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WELL-POSEDNESS OF GENERAL BOUNDARY-VALUE PROBLEMS

FOR SCALAR CONSERVATION LAWS

BORIS ANDREIANOV AND KARIMA SBIHI

Abstrat. In this paper we investigate well-posedness for the problem ut + divϕ(u) = f

on (0, T )×Ω, Ω ⊂ RN
, with initial ondition u(0, ·) = u0 on Ω and with general dissipative

boundary onditions ϕ(u) · ν ∈ β(t,x)(u) on (0, T )×∂Ω. Here for a.e. (t, x) ∈ (0, T )×∂Ω,

β(t,x)(·) is a maximal monotone graph on R. This inludes, as partiular ases, Dirihlet,

Neumann, Robin, obstale boundary onditions and their pieewise ombinations.

As for the well-studied ase of the Dirihlet ondition, one has to interprete the formal

boundary ondition given by β by replaing it with the adequate e�etive boundary ondition.

Suh e�etive ondition an be obtained through a study of the boundary layer appearing

in approximation proesses suh as the vanishing visosity approximation. We laim that the

formal boundary ondition given by β should be interpreted as the e�etive boundary ondition

given by another monotone graph β̃, whih is de�ned from β by the projetion proedure we

desribe. We give several equivalent de�nitions of entropy solutions assoiated with β̃ (and

thus also with β).

For the notion of solution de�ned in this way, we prove existene, uniqueness and L1
on-

tration, monotone and ontinuous dependene on the graph β. Convergene of approximation

proedures and stability of the notion of entropy solution are illustrated by several results.

Keywords: salar onservation law, boundary-value problem, entropy solution,

vanishing visosity limit, formal boundary ondition, e�etive boundary ondition,

maximal monotone graph, strong boundary trae, L1
ontration, well-posedness
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1. Introdution

While there exists an extensive literature on the Cauhy and Cauhy-Dirihlet problems for

salar onservation law ut + divϕ(u) = 0, other initial-boundary value problems have reeived

very few attention. This is the purpose of this paper to de�ne a notion of entropy solution

for a wide lass of boundary onditions that we all dissipative boundary onditions; to justify

this de�nition through onvergene of natural approximation proedures; and to establish well-

posedness results for the so de�ned entropy solutions.

1.1. Dissipative boundary onditions for onservation laws. Let Ω be an open domain

in R
N

with Lipshitz boundary, N ≥ 1, and T > 0. We onsider the following initial-boundary

value problem for a salar onservation law:

(Hϕ,β(u0, f))





ut + divϕ(u) = f in QT := (0, T )×Ω
u|t=0 = u0 in Ω
ϕν(x)(u) := ϕ(u)·ν(x) ∈ β(t,x)(u) on Σ := (0, T )×∂Ω.

Here ϕ : R −→ R
N

is a ontinuous funtion (for the sake of simpliity, the reader may assume

that ϕ is Lipshitz ontinuous, although most of our results hold without this assumption)

1

;

u0 ∈ L∞(Ω); and f is a measurable funtion on QT with

∫ T

0 ‖f(t, ·)‖L∞(Ω) <∞.

Further, in (Hϕ,β(u0, f)), the unit outward normal vetor on ∂Ω is denoted by ν, and the

boundary ondition is presribed (formally) in terms of β that is a map from Σ to the set B of

all maximal monotone graphs on R. Clearly, some measurability assumption is needed on the

map β : (t, x) ∈ Σ 7→ β(t,x) ∈ B. In the sequel, we always extend β(t,x) to a maximal monotone

graph from R to R and require the following:

(1.1)

for all k ∈ R, (t, x) 7→ inf β(t,x)(k) and (t, x) 7→ supβ(t,x)(k)

are measurable R-valued funtions w.r.t. the Hausdor� measure on Σ.

This enompasses di�erent lassial boundary onditions. For instane, the graph β(t,x) =

{uD(t, x)} × R presribes the Dirihlet boundary ondition �u = uD on Σ�; the graph β(t,x) :=
R× {−g(t, x)} presribes the ondition �−ϕ(u)·ν(x) = g� that we will all Neumann ondition,

by analogy with the Neumann boundary onditions for the general onvetion-di�usion problems

of the kind ut − div a(u,∇u) = f . It is also easy to inlude the more general onditions of the

kind λu+(1−λ)(−ϕ(u) ·ν) = g, λ ∈ (0, 1), onditions that interpolate between the Dirihlet and

the Neumann ones (these are known as Robin onditions in the onvetion-di�usion ontext).

1

Note that the the results of the present paper an be easily extended to the ase of x-dependent ϕ (and

x-dependent β) in one spae dimension, using the nonlinear semigroup theory. We refer to [5℄ for this extension

and for a brief summary of the present paper, with ideas and results presented in a tehnially simpli�ed setting.
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To give one more example, the (bilateral) obstale boundary onditions �um ≤ u ≤ uM on Σ�
orrespond to the graph

β(t,x) =
(
{um(t, x)}×R

−
)
∪

(
[um(t, x), uM (t, x)]×{0}

)
∪

(
{uM(t, x)}×R

+
)
.

For the sake of simpliity, the reader may onsider

(1.2)

β(t,x)(r) = β0
(t,x)(r−uD(t, x)) − g(t, x) with uD ∈ L∞(Σ), g ∈ L∞(Σ)

and with a maximal monotone graph β0
(t,x) suh that β0

(t,x)(0) ∋ 0;

this ontains the aforementioned ases and, e.g., the ase of mixed Dirihlet-Neumann boundary

onditions.

In the ontext of paraboli problems ut−div a(u,∇u) = f , it is well known that the boundary

onditions of the kind β(t,x)(u) + a(u,∇u) · ν(x) ∋ 0 lead to the L1
ontration property (see

e.g. [38℄ for a study of the assoiated stationary ellipti problem; see also [3℄); that's why we

all these onditions dissipative boundary onditions. It is ustomary to interprete the physially

admissible weak solutions (alled entropy solutions sine the founding work [21℄ of Kruzhkov)

of a salar onservation law as limits of the vanishing visosity approximation that, in our ase,

would take the form

(1.3)





uεt − div (−ϕ(uε)+ε∇uε) = f, uε|t=0 = u0,(
β(t,x)(u

ε) + (−ϕ(uε) + ε∇uε) · ν(x)
)
|(t,x)∈Σ ∋ 0.

Then it is lear that the boundary ondition in (Hϕ,β(u0, f)) is the formal limit of the dissipative

boundary ondition β(t,x)(u
ε)+ (−ϕ(uε)+ ε∇uε) · ν(x) ∋ 0 in (1.3) (here we should assume some

regularity of β(t,x) in (t, x) in order that a solution uε exist; for instane, for the Dirihlet BC

ase we need uD ∈ L2(0, T ;H−1/2(∂Ω)) ). Moreover let uε, ûε be solutions of problem (1.3)

with the same dissipative boundary ondition and with data u0, f and û0, f̂ , respetively. The

L1
ontration property holds under rather weak restritions on Ω and ϕ (see, e.g., [26, 6℄):

‖uε(t, ·)− ûε(t, ·)‖L1(Ω) ≤ ‖u0 − û0‖L1(Ω) + ‖f − f̂‖L1(Ω)

Provided the L1(QT ) ompatness of the sequenes (uε)ε, (ûε)ε with ε → 0 is known, it is

inherited at the limit ε → 0. Therefore we expet that the boundary ondition satis�ed at the

limit is also a dissipative one.

But what is this limit boundary ondition as ε → 0 in (1.3) ? The ompatness of (uε)ε in

L1(QT ) gives no information on onvergene of uε on the boundary, the term ε∇uε · ν(x) on the

boundary beomes singular as ε→ 0, therefore passage to the limit in boundary onditions is by

no means straightforward. As a matter of fat, in general

the boundary ondition � ϕ(u) · ν(x) ∈ β(t,x)(u) � is not the orret limit

obtained from the boundary onditions β(t,x)(u
ε) + (−ϕ(uε) + ε∇uε) · ν(x) ∋ 0.

The Dirihlet ondition ase disussed below is a well-known illustration of this fat.

1.2. Classial results on the Dirihlet ase. Within the whole variety of dissipative bound-

ary onditions, only the Dirihlet ase reeived muh attention in the framework of onservation

laws. The elebrated result of Bardos, LeRoux and Nédéle [10℄ states that the Dirihlet on-

dition �u = uD on Σ� should be seen as a formal ondition; and that it must be interpreted by

stating that the trae (γu)(t, x) of u at a point (t, x) ∈ Σ belongs to the subset I(t, x) of R
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de�ned in terms of uD(t, x) and of the funtion r 7→ ϕν(x)(r) = ϕ(r)·ν(x) as follows:

(1.4)

I(t, x) =

{
z ∈ R

∣∣∣ sign (z − uD(t, x))(ϕν(x)(z)−ϕν(x)(k)) ≥ 0

∀k ∈ [uD(t, x) ∧ z, uD(t, x) ∨ z]
}
.

Here and in the sequel, ∧ (respetively, ∨) denotes the min (resp., the max) operation. We

denote by HN
the N−dimensional Hausdor� measure on Σ.

The e�etive boundary ondition

(1.5) (γu)(t, x) ∈ I(t, x) HN
-a.e. on Σ

is known as the BLN ondition; in this paper, we will use the reformulation of the BLN ondition

in terms of a maximal monotone (sub)graph. Suh graph interpretation was �rst made expliit,

for the Dirihlet ase, by Dubois and LeFloh in [18℄ (see in partiular [18, Fig.1.1℄). Another

useful interpretation of the BLN ondition going bak to [18℄ is the following:

I(t, x) =
{
z ∈ R

∣∣ϕν(x)(z) = God[ϕν(x)](z, u
D(t, x))

}
,

where God[ψ] : R2 → R is the Godunov numerial �ux assoiated to a given salar �ux ψ : R → R.

Reall that the Godunov �ux is given by the expression

(1.6) God[ψ](a, b) =

{
minz∈[a,b] ψ(z), if a ≤ b
maxz∈[b,a] ψ(z), if b ≤ a.

The funtional framework of the paper [10℄ is the spae L∞(0, T ;BV (Ω)) (atually, the so-

lutions belong to the spae BV (QT )). There are two good reasons for that. Firstly, the BV
in spae regularity of u guarantees the existene of a trae γu of u on Σ, neessary in order to

give sense to the BLN ondition. Seondly, uniform in ε BV estimates on the solutions of the

approximating problems (1.3) are available, for BV data u0 and u
D
and for Lipshitz ontinuous

�ux funtion ϕ. Bardos, LeRoux and Nédéle show that for the above data and �ux, there

exists a unique L∞(0, T ;BV (Ω)) entropy solution of the onservation law satisfying (pointwise

on Σ) the BLN boundary ondition; and that this solution is the limit of the vanishing visosity

approximation.

More reently, Otto in [27, 28℄ (see also [25℄) provided a formulation suitable for merely L∞

data u0 and uD; Porretta, Vovelle [35℄ and Ammar, Carrillo and Wittbold [2℄ extended the

de�nition and results to the framework of L1
data (see the papers for the preise assumptions

on uD) and merely ontinuous �ux funtion ϕ, in a bounded domain Ω. The L1
framework

requires an appropriate notion of solution; in [35, 2℄ the notion of renormalized solution from

[11℄ was used. In the Otto formulation, existene of a (strong) boundary trae γu of u on Σ is

not assumed; a BLN kind ondition is reformulated in terms of weak normal boundary traes of

ϕ(u) and of the assoiated boundary entropy �uxes F(u;uD, k) (the existene of the weak traes

is a relatively simple onsequene of the fat that u is a Kruzhkov entropy solution of the salar

onservation law inside (0, T )×Ω ). We refer to [27, 28, 25℄ and to [41, 35, 39℄ for details and

results related to the approah of Otto.

1.3. Strong traes of entropy solutions on the boundary. Although the de�nition of

[27, 28℄ and the aforementioned generalizations were a remarkable step forward in the study of

boundary value problems for onservation laws, it was possible to bypass the use of weak traes

and the assoiated boundary entropies' tehniques of [27, 28℄. Indeed, for the sake of simpliity

let us start with the following �ux non-degeneray assumption:

(1.7) ∀ξ ∈ R
N \{0} ∀c ∈ R the Lebesque measure of the set {z | ξ · ϕ(z) = c} is zero.
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Using the approah of kineti solutions (see [24, 34℄), Vasseur in [40℄ has shown that for ϕ regular

enough,

(1.8) under (1.7), any L∞
Kruzhkov entropy solution in QT admits a strong trae γu on Σ.

The non-degeneray assumption (1.7) on ϕ is typial for the "ompati�ation properties" in the

theory of kineti solutions, see Perthame [34℄ and referenes therein. As pointed out by Vasseur,

(1.8) gives sense to the pointwise BLN ondition (1.5) for general L∞
entropy solutions, and

not only for solutions orresponding to BV data; thus the weak trae tehnique of Otto [27, 28℄

is bypassed (yet for general (t, x)-dependent �ux ϕ, the approah of [27, 28℄ remains the most

powerful; see in partiular the results of Vallet [39℄). Further results in the spirit of (1.8) were

obtained by Kwon and Vasseur [23℄ for the ase N = 1 (see also [7, 37℄ where we treat the

ase of a �at boundary using a hint due to Panov). To the authors' knowledge, the strongest

generalization of (1.8) is the result of Panov [32℄ obtained using the tehnique of parametrized

families of H-measures (see also [30, 33℄); Panov drops all regularity assumption on ϕ, and, in
a sense, he also drops non-degeneray assumptions of the kind (1.7). Beause of its importane

for our paper, we should make the latter statement more preise:

• (upon rotating axes and loalizing around a point x∗ of the boundary)

the boundary ∂Ω is represented by the graph of a Lipshitz

2

funtion g on W , i.e.,

∂Ω ∩ U = {(g(x′), x′) | x′ ∈W}, Ω ∩ U = {(x0, x′) | x0 = y + g(x′), x′ ∈ W, y ∈ (0, h)}
for some neighbourhood U of x∗, some neighbourhood V of zero in RN−1

, and some

h > 0; further, the unit exterior normal �eld

(
ν(g(x′), x′)

)
x′∈W

is lifted inside Ω∩U by

the formula ν(x0, x
′) = 1√

1+|∇g(x′)|2

(
−1,∇g(x′)

)
(the �eld is onstant in x0 ∈ [0, h));

• for x ∈ ∂Ω ∩ U , onsider the singular mapping Vϕν(x) : r 7→
∫ r

0 |ϕ′(s) · ν(x)| ds on R

(notie that the mapping is independent of x0, and it depends on x′ ontinuously)
• then for any u ∈ L∞(QT ) that is a Kruzhkov entropy solution in QT , there exists

(1.9) ess limy↓0 Vϕν(x)

(
u(t, y + g(x′), x′)

)
=:

(
γVϕν(x)(u)

)
(t, x) in L1((0, T )×W ),

where x := (g(x′), x′) is a generi point of U∩∂Ω; reall that ν(y+g(x′), x′) ≡ ν(g(x′), x′).

Statement (1.9) is atually a re-interpretation of the loalization property that appears in the

proof [32, p.571℄ of Panov; we use it to give a sense to pointwise formulations of boundary

onditions, in the same vein as Vasseur in [40℄. If for all ξ ∈ R
N \ {0} the funtion r 7→ ϕ(r) · ξ

is non-onstant on any interval (this is a weaker version of (1.7) typial for the tehnique of

parametrized H-measures, see [30, 32, 33℄), then Vϕν(x0) is an invertible funtion (whih means

that strong trae γu exists). If ϕ is not a BV funtion, one an use another singular mapping

instead of the map r 7→
∫ r

0 |ϕ′(z)·ν(x0)| dz (whih is not well de�ned), e.g.,

Vϕν(x)(r) =

∫ r

0

1lF (s) ds,
F being the union of all the intervals

where the map s 7→ ϕ(s) · ν(x) does not vary.
Remark 1.1. By the de�nition of the singular mapping, Vϕν(x)(·) has the properties of being

monotone non-dereasing and of being onstant on the same intervals where ϕν(x)(·) is onstant.
Therefore ϕ(r) · ν(x) = Φν(x) ◦ Vϕν(x) with some ontinuous funtion Φν(x) : R → R. As a

onsequene of (1.9), there exists the strong trae γϕ(u) · ν(x) (with the same meaning as in

(1.9)) whih is equal to Φν(x)

(
γVϕν(x)(u)

)
.

2

While the setting of Panov [32℄ is C1
regular domains, the author indiates that the generalization to Lipshitz

and, more generally, Lipshitz deformable boundaries in the sense of [17℄ is straightforward
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In the same way, one an represent the projetions on the diretion ν(x) of the semi-Kruzhkov

entropy �uxes

(1.10) q±(u, k) := sign±(u− k)
(
ϕ(u)− ϕ(k)

)

with the help of ontinuous funtions Q±
ν(x)(·, ·) of two variables:

(1.11) q±(u, k) · ν(x) = Q±
ν(x)

(
Vϕν(x)(u) , Vϕν(x)(k)

)
.

Hene for a ouple u, û of entropy solutions, it follows that a strong trae of q±(u, û) · ν(x) exists
and an be represented as Q±

ν(x)

(
γVϕν(x)(u) , γVϕν(x)(û)

)
. The same is true for the Kruzhkov

�uxes:

(1.12)

q(u, k) · ν(x) = Qν(x)

(
Vϕν(x)(u) , Vϕν(x)(k)

)

with q := q+ + q−, Qν(x) := Q+
ν(x) +Q−

ν(x).

