
is a subsolution while
W = Z U j
k=1,...,N, j=1,...,np
is a supersolution of (4.3). Consequently there exists a solution of this

problem, i.e., u € zmj O

4.1. Removable singular sets and ’good measures’, 1.

Proposition 4.2. Let A be a Lipschitz domain on S*1, 2 < k < N —1,
and let D 4 be the k-dihedron with opening A. Let pn € MM(ID4) be a positive
measure with compact support contained in dg (= the edge of D). Assume
that p is g-good relative to Dy. Let R > 1 be large enough so that supp p C
Bg_k(O) and let u be the solution of (1.1) in DX with trace p on d% and
trace zero on ODE\ dff. Then:

(i) For every non-negative n € 080(33{\;%72(0)),

/nq,du Schl/ ul pdr+
df D}

(4.4) 1
/ 1 1
q q - ; )
+cM (/Au pd:ﬂ) <1—|—M ||77||[q (df{))
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where M = ||n|| .« and p is the first eigenfunction of —A in D normalized
by p(zo) = 1 at some point xy € Df. The constant ¢ depends only on
N,q,k,x9, \1, R where Ay is the first eigenvalue.

(ii) For any compact set E C dy,

(4.5) CNFE)=0= pu(E)=0, s=2-
where Cé\fq*k denotes the Bessel capacity with the indicated indices in RN 7K.

Remark. 1f we replace D by Df’R =DyN B%(O) N BY7*(0), R > 1, then
the constant ¢ in (i) depends on R but not on R.
Proof. We identify d4 with R¥=* and use the notation
= (z',2") e RF x RNF =12
Let 7 € C3°(RN=F) and let R be large enough so that suppn C Bg/gk(O).
Let w = wg(t, 2”) be the solution of the following problem in R x Bg_k(()):

Opw — Agrw = 0 in RT x BN %(0),
: N—-k
(4.6) w(0,2") =n(z") in By~",
w(t,2”) =0 on aBg_k(O).

Thus wgr(t,-) = Sg(t)[n] where Sg(t) is the semi-group operator correspond-
ing to the above problem. Denote,
(4.7) Hpln)(«',2") = wr(|2'|*,2") = Sr(y*)nl(="), y=Ia|

We assume, as we may, that R > 1. Let pf* be the first eigenfunction of
—A,» in the ball Bg_k(O) normalized by p(0) = 1 and let p4 be the first
eigenfunction of —A,s in C4 (where C4 denotes the cone with opening A
in R¥) normalized so that pa(zf) = 1 at some point zf, € Sa. Then p%py
is the first eigenfunction of —A in {z € D4 : |2”| < R}. Note that pf* <1
and p® — 1 as R — oo in C%(I) for any bounded set I ¢ RV,

Let h € C*°(R) be a monotone decreasing function such that h(t) = 1 for
t <1/2 and h(t) =0 for t > 3/4. Put

Yr(z') = h(|2'|/R)
and
(4.8) Cr = patrHRn)? .
If pf} is the first eigenfunction (normalized at x¢) of Df := D4 NTg (T'r as
in (2.22)) then
(4.9) patr < cp
and pRpf} is the first eigenfunction in Dﬁ.

Hereafter we shall drop the index R in (g, Hr,wr but keep it in the other
notations in order to avoid confusion.
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We shall verify that ¢ € Dﬁ. To this purpose we compute,

AC =~ Mpar)H + (pavr) AH N + 2V (pathr) - VH[n)
=~ MC A+ (pavr)(H)? L AH
+ (¢ = 1)(patr) (H[n))? ~*|VH]?
+2q (H[n)" ' V(patr) - VH[n).

(4.10)

In addition,

x/

VHn| =V Hn + Ve Hnl = 0,H [n]g + Vo H 1]

= 2yduw(y?, w); + Vo Hn) (2!, 2")

and consequently (recall that y stands for |2/|),

VH(n - V(pavr)
= 20y, a")a’ - (W (/1" s (e’ ) + 12 19en(@' [9)) + p4V )

= 2k 0pw(y®, 2") |2’ [*Fwi(a' fy) = 200w(y®, 2") (ki pavr + paz’ - Vig).

