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Introduction

The difficulties surrounding the analysis of fourier series for the purpose of establishing everywhere convergent functions has been expressed in a recent paper by SV. Konyagin [START_REF] Sv | Almost everywhere convergence and divergence of Fourier series[END_REF]. Many techniques used in the establishment of convergence are specific to monotone convergent series, as such convergence is difficult to establish in Fourier series. We introduce a new technique for use in such cases.

Convergence

Theorem 1.1.

The series

∞ ∑ 1 f (n)|n ∈ N is convergent if and only if the integral Lim h→∞ h ∫ 1 xf ′ (x)dx converges.

Proof

A necessary condition for a series of the form

∞ ∑ 1 f (n) to be convergent is that Lim h→∞ f (h) = 0. 1 Using the property stated, we have that c ∫ ∞ f ′ (x)dx = f (c). From this, we may re write ∞ ∑ 1 f (n) as ∞ ∑ c=1 ∞ ∫ c f ′ (x)dx.
From the summation, it is easy to see that over every interval of one starting at one, the integrals are nA(n) where n is the n th interval of length one beginning at one and

A(n) = n+1 ∫ n f ′ (x)dx.
We note now that {n ∩ x} = N , thus

∑ ∀n nA(n) is approximately ∞ ∫ 1 xf ′ (x)dx.
The difference between the two is smaller than 

∞ ∫ 1 f ′ (x)

1 f 1 f 1 xf

 111 dx, since the sum of the difference between the upper and lower bound integrals ∑ ′ (x)dx . Finally since ∞ ∫ ′ (x)dx = f (1), this integral is always convergent and as such will not influence the behaviour of ∞ ∫ ′ (x)dx.
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For an oscillating nonconvergent series, we may subtract k from the integrals that follow in our proof, where k is the limit of the function in concern.