1.4. Interpretation of a general boundary ondition. The Bardos-LeRoux-Nédéle on-

dition (1.4),(1.5) is generally reognized as the orret interpretation of the Dirihlet bound-

ary ondition; this is justi�ed in partiular by onvergene of vanishing visosity or numerial

approximations of the boundary value problem (see Vovelle [41℄), onsidered as quite natural

approximations. Observations of visous or numerial boundary layers explain how the formal

boundary ondition u = uD on Σ transforms into the e�etive boundary ondition (1.4),(1.5).

The strong trae result of [40℄ was used by Bürger, Frid and Karlsen in [13℄ in order to

give sense to the formal zero-�ux boundary ondition (in our terminology, this is the Neumann

boundary ondition with g ≡ 0) in the partiular but important ase ϕ(0) = 0 = ϕ(1). Under this
assumption and for [0, 1]-valued initial data, the zero-�ux boundary ondition for ut+divϕ(u) = 0
an be understood literally (see [13℄) (in the sense that the problem is well-posed and solutions

are limits of the vanishing visosity approximation).

Let us stress that in general, also for the zero-�ux boundary ondition �ϕ(u)·ν = 0� a boundary
layer would form in approximate solutions, and this formal zero-�ux boundary ondition would

transform into some di�erent e�etive boundary ondition. For a simple example, onsider the

zero-�ux problem for the transport equation ut + ux = 0 on [0, 1]; as in [10℄, arguing along

harateristis one sees that the zero-�ux ondition (that reads �u = 0� beause ϕ = Id) at the
right boundary x = 1 must be merely dropped.

It is the purpose of this paper to provide a natural interpretation for a general dissipative

boundary ondition (formally given by a family β of maximal monotone graphs β(t,x)(·)) under
the form of an e�etive boundary ondition. Most generally, this e�etive boundary ondition

an be written under the form

(1.13) HN
-a.e. on Σ, the ouple

(
γVϕνu, ϕ(γVϕνu)·ν

)
lies in the graph β̃(t,x)(·) ◦

(
Vϕν

)−1

,

with β̃ to be de�ned, and with the notation γVϕνu :=
(
γVϕν(x)(u)

)
(t, x).

To larify the essene of the ondition (1.13), onsider the ase where Vϕν(x) = Id an be taken

(reall that this is the ase if (1.7) holds). Then (1.13) means that (γu)(t, x) ∈ Dom β̃(t,x)(·);
and from the de�nition of β̃ in Setion 2 we will see that this automatially inludes the equality

β̃(t,x)(γu(t, x)) = ϕ(γu(t, x)) · ν. Thus the ondition �ϕ(u) · ν(x) = β̃(t,x)(u) on Σ� an be

understood literally as a pointwise equality; this is why we all it e�etive boundary ondition.

Notie that ondition (1.13) takes the form �(γVϕνu)(t, x) ∈ Vϕν(I(t, x)) a.e. on Σ�, i.e., it
presribes some set I(t, x) of possible trae values of u on the boundary. Reall that the BLN

ondition (1.4) has the same form.
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The e�etive BC graph β̃(t,x) featuring in (1.13) will be haraterized in Setion 2 as:

(Aβ̃)

β̃(t,x) is the �losest� to β(t,x) maximal monotone subgraph

of the graph

{
(r, ϕ(r)·ν(x)) | r ∈ R

}
that ontains all the points of rossing

of β(t,x) with the graph of the funtion ϕν(x) = ϕ·ν(x).

For simpliity, let us look at the ase where ϕ is a C1
funtion; then the monotoniity of β̃(t,x)

means that the domain of the graph ontains either isolated points r ∈ R suh that ϕ(r)·ν(x) ∈
β(t,x)(r), or intervals where ϕ

′(·)·ν(x) ≥ 0. Therefore heuristially, (1.13) an be understood as

follows (assume for simpliity that γu exists):

(Bβ̃)

Fix a point (t, x) ∈ Σ; denote ũ := (γu)(t, x), ϕν := ϕν(x), and β(t,x) = β. Then

· either the boundary ondition is satis�ed literally in the sense that (ũ, ϕν(ũ)) ∈ β;

· or ϕ′
ν(ũ) ≥ 0, i.e., the harateristis at the point (t, x)

assoiated with the expression ut + divϕ(u) exits the domain

(in whih ase it is natural to ignore the boundary ondition).

In the latter ase, the �ux ϕν(ũ) is as lose to β(ũ) as possible.

We also point out in Remark 2.7 a useful haraterization of the e�etive BC graph β̃(t,x) in

terms of β(t,x) and of the Godunov numerial �ux (1.6) assoiated with the salar �ux funtion

ϕν(x).

In view of the desription (Bβ̃) of β̃, the interpretation of the formal BC �ϕν(ũ) ∈ β(ũ)� as

�ϕν(ũ) = β̃(ũ)� an appear as a rather natural one. Yet the only onvining justi�ation we an

think about would be in terms of approximation. Namely, we should use the formal boundary

ondition given by β on one of the approximation shemes that are well-established in the ontext

of onservation laws (suh as the vanishing visosity approximation or approximation with a

monotone onsistent �nite volume sheme); pass to the limit in the sequene of the approximate

solutions; and identify the boundary ondition satis�ed at the limit. If this an be ahieved only

for some restrited lass of �regular� data u0, f , graphs β or �uxes ϕ, then a further justi�ation

an be provided by a passage to the limit from the �regular� problem (where the orret BC is

already identi�ed) to the general problem.

1.5. Former results and a summary of the paper. Beyond the Cauhy-Dirihlet problem

desribed in Setion 1.2 and the �simple ase� of the zero-�ux problem treated in [13℄, we are not

aware of works on initial-boundary value problems for onservation laws.

The present paper develops the approah initiated in the thesis [37℄ of K. Sbihi; see [7, 8℄.

The graph β̃ (in a di�erent, but equivalent representation, see Setion 2) was introdued in

[7, 37℄. The passage from β to β̃ was justi�ed in [7, 37℄ in the ase of a �at boundary, of non-

degenerate in the sense (1.7) �ux ϕ and for quikly growing at in�nity, (t, x)-independent graph
β. A ombination of vanishing visosity method and nonlinear semigroup methods were used

in this argument. Notie that the tehnique of [7, 37℄ is rather restritive beause it is based

upon a strong ompatness on the boundary of the sequene of approximate solutions. In [8℄,

the de�nition of β̃ was further supported through an argument of monotone dependene on β; a
notion of measure-valued (or entropy-proess) solution was introdued, in order to simplify the

onvergene analysis for di�erent approximation methods.

Let us give an outline of the paper. Proposition 3.3 and Theorems 4.1, 5.2 are its main results.

In Setion 2, we disuss in detail the properties and di�erent haraterizations of the projeted

graph β̃; this long setion an be omitted by a reader onvined by the heuristi arguments of

Setion 1.4 and not interested in details of some proofs. In Setion 3 we provide several equivalent
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de�nitions of entropy solutions, sub- and super-solutions for the formal problem (Hϕ,β(u0, f)).
These de�nitions lead, in a rather straightforward way, to uniqueness, omparison and ontinuous

dependene results proved in Setion 4 under minimal restritions on β and ϕ.

In the existene part of the paper, several restritions on the behaviour of ϕ and β are

needed for ensuring boundedness and ompatness of sequenes of approximate solutions. In

Setion 5, we give a short but somewhat arti�ial proof of existene of entropy solutions (namely,

we use not β but the projeted graphs β̃ to onstrut approximate solutions). In Setion 6,

we disuss in length the pertinene of the use of β̃. First, we justify the appearane of the

e�etive boundary ondition using the vanishing visosity paraboli approximation realled in

the Appendix. Seond, we give several stability results for entropy solutions of the hyperboli

problem (Hϕ,β(u0, f)), with a fous on stability with respet to di�erent approximations of the

BC graphs β. In Setion 7, �rst we improve the existene results in the one-dimensional ase,

dropping most of the assumptions on ϕ and β with the help of the BVloc estimates due to

Bürger, Karlsen, Garía and Towers [14, 15℄. Seond, following Eymard, Gallouët and Herbin

[20℄ we present a notion of entropy-proess solution that is useful in order to prove onvergene of

approximations with only weak ompatness properties; it an be exploited under the additional,

quite restritive assumption that an entropy solution exists already.

2. The effetive BC graph

Throughout the setion, we �x a point (t, x) ∈ Σ. We are given a maximal monotone graph

β(t,x) on R and a ontinuous funtion ϕν(x) on R; the assoiated �semi-Kruzhkov� entropy �uxes

(more preisely, their normal omponents) are de�ned as

(2.1) q±ν(x)(z, k) := sign±(z − k)
(
ϕν(x)(z)− ϕν(x)(k)

)
.

2.1. Preliminaries: undershoot and overshoot sets, inreasing envelopes. Let us start

with a series of de�nitions and notation.

De�nition 2.1 (see Figure 2.1 for an illustration).

• For a losed sub-interval I of R, introdue the upper inreasing envelope

3 ϕ+
x (I; ·) and

the lower inreasing envelope ϕ−
x (I; ·) of ϕν(x) on I by setting, for r ∈ I,

ϕ+
x (I; r) := inf

{
ψ(r) | ψ ≥ ϕν(x) and ψ is non-dereasing on I

}
,(2.2)

ϕ−
x (I; r) := sup

{
ψ(r) | ψ ≤ ϕν(x) and ψ is non-dereasing on I

}
.(2.3)

• De�ne the overshoot set D+
(t,x) ⊂ R and the undershoot set D−

(t,x) ⊂ R by

4

(2.4)

D+
(t,x) :=

{
z ∈ R | supβ(t,x)(z) ≥ ϕν(x)(z)

}
,

D−
(t,x) :=

{
z ∈ R | inf β(t,x)(z) ≤ ϕν(x)(z)

}
;

also introdue the rossing set

5 D0
(t,x) :=

{
r ∈ R | ϕν(x)(r) ∈ β(t,x)(r)

}
≡ D+

(t,x)∩D−
(t,x).

3

It is easily seen that ϕ+
x (I; ·), respetively ϕ−

x (I; ·) is a non-dereasing funtion that is ontinuous and whih

graph lies above (respetively, below) from the graph of ϕν(x)|I .
4

In de�nition (2.4), we atually extend β(t,x) to a maximal monotone graph from R to R, so that β(t,x)(z) is

never empty but it may de redued to {+∞} or to {−∞}. With this onvention, R = D+
(t,x)

∪D−

(t,x)
.

5

Indeed, D0
(t,x)

is the set of rossing points of β(t,x) with the graph of ϕν(x).
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• Subgraphs of the graph of ϕν(x) are de�ned as the graphs of restritions of ϕν(x)|E on

di�erent subsets E of R. Among these, we distinguish monotone subgraphs haraterized

by the property ϕν(x)(a) ≤ ϕν(x)(b) for all a, b ∈ E with a ≤ b. Finally, those monotone

subgraphs that does not possess a nontrivial extension (within the lass of monotone

subgraphs) are alled maximal monotone subgraphs of the graph of ϕν(x).

• Denote by Bx the set of all maximal monotone subgraphs of the graph of ϕν(x). Denote

by B
0
(t,x) the set of all elements of Bx whih domain ontains D0

(t,x)
6

.

• Denote by Bx (respetively, by B
0
(t,x)) the set of all maximal monotone graphs on R

obtained as extensions of elements of Bx (respetively, of B
0
(t,x))

7

.

• De�ne the monotone funtion B̃(t,x) on R as the losest to β(t,x) element of B
0
(t,x).

The notion of �the losest� in the latter de�nition should be made preise: indeed, we now

show that the de�nition of B̃(t,x) is orret, interpreted as the extremality property (2.5).

Proposition 2.2. The funtion B̃(t,x) is orretly de�ned, in the sense that

(2.5)

there exists B̃(t,x) ∈ B
0
(t,x) that realizes, simultaneously for all z ∈ R,

the minimum over all µ ∈ B
0
(t,x) of the distane dist

(
µ(z) , β(t,x)(z)

)
.

Furthermore, B̃(t,x) an be expressed in terms of the upper (respetively, lower) inreasing en-

velopes of the graph of ϕν(x) on the onneted omponents

8 I of D+
(t,x) (respetively, of D

−
(t,x)):

B̃(t,x) :=

( ⋃
I

{(
z, ϕ−

x (I; z)
)
| I is a onneted omponent of D−

(t,x)

} )
(2.6)

⋃ ( ⋃
I

{(
z, ϕ+

x (I; z)
)
| I is a onneted omponent of D+

(t,x)

} )
.

Proof. By de�nition on the lass B
0
(t,x), B̃(t,x)|D0

(t,x)
oinides with ϕν(x)|D0

(t,x)
. Let I be a

onneted omponent of D+
(t,x) or of D

−
(t,x); the endpoints of I are either in�nite or belong to

D0
(t,x). Therefore, we only need to make expliit the de�nition of B̃(t,x) on the interior of I; and

for a proof of (2.5) we an onsider z ∈ I separately for every onneted omponent I of D+
(t,x)

or of D−
(t,x). To be spei�, onsider I ⊂ D+

(t,x). From (2.2), one easily sees that

(2.7) ϕν(x) ≤ ϕ+
x (I; ·) ≤ β on I.

Every funtion µ ∈ B
0
(t,x) is onstant on eah interval where it does not oinide with ϕν(x), while

ϕ+
x (I; ·) and β are monotone on these intervals. Thus from (2.7) it follows that

(2.8) ∀µ ∈ B
0
(t,x) µ ≤ ϕ+

x (I; ·) ≤ β on I.

Now, one easily heks that the family {µ|I | µ ∈ B
0
(t,x)} is stable by the sup operation; therefore

it possesses a greatest element that we all ψ. This element is the restrition of B̃(t,x) on I.

6

It follows that for any µ ∈ B
0
(t,x)

,

{

(z, ϕν(x)(z)) | z ∈ D0
(t,x)

}

⊂ µ ⊂
{

(z, ϕν(x)(z)) | z ∈ R

}

.

7

First, it easily follows from the ontinuity of ϕν(x) and the intermediate value theorem that for eah µ ∈ Bx

there exists a unique extension µ ∈ Bx. The graph µ is atually the graph of a single-valued ontinuous funtion

on R; moreover, on every onneted omponent (a, b) of the set {z ∈ R | µ(z) 6= ϕν(x)(z)} the funtion µ takes

the onstant value equal to the value of ϕν(x) on {a, b} ∩ R.

8

Let us reall that I is a onneted omponent of K ⊂ R if I is an interval and moreover, for all interval J

suh that I ⊂ J ⊂ K, one has J = I.
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Figure 1. Example of onstrution of the projeted graph β̃

Indeed, from (2.8), for all µ ∈ B
0
(t,x) one has in partiular µ ≤ ψ ≤ β. Therefore we an set

B̃(t,x)|I := ψ, and (2.5) gets veri�ed for all z ∈ I.

We have seen in (2.8) that B̃(t,x)|I = ψ ≤ ϕ+
x (I; ·). The funtion ψ is non-dereasing and

its graph lies above ϕν(x)|I by (2.7); thus aording to (2.2), ψ ≥ ϕ+
x (I; ·). Therefore B̃(t,x)|I

oinides with ϕ+
x (I; ·), for every onneted omponent I of D+

(t,x) or of D−
(t,x). This yields

(2.6). �

2.2. De�nition and equivalent haraterizations of β̃.

De�nition 2.3. The graph β̃(t,x) is the part of B̃(t,x) ontained within the graph of ϕν(x).

It is lear from the above de�nition that β̃(t,x) ∈ B
0
(t,x). Namely, β̃(t,x) is a maximal monotone

subgraph of ϕν(x) ontaining the rossing points with β(t,x). Moreover, the unique extension

B̃(t,x) of β̃(t,x) to a maximal monotone graph on R satis�es (2.5). Thus De�nition 2.3 is a preise

expression of (Aβ̃), in view of the extremality property (2.5).

Notie that, aording to (2.6), β(t,x) intervenes in the onstrution of β̃(t,x) uniquely through

the sets D±
(t,x) that gather the points z ∈ R suh that ±(β(t,x)(z)− ϕν(x)(z)) ∩R

+ 6= ∅.

Remark 2.4. The operation P̃x that transforms the maximal monotone graph β(t,x) into the

maximal monotone graph B̃(t,x) is a projetion on Bx. Indeed, we have P̃2
x = P̃x and P̃x|Bx

= Id.
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With a slight abuse of notation (the graph β̃(t,x) = B̃(t,x)|
Dom β̃(t,x)

being monotone but not

neessarily maximal)

9

, we will say that the operation ˜ : β(t,x) 7→ β̃(t,x) is a projetion.

Let us give alternative haraterizations of β̃(t,x). Reall that β̃(t,x) is a subgraph of the graph

of ϕν(x), thus it is fully haraterized by its domain.

Proposition 2.5. The domain of the graph β̃(t,x) given by De�nition 2.3 an be equivalently

de�ned by any of the following properties:

(i) In terms of the semi-Kruzhkov entropy �uxes (2.1), one has

Dom β̃(t,x) =
{
z ∈ R

∣∣∣
(
∀k ∈ D−

(t,x) q−ν (z, k) ≥ 0
)
&

(
∀k ∈ D+

(t,x) q+ν (z, k) ≥ 0
) }

.

(ii) For z ∈ R, denote β−1
(t,x)(ϕν(x)(z)) =:

[
m(t,x)(z),M(t,x)(z)

]
; this is a non-empty

10

losed

interval of R. Notie that z < m(t,x)(z) (resp., z > M(t,x)(z)) for z ∈ D−
(t,x) \D0

(t,x)

(resp., for z ∈ D−
(t,x)\D0

(t,x)). With this notation, we have

Dom β̃(t,x) = D0
(t,x)

⋃ {
z ∈ D−

(t,x)\D0
(t,x)

∣∣∣ ϕν(x)(k) ≥ ϕν(x)(z) ∀k∈
[
z , m(t,x)(z)

] }

⋃ {
z ∈ D+

(t,x)\D0
(t,x)

∣∣∣ ϕν(x)(k) ≤ ϕν(x)(z) ∀k∈
[
M(t,x)(z) , z

] }
.