Since w = wpg vanishes for |z”| = R and 7 = 0 in a neighborhood of
this sphere, |0;w(y?,z")| < cp®. As g vanishes for |2/| > 3R/4 we have
paViYpr < cpf}. Therefore

IVH[n] - Vpal < cp™pk
and, in view of (4.10),
(411) IA¢] < el
Thus ¢ € X(D%) and consequently

(4.12) /D

Since (¢’ — 1)pa(H[n]))? 2|V H][n)|? > 0, we have

/D uACdx

R
A

< [ (M + ) GIAH + 29V L)) ) da

(—uAl +ui()dx = —/ K[u]Aldx.

R R
A DA

(4.13)
< MC+ g MoV AH 1+ 207V p.VH dzx
_/§U< 1(+4¢ (p |AH[n)| +2p~9|Vp [n]l))

< </DR u%dm)

1
/

(M </DRCd$> +q,L[77]Lq’(D§))

Q=
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where
(4.14) Lln) = p/* |AH[n)| + 29~ V|V p.V H]y]|.

By Proposition 5.2

(4.15) - /D

Therefore

Kacde = [ ' an

R
A dA

/nqld,u g/ ulCdr+
dB DE

A

(4.16) 1 .
+ </D§ uq§d$) A1 (/lngdﬂJ“) + " 1Ll o oy
Next we prove that
(4.17) LI o pry < C lInllyys.ar -y

starting with the estimate of the first term on the right hand side of (4.14).

AH[p) = Ap Hly| + AgrHl) = 2H) + == L0, 7] + A, H[y)

= 2y20pw(y?, 2") + kopw(y?, 2") + Ayr Hn)
= 2y°Opw(y®,2") + (k + 1)ow(y®,2").

Then
! 1 ’ ,

/ p|AH )| dx < C/ / | 0w (y?, 2")|* da"yr+ T2y
RN 0 JRN-k

1 !

se [ fotan| deryiay
0 JRN-K
,dt

1
= C/ / ‘attw(t7x//)‘q' dy" (k) /2+d" 22
- 0 RN—k t

1
+ c/ / |Oyw(t, ") dm”t(’”*'k)ﬂ@
0 Rka t

/1 q dt
<c -
0

lq/(RN—k) t
1
0

2-(1-"4*)) 225 () [n]
dt?

1-(1-2%) dS () [n]

2q’ - 7" -

dt

t

¢ dt

t

Lo’ @N—k)
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Put 8 = “;;,rk and note that 0 < g = %(2—8) < 1. By standard interpolation
theory,

/1 t1—(1—5)d5(t)[77] / dt
0 dt g @y-xy t
~ q ~ q
~ HUH[WQ’Q/’LQ/L_B’Q/ ~ H”?||W2(1—,B)7q/(RN7k)a
and ,
/1 21— SO || dt
0 dtz Lq/(]RN_k) t
~ ()14 ~ e
~ T] / / ~ 77 _ ’ _ .
” ”[W4,q ,La ]%(1—,8),(/ ” HW2(1 B),q (RN k)

The second term on the right hand side of (4.14) is estimated in a similar
way:

1 /
/ p*q//q |VH[77] . Vp|q dr < C/ / |atw(y2’xl/)|q dm/yn-o-Jrk‘fldy
RN 0 JRN-k

1 ;o nptk dt
< C/ / ‘(%w(t,x”)‘q d't 7 =
0 JRN-k t

<C/1 A-(2-p) aS@O) ] | at
0

dt Lq’(Rka) t
~ ‘|77H?/V2(1—,3),q’(RN7k) .

This proves (4.17). Further, (4.16) and (4.17) imply (4.4).

