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Abstract. In this paper, we present a graph-based multi-resolution ap-
proach for mitosis extraction in breast cancer histological whole slide im-
ages. The proposed segmentation uses a multi-resolution approach which
reproduces the slide examination done by a pathologist. Each resolution
level is analyzed with a focus of attention resulting from a coarser res-
olution level analysis. At each resolution level, a spatial refinement by
semi-supervised clustering is performed to obtain more accurate segmen-
tation around edges. The proposed segmentation is fully unsupervised by
using domain specific knowledge.

1 Introduction

Breast cancer is the second leading cause of cancer death for women. Its inci-
dence increases substantially and continuously while the mortality rate remains
high despite earlier detection and advances in therapeutic care. The identifi-
cation and the use of reliable prognostic and therapeutic markers is a major
challenge for decision-making regarding therapy. Proliferation has been shown
to be the strongest prognostic and predictive factor in breast carcinoma, es-
pecially in patients lacking lymph node metastases [1]. This parameter is daily
taken into account by the pathologist for establishing the histopathological grad-
ing of breast carcinomas, using enumeration of mitotic figures, through the lens
of the microscope. The recent use of immunohistochemical staining of mitosis
is able to facilitate their detection. Nevertheless, the visual counting method
remains subjective and leads to reproducibility problems due to the frequent
heterogeneity of breast tumors [2].

The recently introduced microscopical scanners allow recording large images
of the whole histological slides and offer the prospect of fully automated quantifi-
cation for a better standardization of proliferation rate appraisal. If the advent of
such digital whole slide scanners has triggered a revolution in histological imag-
ing, the processing and the analysis of breast cancer high-resolution histopatho-
logical images is a very challenging task. First, the produced images are relatively
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huge and their processing requires computationally efficient tools. Second, the
biological variability of the objects of interest makes their extraction difficult. As
a consequence, few works in literature have considered the processing of whole
slide images and most of these works rely only on machine learning techniques
[3,4].

In this work, we present a graph-based multi-resolution segmentation and
analysis strategy for histological breast cancer whole slide images. The proposed
strategy is based on a top-down approach that mimics the pathologist interpre-
tation under the microscope as a focus of attention. The proposed segmentation
performs an unsupervised clustering at each resolution level (driven by domain
specific knowledge) and refines the associated segmentation in specific areas as
the resolution increases. The whole strategy is based on a graph formalism that
enables to perform the segmentation adaptation at each resolution.

The paper is organized as follows. A description of the considered images is
presented in Sect. 2. In this Section, we also describe the visual analysis process
performed by pathological experts to evaluate mitotic figures proliferation and
their inherent multi-resolution approach. Our graph-based formulation for image
segmentation is presented in Sect. 3 and its integration into a multi-resolution
segmentation strategy is detailed in Sect. 4. Sect. 5 presents visualization tools
of extracted mitosis. Last Section concludes.

2 Image Description

2.1 Breast Cancer Histological Whole Slide Images

Breast cancer tissue samples are sectioned at 5 µm thickness and stained with
an immunohistochemical (hematoxylin and eosin) method. A ScanScope CS R©
(Aperio, San Diego, CA) digital microscopical scanner is then used to digital-
ize each slice at 20x magnification scale and the resulting digital images are
compressed with a quality of 75% following the JPEG compression schema.

To facilitate the visualization and the processing, scanned samples acquired
by the scanner are directly stored as an irregular pyramid where each level of
the pyramid is an under resolved version of the highest resolution image (the
pyramid base).

The usual size of a compressed whole slide image is about 100∼500 Megabytes
after compression. However, the resulting whole slide images are too large in size
to be processed or visualized as a whole. Therefore, the whole slide image is tiled
by the scanner to ease both its processing and visualization: each resolution level
of the pyramid is split into image tiles in a non-overlapping layout.

2.2 Visual Analysis Process

Within the last decade, histologic grading has become widely accepted as a
powerful indicator of prognosis in breast cancer. The majority of tumor grading
systems currently employed for breast cancer combine nuclear grade, tubule
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formation and mitotic rate. In general, each element is given a score of 1 to
3 (1 being the best and 3 the worst) and the score of all three components
are added together to give the breast cancer grading. The usual breast cancer
grading scheme is the Elston-Ellis criterion [5] and is based on three separated
scores:

– Gland (tubule) formation: one scores the proportion of whole carcinoma that
forms acini (1: <75%; 2: 10-75%; 3: <10%).

– Nuclear pleomorphism: one scores the nuclear atypia according to size, shape
and chromatin pattern (1: none; 2: moderate; 3: pronounced).

– Mitotic count: one scores the number of mitotic figures per 10 consecutive
high power fields (1: 0-9 mitoses; 2: 10-19 mitoses; 3: > 19 mitoses).