Remark 2.6. Charaterization (i), in its spirit, goes bak to the idea of Carrillo [16℄ further

developed by Ammar, Carrillo and Wittbold [2℄, for the ase of the Dirihlet problem. In [16℄,

uD = 0 and thus β(t,x) = {0}×R; thereforeD±
(t,x) = R

±
in this ase. In [2℄, β(t,x) = {uD(t, x)}×R

and thus D−
(t,x) = (−∞, uD(t, x)], D+

(t,x) = [uD(t, x),+∞). Further, notie that for the Dirihlet

boundary ondition, inf β−1
(t,x)(ϕν(x)(z)) = uD(t, x) = supβ−1

(t,x)(ϕν(x)(z)). Thus we see that

haraterization (ii) is preisely the Bardos-LeRoux-Nédéle set (1.4). Representation (ii) of

β̃(t,x) is therefore a generalization of the BLN ondition; it appeared in the previous works [37℄

and [7, 8℄ of the authors (see in partiular [7, formula (4)℄).

Proof. Throughout the proof, we write D̃0
(t,x) := Dom β̃(t,x) =

{
z ∈ R | B̃(t,x)(z) = ϕν(x)(z)

}
.

(i) Let us assume that z ∈ D̃0
(t,x). Consider, e.g., k ∈ D−

(t,x): aording to (2.5) in this ase we

have ϕν(x)(k) ≥ B̃(t,x)(k). Then

q−ν (z, k) = sign−(z − k)(ϕν(x)(z)− ϕν(x)(k)) ≥ sign−(z − k)(B̃(t,x)(z)− B̃(t,x)(k)) ≥ 0

by the monotoniity of B̃(t,x). The ase k ∈ D−
(t,x) is analogous.

Reiproally, assume that for all k ∈ D±
(t,x) one has q±ν (z, k) ≥ 0. For the sake of being

de�nite, assume that z belongs to a onneted omponent I of D+
(t,x). Let k ∈ I, k < z; by

assumption we have ϕν(x)(k) ≤ ϕν(x)(z) for all suh k. Keeping in mind the haraterization

(2.6) in Proposition 2.2, we see that ϕ+
x (k) = ϕν(x)(k) if and only if k ∈ D̃0

(t,x). It follows that ũ

veri�es ϕ+
x (k) ≤ ϕν(x)(z) for all k ∈ I, k < z. By the de�nition of the upper inreasing envelope

ϕ+
x , this exatly means that ϕν(x)(z) = ϕ+

x (z). Hene z ∈ D̃0
(t,x).

9

Atually, uniqueness of solutions to the boundary value problems with dissipative boundary ondition enoded

by a graph β stems from the monotoniity of β only. Existene may depend on how wide is the domain of β. In

the sequel we will see that the monotone graph β̃, while it is not maximal, leads to existene and uniqueness for

the problem in hand.

10

we mean that β̃(t,x) is extended to a maximal monotone graph on R
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(ii) The ase z ∈ D0
(t,x) is trivial. Let I be the onneted omponent of the omplementary of

D0
(t,x) that ontains z; for the sake of being de�nite, assume that I ⊂ D+

(t,x). Then from the

monotoniity of β(t,x) we have

(2.9) ϕν(x)(k) ≤ supβ(t,x)(k) ≤ β(t,x)(M(t,x)(z)) ∋ ϕν(x)(z)

for k ∈ I ∩ (−∞,M(t,x)(z)). By the haraterization (2.6) of B̃(t,x) on I, z ∈ D̃0
(t,x)∩I if and only

if ϕν(x)(k) ≤ ϕν(x)(z) for all k ∈ I, k ≤ z. Taking into aount (2.9), we an reformulate this as

follows: z ∈ D̃0
(t,x) ∩ I if and only if, �rstly, [M(t,x)(z), z] ⊂ I and seondly, ϕν(x)(k) ≤ ϕν(x)(z)

for all k ∈ [M(t,x)(z), z]. This justi�es the statement of (ii). �

Remark 2.7. One more onvenient desription of β̃(t,x) an be given in terms of the Godunov

numerial �uxes (1.6):

(2.10) β̃(t,x) =
{
(z, F ) ∈ R

2
∣∣ ∃(r, F ) ∈ β(t,x) suh that F = ϕν(x)(z) = God[ϕν(x)](z, r)

}
.

This desription is easily inferred from (1.6), (2.6) and De�nition 2.3.

2.3. Order and metri struture on Bx. Fix x ∈ ∂Ω. Reall that Bx is the set of all maximal

monotone subgraphs of ϕν(x); B is the set of all maximal monotone graphs of R and Bx is the

subset of B obtained by extension (whih is unique) from Domβ̃ to R of elements β̃ ∈ Bx.

Let us de�ne an order relation and a distane for maximal monotone graphs under study.

They are most naturally de�ned on Bx.

De�nition 2.8. For B̃1, B̃2 ∈ Bx, de�ne the uniform distane

dx(B̃1, B̃2) := ‖B̃1 − B̃2‖∞ = supR |B̃1 − B̃2|.
De�ne the order relation � �x � on Bx by:

B̃1 �x B̃2
if B̃1 ≥ B̃2

pointwise on R.

Sine every β̃ ∈ Bx possesses a unique extension B̃2 ∈ Bx, we an de�ne dx and �x on

Bx by writing, e.g., dx(β̃
1, β̃2) := dx(B̃1, B̃2). Further, every β ∈ B gives rise to the projetion

B̃ := P̃xβ on Bx. Thus we an extend dx to a semi-distane on β ∈ B; and we an extend �x

to a binary relation on B by assigning β1 �x β
2
whenever P̃xβ �x P̃xβ.

In Setions 4, 6.2.2, 6.2.3 we will use these de�nitions in ombination with the following lemma.

Lemma 2.9. One an represent the distane dx(·, ·) by the formulas

(2.11)

dx(β̃
1, β̃2) = supa,b∈R sign (b− a)

(
B̃1(a)− B̃2(b)

)

= sup
{
sign (b− a)

(
ϕν(a)− ϕν(b)

)
| a ∈ Dom(β̃1), b ∈ Dom(β̃2)

}
.

One an express the relation β1 �x β
2
through the formula d−x (β̃

1, β̃2) = 0, where

(2.12)

d−x (β̃
1, β̃2) := supa,b∈R sign−(b − a)(B̃1(a)− B̃2(b)

)
= sup

{(
B̃1(a)− B̃2(b)

)− | a > b
}

= sup
{(
ϕν(a)− ϕν(b)

)− | a ∈ Dom(β̃1), b ∈ Dom(β̃2), a > b
}

= sup
{(
Q+

ν(x)(ã, b̃)
)−

| ã ∈ Vϕν(x)Dom(β̃1), b̃ ∈ Vϕν(x)Dom(β̃2)
}
,

where we have used the singular mapping Vϕν(x) and the notation of Setion 1.3.
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Proof. On the one hand, from the monotoniity of B̃2
, we have

supa,b∈R sign (b− a)
(
B̃1(a)− B̃2(b)

)
= supa,b∈R sign (b− a)

(
B̃1(a)− B̃2(a) + B̃2(a)− B̃2(b)

)

≤ |B̃1(a)− B̃2(a)| ≤ ‖B̃1 − B̃2‖∞ = dx(β̃
1, β̃2).

On the other hand, onsider a = k and bn = k + 1
n , then bn = k − 1

n in the left-hand side of the

above expression, with n→ ∞. Using the ontinuity of B̃2
we get for all k ∈ R,

∣∣B̃1(k)− B̃2(k)
∣∣ ≤ supa,b∈R sign (b − a)

(
B̃1(a)− B̃2(b)

)
.

Hene we derive the �rst equality in (2.11). Further, reall that B̃i
is onstant on eah onneted

omponent of the omplementary of Dom β̃i
, while B̃i|

Dom β̃i = ϕν |
Dom β̃i ; this implies the seond

equality in (2.11).

In the same way, we justify the �rst three equalities in (2.12). The last equality in (2.12) is

evident from the de�nitions of Vϕν(x) and Q
+
ν(x). �

3. Notion of solution

Let us start with the following notation. Given β(t,x) ∈ B, in the previous setion we have

onstruted its projetion B̃(t,x) ∈ Bx. Then we write

D̃−
(t,x) :=

{
k ∈ R | B̃(t,x)(k) ≤ ϕν(x)(k)

}
≡ D−

(t,x)∪Dom β̃(t,x);

D̃+
(t,x) :=

{
k ∈ R | B̃(t,x)(k) ≥ ϕν(x)(k)

}
≡ D+

(t,x)∪Dom β̃(t,x);

D̃0
(t,x) := Dom β̃(t,x) ≡ D̃−

(t,x) ∩ D̃+
(t,x).

Reall that D−
(t,x), D

+
(t,x) and D

0
(t,x) are the undershoot, the overshoot and the rossing sets for

the graph β(t,x) given the normal �ux ϕν(x); similarly, D̃−
(t,x), D̃

+
(t,x) and D̃

0
(t,x) are the undershoot,

the overshoot and the rossing sets for the projeted graph B̃(t,x). These sets appear as sets of

boundary traes of entropy sub-solutions, super-solutions and solutions, respetively, aording

to the de�nitions we now give.

Note the following loalized version of the elebrated de�nition of entropy solution due to

Kruzhkov [21℄. Reall that q±(·, ·) are the semi-Kruzhkov entropy �uxes de�ned by (1.10).

De�nition 3.1. Let Q̂T be an open subdomain of QT = (0, T )× Ω. A funtion u ∈ L∞(Q̂T )
is alled entropy solution of problem ut + divϕ(u) = f , u|t=0 = u0 if for all k ∈ R, for all

ξ ∈ D
(
Q̂T ∪ ({0}×Ω)

)+

(3.1)

∫ T

0

∫

Ω

(
−(u− k)±ξt − q±(u, k) · ∇ξ

)
−
∫

Ω

(u0 − k)±ξ(0, ·) ≤
∫ T

0

∫

Ω

sign±(u− k)f ξ.

If only the sign �plus� (respetively, �minus�) is hosen in (3.1), then u is an entropy sub-solution

(respetively, an entropy super-solution) in Q̂T .

Remark 3.2. Notie that entropy solutions, sub- and super-solutions are quasi-solutions in the

sense of Panov (see [32℄). This implies that the boundary traes in the sense of Setion 1.3,

used in the de�nitions of the next setion, do exist. It should also be noted that, aording to

the result of [31℄ (see also [40℄), entropy solutions in the whole ylinder QT atually belong to

C(0, T ;L1
loc(Ω)), in partiular the initial datum u0 is assumed in the sense of strong L1

loc trae.
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3.1. Equivalent de�nitions of entropy solutions, sub-solutions, super-solutions. Now

we inlude into the de�nition the boundary ondition. We need one more notation:

(3.2) Σ±(k) := {(t, x) ∈ Σ | k ∈ D±
(t,x)}.

In order to desribe simultaneously the key features of entropy solutions, we gather a series of

equivalent de�nitions in the following De�nition and Proposition.

Proposition 3.3 (De�nition of an entropy solution). Let u ∈ L∞(QT ).
If any of the below items (i)-(iv) is satis�ed, u is alled an entropy solution of problem (Hϕ,β(u0, f)).
Indeed, the assertions (i)-(iv) are equivalent:

(i) The funtion u veri�es the entropy inequalities (3.1) with ξ ∈ D([0, T )×Ω)+, moreover,

for HN
-a.e. (t, x) ∈ Σ, the strong trae γVϕν(x)u belongs to the set Vϕν(x)D̃

0
(t,x).

(ii) The funtion u veri�es the entropy inequalities (3.1) with ξ ∈ D([0, T )×Ω)+, moreover,

for HN
-a.e. (t, x) ∈ Σ, the strong trae γVϕν(x)u veri�es

(3.3) ∀k ∈ D̃0
(t,x) Qν(x)

(
γVϕν(x)u , Vϕν(x)k

)
≥ 0

Here, aording to (1.12), Qν(x) represents the normal omponent of the Kruzhkov en-

tropy �ux q(u, k) = sign (u− k)(ϕ(u) − ϕ(k)).
(iii) The funtion u veri�es the entropy inequalities (3.1) with ξ ∈ D([0, T )×Ω)+, moreover,

for HN
-a.e. (t, x) ∈ Σ, the strong trae γVϕν(x)u veri�es

(3.4) ∀k ∈ D±
(t,x) Q±

ν(x)(γVϕν(x)u, Vϕν(x)k) ≥ 0

Here, Q±
ν(x) are de�ned by (1.11).

(iv) The funtion u veri�es the up-to-the-boundary entropy inequalities with remainder term:

(3.5)

∀k ∈ R ∀ξ ∈ D([0, T )× Ω)+∫ T

0

∫

Ω

(
−(u− k)±ξt − q±(u, k) · ∇ξ

)
−
∫

Ω

(u0 − k)±ξ(0, ·)

≤
∫ T

0

∫

Ω

sign±(u− k)f ξ +

∫ ∫

Σ

Ck ∧
(
β(t,x)(k)− ϕν(x)(k)

)∓

ξ(t, x).

Here, Ck is a onstant

11

that depends on ‖u‖∞ and on k.

Moreover, if the sets Σ±(k) in (3.2) are regular enough in the sense that

12

(3.6)

for a ountable dense set of values of k,
the spae D(Σ±(k)) in dense in L1(Σ±(k)),

then (i)-(iv) are also equivalent to

(v) The funtion u veri�es the following up-to-the-boundary entropy inequalities:

(3.7)

∀k ∈ R ∀ξ ∈ D([0, T )× Ω)+ suh that ξ|Σ\Σ±(k) = 0∫ T

0

∫

Ω

(
−(u− k)±ξt − q±(u, k) · ∇ξ

)
−
∫

Ω

(u0 − k)±ξ(0, ·) ≤
∫ T

0

∫

Ω

sign±(u− k)f ξ.

Remark 3.4. Let us provide a few omments to the di�erent items of Proposition 3.3 and their

use for establishing well-posedness for problem (Hϕ,β(u0, f)) in the setting of entropy solutions.

11

Trunation by Ck is needed in order that the right-hand side be �nite. Indeed, reall that we have extended

β(t,x) to an R-valued graph.

12

This is a kind of separation property for Σ±
and the omplementary sets Σ \ Σ±

; is is satis�ed in many

pratial situations, but it fails e.g. in β(t,x) = {uD(t, x)}×R (the Dirihlet ase) with uD
that is the harateristi

funtion of a Cantor set of positive measure.
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• Inequlities (3.5) are multi-valued; but, approximating k from below and from above, it is

enough to require that (3.5) holds in its less restritive version, i.e., with (inf β(t,x)(k)−
ϕν(x)(k))

−
and with (supβ(t,x)(k)− ϕν(x)(k))

+
, respetively, in the right-hand side.

• De�nition (i) is a straightforward interpretation of the formal BC, enoded by β(t,x), as

the e�etive BC given by its projetion β̃(t,x): reall that D̃
0
(t,x) is the domain of β̃(t,x).

• De�nition (ii) of entropy solutions enrypts, in a rather diret way, the dissipative nature

of the boundary ondition expressed by β̃(t,x). Combination of items (i) and (ii) leads to

an immediate proof of uniqueness, omparison and L1
ontration for entropy solutions.

• Expliit use of boundary traes in De�nitions (i),(ii) makes it deliate to establish ex-

istene. Indeed, one of important features of a de�nition should be the stability of the

notion of entropy solution under L1
loc onvergene in QT . Existene arguments for De�-

nitions (i),(ii) were devised in [37, 7℄ but they are quite restritive (namely, they require

strong ompatness of boundary traes on Σ, whih is not implied by a mere L1
loc(QT )

onvergene).

• �Traeless� de�nitions (iv) and (v) by global entropy inequalities (f. [8℄ for a di�erent

version of De�nition (iv)) are learly stable under L1
loc onvergene.

• De�nition (v) is reminisent of those of Carrillo [16℄, Ammar, Carrillo and Wittbold [2℄.

Yet in full generality, (v) annot be used e.g. when Σ±
have a fratal nature. De�nition

(iv) is a way to bypass the subtlety of the simultaneous hoie of k and ξ imposed in [16℄;

the idea is to inorporate a remainder term that vanishes, on parts of the boundary, for

partiular hoies of k. Approah similar to (iv) was used by Vovelle [41℄, with a simpler

hoie of the remainder term suitable for inhomogeneous Dirihlet boundary ondition.

• Finally, de�nition (iii) provides a link between (i)-(ii) and (iv)-(v): it uses both traes and

the �D±
voabulary�. This de�nition an be put in orrespondene with the pointwise

interpretation by Rouvre and Gagneux [36℄ of the Carrillo boundary ondition.

The following proposition de�nes entropy sub- and super-solutions of problem (Hϕ,β(u0, f)).

Proposition 3.5 (De�nition of entropy sub- and super-solutions). Let u ∈ L∞(QT ).
If any of the below items (i)-(iv) is satis�ed, u is alled an entropy sub-solution of problem

(Hϕ,β(u0, f)). Indeed, the assertions (i)-(iv) are equivalent:

(i) The funtion u veri�es the entropy inequalities (3.1) with the sign �plus� and ξ ∈ D([0, T )×
Ω), ξ ≥ 0, moreover, for HN

-a.e. (t, x) ∈ Σ, the strong trae γVϕν(x)u lies in Vϕν(x)D̃
−
(t,x).