We turn to the proof of part (ii). Let E be a closed subset of Bg/gk(O)

such that C’;VJ]“(E) = 0. Then there exists a sequence {7, } in C§°(d4) such
that 0 <m, <1, n, =1 in a neighborhood of E (which may depend on n),
supp 1, C 3%72(0) and |1, |lyys.er — 0. Then, by (4.17),

HL[nn]HLq’(Df) — 0.

Furthermore

||wHqu((O,R)><Bg7k(O)) S c HnnHLq,(Bg*k(o))
and consequently

Hn, =0 in L7 (DY).

(Here we use the fact that & > 2.) In addition

0<Hna) <1, Hlnn] < (R = |2])
with a constant ¢ independent of n. Hence (see (4.9))

G = pabrH[m]" < pRpavrHm]" " < pPpfH(n, "

As uipfpR € LY(DE) we obtain,

lim ul(,dr = 0.
n—oo DA
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This fact and (4.16) imply that

/ n? dp — 0.
i

As 7, = 1 on a neighborhood of E in RN¥=¥ it follows that u(FE) = 0. O

Proposition 4.3. Let Dy be a k-dihedron, 1 <k < N. Let ky be as in (2.8)
and let ¢¢ and q. be as in Proposition 2.1 and Proposition 2.2 respectively.
Assume that q. < q < q’. A measure p € M(OD4), with compact support
contained in da, is q-good relative to D4 if and only if u vanishes on every

Borel set E C da such that Cs y(E) =0, where s =2 — IH;#.

Remark. We shall use the notation p < Cs o to say that p vanishes on any
Borel set E C (da) such that C, (E) = 0.
In the case k = N: Dy = C4 (= the cone with vertex 0 and opening A in

RF) and g. = ¢}. By (1.7), g =1— 2 = N]i:itQ (Note the difference in
notation; the entity denoted by x_ in section 6 and in the present section is
denoted by —ag in (1.6) and (2.8).) If 1 < ¢ < ¢, then, again by Theorem 77,
there exist solutions for every measure p = kég on 0C4.

In the case k=1, ¢ =00, ki =1 and ¢, = % Thus s = 2/q and the

statement of the theorem is well known (see [18]).

Proof. In view of the last remark, it remains to deal only with 2 < k < N—1.
We shall identify d4 with RV,

It is sufficient to prove the result for positive measures because u < Cs o
if and only if || < Cs . In addition, if |u| is a g-good measure then f is a
g-good measure.

First we show that if ;1 is non-negative and g-good then p < Cs . If E'is
a Borel subset of 02 then ux is g-good. If E is compact and Cs o (E) =0
then, by Proposition 4.2, F is a removable set. This means that the only
solution of (4.1) such that p(0Q2\ E) = 0 is the zero solution. This implies
that uxz = 0, ie., u(F) = 0. If C5 ¢ (F) = 0 but E is not compact then
w(E") = 0 for every compact set E' C E. Therefore, we conclude again that
w(E) =0.

Next, assume that p is a positive measure in 9(0D4) supported in a
compact subset of RN =F,

If u € B~59(RN=F) then, by Theorem 3.1, p is admissible relative to
D4 N Ty g, for every R > 0. (As before I'y g is the cylinder with radius R
around the ’axis’ RV~*.) This implies that y is q-good relative to D 4.

