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WELL-POSEDNESS OF GENERAL BOUNDARY-VALUE PROBLEMS

FOR SCALAR CONSERVATION LAWS

BORIS ANDREIANOV AND KARIMA SBIHI

Abstra
t. In this paper we investigate well-posedness for the problem ut + divϕ(u) = f

on (0, T )×Ω, Ω ⊂ RN
, with initial 
ondition u(0, ·) = u0 on Ω and with general dissipative

boundary 
onditions ϕ(u) · ν ∈ β(t,x)(u) on (0, T )×∂Ω. Here for a.e. (t, x) ∈ (0, T )×∂Ω,

β(t,x)(·) is a maximal monotone graph on R. This in
ludes, as parti
ular 
ases, Diri
hlet,

Neumann, Robin, obsta
le boundary 
onditions and their pie
ewise 
ombinations.

As for the well-studied 
ase of the Diri
hlet 
ondition, one has to interprete the formal

boundary 
ondition given by β by repla
ing it with the adequate e�e
tive boundary 
ondition.

Su
h e�e
tive 
ondition 
an be obtained through a study of the boundary layer appearing

in approximation pro
esses su
h as the vanishing vis
osity approximation. We 
laim that the

formal boundary 
ondition given by β should be interpreted as the e�e
tive boundary 
ondition

given by another monotone graph β̃, whi
h is de�ned from β by the proje
tion pro
edure we

des
ribe. We give several equivalent de�nitions of entropy solutions asso
iated with β̃ (and

thus also with β).

For the notion of solution de�ned in this way, we prove existen
e, uniqueness and L1

on-

tra
tion, monotone and 
ontinuous dependen
e on the graph β. Convergen
e of approximation

pro
edures and stability of the notion of entropy solution are illustrated by several results.

Keywords: s
alar 
onservation law, boundary-value problem, entropy solution,

vanishing vis
osity limit, formal boundary 
ondition, e�e
tive boundary 
ondition,

maximal monotone graph, strong boundary tra
e, L1

ontra
tion, well-posedness
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1. Introdu
tion

While there exists an extensive literature on the Cau
hy and Cau
hy-Diri
hlet problems for

s
alar 
onservation law ut + divϕ(u) = 0, other initial-boundary value problems have re
eived

very few attention. This is the purpose of this paper to de�ne a notion of entropy solution

for a wide 
lass of boundary 
onditions that we 
all dissipative boundary 
onditions; to justify

this de�nition through 
onvergen
e of natural approximation pro
edures; and to establish well-

posedness results for the so de�ned entropy solutions.

1.1. Dissipative boundary 
onditions for 
onservation laws. Let Ω be an open domain

in R
N

with Lips
hitz boundary, N ≥ 1, and T > 0. We 
onsider the following initial-boundary

value problem for a s
alar 
onservation law:

(Hϕ,β(u0, f))





ut + divϕ(u) = f in QT := (0, T )×Ω
u|t=0 = u0 in Ω
ϕν(x)(u) := ϕ(u)·ν(x) ∈ β(t,x)(u) on Σ := (0, T )×∂Ω.

Here ϕ : R −→ R
N

is a 
ontinuous fun
tion (for the sake of simpli
ity, the reader may assume

that ϕ is Lips
hitz 
ontinuous, although most of our results hold without this assumption)

1

;

u0 ∈ L∞(Ω); and f is a measurable fun
tion on QT with

∫ T

0 ‖f(t, ·)‖L∞(Ω) <∞.

Further, in (Hϕ,β(u0, f)), the unit outward normal ve
tor on ∂Ω is denoted by ν, and the

boundary 
ondition is pres
ribed (formally) in terms of β that is a map from Σ to the set B of

all maximal monotone graphs on R. Clearly, some measurability assumption is needed on the

map β : (t, x) ∈ Σ 7→ β(t,x) ∈ B. In the sequel, we always extend β(t,x) to a maximal monotone

graph from R to R and require the following:

(1.1)

for all k ∈ R, (t, x) 7→ inf β(t,x)(k) and (t, x) 7→ supβ(t,x)(k)

are measurable R-valued fun
tions w.r.t. the Hausdor� measure on Σ.