The final grading is obtained by adding the three scores. The total score is in
the range 3-9 and the final obtained grading is:

– Grade 1 if total score is 3-5.
– Grade 2 if total score is 6-7.
– Grade 3 if total score is 8-9.

In this work, we are interested in helping pathologists to establish an accurate
mitotic count. Indeed, with the Elston-Ellis criterion, a pathologist bases its
scores only on ten consecutive high power fields. This can be lesser representative
than having a score established according to the whole preparation which was of
course too tedious for pathologists under a classical microscope until now. With
the advent of fast whole slide image scanners, it is now possible [6]. Our study
drives towards this direction.

2.3 Multi-resolution Approach

Whole slide images (WSI) are usually huge in size. Fortunately, they are stored
as a pyramid of tiled images that enables to process them in a hierarchical way
[7]. As a consequence, a multi-resolution segmentation method is a natural ap-
proach for segmenting whole slide images. Moreover, such a strategy reproduces
the analysis done by the pathologists under the microscope: regions of inter-
est are determined at low resolution while cellular classification is performed
at high resolution. The proposed multi-resolution segmentation method is based
on a top-down segmentation that mimics pathologist interpretation according to
specific domain knowledge. Fig. 1 illustrates the identification (by a pathologist)
of mitosis in breast cancer slides stained with hematoxyline and eosine.

3 Graph-Based Segmentation

3.1 Preliminaries on graphs

A graph is a structure used to describe a set of objects and the pairwise relations
between those objects. The objects are called vertices and a link between two
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Whole slide image
Tissue Lesion Tumorous cells Mitotic gures

Fig. 1. Illustration of the visual analysis process performed by a pathologist expert.
Each decision is performed at a higher resolution than the previous one in the region
of interest. Each interior square in an image is magnified in a subsequent image. In
the second square, the tissue is detected. In the third square, the pathologist separate
tissue and lesion. The third square allows to detect tumourous cells and the last, mitotic
figures.

objects is called an edge. A weighted graph G = (V, E, w) is composed of a
finite set V = {u1, . . . , uN} of N vertices, a set of edges E ⊂ V × V , and
a weight function w : E → R

+. An edge of E, which connects two adjacent

neighbor vertices u and v, is noted (u, v). In the rest of this paper, the notation
v ∼ u means that vertex v is an adjacent neighbor of vertex u. We assume that
the graph G is simple, connected and undirected. This implies that the weight
function w is symmetric i.e. w(u, v) = w(v, u) if (u, v) ∈ E and w(u, v) = 0
otherwise. Let H(V ) be the Hilbert space of real valued functions on the vertices
of a graph. Each function f : V → R of H(V ) assigns a real value f(u) to each
vertex u∈V . Similarly, let H(E) be the Hilbert space of real valued functions
defined on the edges of the graph. For the case of images, nodes are pixels, edges
connect neighbor pixels with 8-adjacency.

3.2 Discrete Operators on Graphs

Let us recall some basic definitions. We consider that a graph G = (V, E, w)
and a function f ∈ H(V ) are given. The weighted difference dw : H(V ) →
H(E) of a function f on an edge (u, v) linking two vertices u, v ∈ V is defined
as (dwf)(u, v) =

√

w(u, v)
(

f(v) − f(u)
)

. This operator leads us to define the
directional derivative of f , over an edge (u, v), as ∂vf(u) = (dwf)(u, v). Then,
the weighted gradient ∇wf of the function f , at a vertex u ∈ V , is defined

as (∇wf)(u) =
(

∂v1
f(u), . . . , ∂vk

f(u)
)T

. This operator corresponds to the local

variation of the function f at the vertex u and measures the regularity of f in
the adjacent neighborhood v1, . . . , vk of the vertex u. Hence, the L2-norm of the

weighted gradient is ‖(∇wf)(u)‖2 =

[

∑

v∼u w(u, v)
(

f(v)−f(u)
)2

]1/2

. Then, the

weighted p-Laplacian (∆p
wf)(u) at vertex u is defined as

(∆p
wf)(u) =

∑

v∼u

γp(u, v)
(

f(v)−f(u)
)

(1)

where γp(u, v) = w(u, v)
(

‖(∇wf)(u)‖p−2
2 + ‖(∇wf)(v)‖p−2

2

)

. Clearly, in the case
where p = 1 and p = 2, we have the definitions of the standard graph curvature
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∆1
wf = κf and graph Laplace ∆2

wf = ∆f operators. More details on these
definitions can be found in [8].

In the following, we only consider the case where p = 2.