If p < Cs y then, by a theorem of Feyel and de la Pradelle [9] (see also
[2]), there exists a sequence {u,} C (B~*¢(RN=F)), such that u, 1 p. As
Wi is g-good, it follows that p is g-good. O

Theorem 4.4. Let P be an N-dimensional polyhedron as described in Propo-
sition 4.1. Let p be a bounded measure on OP, (may be a signed measure).
Letk =1,...,N, j=1,...,n, and let Ly ; and Ay ; be defined as at the
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beginning of section 8. Further, put
k+ (K4 )k,
g
where (k4 )y,; is defined as in (2.8) with A = Ay ;. Then p € MY, ie., p
is a good measure for (1.1) relative to P, if and only if, for every pair (k, j)

as above and every Borel set ¥ C Ly, ;:
If 1 <k < N then

(4.19) (9e)kj < q < (q2)k.js Cﬁ,;f),q/(E) =0= pu(E) =0
q > (qz)k; = (Lnj) =0

(4.18) s(k,j) =2 —

and if k = N, i.e., L is a vertex,
N +2 N —2)2 44\
F2HVIN P gy g
N -2+ /(N —2)2+4)\4
Here (¢} )r,j and (q.)r; are defined as in (2.30) and (2.34)respectively, with
A=A,
If 1 < q <(qc)k,j then there is no restriction on pxu, ;.

(4.20) q> (qc)k,j =

Proof. This is an immediate consequence of Proposition 4.1 and Proposi-
tion 4.3 (see also the Remark following it). In the case k = N, Ly ; is a
vertex and the condition says merely that for ¢ > ¢.(Ln,;, ¢ does not charge
the vertex. O

4.2. Removable singular sets II..

Proposition 4.5. Let A be a Lipschitz domain on S*~1, 2 <k < N —1,
and let D 4 be the k-dihedron with opening A. Let u be a positive solution of
(1.1) in DE, for some R > 0. Suppose that F = S(u) C d% and let Q be an

open neighborhood of F such that Q C d%. (Recall that d = ds N By *(0)
is an open subset of da.) Let u be the trace of u on R(u).

Let n € Wos’q/(dﬁ) such that
(4.21) 0<n<1, n=0 onQ.
Employing the notation in the proof of Proposition 4.2, put

(4.22) ¢ = patrHal)"

Then

@2 [ wcde <l ) Q)
A

¢ independent of u and 7.

Proof. First we prove (4.23) for n € C§°(d%). Let o be a point in A and let
{A.} be a Lipschitz exhaustion of A. If 0 < € < dist (04, 0A,) = &, then

GUO+CAn C Cy.
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Denote
/ /!
DY =Danl2'| < RN [la"| < R).

Pick a sequence {¢,} decreasing to zero such that 0 < €, < min(é, /2", R/8).
Let u, be the function given by

up(2'2") = u(z' + €,00,2") Vz € Df:’R, R, =R —¢,.

Then w, is a solution of (1.1) in Df:’R belonging to CZ(Df:’R) and we
denote its boundary trace by h,. Let

Gn = pa,YRHRM
with ¢p and Hg[n] as in the proof of Proposition 4.2. By Proposition 5.2

_ — q
(4.24) /D}:Z’R Plh,]A(,dx /Bg—’“(o)n B dwy,
where wy;, is the harmonic measure on dﬁn relative to DIIXZ’R. (Note that
din = d% and we may identify it with Bg ~%(0).) Hence
_ q - _ q
(4.25) /DfQ’R( unAG, + ully,) dx /Bg"“(o) N9 hy, dws,.

Further,
17 hy, dw, — n?du < u(df\ Q),
/Bg ~*(0) By " (0) 4

because n = 0 in Q. By (4.13), (4.17) we obtain,

/ upAG, dx

Rn,R

DAZ
1
!

g /D]A;Z,R “%C”d””>; (( /Dﬁz,a )"+ Wl sy )

From the definition of (, it follows that

/pﬁmRCnde/DR andx%/l)ipdx,

An’
where p (resp. py) is the first eigenfunction of —A in D% (resp. DﬁZ’R)

<

(4.26)

normalized by 1 at some x( € Dfi’R. Therefore, by (4.25),

1
q q q R
/sz’R ul Gudr < c< /DRH’R unCndm> (1+ HnHWS’q/(Bj,Y"“(o)) ) +u(@i\ Q).