(ii) The funtion u veri�es the entropy inequalities (3.1) with the sign �plus� with ξ ∈
D([0, T ) × Ω), ξ ≥ 0, moreover, for HN

-a.e. (t, x) ∈ Σ, the strong trae γVϕν(x)u
veri�es

(3.8) ∀k ∈ D̃+
(t,x); Q+

ν(x)

(
γVϕν(x)u , Vϕν(x)k

)
≥ 0.

(iii) Item (ii) holds with k ∈ D+
(t,x) (in the plae of k ∈ D̃+

(t,x)) in (3.8).

(vi) The funtion u veri�es the up-to-the-boundary entropy inequalities with remainder term

(3.9)

∀k ∈ R ∀ξ ∈ D([0, T )× Ω), ξ ≥ 0,∫ T

0

∫

Ω

(
−(u− k)+ξt − q+(u, k) · ∇ξ

)
−
∫

Ω

(u0 − k)+ξ(0, ·)

≤
∫ T

0

∫

Ω

sign+(u− k)f ξ +

∫ ∫

Σ

Ck ∧
(
β(t,x)(k)− ϕν(x)(k)

)−

ξ(t, x).

Here, Ck is a onstant that depends on ‖u‖∞ and on k.

Further, exhange the signs �plus� and �minus� in the above properties: they remain equivalent,

and if any of them is satis�ed, u is alled an entropy super-solution of problem (Hϕ,β(u0, f)).
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The proof of Proposition 3.5 uses the same tools as the one of Proposition 3.3 given below;

we omit the details.

Remark 3.6. A funtion u is an entropy solution of problem (Hϕ,β(u0, f)) if and only if it is both

entropy sub- and super-solution of the problem.

3.2. Proof of the equivalene of di�erent de�nitions. Before turning to the proof, let

us state the key tehnial lemma that allows for a use of strong traes de�ned in the way of

Setion 1.3.

Lemma 3.7. There exists a sequene (ξn)n of Lipshitz funtions on Ω suh that 0 ≤ ξn ≤ 1,
ξn|∂Ω = 1, ξn → 0 on Ω as n→ ∞, and for all ξ ∈ D([0, T )× Ω), for all k ∈ R there holds

(3.10)

lim
n→∞

(∫ T

0

∫

Ω

(
−(u− k)±(ξξn)t − q±(u, k) · ∇(ξξn)

)
−
∫

Ω

(u0 − k)±(ξξn)(0, ·)
)

= − lim
n→∞

∫ T

0

∫

Ω

ξ q±(u, k) · ∇ξn = −
∫∫

Σ

ξ Q±
ν(x)

(
γVϕν(x)

u , Vϕν(x)
k
)

and

(3.11)

lim
n→∞

∫ T

0

∫

Ω

q±(u, k) · ∇(ξ(1− ξn)) =

∫ T

0

∫

Ω

q±(u, k) · ∇ξ −
∫∫

Σ

ξ Q±
ν(x)

(
γVϕν(x)

u , Vϕν(x)
k
)
.

Proof. For n ∈ N, the funtion ξn is de�ned almost expliitly. Firstly, a partition of unity

(χi)Mi=0 on Ω is used suh that suppχ0 ⊂ Ω and for i = 1..M , suppχi ⊂ U i
where U i

is an open

set of the kind onsidered in Setion 1.3. Then for eah i = 1..M , in the loal oordinates of Ui

as desribed in Setion 1.3 we take the funtion

πi
n(x0, x

′) := n
(

1
n − (x0 − gi(x′))

)+

(the funtion gi being assoiated with the neighbourhood U i
). Then we assign

ξn :=
∑M

i=1
χi πi

n.

Clearly, it only remains to justify (3.10) and (3.11).

Notie that ∇ξn =
∑M

i=1 ∇χi πi
n +

∑M
i=1 χ

i∇πi
n and the �rst term in the right-hand side

vanishes as n→ ∞, while the seond one permits to make appeal to the strong normal traes of

Vϕν(x)
u. Indeed, by onstrution ∇πi

n(·) is aligned with the �eld of normals ν(·) lifted inside U i
;

it is supported on {0 < y = x0 − gi(x′) < 1
n} and its absolute value is n

√
1 + |∇gi(x′)|2. The

limit of the expression

∫ T

0

∫

Ui

ξχi q±(u, k) · ∇πi
n

≡ n

∫ 1
n

0

(∫ T

0

∫

W i

ξχi q±(u(t, y + gi(x′), x; ), k) · ν(x0, x′)
(√

1 + |∇gi(x′)|2dtdx
))

dy

(here W i
is a boundary neighbourhood orresponding to U i

, see Setion 1.3) exists and equals

∫∫

Σ

ξχiQ±
ν(x)

(
γVϕν(x)

u , Vϕν(x)
k
)

aording to Setion 1.3 and beause

(√
1 + |∇gi(x′)|2dtdx

)
is preisely the surfae measure on

the boundary Σ. Then by a straightforward passage to the limit, both (3.10) and (3.11) hold. �
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Proof of Proposition 3.3. Throughout the proof, we use the following notation. If a point (t, x) ∈
Σ is �xed, we set Ṽ := γVϕν(x)u, then pik (arbitrarily) ũ ∈ [Vϕν(x)]

−1(Ṽ ). We also use the

sequene (ξn)n of Lemma 3.7.

Notie that all the de�nitions ontain entropy inequalities (3.1). We onentrate on the

equivalene of the omplementary properties related to the boundary ondition.

(i) ⇒ (ii) The laim is straightforward, by the de�nition (1.11) of Q±
ν(x) and the monotoniity of

the graph of ϕν(x)|D̃0
(t,x)

.

(ii) ⇒ (i) This impliation is a onsequene of the maximality of the graph β̃(t,x) as a monotone

subgraph of ϕν(x). Thanks to (3.3), we have sign (ũ − k)(ϕν(x)(ũ) − ϕν(x)(k)) ≥ 0 for all k ∈
D̃0

(t,x); thus, ϕν(x) is monotone not only on D̃0
(t,x) but also on ũ ∪ D̃0

(t,x). Thus ũ ∈ D̃0
(t,x) and

Ṽ ∈ Vϕν(x)D̃
0
(t,x), whih proves (i).

(i) ⇔ (iii) This equivalene follows from Proposition 2.5(i).

(i) ⇒ (iv) As a preliminary step, we assess the following property (see [37, 7℄): for all k ∈ R, for

all ξ ∈ D([0, T )× Ω)+

(3.12)

∫ T

0

∫

Ω

(
−(u− k)±ξt − q±(u, k) · ∇ξ

)
−
∫

Ω

(u0 − k)±ξ(0, ·)

≤ −
∫ ∫

Σ

Q±
ν(x)

(
γVϕν(x)u , Vϕν(x)k

)
ξ(t, x).

Indeed, taking (by approximation) for the test funtion in (3.1) a nonnegative funtion ξ ∈
D([0, T )× Ω) multiplied by the trunation (1− ξn), we get (3.12) from (3.11) of Lemma 3.7.

It remains to justify using the information that ũ ∈ D̃0
(t,x), that

(3.13) −Q±
ν(x)

(
γVϕν(x)

u , Vϕν(x)
k
)
≡ −q±ν(x)(ũ, k) ≤ Ck ∧

(
β(t,x)(k)− ϕν(x)(k)

)∓

.

The upper bound of the left-hand side of (3.13) by Ck := 2max
{
|ϕ(z)|

∣∣ |z| ≤ k + ‖u‖∞
}
is

evident. Further, if k ∈ D±
(t,x), then we already know that (i) implies (3.4), whih gives

(3.14) −Q±
ν(x)

(
γVϕν(x)

u , Vϕν(x)
k
)

≤ 0 ≤
(
β(t,x)(k)− ϕν(x)(k)

)∓

,

proving (3.13) for this ase. Let us study the remaining values of k.
For the sake of being de�nite, let us onsider k ∈ D−

(t,x), k < ũ; then the goal is to estimate

−q+ν(x)(ũ, k) from above by Rk :=
(
β(t,x)(k)− ϕν(x)(k)

)−

. Consider the four possible ases.

• If ϕν(x)(ũ) ≥ ϕν(x)(k), there is nothing to prove beause −q+ν(x)(ũ, k) ≤ 0 ≤ Rk.

• If β(t,x)(k) ≤ ϕν(x)(ũ) < ϕν(x)(k), then

−q+ν(x)(ũ, k) ≡ ϕν(x)(k)− ϕν(x)(ũ) ≤ ϕν(x)(k)− β(t,x)(k) =
(
β(t,x)(k)− ϕν(x)(k)

)−

= Rk.

• If ũ ∈ D−
(t,x) then ϕν(x)(ũ) ≥ β(t,x)(ũ) and from the monotoniity of β(t,x), we do have

−q+ν(x)(ũ, k) ≡ ϕν(x)(k)− ϕν(x)(ũ) ≤ ϕν(x)(k)− β(t,x)(ũ) ≤ ϕν(x)(k)− β(t,x)(k) = Rk.

• It remains the ase ũ ∈ D+
(t,x), k ∈ D−

(t,x), and ϕν(x)(ũ) < β(t,x)(k) < ϕν(x)(k); let us show

that this is impossible. Indeed, in this ase there exists k′ ∈ (k, ũ] that belongs to D0
(t,x). Then
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k′ ∈ D̃0
(t,x) aording to the de�nition of this graph. Yet also ũ ∈ D̃0

(t,x); by the de�nition of

D0
(t,x) and the monotoniity of ϕν(x)|D̃0

(t,x)
, we infer

β(t,x)(k
′) ∋ ϕν(x)(k

′) ≤ ϕν(x)(ũ) < β(t,x)(k).

This ontradits the monotoniity of β(t,x) beause k < k′.

(iv) ⇒ (iii) It is enough to justify inequalities (3.4). We work with mollifying sequenes (ξα)α
on Σ (extended smoothly inside Ω) that are supported in an α-neighbourhood of some σ ∈ Σ;
as α→ 0, ξα onentrates to the Dira measure supported at σ.

Fix k ∈ R and onsider e.g. σ = (t, x) ∈ Σ+(k). Almost every point of Σ+(k) is its point of
density (see, e.g., [19℄), whih means in partiular that, for HN

-a.e. σ ∈ Σ+(k),

(3.15) lim
α→0

∫ ∫

Σ

Ck ∧
(
β(t,x)(k)− ϕν(x)(k)

)−

ξα(t, x) = 0.

Indeed, the integrand in the right-hand side is bounded by Ck and by the de�nition (3.2), it is

zero for (t, x) ∈ Σ+(k).
Now we generate inequalities (3.4) by taking the test funtions ξαξn (with (ξn)n onstruted

in Lemma 3.7). Using onsequently (3.10), (3.5) and (3.15), we infer

−Q+
ν(x)

(
γVϕν(x)

u , Vϕν(x)
k
)
|(t,x)=σ = − lim

α→0

∫∫

Σ

ξα Q+
ν(x)

(
γVϕν(x)

u , Vϕν(x)
k
)

= lim
α→0

lim
n→∞

(∫ T

0

∫

Ω

(
−(u− k)±(ξαξn)t − q+(u, k) · ∇(ξαξn)

)
−
∫

Ω

(u0 − k)±(ξαξn)(0, ·)
)

≤ lim
α→0

∫ ∫

Σ

Ck ∧
(
β(t,x)(k)− ϕν(x)(k)

)−

ξα(t, x) = 0.

Similarly, the ase σ ∈ Σ−(k) leads to the inequality −Q−
ν(x)

(
γVϕν(x)

u , Vϕν(x)
k
)
|(t,x)=σ ≤ 0.

(iv) ⇒ (v) Inequalities (3.7) are immediate from (3.5).

(v)&(3.6) ⇒ (i) Atually, we rather prove (iii). Under the assumption that there exists a mol-

lifying sequene (ξα)α on Σ that onentrates at σ ∈ Σ±(k) and, moreover, that is identially

zero on Σ \ Σ±(k), we an repeat the proof of the above impliation �(iv) ⇒ (iii)�. A su�ient

ondition is the density of D(Σ±(k)) in L1(Σ±(k)). Moreover, this assumption is needed only

for a ountable dense set of values of k: indeed, the proof of the impliation �(iii) ⇒ (i)� an be

rewritten so that it use only a dense subset of values of k satisfying (3.4). Thus, (3.6) is enough

to derive the trae ondition in (i). �

4. Uniqueness, omparison, ontinuous dependene

Following the ideas of [22, 12, 26, 6℄, introdue the �uniqueness ondition�

(4.1) either Ω is bounded, or N = 1, or ϕ is loally Hölder ontinuous of order 1− 1
N .

In the lassial ase of a loally Lipshitz ontinuous �ux ϕ this assumption holds automatially.

The following result ontains uniqueness of an entropy solution for problem (Hϕ,β(u0, f)), L
1

ontration and omparison property with respet to the initial datum u0 and the soure term

f , and a omparison and stability property with respet to the hoie of β(t,x)(·).

Theorem 4.1. Assume (4.1). Let u1 be an entropy sub-solution for Problem (Hϕ,β1(u10, f
1));

let u2 be an entropy super-solution for Problem (Hϕ,β2(u20, f
2)). Then for a.e. s ∈ (0, T ),

(4.2)

∫

Ω

(u1−u2)+(s) ≤
∫

Ω

(u10−u20)++
∫ s

0

∫

Ω

sign

+(u1−u2)(f1−f2)+

∫ t

0

∫

∂Ω

d−x (β̃
1
(t,x), β̃

2
(t,x)).
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In partiular, if u10 ≤ u20 a.e. on Ω, f1 ≤ f2
a.e. on QT and if β1

(t,x) �x β
2
(t,x) HN

-a.e. on Σ, then

u1 ≤ u2 a.e. on QT . In partiular, there exists at most one entropy solution to (Hϕ,β(u0, f)).

Note that, whenever ϕ is loally Lipshitz ontinuous, we an loalize the ontration property

using the �nite speed of propagation, following Kruzhkov [21℄.

Proof. Consider the ase of a bounded domain Ω. We apply the Kruzhkov doubling of variables

argument inside the domain to dedue the Kato inequality: for a.e. s ∈ (0, T ), for all ξ ∈ D(Ω),

(4.3)

∫

Ω

(u1−u2)+(s) ξ−
∫

Ω

(u10−u20)+ξ(0, ·) ≤
∫ s

0

∫

Ω

(
q+(u1, u2) ·∇ξ+sign

+(u1−u2)(f1−f2) ξ
)
.

Now we take ξ = 1− ξn with (ξn)n onstruted in Lemma 3.7, and let n→ ∞. Sine there exists

a strong normal boundary trae of q+(u1, u2) expressed in the way of Remark 1.1 in Setion 1.3,

we �nd the inequality

∫

Ω

(u1−u2)+(s) ≤
∫

Ω

(u10−u20)+ +

∫ s

0

∫

Ω

sign

+(u1−u2)(f1−f2)

−
∫ s

0

∫

Ω

Q+
ν(x)(γVϕν(x)(u

1), γVϕν(x)(u
2)).

It remains to show that−Q+
ν(x)(γVϕν(x)(u

1), γVϕν(x)(u
2)) ≤ d−x (β̃

1
(t,x), β̃

2
(t,x)) pointwise on (0, T )×

∂Ω. This is true beause whenever the term on the left is non-zero, we have

(4.4) −Q+
ν(x)(γVϕν(x)(u

1), γVϕν(x)(u
2)) = −(ϕν(x)(ũ

1)− ϕν(x)(ũ
2))

with some ũ1 > ũ2 suh that

Vϕν(x)(ũ
1) = γVϕν(x)(u

1) ∈ Vϕν(x)D̃
−(t, x) and Vϕν(x)(ũ

2) = γVϕν(x)(u
2) ∈ Vϕν(x)D̃

+(t, x)

(here we have used the trae properties of entropy sub- and super-solutions, see Proposition 3.5(i)).

Thus ϕν(x)(ũ
1) ≥ B̃1

(t,x)(ũ
1), ϕν(x)(ũ

2) ≤ B̃2
(t,x)(ũ

2), so that the right-hand side of (4.4) ful�lls

−(ϕν(x)(ũ
1)− ϕν(x)(ũ

2)) ≤ −(B̃1
(t,x)(ũ

1)− B̃2
(t,x)(ũ

2)) ≤ d−x (B̃1
(t,x), B̃2

(t,x)),

where we have used the de�nition of d−x and the fat that ũ1 > ũ2.
For the ase when Ω is unbounded, in the same way we get the up-to-the boundary Kato

inequality, i.e., inequality (4.3) with a test funtion ξ ∈ D(Ω). Assuming either that N = 1, or
that N ≥ 2 and ϕ is loally Hölder ontinuous of order 1 − 1

N we use the tehniques known for

salar onservation laws with in�nite speed of propagation (see, e.g., [22, 12, 6℄), and eventually

dedue (4.2). �

5. Existene: a formal proof

In this setion, we establish existene on an entropy solution but we take for granted that

the formal BC, enrypted by the graphs β(t,x), should be replaed by the boundary ondition

expressed with the help of their projetions B̃(t,x) = P̃xβ(t,x). Setion 6 ontains a longer but

more onvining disussion of the problem of existene and onvergene of approximations.