3.3 Discrete Regularization Framework

To regularize a function f0 ∈ H(V ) using the p-Laplacian (Eq. (1)), we consider
the following general variational problem on graphs:

min
f∈H(V )

{

Ew(f, f0, λ, p) = Rw(f, p) +
λ

2
‖f − f0‖2

2

}

. (2)

The first term, Rw(f, p), is the regularizer and is defined as, with 0<p<+∞:
Rw(f, p) = 1

p

∑

u∈V

‖(∇wf)(u)‖p
2. The second term is the fitting term. This opti-

mization problem has a unique solution for p = 1 and p = 2 which satisfies, for
all u ∈ V :

∂Ew(f, f0, λ, p)

∂f(u)
= (∆p

wf)(u) + λ
(

f(u) − f0(u)
)

= 0,

which is equivalent to

(

λ +
∑

v∼u

γ(u, v)

)

f(u) −
∑

v∼u

γ(u, v)f(v) = λf0(u).

To approximate the solution of the minimization (2), we can linearize this system
of equations and use the Gauss-Jacobi method to obtain the following iterative
algorithm:











f (0)(u) = f0(u)

f (n+1)(u) = f0(u) +
∑

v∼u

λ +
∑

v∼u

γ(n)(u, v), (3)

where γ(n)(u, v) is the γ function (in Eq. (1)) at the iteration step n. The inter-
ested reader can refer to [8] for more details on the formulation and the connec-
tions with other formalisms. The above algorithm enables to simplify functions
living on graphs by a discrete diffusion process.

3.4 Discrete Semi-supervised Clustering

The previously presented discrete regularization framework can be naturally
adapted to address discrete semi-supervised clustering problems. Let
V = {u1, . . . , uN} be a finite set of data, where each data ui is a vector of
R

m. Let G = (V, E, w) be a weighted graph such that all vertices are connected
by an edge of E. The semi-supervised clustering of the set V consists in grouping
the set V into k classes where the number of k classes is given. For this, the set
V is composed of labeled and unlabeled data. The objective is then to estimate
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the labels of unlabeled data from labeled ones. Let C = {ci}i=1,...,k the set of
classes, L the set of labeled vertices and V \L be te initially unlabelled vertices
(the whole set of vertices except the labeled ones). For each vertex of L, its
classes is available with the function L : L → C.

This situation can be modeled by considering k initial label functions (one
per class) f0

i : V → R, with i = 1, . . . , k. For a given vertex u, if u is initially
labeled (u ∈ L) then f0

i (u) = +1 if L(u) ∈ ci and f0
i (u) = −1 otherwise.

If u is initially unlabeled (i.e. u ∈ V \ L) then f0
i (u) = 0. Then, the vertex

clustering is accomplished by k regularization processes. This corresponds to
estimate functions fi : V → R for each ith class using the discrete diffusion
process (Eq. (3)). At the end of the label propagation processes, the final label

of a given vertex u ∈ V can be obtained by argmax
i

{

fi(u)/
∑

j=1,...,k fj(u)

}

.

4 Multi-resolution Segmentation Approach

4.1 Principle

As it has been previously pointed out, a multi-resolution segmentation process
is a natural approach to analyze whole slide images [7,9]. Indeed, we have seen
in Sect. 2.2 that the whole slide image analysis visual process performed by
pathologist experts is a multi-resolution process. An expert determines regions
of interest at low resolution while cellular classification is performed at high
resolution.

Our proposed multi-resolution segmentation process is based on a top-down
segmentation that reproduces exactly the interpretation process performed by
pathologist experts according to specific domain knowledge (expressed by the
pathologists themselves). At a given resolution i, a clustering is performed by
the following steps: the image is simplified by discrete regularization (Fig 2 (a)-
(b)) and clustered by an unsupervised 2-means clustering (Fig. 2 (c)-(d)). The
clustering is performed inside specific region that were segmented at the previous
resolution. The obtained clustering is spread by pixel replication at a finer level
of resolution (Fig. 2 (e)-(f)) and refined in specific region (according to domain
knowledge) (Fig. 2 (g)-(i)). As clustering being performed in a feature space, it
does not take into account spatial information, and the obtained segmentation
is not accurate around image edges. In addition, the propagation of the labels
across the different resolution levels is performed by plain pixel replication and
the segmentation is coarse around edges. To alleviate both these effects, each ob-
tained clustering is refined by our discrete semi-supervised clustering in a narrow
band around the boundaries of the clusters. The whole segmentation strategy
can be summarized by Algorithm 1 where Ii denotes an image at resolution
level i.

At the last resolution level, mitotic figures are extracted (Fig. 2 (j)-(l)). Fig. 3
provides results for several whole slide images.
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(a) (b) (c) (d)

(e) (f) (g) (h) (i)

(j) (k) (l)

Fig. 2. Illustration of the multi-resolution segmentation process. (a) initial image, (b)
regularized image. (c) and (d) clustered image at two level 1 and 2. (e) and (f) replica-
tion problem. (g)-(i) illustration of the spatial refinement clustering. (j)-(l) the mitotic
figures extraction.