An

This implies

(4.27) /D}A?"’R ud Cpdr < C(l + Hn”ws,q’(gg—k(o)) )q + N(dg \ Q)4
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To verify this fact, put
1/q
m= ([ utcde) b= @\ @), a= 1+ by iy <o)
An

so that (4.27) becomes
mi—am—5b<0.
If b < m then
mit—ag—-1<0.
Therefore,
m < (a+ 1)qul +b
which implies (4.27). Finally, by the lemma of Fatou we obtain/ (4.23) for
7(7462 16)'000 By continuity we obtain the inequality for any n € W sa‘cisfyinér

Theorem 4.6. Let A be a Lipschitz domain on S*~1, 2 <k < N —1, and
let Dy be the k-dihedron with opening A. Let E be a compact subset of dlj
and let u be a non-negative solution of (1.1) in DE (for some R > 0) such
that u vanishes on ODE\ E. Then

I€++

(4.28) CNHE)=0, s=2- 7

= u =0,

where CéVqu denotes the Bessel capacity with the indicated indices in RNF,

Proof. By Proposition 4.2, (4.28) holds under the additional assumption

(4.29) / ulprpfide < co.
D}

Indeed, by [22, Proposition 4.1], (4.29) implies that the solution u possesses
a boundary trace u on BDII} By assumption, ,u((?DfZ2 \ E) = 0. Therefore,
by Proposition 4.3, the fact that Cé\,[qu(E) = 0 implies that pu(F) = 0. Thus
@ =0 and hence u = 0.

We show that, under the conditions of the theorem, if Cé\’[qu‘(E) = 0 then
(4.29) holds.

By Proposition 4.5, for every n € Wos’q/(df}) such that 0 < n < 1 and
17 =0 in a neighborhood of F,

(4.30) /D

for ¢ as in (4.22). (Here we use the assumption that u = 0 on D%\ E.)

Let a > 0 be sufficiently small so that E C B(]\lf:fa)R(O). Pick a sequence

{#n} in C§°(RN=F) such that, for each n, there exists a neighborhood @,

wlCdzr < c(1+ [nllyes -+ o) )" -

R
A
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of E,Q, C Bf\lf:éfa)R(O) and

0 < ¢, <1 everywhere, ¢, =1 in @y,

Pn 1= PnXja<1-20m € CoO(RNTF),
(4.31) H&"HWM'(RN*IC) — 0 as n— o0

M = (1 — én) 2 1<m € Cgo(dﬁ),

N, =0in [(1 —a)R < |2"] < R].

Such a sequence exists because CéVqu(E) = 0. Applying (4.30) to n, we
obtain,

(4.32) sup/ ul(, dr < c < oo,
DR

A

where ¢, = pAiﬁRH;]%, ] (see (4.22)). By taking a subsequence we may
assume that {n,} converges (say to n) in LY (B} ~%(0)) and consequently

H{n,] — HJn] in the sense that
Hplna)(@',-) = wa,r(y%,-) = wr(y?,) = Heln)(«',-) in L7
uniformly with respect to y = |2/|. It follows that

(4.33) [ s <00, ¢ = patnTy

As ¢, — 0 in stq,(RN_k) it follows that ¢, — 0 and hence 1, — 1 a.e.

in B(J\{:ga)R(O). Thus 7 = 1 in this ball, n =0 in [(1 — a)R < |2”| < R] and

0 < n <1 everywhere.
Consequently, given § > 0, there exists an N-dimensional neighborhood
OofdynN Bg:ga)R(O) such that
1-6<Hpg[n <1 and 1 -8 <tp/pk <1 in O.

Therefore (4.33) implies that
(4.34) /D(l_ga)R ulpfplt de < ¢ < oo
A

Recall that the trace of u on D\ dg_d‘a)R is zero. Therefore u is bounded
in DE\ D" This fact and (4.34) imply (4.29). O

Definition 4.7. Let Q) be a bounded Lipschitz domain. Denote by p the first
eigenfunction of —A in Q normalized by p(xo) = 1 for a fized point xo € Q.
For every compact set K C 02 we define

M o(K) = {11 € MOQ) : 1> 0, (0 \ K) = 0, K[u] € LI(Q)}

and
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() = sup{K)T s i€ Myo(K), [ Kludtpdo = 1),

Finally we denote by C, o the outer measure generated by the above func-
tional.