For general graphs β satisfying the measurability assumption (1.1), we annot hope for ex-

istene of a bounded solution (it is enough to onsider, e.g., the situation where unbounded

Dirihlet data are imposed: in this ase, one needs the notion of a renormalized solution, as used

by Porretta, Vovelle [35℄ and by Ammar, Carrillo and Wittbold [2℄). We ontrol the L∞
norm

of solutions or approximate solutions by assuming existene of a rih enough family of simple
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(onstant in spae) sub- and super-solutions to the problem. Namely, we require that one of the

two following assumptions be ful�lled: either

(5.1)

f = 0, and there exist (A−
m)m∈N, (A

+
m)m∈N ⊂ R

±
suh that A±

m → ±∞
as m→ ∞ and for HN−a.e. (t, x)∈Σ, for all m ∈ N A±

m ∈ D̃±
(t,x);

or

(5.2) the measures of the sets A± :=
{
k ∈ R

± | k ∈ D̃±
(t,x) for HN−a.e. (t, x)∈Σ

}
are in�nite.

Note that (5.2) is ensured by the following:

(5.3) ∃A for HN
-a.e.(t, x) ∈ Σ (−∞,−A] ⊂ D̃−

(t,x) and [A,+∞) ⊂ D̃+
(t,x).

Remark 5.1. Given a formal BC graph β, it is not immediate to hek whether (5.3), (5.1), or

(5.2) hold. Let us give su�ient onditions.

Firstly, by de�nition we have D±
(t,x) ⊂ D̃±

(t,x), where D
+
(t,x), resp. D

−
(t,x) is the overshoot (resp.,

the undershoot) set de�ned in Setion 2; D±
(t,x) are omputed diretly from the relative positions

of the graphs β(t,x) and ϕν(x). Thus replaing D̃
±
(t,x) by D

±
(t,x) in eah of the assumptions (5.3),

(5.1), or (5.2), we get stronger but easier-to-hek restritions (f. [7, 8℄).

Seondly, if there exists C > 0 suh that for all x ∈ ∂Ω eah of the funtions ϕν(x)|(−∞,C] and

ϕν(x)|[C,+∞) is either non-dereasing or non-inreasing, then it is easily heked that assumption

(5.3) (and thus also (5.2)) holds.

Assume in addition that the limit �ux ϕ is genuinely nonlinear in the sense

(5.4) ∀Ξ ∈ R
N+1\{0} ∀c ∈ R the Lebesque measure of the set {z |Ξ · (z, ϕ(z)) = c} is zero.

Notie that the latter assumption implies (1.7), in partiular the singular mapping Vϕν(x) an

be taken to be Id in this ase.

The main result is the following theorem.

Theorem 5.2. Assume that ϕ satis�es (4.1), (5.4). Let u0 ∈ L∞(Ω) and
∫ T

0 ‖f(t, ·)‖∞ dt <∞.

Assume that β satis�es (1.1) and any of the assumptions (5.1), (5.2). Then there exists a unique

entropy solution of problem (Hϕ,β(u0, f)).

Proof. Uniqueness is ontained in Theorem 4.1. For proving existene, we exploit the vanishing

visosity method in whih we use diretly the projeted graphs B̃(t,x) = P̃xβ(t,x). We apply two

results that are justi�ed in the sequel. Firstly, we onstrut approximate solutions uε by the

vanishing visosity method, using Proposition 9.6 (see also Remark 9.7) of Appendix. Indeed,

k 7→ B̃(t,x)(k) =: b(t, x; k) being a ontinuous funtion for �xed (t, x) ∈ Σ, from (1.1) we dedue

that the map b on Σ× R is Carathéodory. Beause Proposition 9.6 requires that b be bounded,

we pik some value M > 0 depending on ‖u0‖∞ +
∫ T

0 ‖f(t, ·)‖∞ dt and on (A±
m)m or A±

in the

assumptions (M is hosen as a priori bound of ‖u‖∞, to be justi�ed later). We proeed by

trunating ϕ and B̃(t,x) as follows: e.g., under assumption (5.1) we take m suh that [A−
m, A

+
m] ⊃

[−M,M ] with M = ‖u0‖∞ and take the onvention that

(5.5)

ϕ is onstant on (−∞, A−
m] and on [A+

m,+∞) (equal to ϕ(A±
m), respetively),

B̃(t,x) is onstant on (−∞, A−
m] and on [A+

m,+∞) (equal to B̃(t,x)(A
±
m), respetively).

Therefore we get existene of vanishing visosity approximations (uε)ε orresponding to the

trunated graphs.

Let us stress the fat that, beause A±
m ∈ D̃±

(t,x), trunation (5.5) does not hange the fat

that B̃(t,x) is a maximal monotone subgraph of ϕν(x). For the same reason, the trunated graphs
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ϕ and B̃ ful�ll assumption (5.1) with the same sequenes (A±
m)m; hene by Proposition 9.6(ii)

the solutions obey an L∞
estimate that does not depend on the trunation level hosen in (5.5).

Now we an exploit Theorem 6.2 stated and proved in Setion 6.1. Its assumptions (6.1)�(6.3)

are ful�lled: indeed, notie that we have required the genuine nonlinearity property (5.4) that

implies ompatness (see, e.g., [30, 33℄) and that B̃ are bounded by max[A−
m,A+

m] |ϕ| due to the

trunation onvention (5.5). We dedue existene of an entropy solution u to the trunated

problem (Hϕ,β(u0, f)). Yet we have also ensured that ‖u‖∞ ≤ M , therefore the onstruted

solution u also solves the original problem (Hϕ,β(u0, f)) (before the trunation (5.5)). This ends

the proof. �

6. Justifiation of the effetive boundary ondition

The goal of this setion is to provide evidene in favor of the interpretation (1.13),(Aβ̃) of

the e�etive boundary ondition. As it was already stated in the introdution, a natural way to

justify a notion of solution is to see problem (Hϕ,β(u0, f)) as the limit of a family of problems for

whih the notion of solution is unambiguous: one derives the solution notion from passage-to-

the-limit arguments. In this setion, we do it in two omplementary ways, following the general

idea of our previous works ([7℄ and [8℄, respetively).

Firstly, in Setion 6.1 we rely on the lassial notion of weak solution to paraboli problems

with additional visosity term, vanishing at the limit. The entropy formulation of (Hϕ,β(u0, f)) is
obtained as a singular limit formulation: indeed, the limit problem looses its paraboli harater.

Unfortunately, for a pratial appliation of this tehnique we will need several restritions on

the behaviour of β and ϕ. To separate the tehnial details from the key idea of the proof,

we assume, without omment, that approximate solutions possess uniform bounds and a strong

ompati�ation property. Notie that the tehniques of Setion 6.1 are very di�erent from the

ones of the preeding works [37, 7℄, where we also needed the di�ult to ensure ompati�ation

assumptions on the sequene of approximate solutions on the boundary.

Remark 6.1. Although the arguments of [37, 7℄ are less general, they have the advantage of show-

ing quite expliitly how the projeted graph β̃ (in its haraterization [7, formula (4)℄, equivalent

to the haraterization of Proposition 2.5(ii)) appears from β.
In a sense, with [7, formula (4)℄ one an �observe� the formation of the boundary layer (see

[37℄ for details). The arguments we use in this paper are more indiret; they lead to the hara-

terization of Proposition 2.5(i), via the formulation (3.5).

Seondly, in Setion 6.2 we onsider approximations of (Hϕ,β(u0, f)) by purely hyperboli

problems of the same type (but with possibly di�erent data and non-linearities) and exploit the

stability and omparison priniple of Theorem 4.1 in order to extend the entropy formulation �by

heredity�. This allows, e.g., to onentrate on the ase of smooth and/or ompatly supported

initial data, that may be useful in the ontext of a loally Lipshitz �ux ϕ (f. Setion 7.1). For

the Dirihlet or obstale ondition, we an approximate the boundary data either pointwise or

using the Lusin theorem. For a less evident appliation, one an approximate a general graph β
by a bi-monotone sequene of graphs βδ,λ

satisfying the assumptions of the previous setion (by

bi-monotoniity, it is meant that βδ,λ
dereases as δ ↓ 0 and inreases as λ ↓ 0). In this way we

an justify the use of the projeted graph β̃ for the homogeneous Neumann boundary ondition

(whereas the justi�ation in the way of Setion 6.1 does not work in this ase); see [8℄.

6.1. Convergene of the vanishing visosity approximation. Let us provide a basi on-

vergene argument for the vanishing visosity approximation (without any additional regulariza-

tion or approximation of data and nonlinearities).
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We make the following a priori assumptions on data and nonlinearities of problem (1.3):

(6.1)

For all ε ∈ (0, 1) there exists a weak solution

13 uε ∈ L2(0, T ;H1
loc(Ω)) of (1.3),

moreover, the family (
√
ε∇uε)ε is bounded in L2

loc([0, T ]× Ω);

(6.2)

There exists u ∈ L∞(QT ) and a sequene εm dereasing to zero as m→ ∞
suh that uεm → u in L1

loc([0, T ]× Ω) as m→ ∞.

(6.3)

There exists G ∈ L1
loc([0, T ]× ∂Ω) suh that

|bε(t, x)| ≤ G(t, x) for HN
-a.e. (t, x) ∈ Σ, uniformly in ε ∈ (0, 1),

where bε(t, x) ∈ β(t,x)(u
ε(t, x)) is the value realized in the multi-valued boundary ondition

of (1.3) (namely, bε(t, x) := γw(ϕ(u
ε) − ε∇uε) · ν(x), the right-hand side having the meaning

of the weak normal boundary trae of the divergene-measure �eld (ϕ(uε) − ε∇uε), see [17℄).

Writing β(t,x)(u
ε(t, x)), we use without further mention the restrition uε|Σ of uε on the boundary,

understood in the sense of traes of Sobolev funtions.

Theorem 6.2. Assume that u0, f and ϕ, β are suh that (6.1),(6.2) and (6.3) hold. Then u is

an entropy solution of problem (Hϕ,β(u0, f)).

Remark 6.3. In pratie, (6.2) an be ful�lled as a ompatness property. In this ase, let us

suppose that the uniqueness ondition (4.1) of Theorem 4.1 holds. Then from the uniqueness of

the aumulation point u we dedue that the whole family uε onverges, as ε→ 0, to the entropy
solution of (Hϕ,β(u0, f)).

Proof. It is lassial (see e.g. Carrillo [16℄) to dedue from the weak formulation of (1.3) the

Kruzhkov entropy inequalities (3.1) with D([0, T ) × Ω) test funtions (i.e., entropy formulation

inside the domain). One readily passes to the limit in this entropy formulation using the property

(6.2) and the uniform L2
loc bound on

√
ε∇uε ontained in assumption (6.1). In our ase, the

deliate issue is to pass to the limit in the up-to-the-boundary entropy formulation of (1.3). Our

goal is to dedue the haraterization (3.5) of entropy solution.

To this end, we reprodue the arguments of [16℄, but we now take ξ ∈ D([0, T )× Ω), ξ ≥ 0.
We multiply (1.3) by the test funtion Hα(u

ε − k)ξ, where Hα is a Lipshitz regularization of

sign+
(the ase of sign−

is similar) suh that H ′
α(r) = 1

α1l(0,α)(r). In addition, we substitute

the term ϕ(uε) in (1.3) by ϕ(uε)− ϕ(k), whih results in the �new� boundary ondition

(ϕ(uε)− ϕ(k)− ε∇uε) · ν(x) ∈ β(t,x)(u
ε)− ϕν(x)(k).

Using the hain rule in time (see, e.g., [1, 29℄), using in addition [16, Lemma 1℄ to make disappear

the term limα→0+
∫
Ω(ϕ(u)− ϕ(k))H ′

α(u
ε − k)ξ, dropping the positive term εH ′

α(u
ε − k)|∇uε|2,

at the limit α→ 0+ we derive the �paraboli up-to-the-boundary entropy equality�

(6.4)

∫ T

0

∫

Ω

(
−(uε−k)+ξt − q+(uε, k) · ∇ξ

)
−
∫

Ω

(u0−k)+ξ(0, ·)

≤ −
∫

Σ

sign+(uε−k)(bε(t, x)−ϕν(x)(k))ξ − ε

∫ T

0

∫

Ω

sign+(uε−k)∇uε · ∇ξ

with some bε(t, x) ∈ β(t,x)(u
ε) satisfying (6.3). Reall that we have assumed that f = 0, the

general ase being similar. In the right-hand side of (6.4), by the monotoniity of β(t,x) we have,
pointwise on Σ, the multi-valued inequality

(6.5) − sign+(uε−k)(bε(t, x)−ϕν(x)(k)) ≤ (β(t,x)(k)−ϕν(x)(k))
−.

13

see Appendix for a preise de�nition of a weak solution
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Here, the quantity in the right-hand side an be in�nite, whih makes problemati the loalization

arguments. Under assumption (6.3) (see Remarks 6.6�6.9 for omments and generalizations) the

left-hand side of (6.5) is upper bounded by the L1
loc([0, T ]× ∂Ω) funtion de�ned by Gk(t, x) :=

G(t, x) + |ϕ(k)|. Letting ε→ 0+, from the L1
loc onvergene assumption (6.2) we dedue

(6.6)

∫ T

0

∫

Ω

(
−(u−k)+ξt − q+(u, k) · ∇ξ

)
−
∫

Ω

(u0−k)+ξ(0, ·)

≤
∫ T

0

∫

∂Ω

Gk(t, x) ∧ (β(t,x)(k)−ϕν(x)(k))
− ξ.

Now, sine u is an entropy solution inside the domain, we an use the strong normal boundary

trae γq+ν(x)(u, k) of q
+(u, k) and generate it with the help of the sequene (ξn)n of Lemma 3.7.

The positive test funtion ξ being arbitrary, we dedue

γq+ν(x)(u, k) ≤ Gk(t, x) ∧ (β(t,x)(k)−ϕν(x)(k))
− HN

-a.e. on Σ

(the inequality holds at the Lebesgue points of the left- and right-hand sides). Now notie that

we an provide a more preise upper bound for the left-hand side: taking

Ck := 2max
{
|ϕ(z)|

∣∣ |z| ≤ k + ‖u‖∞
}
≥ ‖q+(u, k)‖∞,

we have |q+ν(x)(u, k)| ≤ Ck pointwise, so that

(6.7) γq+ν(x)(u, k) ≤ Ck ∧ (β(t,x)(k)−ϕν(x)(k))
−.

Combining the entropy inequalities inside the domain (namely, (6.6) with ξ replaed by ξ(1−ξn),
with boundary ut-o� funtions (ξn)n onstruted in Lemma 3.7) with (3.11) and (6.7), we �nally

dedue (3.5). �

The simplest example ombining Proposition 9.6 and Theorem 6.2 is the following:

Example 6.4. Assume that ϕ satis�es (4.1) and (5.4). Assume that β ful�lls the analogues of

assumptions (5.2) or (5.1) with D̃±
(t,x) replaed byD

±
(t,x) (this makes the assumptions stronger, see

Remark 5.1). Assume that the graphs β(t,x) are single-valued uniformly bounded on R funtions.

Then for all visosity parameter ε > 0 solutions uε of the paraboli problem (1.3) exist;

moreover, uε onverge, as ε→ 0, to the unique entropy solution of (Hϕ,β(u0, f)).

The justi�ation of this example is ontained in the proof of Theorem 5.2.

Several omments are of order: indeed, we need to disuss generalizations and further applia-

tions of Theorem 6.2. First, onsider the existene and ompati�ation assumptions (6.1),(6.2).

Remark 6.5.

(i) As we show in Appendix, the existene assumption (6.1) is veri�ed e.g. in the ase where

β(t,x) are monotone ontinuous funtions having R for their domain. But this assumption is not

a neessary one. E.g., existene for the Dirihlet problem for (1.3) is well known, for regular

enough bounded Dirihlet data uD. If the lak of regularity (in (t, x)) of the family (β(t,x))(t,x)∈Σ

does not allow for existene of a solution uε, replaing β with a regularized graph βε
(e.g., the

Yosida regularization an be used, pointwise in (t, x)) one an easily generalize the onvergene

result of Theorem 6.2.

(ii) Property (6.2) is ensured in the ase where, �rstly, the �ux ϕ is genuinely non-linear in the

sense (5.4); and seondly, a uniform L∞
estimate on the family (uε)ε is available.

(iii) Aording to Proposition 9.6(ii) (see also Remark 9.7), uniform L∞
estimates on uε are

available in the ase (9.17) or (9.18) hold. These assumptions exlude important ases. Indeed,

for (e.g., homogeneous) Neumann and Robin boundary onditions it is easy to get existene of
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uε; but uniform L∞
bounds may require additional restritions on ϕ: see e.g. the work Bürger,

Frid and Karlsen [13℄ on the Neumann BC ase.

(iv) Without L∞
estimates, the issue of onvergene of vanishing visosity approximations be-

omes quite deliate. E.g., in the ase of homogeneous Neumann boundary onditions the family

(uε)ε may be unbounded, and nevertheless onverge pointwise to a limit u ∈ L∞(QT ).
In the present paper, we limit our investigation to the ase where uniform L∞

bounds (oming

from onstant sub- and super-solutions) are available. We leave the study of the more deliate

situations to a future work.

Further, assumption (6.3) is made in order to simplify the proof of Theorem 6.2 and also beause

it is enough for the existene result of Theorem 5.2. Assumption (6.3) is of tehnial nature;

unfortunately, it annot be ompletely bypassed. We make several omments on (6.3).

Remark 6.6. Assumption (6.3) is trivially satis�ed whenever the graphs β(t,x) are uniformly

bounded; it also holds if uε are uniformly bounded and for all M > 0, the sets β(t,x)([−M,M ])
are bounded uniformly in (t, x) ∈ Σ. A di�erent situation where (6.3) holds is when the sequene

(bε)ε is onvergent in L1(Σ) (or even in L1
loc([0, T ]× ∂Ω)). This was atually the ase under the

restritions imposed in our previous works (see [37, 7℄).

