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On Convergence of Non-Monotone Series.

A Letter.
J.I. Pillay

———————————————————————————————————

Abstract

We hope to bring to a close the analyses of the convergence of real valued series
of the form Σf(n)|n ∈ N for differentiable functions, via the introduction of a
theorem as a necessary condition for convergence of such series regardless of the
nature of f .
———————————————————————————————————

Introduction

The difficulties surrounding the analysis of fourier series for the purpose of es-
tablishing everywhere convergent functions has been expressed in a recent paper
by SV. Konyagin[1]. Many techniques used in the establishment of convergence
are specific to monotone convergent series, as such convergence is difficult to
establish in Fourier series. We introduce a new technique for use in such cases.

1. Convergence

Theorem 1.1.

The series
∞∑
1

f(n)|n ∈ N is convergent if and only if the integral

Lim
h→∞

h∫

1

xf ′(x)dx

converges.

Proof

A necessary condition for a series of the form
∞∑
1

f(n) to be convergent is that

Lim
h→∞

f(h) = 0.1 Using the property stated, we have that
c∫

∞

f ′(x)dx = f(c). From

this, we may re write
∞∑
1

f(n) as
∞∑
c=1

∞∫
c

f ′(x)dx. From the summation, it is easy to

see that over every interval of one starting at one, the integrals are nA(n) where

n is the nth interval of length one beginning at one and A(n) =
n+1∫
n

f ′(x)dx.

1For an oscillating nonconvergent series, we may subtract k from the integrals that follow

in our proof, where k is the limit of the function in concern.
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We note now that {n ∩ x} = N , thus
∑
∀n

nA(n) is approximately
∞∫
1

xf ′(x)dx.

The difference between the two is smaller than
∞∫
1

f ′(x)dx, since the sum of

the difference between the upper and lower bound integrals
∑
∀n

n+1∫
n

f ′(x)dx and

∑
∀n

n+2∫
n+1

f ′(x)dx, is :
∞∫
1

f ′(x)dx . Finally since
∞∫
1

f ′(x)dx = f(1), this integral is

always convergent and as such will not influence the behaviour of
∞∫
1

xf ′(x)dx.

Figure 1:
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