The following statement is verified by standard arguments:

Lemma 4.8. For every compact K C 09, C, o(K) = C’mq/(K). Thus C,, g
s a capacity and,

(4.35) Cpy(K)=0 <= M, (K)={0}.

Theorem 4.9. Let  be a bounded polyhedron in RYN. A compact set K C
0%} is removable if and only if

(4.36) Cs(k.gy.g (K N Lg j) =0,

fork =1,-,N j = 1,--- ,ng, where s(k,j) is defined as in (4.18). This
condition is equivalent to

(4.37) Cpq(K) =0.

A measure p € M(ON) is g-good if and only if it does not charge sets with
C,.q -capacity zero.

Proof. The first assertion is an immediate consequence of Proposition 4.1
and Theorem 4.6. The second assertion follows from the fact that

Cp7q/(K N Lk,j) = Cs(k,j),q’(K N Lk,j)-

The third assertion follows from Theorem 4.4 and the previous statement.

O

5. APPENDIX

If © is a bounded Lipschitz domain we say that {Q,} is Lipschitz exhaus-
tion of Q if, for every n, €, is Lipschitz and

(51) Q, C Qn C Qn+1, Q= UQ,, HN,l((?Qn) — HN,l((?Q).

If w, (respectively w) is the harmonic measure in Q, (respectively )

relative to zg € €, then, for every Z € C(12),

(5.2) lim Z dwy, = / Z dw.
o0

[22, Lemma 2.1]. Furthermore, if 4 is a bounded Borel measure on 992 and
v := K®[u], there holds

(5.3) lim Zv dwy, :/ Z du,
oN

by [22, Lemma 2.2]. The following estimates are proved in [22, Lemma 2.3]
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Proposition 5.1. Let 1 be bounded Borel measures on 02). Then Ku] €
L,() and there exists a constant C = C () such that

(5.4) Kkl ) < C llullanean) -
In particular if h € L'(0Q;w) then
(5.5) Pl ) < ClIAI L1 o010 -

The nest result is useful in a k-dimensional dihedron in the case where p
is concentrated on the edge. In such a case one can find, for every smooth
function on the edge, a lifting Z such that condition (5.6) holds.

Proposition 5.2. We denote by G (respectively G?) the Green function
in Qp (respectively Q). Let v be a positive harmonic function in 0 with
boundary trace p. Let Z € C*(Q) and let G € C®(Q) be a function that
coincides with x — G(x,x9) in Q NQ for some neighborhood Q of I and
some fized xg € Q. In addition assume that there exists a constant ¢ > 0
such that

(5.6) |VZ - VG| < ep.

Under these assumptions, if ¢ := ZG then

(5.7) _ /Q VAC da = /8 Zip.

Proof. Let {Q,} be a C! exhaustion of Q. We assume that 0%, C Q
for all n and 2y € Q). Let G,(x) be a function in C'(,) such that G,
coincides with G (-, 20) in Q N Qp, Gn(-,z9) = G(-,x0) in C2(Q\ Q) and
Gn(-,20) = G(-,20) in Lip (Q). If ¢, = ZG,, we have,

— / VA, dr = / v9n( dS = 0Z0uGn(€,x0) dS
n (21979 0

= / vZ P (x0,€)dS = vZ dwy,.
17,928 10,97

By (5.3),
/ vZ dw, — Z d.
oy [2}9]
On the other hand, in view of (5.6), we have
ACy, = GuoAZ + ZAG, +2VZ - VG, - AZ
in L}(€2); therefore,

—/ vACndx%—/vACdx.
n Q
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