Remark 6.7. Assumption (6.3) an be replaed by the equi-integrability assumption on (bε)ε.
Indeed, setting Gε

k(t, x) := |bε(t, x)|+ |ϕ(k)|, we get (6.6) with Gε
k in the plae of Gk. The equi-

integrability assumption implies that the family of funtions

(
Gε

k(t, x)∧ (β(t,x)(k)−ϕν(x)(k))
−
)
ε

weakly onverges to an L1
loc([0, T ]× ∂Ω) funtion that we denote Bk. The proof of Theorem 6.2

leads to the inequalities

(6.8)

∫ T

0

∫

∂Ω

ξγq+ν(x)(u, k) ≤
∫ T

0

∫

∂Ω

ξBk

for non-negative ontinuous ompatly supported funtions ξ on Σ. Moreover, γq+ν(x)(u, k) ≤ Ck,

therefore γq+ν(x)(u, k) ≤ Ck ∧Bk ≤ Ck ∧ (β(t,x)(k)−ϕν(x)(k))
−
pointwise on Σ.

Remark 6.8. In view of pratial appliation of Theorem 6.2 (whih is a onditional result) it

would be muh useful to replae the domination assumption (6.3) on (bε)ε by the mere L1
loc

boundedness assumption

(6.9)

∫ T

0

∫

∂Ω∩K

|bε(t, x)| ≤ constK uniformly in ε ∈ (0, 1), for all ompat K ⊂ ∂Ω.

E.g. for the ase where ϕ(0) = 0, β(t,x)(0) ∋ 0 and 0 is in the interior of Domβ(t,x), the bound

(6.9) is satis�ed automatially. Indeed, under these restritions, along with the existene result

for uε (see Proposition 9.6 and Remark 9.7 in Appendix) there omes a uniform estimate

∫ T

0

∫

∂Ω∩K

bε(t, x)uε(t, x) ≤ constK .

Due to the monotoniity of β(t,x), (6.9) follows readily, while (6.3) is not guaranteed.
With (6.9) in hand the approah of the preeding remark an be applied, but with a loally

�nite measure replaing the L1
loc funtion Bk. Unfortunately, starting from (6.8) with Bk a

measure the loalization argument annot be ontinued (see [9, Example 2℄).

Remark 6.9. Yet in many important ases, (6.3) is not needed; it an be bypassed whenever the

set of �nite values of β(t,x)(k) is regular enough.
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Indeed, introdue S±
k := {(t, x) ∈ Σ | sup(±β(t,x)) < +∞}. For instane, assume that for a

dense set of values of k,

(6.10)

S±
k = E±

k,∞

⋃(
∪M∈NE

±
k,M

)
where HN(E±

k,∞) = 0,

the sets E±
k,M are open in Σ and (β(t,x)(k)−ϕν(x)(k))

± ≤M on E±
k,M .

Under this assumption, we an simply loalize inequalities (6.4) using test funtions ξ suh that

ξ|Σ is supported in E−
k,M and then apply (6.5) in the situation where its right-hand side is �nite.

Then we diretly get

γq+ν(x)(u, k) ≤ (β(t,x)(k)−ϕν(x)(k))
−

HN
-a.e. on S−

k ≡ {(t, x) | (β(t,x)(k)−ϕν(x)(k))
− 6= +∞}

being understood that we have q+ν(x)(u, k) ≤ Ck on the omplementary of this set. This establishes

(6.7) and omplements the proof of Theorem 6.2 with assumption (6.3) replaed by (6.10).

Suh modi�ation of Theorem 6.2 an be applied, e.g., to Dirihlet or obstale problems

under mild regularity assumptions on the boundary data. Indeed, the existene result for the

Dirihlet problem is well known, as well as the uniform L∞
bound on uε. Assumption (6.3)

of Theorem 6.2 is irumvented in the way of Remark 6.9. To be spei�, for the Dirihlet

graphs β(t,x) = {uD(t, x)} × R property (6.10) is ful�lled for ontinuous and even for pieewise

ontinuous uD (yet it is not ful�lled in the ase of �fratal� data uD).

Example 6.10. (f. Bardos, LeRoux and Nédéle [10℄ and Vasseur [40℄)

Assume that Ω is bounded, ϕ satis�es (5.4), and u0 ∈ L∞(Ω). Assume that β is the Dirihlet

graph orresponding to a pieewise ontinuous datum uD ∈ L2(0, T ;H1/2(∂Ω)) ∩ L∞(Σ).
Then for all visosity parameter ε > 0 solutions uε of the paraboli problem (1.3) exist; then

uε onverge, as ε→ 0, to the unique entropy solution of (Hϕ,β(u0, f)).

Analogous results hold for the ase of obstale boundary onditions with pieewise ontinuous

data um, uM ∈ ∩L2(0, T ;H1/2(∂Ω)) ∩ L∞(Σ).

6.2. Stability of the notion of entropy solution. Let us onsider a sequene of problems

of the kind (Hϕ,β(u0, f)) assoiated with data uδ0, f
δ
and nonlinearities ϕδ, βδ

(here δ is a

parameter; for the sake of being de�nite assume that δ is positive and onverges to zero). We

assume that there exist assoiated entropy solutions uδ; we want to dedue an entropy formulation

for an aumulation point u of uδ, assuming ad ho onvergene of uδ0, f
δ, ϕδ, βδ

to some limits

uδ0, f
δ, ϕδ, βδ

.

In the three paragraphs � 6.2.1�6.2.3 below, we will demonstrate three di�erent kinds of

heredity for the notion of entropy solution: the one oming from ompati�ation of (uδ)δ (due to
a genuine nonlinearity assumption on the �ux ϕ); the one oming from monotone approximation

proedures; and the one where the L1
ontration property of Theorem 4.1 makes (uδ)δ a Cauhy

sequene. Beause we now treat of a hyperboli problem, the boundary ondition an be enoded

either by the formal BC graphs β(t,x) (via formulation (3.5)) or by the projeted graphs B̃(t,x) =

P̃xβ(t,x) that diretly desribe the e�etive BC. We will exploit the two possibilities.

In � 6.2.1, we will need a notion of onvergene of maximal monotone graphs. Let us take the

following:

(6.11)

βδ
(t,x) → β(t,x) as δ → 0 if lim

δ→0
inf βδ

(t,x)(k) ≤ β(t,x)(k) ≤ lim
δ→0

supβδ
(t,x)(k)

at every point k of ontinuity of β(t,x)(k).

This assumption is satis�ed, e.g., if βδ
(t,x) are the Yosida approximations of β(t,x) (Yosida approx-

imation is a lassial way for regularizing maximal monotone graphs; see, e.g., [38℄ and � 6.2.1).
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A di�erent notion of onvergene of βδ
an be given in terms of the distane dx between the

projeted graphs P̃xβ
δ
; it is used in � 6.2.3, and the orresponding order relation is exploited in

� 6.2.2.

Throughout the setion, we assume that

(6.12) ∃M > 0 ‖uδ‖∞ ≤M uniformly in δ.

(in partiular, ‖uδ0‖∞ and

∫ T

0
‖f δ(t, ·)‖∞ dt should obey uniform in δ bounds). In order to enfore

the L∞
estimate (6.12), we atually assume that either (5.1) or (5.2) is ful�lled (with δ-dependent

f and the sets D̃±
(t,x)).

Lemma 6.11. Assume (4.1).

(i) Assume ‖uδ0‖∞ and

∫ T

0 ‖f δ(t, ·)‖∞ dt are bounded uniformly in δ and assumption (5.2) holds

with A±
independent of δ. Then (6.12) holds.

(ii) Assume that ‖uδ0‖∞ is bounded uniformly in δ and assumption (5.1) holds with (A±
m)m

independent

14

of δ. Then (6.12) holds.

The lemma is shown by using the omparison priniple of Theorem 4.1 and the appropriate

sub- and super-solutions of problems (Hϕδ,βδ(uδ0, f
δ)) that stem either from assumption (5.1)

(onstants A±
m are used) or from assumption (5.2) (in this ase, the onstrution desribed in

Remark 9.7 is used).

6.2.1. Heredity by ompatness. In this paragraph, let us assume the following properties:

(6.13)

uδ0 onverge to u0 in L1
loc(Ω), f δ

onverge to f in L1
loc(QT ),

ϕδ
onverge to ϕ uniformly on every ompat interval of R,

and for HN
-a.e. (t, x) ∈ Σ, βδ

(t,x) → β(t,x) in the sense (6.11).

(note that it is enough to assume relative ompatness of (uδ)δ and of (f δ)δ).

Proposition 6.12. Assume the data uδ0, f
δ, ϕδ, βδ

onverge in the sense (6.13). Assume (5.3)

or (5.1) hold with A or (A±
m)m that are suitable for ϕδ

,βδ
simultaneously for all δ > 0. Assume

ϕ is genuinely nonlinear in the sense (5.4), and assume that (4.1) holds.

Assume ‖uδ0‖∞ is uniformly bounded; in the ase (5.3) assume

∫ T

0 ‖f δ(t, ·)‖∞ dt is uniformly

bounded. Consider a family (uδ)δ of entropy solutions of (Hϕδ,βδ(uδ0, f
δ)). Then there exists

an aumulation point u of (uδ)δ, as δ → 0, and u is an entropy solution of the limit problem

(Hϕ,β(u0, f)).

Proof. First of all, the uniform L∞
bound (6.12) follows by Lemma 6.11. Then L1

loc relative

ompatness of (uδ)δ is a onsequene of the onvergene of ϕδ
to ϕ and of assumption (5.4)

(see, e.g., [30, 33℄ and [24℄). It remains to pass to the limit in the entropy formulation for

Hϕδ,βδ(uδ0, f
δ); to do this, we pik the up-to-the-boundary entropy inequalities (3.5) written for

uδ. Let us fous on the ase of the entropies (· − k)+; the ase of (· − k)− is analogous. Passage

to the limit in the left-hand side is straightforward, using (6.13). Thus we only have to establish

that, for ξ ∈ D(Σ),

(6.14)

lim inf
δ→0

∫∫

Σ

Ck ∧
(
inf βδ

(t,x)(k)− ϕδ
ν(x)(k)

)−

ξ

≤
∫∫

Σ

Ck ∧
(
inf β(t,x)(k)− ϕν(x)(k)

)−

ξ

14

This assumption an be generalized; e.g., it is enough that cm ≤ ±A
±,δ
m ≤ Cm with cm → ∞ as m → ∞.
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(see the �rst point of Remark 3.4). Reall that Ck may depend only on k, ‖uδ‖∞ and a loal

bound of |ϕδ|, thus we an take Ck independent of δ. Consequently, the dominated onvergene

theorem for (6.14) an be used.

Aording to Lemma 6.13 below, onvergene (6.11) of βδ
does imply that for a.e. k ∈ R,

there holds inf βδ
(t,x)(k) → inf β(t,x)(k) for HN

-a.e. (t, x) ∈ Σ as δ → 0 (the onvergene takes

plae in R). Sine ϕδ(k) tends to ϕ(k), the left-hand side integrand in (6.14) onverges HN
-a.e.

to the integrand of the right-hand side. This justi�es (6.14) for all k ∈ R exept, may be, for a

set of measure zero. Beause the left-hand side of (3.5) is ontinuous in k, one readily extends

(3.5) to all k ∈ R. This ends the proof. �

Lemma 6.13. Under assumption (1.1), a.e. point k ∈ R is a ontinuity point of β(t,x) simulta-

neously for HN
-a.e. (t, x) ∈ Σ.

Proof. Consider the [0,+∞]-valued map θ(t, x; k) := supβ(t,x)(k)−inf β(t,x)(k); it is measurable

on Σ × R due to (1.1). Indeed, by (1.1), for all ℓ, c ∈ R, mℓ(c) := {(t, x) ∈ Σ | inf β(t,x)(ℓ) > c}
is an HN

-measurable subset of Σ, thus mℓ(c) × [ℓ,+∞] is measurable on Σ × R w.r.t. to the

measure HN ⊗ µ where µ is given, for instane, by µ([a, b)) := arctan b − arctana. Now, due to
the lower semiontinuity of the map ℓ 7→ inf β(t,x)(ℓ), the sets {k | inf β(t,x)(k) > c} are open.

Therefore {
(t, x; k) | inf β(t,x)(k) > c

}
=

⋃
ℓ∈Q

mℓ(c)× [ℓ,+∞],

whih is a ountable union of measurable sets. Hene it is measurable on Σ× R w.r.t. HN ⊗ µ,
thus (t, x; k) 7→ inf β(t,x)(k) is measurable.

Now, for all σ = (t, x) ∈ Σ, θ(t, x; ·) is zero µ-a.e on R due to the monotoniity of β(t,x).

Applying the Fubini-Tonnelli theorem, we see that

∫
R

(∫
Σ
θ(σ; k) dHN (σ)

)
dµ(k) = 0. Thus for

a.e. k ∈ R, the funtion θ(·; k) is zero HN
-a.e. on Σ, whih was to be proved. �

Now let us give an appliation of Proposition 6.12 to a Yosida-like approximation of β.

Example 6.14. Assume that ϕ satis�es (4.1) and (5.4). Assume that β ful�lls the analogues of

assumptions (5.2) or (5.1) with D̃±
(t,x) replaed by D±

(t,x) (this makes the assumptions stronger).

Then entropy solution u of (Hϕ,β(u0, f)) is the limit of uδ, where uδ are limits of the vanishing

visosity method applied to problems (Hϕ,βδ(u0, f)) with β
δ
the approximation (6.15) of β that

we desribe below.

Indeed, onsider, e.g., the ase where (5.1) holds with D±
(t,x) in the plae of D̃±

(t,x), and pik

m suh that u0 takes values in [A−
m, A

+
m]. Then there exist b±m(t, x) ∈ β(t,x)(A

±
m) suh that

b+m(t, x) ≥ ϕν(x)(A
+
m) and b−m(t, x) ≤ ϕν(x)(A

−
m) Without loss of generality, we may assume that

±b+m(t, x) > 0 (otherwise we an modify β without hanging the e�etive BC graph β̃ in the

interval [A−
m, A

+
m], as in the ase of trunations (5.5)). We an use the result of Theorem 6.2 for

the ase of single-valued ontinuous graphs βδ
m, δ > 0, de�ned as follows:

(6.15) βδ
m =

{
(z, b) | z + δ b+m

z+

A+
m

− δ b−m
z−

A−
m

∈ β−1(b) + δb
}
;

(here we have skipped the parameters (t, x) ∈ Σ). Approximation (6.15) ensures the onvergene

property (6.11). It is inspired by the Yosida approximation βδ = (β−1 + δI)−1
, but by onstru-

tion, it has the additional property that βδ
m(A±

m) = b±m. Therefore A±
m ∈ D±,δ

(t,x) for all (t, x) ∈ Σ;

hene we an use the trunation onvention (5.5) simultaneously for all δ. Applying Proposi-

tion 6.12, we dedue that solutions uδ of (Hϕ,βδ(u0, f)) (uδ being obtained via Theorem 6.2)

onverge to the unique entropy solution of (Hϕ,β(u0, f)).
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6.2.2. Heredity by monotoniity. In this paragraph, let us assume the following properties:

(6.16)

ϕδ = ϕ for all δ, uδ0 ↓δ→0 u0, f δ ↓δ→0 f,

and for HN
-a.e. (t, x) ∈ Σ, βδ

(t,x) �x β
α
(t,x) if 0 < δ ≤ α.

The ase where uδ0 ↑δ→0 u0, f
δ ↑δ→0 f and βδ

(t,x) ↓δ→0 (in the sense �x) an be onsidered in

the same way. In this paragraph, we will work with projeted graphs B̃δ
(t,x) in the plae of βδ

(t,x).

By De�nition 2.8, we have B̃δ
(t,x) ≥ B̃α

(t,x) pointwise on R, if 0 < δ < α. Therefore it is

automati that, for a.e. (t, x), B̃δ
(t,x) ↑ Ψ(t,x) as δ → 0, with some non-dereasing funtion Ψ(t,x)

whih ould possibly take in�nite values. Under the assumptions we take, we an trunate ϕ,
β (whih means that, e.g., (5.5) is assumed) without hanging the solutions uδ. It follows that
Ψ(t,x) is �nite everywhere beause it is bounded by ‖ϕ‖∞ <∞. Finally, reall that for all δ > 0,

B̃δ
(t,x) is a ontinuous monotone funtion that is onstant on every onneted omponent of the

set

{
k ∈ R | B̃δ

(t,x)(k) 6= ϕν(x)(k)
}
. It is easy to see that this struture is inherited by passage to

a monotone limit, therefore in the sequel we will write B̃(t,x) in the plae of Ψ.

The ompatness of (uδ)δ is automati from its monotoniity, ensured by the omparison

priniple of Theorem 4.1. We have

Proposition 6.15. Assume the data uδ0, f
δ, βδ

onverge monotonially, in the sense (6.16).

Assume (5.1) or (5.2) hold, with (A±
m)m or A±

that are suitable for ϕδ
,βδ

simultaneously for all

δ > 0. Assume that (4.1) holds.

Assume ‖uδ0‖∞ is uniformly bounded; in the ase (5.2) assume

∫ T

0
‖f δ(t, ·)‖∞ dt is uniformly

bounded. Consider a family (uδ)δ of entropy solutions of (Hϕ,βδ(uδ0, f
δ)). Then there exists a

limit u of uδ, as δ → 0, and u is an entropy solution of the limit problem (Hϕ,β(u0, f)) with the

graph β given by β(t,x) := B̃(t,x) = limδ→0 B̃δ
(t,x).