Algorithm 1. Multi-resolution WSI segmentation

1: I
s
0 = Regularization(I0)

2: I
c
0 = 2-MeansClustering(Is

0)
3: I

r
0 = SpatialClusteringRefinement(Ic

0)
4: for i = 1 to 3 do

5: I
p

i = ReplicatePreviousResolutionClustering(Ir
i−1)

6: I
s
i = Regularization(Ii)

7: I
c
i = 2-MeansClustering(Is

i ) inside one class of I
p

i

8: I
r
i = SpatialClusteringRefinement(Ic

i )
9: end for

5 Visualization of Mitotic Figures

Once all the mitosis have been extracted at the highest resolution using our top-
down multi-resolution graph-based extraction algorithm, the pathologist has to
visualize them to establish the mitotic score. Our proposal does not intend to
compute the mitotic score but at helping the pathologist to do it. To do so, we
provide for pathologists two visualization tools.
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Fig. 3. Illustration of the multi-resolution clustering process. The first column presents
original images. The second column is the segmentation obtained at the first resolution
(background in pink, tissue in cyan), the third column is the segmentation obtained at
the second resolution (lesion in yellow), the fourth column is the segmentation obtained
at the third resolution (stroma in yellow and tumorous cells dark blue). The fourth
column is the segmentation obtained at the fifth resolution (stroma in dark blue and
tumorous cells in green). The sixth column is the segmentation obtained at the fifth
resolution (mitotic figures in red).

The first one enables the pathologist to evaluate the global repartition of mi-
tosis on the whole slide. This visual information is provided by superimposing
a graph on the whole slide image. The graph is constructed as follows. Each
detected mitosis is represented by a vertex of the graph. A Voronoi map is com-
puted on the vertices coordinates and the associated Delaunay graph is obtained.
This enables the pathologist to evaluate regions on the whole slide image where
the mitotic activity is important by the superposition of either the Delaunay
graph or the Voronoi distance map on the whole slide image (Fig. 4(a)-(c)).

The second visualization tool enables the pathologist to see the extracted
mitosis altogether on a single 3D projection. Indeed, the first projection tool
enables the pathologist to visualize each extracted mitosis on the whole image
while appreciating the whole global distribution of mitosis. However, this does
not allow to simultaneously visualize all the extracted mitosis of the slide to
appreciate their aspect (e.g. to differentiate the different mitotic phases). There-
fore, we propose a specific visualization tool that provides this information to
the pathologist.

The proposed visualization tool is based on dimensionality reduction with
Laplacian Eigenmaps [10]. Dimensionality reduction requires a distance measure
to evaluate the similarity between two objects in the initial space. In the case
of mitosis, since they can be in different mitotic phases, the most prominent
information is texture. Therefore, a texture description of each mitotic figure is
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computed in the form of a Locally Binary Pattern (LBP) histogram (introduced
in [11]) and this feature vector is used as an input for dimensionality reduction
with a χ2 histogram distance.

Once the dimensionality reduction has been performed, the pathologist can
visualize simultaneously all the mitotic figures of a whole slide image in the
form of a 3D projection where each mitosis is projected at coordinates defined
by the projection. With this projection, the pathologist can appreciate the simi-
larity of mitosis that are not necessarily spatially close in the whole slide image.
Finally, performing a dimensionality reduction with Laplacian Eigenmaps pro-
vides also geometrical information on the projection. Indeed, the sign of the first
eigenvector enables to partition the data into two sets. The obtained partitions
correspond to the normalized cut criterion of the initial data [12]. As a conse-
quence, this clustering information is also provided by coloring the bounding
box of each mitosis in a color corresponding to one of the two clusters (red or
green). This enables the pathologist to quickly distinguish mitosis with low or
high textural content (Fig. 4(d)-(f)).

(a) (b) (c)

(d) (e) (f)

Fig. 4. Illustration of visualization tools of extracted mitotic figures. (a)-(b)-(c): De-
launay graph superimposed on the distance maps associated. (d)-(e)-(f): visualization
of extracted mitotic figures by dimensionality reduction for the mitosis of (a)-(c) (see
electronic version of the paper for better visualization).

6 Conclusion

In this paper, a multi-resolution image analysis strategy for automatic enumera-
tion of mitotic figures on whole slide images is proposed. The whole classification
process begins with the lowest resolution image and moves to higher resolution
into regions of interest gradually identified. Graph-based regularization provides
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a unified formalism for both image simplification and spatial cluster refinement.
Contrary to methods that can be found in literature, our method is completely
unsupervised and has the advantage of reducing the amount of data to be pro-
cessed at each resolution level by selecting regions of interest.

We also propose two methods for the visualization of mitotic figures. The first
method allows to visualize the distribution of mitosis on the tissue samples. The
second method groups mitosis according to texture parameters.

Future works will concern the automation of the other scores of the Elston-
Ellis grading systems.
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