Proof. The uniform L∞
bound (6.12) follows by Lemma 6.11. By Theorem 4.1 and due to

the monotone onvergene assumption (6.16) on the data, we dedue that uδ ≤ uα a.e. on QT

for 0 < δ ≤ α. Thus u := limδ→0 u
δ
is well de�ned a.e. on QT (one an start by onsidering

a sequene (δn)n dereasing to zero; at the very end, we �nd that u is an entropy solution of

(Hϕ,β(u0, f)), whih ensures the uniqueness of an aumulation point of (uδ)δ).
As in Proposition 6.12, we readily pass to the limit in the left-hand side of the entropy

formulation (3.5) written for uδ. In the right-hand side, we an hoose to write

(B̃δ
(t,x)(k)− ϕν(x)(k))

∓
in the plae of (βδ

(t,x)(k)− ϕν(x)(k))
∓.

Indeed, uδ, being the entropy solution orresponding to β(t,x), is also the entropy solution orre-

sponding to the graph B̃δ
(t,x) (both graphs lead to the same admissible traes set D̃0

(t,x)). Then

by the monotone onvergene theorem we readily pass to the limit in the right-hand side of

inequalities (3.5) written for uδ. The proof is omplete. �

Remark 6.16. It is easy to hek that for all x ∈ ∂Ω the projetion P̃x on B is an order-

preserving operator. Therefore the monotoniity property of βδ
(t,x) in the sense of the relation

�x is implied by its monotoniity in δ in the pointwise (multi-valued) sense. In this ase the

limit u of Proposition 6.15 is also an entropy solution of (Hϕ,β(u0, f)) with the graph β(t,x)
obtained as limδ→0 β

δ
(t,x) (the limit here is in the sense (6.11)).

The following example omplements Example 6.14. The orresponding existene laim even-

tually attains the same generality that the result of Theorem 5.2.
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Example 6.17. Assume that ϕ satis�es (4.1) and (5.4). Assume that β ful�lls (5.2) or (5.1).

There exists a family of bi-monotone graphs

(
βδ,λ

)
δ,λ>0

whih satis�es the assumptions of Ex-

ample 6.14. The entropy solutions uδ,λ (that an be onstruted, e.g., in the way of Example 6.14)

of the assoiated problem (Hϕ,βδ,λ(u0, f)) onverge to an entropy solution u of (Hϕ,β(u0, f)) as
δ, λ tend to zero.

Indeed, assume, e.g., that β satis�es (5.1). We approximate β by βδ,λ := β+∂I[−1/δ,1/λ], where

∂I[a,b] (the subdi�erential of the indiator funtion of [a, b]) is the obstale graph orresponding

to the interval [a, b]. This ensures that

βδ,λ(k) = +∞ ≥ ϕν(x)(k) for k > 1/λ and βδ,λ(k) = −∞ ≤ ϕν(x)(k) for k < −1/δ,

so that (−∞,−1/δ] ⊂ D−,δ,λ
(t,x) and [1/λ,+∞) ⊂ D+,δ,λ

(t,x) for all (t, x) ∈ Σ. Thus βδ,λ
ful�lls the

assumptions of Example 6.14.

Furthermore, whenever

(6.17) −1/δ ∈ D−
(t,x) and 1/λ ∈ D+

(t,x),

as in the loalization proedure in the proof of Theorem 5.2 we see that B̃δ,λ
(t,x) := P̃xβ

δ,λ
(t,x) oinides

with B̃(t,x) in the interval [−1/δ, 1/λ]. Due to assumption (5.1), we an onstrut sequenes of

parameters δ and λ going to zero and satisfying (6.17). Moreover, due to (5.1) solutions uδ,λ

onstruted in Example 6.14 take their values within some �xed interval [−M,M ].

By onstrution, (βδ,λ
(t,x))δ>0 dereases as δ ↓ 0 for every λ > 0; and (βδ,λ

(t,x))λ>0 inreases as

λ ↓ 0 for every δ > 0. As δ → 0, we an use Proposition 6.15 to infer that uδ,λ ↑δ→0+ u0,λ

and u0,λ is the entropy solution assoiated with the graph β0,λ := β + ∂I(−∞,1/λ]. As λ → 0,

using the analogue of Proposition 6.15 we dedue that u0,λ ↓λ→0+ u and u is the unique entropy

solution of problem (Hϕ,β(u0, f)). Exhanging the order of passage to the limit, we also get

uδ,λ ↓λ→0+ uδ,0 ↑δ→0+ u. By the squeeze lemma, we infer that uδ,λ → u as (δ, λ) → (0, 0).

6.2.3. Heredity by L1
ontration. In this paragraph, let us assume the following properties:

(6.18)

ϕδ = ϕ for all δ, uδ0 − u0 → 0 in L1(Ω), f δ − f → 0 in L1(QT ),

and for HN
-a.e. (t, x) ∈ Σ, dx(β

δ
(t,x), β(t,x)) → 0 as δ → 0

with dx(β
δ
(t,x), β(t,x)) ≡ dx(β̃

δ
(t,x), β̃(t,x)) given by De�nition 2.8. The pratial interpretation of

the above onvergene is therefore,

(6.19) B̃δ
(t,x) = P̃xβ

δ
(t,x) −→ B̃(t,x) = P̃xβ(t,x) uniformly on R.

The onvergene of (uδ)δ follows by the L1
ontration priniple of Theorem 4.1. We have

Proposition 6.18. Assume the data uδ0, f
δ, βδ

onverge in the sense (6.18). Assume that (5.1)

or (5.2) hold, with (A±
m)m or A±

that are suitable for ϕδ
,βδ

simultaneously for all δ > 0. Assume

that (4.1) holds.

Assume ‖uδ0‖∞ is uniformly bounded; in the ase (5.2) assume

∫ T

0
‖f(t, ·)‖∞ dt is uniformly

bounded. Consider a family (uδ)δ of entropy solutions of (Hϕ,βδ(uδ0, f
δ)). Then there exists a

limit u of uδ, as δ → 0, and u is an entropy solution of the limit problem (Hϕ,β(u0, f)).

Proof. As in Propositions 6.12,6.15, the L∞
bound (6.12) is immediate. To ontinue, from

inequalities (4.2) of Theorem 4.1 we dedue

(6.20)

∫

Ω

|uδ − uα|(t) ≤
∫

Ω

|uδ0 − uα0 |+
∫ t

0

∫

Ω

|f δ − fα|+
∫ t

0

∫

∂Ω

dx(β
δ
(t,x), β

α
(t,x)).
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By the triangular inequality (reall that dx, when used on Bx, is a distane) and the onvergene

properties (6.18) we see that the right-hand side of (6.20) tends to zero as max{δ, α} → 0. Thus
by the Cauhy riterion, (uδ)δ onverges in L∞(0, T ;L1(Ω)), as δ → 0, to some limit u. Then

u ful�lls (3.5). Indeed, the passage to the limit in up-to-the-boundary entropy inequalities (3.5)

written for uδ is straightforward. In partiular, in the right-hand side we an substitute βδ(k) by

B̃δ(k); the latter expression onverges to B̃(k), due to (6.19). We onlude using the dominated

onvergene theorem. �

A trivial appliation of (6.18) is for approximation of the initial data u0 and soure data f .
Let us give another appliation whih is suitable, e.g., for approximation in the sense of the Lusin

theorem of merely measurable Dirihlet or obstale boundary data by ontinuous in (t, x) data:

Example 6.19. Assume that (5.1) or (5.2) hold, with (A±
m)m or A±

that are suitable for ϕδ
,βδ

simultaneously for all δ > 0. Assume that (4.1) holds.

Assume that βδ → β in the following sense:

(6.21) the HN
measure of the set Rδ :=

{
(t, x) ∈ Σ |βδ

(t,x) 6= β(t,x)

}
vanishes as δ → 0.

Then solution uδ of problem (Hϕ,βδ(u0, f)) tends, as δ → 0, to a limit u that solves problem

(Hϕ,β(u0, f)).

This result follows readily from Proposition 6.18: indeed, u0,f being �xed, (6.21) gives (6.18).

The next appliation, that omplements Example 6.10, uses pointwise approximation of the

obstale problem (the ase um = uM of the obstale problem yields the Dirihlet problem).

Example 6.20. In the setting of Example 6.19, in the plae of (6.21) assume that βδ
is the

obstale graph

βδ
(t,x) =

(
{umδ (t, x)}×R

−
)
∪

(
[umδ (t, x), uMδ (t, x)]×{0}

)
∪

(
{uMδ (t, x)}×R

+
)
.

Assume that umδ and uMδ obey uniform L∞
bounds and onverge HN

-a.e. on Σ to limits um and

uM , respetively. Then solutions uδ of problem (Hϕ,βδ(u0, f)) onverge to a limit u that solves

problem (Hϕ,β(u0, f)) with the obstale graph β orresponding to um,uM .

The proof is straightforward, taking into aount the following lemma:

Lemma 6.21. Assume βδ
, β are obstale graphs orresponding to umδ , u

m
and uMδ , uM that

take values in some ompat subset I of R. Let ωϕ : R+ 7→ R
+
is the modulus of ontinuity of ϕ

on I. Then for all (t, x) ∈ Σ there holds dx(β
δ, β) ≤ ωϕ

(
max{|umδ − um|, |uMδ − uM |}

)
.

The proof relies on the fat that B̃δ
(t,x)(z) and B̃(t,x)(z) oinide exept when their values fall

within one of the two strips

Sm := ϕν(x)([min{um, umδ },max{um, umδ }) and SM := ϕν(x)([min{uM , uMδ },max{uM , uMδ }]);
then dx(β

δ, β) = ‖B̃δ
(t,x) − B̃(t,x)‖∞ is less than or equal to the width of the strips, whih does

not exeed ωϕ

(
max{|umδ − um|, |uMδ − uM |}

)
.

7. Further existene and onvergene results

Here we explore onvergene of approximations in two omplementary diretions. In Se-

tion 7.1 we disard the genuine nonlinearity assumption (5.4) and exploit BVloc estimates for

proving ompatness. This tehnique is limited to one-dimensional ase (with a simple gener-

alization to half-spae or strip domains). In Setion 7.2 we set up a framework for studying
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measure-valued (entropy-proess) solutions, so that to replae the strong ompatness in L1
loc of

sequenes of approximate solutions by their weak-* ompatness in L∞
.

7.1. The one-dimensional ase: existene via BVloc estimate. The tehnique of this se-

tion relies upon translation arguments for proving loalized BV estimates. It goes bak to

Bürger et al. [14, 15℄ where the idea was introdued in the ontext of �nite volume numerial

approximations.

Theorem 7.1. Assume that Ω = [0,+∞) and ϕ is loally Lipshitz ontinuous. Let β be a

maximal monotone graph on R, independent of t ∈ (0, T ). Then for all u0 ∈ L∞((0,+∞)) there
exists an entropy solution of (Hϕ,β(u0, f)) with f = 0.

Remark 7.2. In the ase of a single boundary point x and of a t-independent graph β, assumption

(5.1) is automatially ful�lled. Indeed, in this ase we an drop the subsripts (t, x); the points

±∞ are aumulation points of the sets D̃±
beause otherwise we have, e.g., ϕν > B̃ on [M,+∞),

whih ontradits the maximality of B̃.
Proof. Aording to Proposition 6.18, it is enough to prove the theorem for a dense subset

of data in L1
. In order to reover existene for general L∞

data, we an use Proposition 6.15

applied to a bi-monotone data approximation. Uniform L∞
bounds are ensured by (5.1) and the

assumption f = 0, due to Remark 7.2. Substituting β by B̃ as in Setion 5, we may assume that

β is bounded.

Thus we pik u0 ∈ C∞(Ω) with ompat in R
+

support, and suh that u0 ≡ k0 = const
on some interval (0, η). Existene of a solution uε to the paraboli regularized problem (1.3)

follows by the results of [37, 38℄; we an also apply Proposition 9.6 from Appendix. Therefore

assumptions (6.1),(6.3) of Theorem 6.2 hold, and it remains to guarantee (6.2) in order to apply

Theorem 6.2 and onlude the proof.

To this end, we extend uε ontinuously by u0 for t ≤ 0; notie that for t < 0, the so extended

funtion uε satis�es uεt + ϕ(uε)x = εuεxx + r(x) where

(7.1) r : x 7→ ϕ(u0)x − ε(u0)xx

is an L∞(R)∩L1(R) funtion, by the assumptions on ϕ and u0. Moreover, we an hoose k0 ∈ D̃0
,

whih means that ϕν(k0) = B̃(k0). Therefore the so extended funtion uε is an entire solution

(i.e., a solution de�ned for t ∈ R) of problem

(7.2)





uεt − div (−ϕ(uε)+ε uεx) = r(x) 1lt<0,(
B̃(uε) + (−ϕ(uε) + ε uεx) · (−1)

)
|x=0 = 0.

Now, the key fat is that we an ontrol the L1
time translates of uε by a linear modulus of

ontinuity, beause solutions of (7.2) verify the L1
ontration priniple that an be shown, e.g.,

as in [29℄ or a in [16℄ (we only have to take into aount an original boundary ondition):

(7.3)

∫

R

|ũε(t)− ũε(t− τ)| ≤
∫

R

|ũε(0)− ũε(−τ)| +
∫ t

0

∫

R

|r 1ls<0 − r 1ls−τ<0| ds = τ ‖r‖L1 .

Therefore uε ∈ BV (0, T ;L1(0,+∞)), with a uniform in ε bound. Then we an use the idea of

[14, Lemma 4.2℄ and [15, Lemma 5.4℄: for a > 0, using the mean-value theorem for eah ε > 0
we an �nd a ontour (0, T ) × {cε} with 0 < cε < a suh that TotVaruε along these ontours

is uniformly bounded by

C
a . The variation of u0 is also bounded, therefore using the lassial

estimate of Bardos, LeRoux and Nédéle [10℄ for the Dirihlet problem for visous onservation

law (with boundary datum given by the values of uε on our ontour), we get the bound

(7.4) TotVaruε|{(t,x) | t∈(0,T ), x≥a} ≤ C

a
,
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with C that only depends on u0 and on the Lipshitz onstant of ϕ. With the Cantor diago-

nal argument, we dedue ompatness of (uε)ε in L1
loc((0, T ) × (0,+∞)). Combined with the

aforementioned uniform L∞
bound on uε, this �nally proves (6.2). �

7.2. Entropy-proess solutions. As soon as existene of an entropy solution is established

15

and the uniqueness assumption (4.1) is ful�lled, we an prove onvergene of, e.g., vanishing

visosity approximations without the genuine nonlinearity assumption (5.4) (though we still

need a uniform L∞
estimate). To do so, it is enough to adapt the devie of measure-valued

solutions; here, we use the version alled entropy-proess solution due to Gallouët et al. [20℄.

De�nition 7.3. Let µ ∈ L∞(QT × (0, 1)). Then µ is alled an entropy-proess solution of

problem (Hϕ,β(u0, 0)) if µ veri�es the following up-to-the-boundary entropy inequalities with

remainder term (whih is, in general, multi-valued):

(7.5)

∀k ∈ R ∀ξ ∈ D([0, T )× Ω)+
∫ 1

0

∫ T

0

∫

Ω

(
−(µ(α)− k)±ξt − q±(µ(α), k) · ∇ξ

)

−
∫

Ω

(u0 − k)±ξ(0, ·) ≤
∫ ∫

Σ

Ck ∧
(
β(t,x)(k)− ϕν(x)(k)

)∓

ξ(t, x).

Here, Ck is a onstant that depends on ‖µ‖∞ and on k.

Proposition 7.4.

(i) Let µ be an entropy-proess solution of (Hϕ,β(u0, 0)). Then it veri�es the entropy-proess

inequalities

(7.6) ∀k ∈ R

∫ 1

0

∫ T

0

∫

Ω

(
−(µ(α)− k)±ξt − q±(µ(α), k) · ∇ξ

)
−
∫

Ω

(u0 − k)±ξ(0, ·) ≤ 0

with ξ ∈ D([0, T ) × Ω)+, moreover, for HN
-a.e. (t, x) ∈ Σ, the weak normal boundary trae of

the �ux veri�es

(7.7) ∀k ∈ D±
(t,x) γw

(∫ 1

0

q±(µ(·;α), k) dα · ν(·)
)
(t, x) ≥ 0.

(ii) Let µ ∈ L∞(QT × (0, 1)) suh that µ satis�es (7.6),(7.7). Then for HN
-a.e. (t, x) ∈ Σ, the

weak normal boundary trae of the �ux veri�es

(7.8) ∀k ∈ D̃0
(t,x) ≡ Dom β̃(t,x) γw

(∫ 1

0

q(µ(·;α), k) dα · ν(·)
)
(t, x) ≥ 0.

(iii) Let µ ∈ L∞(QT × (0, 1)) suh that µ satis�es (7.6),(7.8). If, in addition, (4.1) holds, then

µ oinides with the entropy solution u in the sense µ(·;α) = u(·) a.e. on QT × (0, 1).

Notie that, although we do not prove diretly the equivalene of De�nition 7.3 and any of

the formulations (7.6),(7.7) and (7.6),(7.8), suh equivalene holds whenever an entropy solution

exists and it is unique.

Proof.

(i) Inequalities (7.6) are immediate from the de�nition of an entropy-proess solution. In order

to dedue (7.7), one proeeds as in the proof of the laim �(iv) ⇒ (iii)� in Proposition 3.3.

The only di�erene is that, while using the analogue of (3.10), one replaes the (strong) trae

Q±
ν(x)

(
γVϕν(x)

u , Vϕν(x)
k
)
by the (weak) trae γw

(∫ 1

0
q±(µ(·;α), k) dα · ν(·)

)
(t, x).

15

Let us stress that neither for onservation laws in the whole spae, nor for the Dirihlet problem (see, e.g.,

Vovelle [41℄) this assumption is not needed.
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(ii) Assume, for instane, that k ∈ D+
(t,x). Let us show that (7.8) holds for this value of k. It is

enough to prove (7.8) separately with q+ and q− in the plae of q; moreover, the �rst of the two

inequalities is already ontained in (7.7) sine k ∈ D+
(t,x). Set k0 := sup

{
κ ≤ k |κ ∈ D−

(t,x)

}
; note

that k0 may take the value −∞. In order to prove the statement, it is enough to get

(7.9) γw

(∫ 1

0

q−(µ(·;α), k) dα · ν(·)
)

≥ γw

(∫ 1

0

q−(µ(·;α), k0) dα · ν(·)
)

at the point (t, x)

(indeed, the latter quantity is nonnegative by (7.7) beause k0 ∈ D−
(t,x): reall that D−

(t,x) is a

losed set). Beause k ∈ Dom β̃(t,x), by Proposition 2.5(ii) we have

(7.10) ϕν(x)(κ) ≤ ϕν(x)(k) for all κ ∈ (k0, k).

The idea of the proof is the following: we have q−ν (µ(α), k) = −ϕν(x)(µ(α)) + ϕν(x)(k) ≥ 0
whenever µ(α) ∈ (k0, k), and therefore

(7.11)

∫ 1

0

q−(µ(α), k) dα · ν =

∫

[µ(α)≤k0]

q−ν (µ(α), k) dα +

∫

[k0<µ(α)<k]

q−ν (µ(α), k) dα + 0

≥
∫

[µ(α)≤k0]

q−ν (µ(α), k0) dα+ 0 =

∫ 1

0

q−(µ(α), k0) dα · ν.

Here we have used (7.10) that holds at the point (t, x) but not neessarily at every point. We

want to write down an inequality of the kind (7.11) in a neighbourhood Bδ ∩Ω of (t, x), and then

take weak traes at the point (t, x). In order to do so, we use an ε-approximate inequality of the

kind (7.11) for (s, y) ∈ Ω ∩ Bδ with Bδ a δ-sized neighbourhood of (t, x), and with ε vanishing

as δ vanishes. This is possible due to the ontinuity arguments. Indeed, a generi point of Σ is

a point of approximate ontinuity of the normal �eld; thus we an write (in the plae of (7.10))

that ϕν(y)(κ) ≤ ϕν(y)(k) + ε for κ ∈ (k0, k) and for a set of points (s, y) ∈ Bδ \ Cδ suh that

meas(Cδ)/meas(Bδ) → 0 as δ → 0. Taking the weak trae, we get (7.9) with the additional term

(−ε) on the right-hand side. Then, letting δ go to zero, we see that (7.9) is justi�ed and the

proof is omplete.

(iii) The proof is analogous to the one of Theorem 4.1, exept that it is based on the doubling

of variables (inside the domain) for entropy-proess solutions. As in [20, 41℄, for entropy-proess

solution µ and an entropy solution u orresponding to the same data, we get the Kato inequality

analogous to (4.3):

(7.12) ∀ ξ ∈ D(Ω)

∫ 1

0

∫

Ω

|µ(α)−u|(t) ξ dα ≤ −
∫ 1

0

∫ t

0

∫

Ω

q(µ(α), u) · ∇ξ dα.

Assume for simpliity that Ω is bounded (other ases will exploit ξ ∈ D(Ω) that is then sent to

the limit 1, as in [22, 12, 6℄). We simply take ξ = 1− ξn with the onstrution of Lemma 3.7; as

in the proof of (3.11), we dedue at the limit n→ ∞,

(7.13)

∫ 1

0

∫

Ω

|µ(α)−u|(t) dα ≤ −
∫ t

0

∫

Ω

γw

∫ 1

0

q(µ(α), u) · ν(x) dα.

Transforming the right-hand side of (7.13), using the existene of strong trae γVϕν(x)
u we get

(7.14)

∫ 1

0

∫

Ω

|µ(α)−u|(t) dα ≤ −
∫ t

0

∫

Ω

γw

∫ 1

0

Qν(x)(Vϕν(x)
µ(α), Vϕν(x)

u) dα

≡ −
∫ t

0

∫

Ω

γw

∫ 1

0

Qν(x)(Vϕν(x)
µ(α), γVϕν(x)

u) dα.
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Yet, aording to the haraterization Proposition 3.3(i) of u, γVϕν(x)
u ∈ Domβ̃(t,x) in a generi

point of Σ; thus using (7.8) (notie that one an replae q(µ(α), k)·ν(x) in (7.8) by the expression

Qν(x)(Vϕν(x)
µ(α), Vϕν(x)

k)) we readily �nd that the right-hand side of (7.14) is non-positive. It

follows that µ(α) − u is zero a.e., whih ends the proof. �

Corollary 7.5. In the assumptions of Theorem 6.2, drop the genuine nonlinearity assumption

(5.4) but suppose that there exists an entropy solution of problem (Hϕ,β(u0, f)). Then the on-

lusion of the theorem still holds.

For the proof, it is enough to use the devie of nonlinear weak-∗ onvergene, following [20, 41℄,
to derive the entropy-proess formulation (7.5) along the lines of the proof of Theorem 6.2. One

onludes using Proposition 7.4(i)-(iii).

Conlusion

We investigated the issue of de�nition, justi�ation and uniqueness of entropy solutions to

salar onservation laws with nonlinear dissipative boundary onditions. Although existene of

entropy solutions and onvergene of approximations are addressed in muh generality, tehnial

restritions we had to impose leave plae for a future work, e.g., exploiting the notions of renor-

malized entropy solutions ([11, 35, 2℄) and of weak boundary traes and boundary entropy-�ux

pairs ([28℄), as was done for the Dirihlet problem.

Appendix: existene for the visosity regularized problem

In this paper, we establish existene of entropy solutions of (Hϕ,β(u0, f)) via onstrution of

approximate solutions (in most ases, we need a multi-step approximation). Therefore we need

some basi existene result to produe approximate solutions; this is the purpose of the present

Appendix. Existene results of this kind were already established by the seond author and

Wittbold in [38℄ (see also [37℄), for the ase of t-independent graph β suh that 0 ∈ β(0). Other
results an be found in [4℄.

Here we follow a di�erent strategy (in the plae of the onvex analysis and nonlinear semigroup

methods of [38, 37℄, we use the Galerkin sheme and time ompatness arguments), in the ontext

that better suits our needs. Consider the following paraboli problem (for simpliity, we set

f ≡ 0):

(9.15)

{
ut − div (−ϕ(u)+ε∇u) = 0, u|t=0 = u0,

b(t, x;u) + (−ϕ(u) + ε∇u) · ν(x) = 0

where b is a Caratheodory funtion (single-valued b(t, x; ·) replaes the maximal monotone graph

β(t,x)), more preisely

for all z ∈ R b(·, ·;u) is measurable,

and for a.e. (t, x) ∈ Σ b(t, x; ·) is a ontinuous stritly inreasing funtion.

Moreover, we assume that b is bounded:

sup
(t,x)∈Σ, z∈R

|b(t, x; z)| < +∞.

The parameter ε in (9.15) ould be removed by a saling argument, but we keep it in order to

state an ε-independent L∞
estimate on uε that is needed in order to generate a limit of the

sequene (uε)ε, as ε→ 0.
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Proposition 9.6.

(i) Under the above assumptions, suppose in addition that ϕ is bounded on R. Then there exists

a solution uε to problem (9.15): namely, uε ∈ L2(0, T ;H1
loc(Ω)) and for all ξ ∈ D([0, T )× Ω)

(9.16)

∫ T

0

∫

Ω

−uξt −
∫

Ω

u0ξ(0, ·) +
∫ T

0

∫

Ω

(
−ϕ(u)+ε∇u

)
· ∇ξ +

∫ T

0

∫

∂Ω

b(·;u) ξ = 0.

Moreover,

√
ε∇uε is bounded in L2(0, T ;L2

loc(Ω)) uniformly in ε ∈ (0, 1).

(ii) Under the assumption that, upon a modi�ation of b on a subset of Σ of zero HN
measure,

(9.17)

there exist (A−
m)m∈N, (A

+
m)m∈N ⊂ R

±
suh that A±

m → ±∞
as m→ ∞ and for all (t, x) ∈ Σ, for all m ∈ N ±b(t, x;A±

m) ≥ ±ϕν(x)(A
±
m)

we have, uniformly in ε > 0, the estimate ‖uε‖∞ ≤ M with M that depends on ‖u0‖∞ and on

(A±
m)m in assumption (9.17).

Remark 9.7. For non-zero f , existene is shown in the same way. In property (ii), hypothesis

(9.18) A± :=
{
k ∈ R

± | ± b(t, x; k) ≥ ±ϕν(x)(k) for all (t, x) ∈ Σ
}
are of in�nite measure

an be assumed in the plae of (9.17), and the boundM would depend on ‖u0‖∞,

∫ T

0 ‖f(t, ·)‖∞ dt

and on the sets A±
in assumption (9.18).

In the plae of a onstant in t and x sub- and super-solutions, in this ase we onstrut

supersolutions of the kindM±(t) taking values in A±
and suh that ±M±(·) are non-dereasing,

with ±M±(0) ≥ ‖u0‖∞ and with the absolutely ontinuous part of the derivative ±(M±)′(t)
that is greater than or equal to ‖f(t, ·)‖∞ on (0, T ).

Proof. For the proof, it is enough to use the Galerkin method, whih we expose brie�y in order

to fous on the di�ulties indued by the non-linearities ϕ and b.
In the ase Ω is bounded, piking an orthonormal basis (vi)i∈N in H1(Ω), we onstrut un ∈

C1([0, T ]; span{v1, . . . , vn}) as a solution to the ODE system obtained from (9.16) by substituting

u by the unknown funtion un(t, x) =
∑n

i=1 ci(t)vi(x), substituting u0 by its projetion u0,n on

span{v1, . . . , vn}, and testing it with ξ(t, x) = vi(x)µ(t), i = 1, . . . , n, µ ∈ D([0, T )). Loal

existene of a solution follows from the Cauhy-Peano theorem. Taking un itself for the test

funtion, with µ(t) approximating 1l[0,s)(t) we �nd
(9.19)

1

2

∫

Ω

u2n(s, ·) +
∫ s

0

∫

Ω

(
ε|∇un|2 − ϕ(un) · ∇un

)
+

∫ s

0

∫

∂Ω

b(·;un)un =
1

2

∫

Ω

u20,n ≤ 1

2

∫

Ω

u20.

Thanks to trae inequalities and the boundedness assumptions on ϕ and b together with the

L∞
bound on u0 we get an L2(QT ) estimate on ∇un. Suh estimate preludes the blow-up and

guarantees the global in time existene of un. For the ase of unbounded domain, the mere L∞

bounds on u0, ϕ, b are not su�ient: thus we have to loalize the estimate taking e.g. the weight

η(x) = exp(−c|x − x0|) for some x0 /∈ Ω. In this ase, we work in the weighted H1
spae and

use weighted trae inequalities; as an outome, we get an L2(0, T ;L2
loc(Ω)) bound on un.

Thus we have, in addition, the uniform in n estimate of∇un in L2(0, T ;H1
loc(Ω)). We extrat a

subsequene weakly onvergent to a limit uε, and pass to the limit in the formulation. To this end,

the a.e. onvergene of un to uε is needed in order to pass to the limit in the nonlinearity ϕ(un). It
is obtained by translation tehniques in time, following [1℄. Indeed, assume for simpliity that Ω
is bounded (otherwise we use exponentially dereasing in x weights, as above). We �integrate� the

weak formulation (9.16) from t to t+δt, then test it with ξ = un(t+δt)−un(t) (this orresponds to
taking well-hosen test funtions in the formulation (9.16) written for un and with test funtions
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ξ ∈ D([0, T ); span{v1, . . . , vn})). Using the Fubini theorem, the aforementioned L2(0, T ;H1(Ω))
bound on un, the trae inequality and the L∞

bound on ϕ(un) and b(·;un), we dedue that
∫ T−δt

0

∣∣∣un(t+ δt)− un(t)
∣∣∣
2

≤ const δt.

The estimate of the spae translates being trivial due to the L2(QT ) bound on ∇un, by the

Fréhet-Kolmogorov ompatness riterion we onlude to the L1(QT ) onvergene of un (if Ω is

unbounded, we use weights η and get L1((0, T );L1
loc(Ω)) onvergene). The limit being unique in

D′
, it is identi�ed with uε; extrating a further subsequene, we may assume the a.e. onvergene

in QT . Finally, (b(·;un))n being bounded, it onverges weakly-* in L∞(Σ) to some limit that

we denote by bε. Now for all i, we an take vi as a test funtion and pass to the limit in the

Galerkin formulation; we �nd that

(9.20)

∫ T

0

∫

Ω

−uεξt −
∫

Ω

u0ξ(0, ·) +
∫ T

0

∫

Ω

(
−ϕ(uε)+ε∇uε

)
· ∇ξ +

∫ T

0

∫

∂Ω

bε ξ = 0

for all ξ ∈ D′([0, T ) × Ω) (this is obtained by density). It remains to identify bε with b(·;uε),
whih is done using the monotoniity of b(t, x; ·) and the lassial Minty argument.

To do so, for the sake of simpliity assume that Ω is bounded (for the general ase, one has to

replae the test funtions uε, un below by trunated test funtions uεη, unη with an exponentially

deaying weight η). Comparing the Galerkin formulation for un (with test funtion un) and the

weak formulation (9.20) for uε (with test funtion uε, taken by density), using the Fatou lemma

to ensure that ‖uε(T, ·)‖2L2(Ω) ≤ lim infn→∞ ‖un(T, ·)‖2L2(Ω), we an eventually write

(9.21)

∫ T

0

∫

∂Ω

bεuε + ε

∫ T

0

∫

Ω

|∇uε|2 ≥ lim sup
n→∞

(∫ T

0

∫

∂Ω

b(·;un)un + ε

∫ T

0

∫

Ω

|∇un|2
)
.

Due to the weak lower semiontinuity of the L2
norm, we infer

(9.22)

∫ T

0

∫

∂Ω

bεuε ≥ lim sup
n→∞

∫ T

0

∫

∂Ω

b(·;un)un.

Here we are in the following setting: un|Σ onverges to uε|Σ in L2(Σ) weakly (this is due to

the trae inequalities); b(·;un) onverges to bε in L∞(Σ) weakly-* (and thus, in L2(Σ) weakly,
beause we have assumed that ∂Ω is bounded); moreover, z 7→ b(·; z) is monotone and inequality

(9.22) holds. In this setting, the Minty argument applies (see, e.g., [1, 29, 38℄) whih allows to

onlude that bε = b(·;uε) a.e. on Σ. Thus (9.20) beomes (9.16), and the proof of existene is

omplete.

(ii) Now using (9.17), take A±
m satisfying A−

m ≤ −‖u0‖∞ and ‖u0‖∞ ≤ A+
m; due to (9.17), the

onstants A−
m and A+

m are sub- and super-solutions to problem (9.15), respetively. The result

stems from the omparison priniple for weak solutions, sub-solutions and super-solutions of

(9.15) using, e.g., the tehnique of [16℄. It onsists in takingHα(u
ε−A+

m)ξ (with Hα the Lipshitz

regularization of sign+
funtion as used in the proof of Theorem 6.2) with ξ ∈ D([0, T )× Ω)+;

the fator ξ an be dropped if Ω is bounded. As in the proof of Theorem 6.2, we dedue the

Kato inequality

−
∫ T

0

∫

Ω

(uε −A+
m)+ ξt +

∫ T

0

∫

Ω

sign+(uε −A+
m)

(
−ϕ(uε) + ϕ(A+

m) + ε∇uε
)
· ∇ξ ≤ 0.

We let ξ onverge to e−t
and prove that (uε − A+

m)+ ≤ 0 a.e. (if Ω is unbounded, we use (4.1)

as in [26, 6℄). A uniform upper bound for uε is proved; the lower bound by A−
m is analogous.

Notie that the tehnique we've used exploits assumption (4.1); yet it is possible to bypass

this assumption. Indeed, by approximation one an always onstrut solutions satisfying the
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above L∞
bound. To this end, one an, e.g., substitute the original problem by the problem

set up in (0, T ) × (Ω ∩ BR) where BR is the ball of radius R entered at the origin; the part

Σ′
R := (0, T )× ∂BR ∩ Ω of the boundary an be supplemented with the homogeneous Dirihlet

boundary ondition. Then existene of solutions uR in the spae L2(0, T ;H1
0,R(Ω)) of funtions

that are zero in (0, T ) × (Ω \ BR) is proved by the same Galerkin method. Notie that the

onstants A±
m are still sub- and super-solutions of this modi�ed problem; BR being bounded,

assumption (4.1) is automatially satis�ed and the L∞
bound on uR is valid. Finally, onvergene

of uR to a limit uε is established with the same tools as in the proof of (i). �

Remark 9.8. While estimating ∇uε in L2
loc, for the sake of simpliity we have assumed that b

is bounded and thus we have not exploited the monotoniity of b in these estimates. Atually,

it is enough to assume, e.g., that b(t, x; 0) is bounded; in addition, estimate (9.19) brings an

L1
loc([0, T ]× ∂Ω) estimate of the produt (b(·;un) − b(t, x; 0))un ≥ 0, whih is inherited at the

limit un → uε. Similarly, instead of the uniform bound on ϕ we ould assume inequalities of the

kind

∣∣∣
∫ z

0 ϕ(s) ds
∣∣∣ ≤ C + sign z (b(t, x′z)− b(t, x; 0)).
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