This en
ompasses di�erent 
lassi
al boundary 
onditions. For instan
e, the graph β(t,x) =

{uD(t, x)} × R pres
ribes the Diri
hlet boundary 
ondition �u = uD on Σ�; the graph β(t,x) :=
R× {−g(t, x)} pres
ribes the 
ondition �−ϕ(u)·ν(x) = g� that we will 
all Neumann 
ondition,

by analogy with the Neumann boundary 
onditions for the general 
onve
tion-di�usion problems

of the kind ut − div a(u,∇u) = f . It is also easy to in
lude the more general 
onditions of the

kind λu+(1−λ)(−ϕ(u) ·ν) = g, λ ∈ (0, 1), 
onditions that interpolate between the Diri
hlet and

the Neumann ones (these are known as Robin 
onditions in the 
onve
tion-di�usion 
ontext).

1

Note that the the results of the present paper 
an be easily extended to the 
ase of x-dependent ϕ (and

x-dependent β) in one spa
e dimension, using the nonlinear semigroup theory. We refer to [5℄ for this extension

and for a brief summary of the present paper, with ideas and results presented in a te
hni
ally simpli�ed setting.
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To give one more example, the (bilateral) obsta
le boundary 
onditions �um ≤ u ≤ uM on Σ�

orrespond to the graph

β(t,x) =
(
{um(t, x)}×R

−
)
∪

(
[um(t, x), uM (t, x)]×{0}

)
∪

(
{uM(t, x)}×R

+
)
.

For the sake of simpli
ity, the reader may 
onsider

(1.2)

β(t,x)(r) = β0
(t,x)(r−uD(t, x)) − g(t, x) with uD ∈ L∞(Σ), g ∈ L∞(Σ)

and with a maximal monotone graph β0
(t,x) su
h that β0

(t,x)(0) ∋ 0;

this 
ontains the aforementioned 
ases and, e.g., the 
ase of mixed Diri
hlet-Neumann boundary


onditions.

In the 
ontext of paraboli
 problems ut−div a(u,∇u) = f , it is well known that the boundary


onditions of the kind β(t,x)(u) + a(u,∇u) · ν(x) ∋ 0 lead to the L1

ontra
tion property (see

e.g. [38℄ for a study of the asso
iated stationary ellipti
 problem; see also [3℄); that's why we


all these 
onditions dissipative boundary 
onditions. It is 
ustomary to interprete the physi
ally

admissible weak solutions (
alled entropy solutions sin
e the founding work [21℄ of Kruzhkov)

of a s
alar 
onservation law as limits of the vanishing vis
osity approximation that, in our 
ase,

would take the form

(1.3)





uεt − div (−ϕ(uε)+ε∇uε) = f, uε|t=0 = u0,(
β(t,x)(u

ε) + (−ϕ(uε) + ε∇uε) · ν(x)
)
|(t,x)∈Σ ∋ 0.

Then it is 
lear that the boundary 
ondition in (Hϕ,β(u0, f)) is the formal limit of the dissipative

boundary 
ondition β(t,x)(u
ε)+ (−ϕ(uε)+ ε∇uε) · ν(x) ∋ 0 in (1.3) (here we should assume some

regularity of β(t,x) in (t, x) in order that a solution uε exist; for instan
e, for the Diri
hlet BC


ase we need uD ∈ L2(0, T ;H−1/2(∂Ω)) ). Moreover let uε, ûε be solutions of problem (1.3)

with the same dissipative boundary 
ondition and with data u0, f and û0, f̂ , respe
tively. The

L1

ontra
tion property holds under rather weak restri
tions on Ω and ϕ (see, e.g., [26, 6℄):

‖uε(t, ·)− ûε(t, ·)‖L1(Ω) ≤ ‖u0 − û0‖L1(Ω) + ‖f − f̂‖L1(Ω)

Provided the L1(QT ) 
ompa
tness of the sequen
es (uε)ε, (ûε)ε with ε → 0 is known, it is

inherited at the limit ε → 0. Therefore we expe
t that the boundary 
ondition satis�ed at the

limit is also a dissipative one.

But what is this limit boundary 
ondition as ε → 0 in (1.3) ? The 
ompa
tness of (uε)ε in

L1(QT ) gives no information on 
onvergen
e of uε on the boundary, the term ε∇uε · ν(x) on the

boundary be
omes singular as ε→ 0, therefore passage to the limit in boundary 
onditions is by

no means straightforward. As a matter of fa
t, in general

the boundary 
ondition � ϕ(u) · ν(x) ∈ β(t,x)(u) � is not the 
orre
t limit

obtained from the boundary 
onditions β(t,x)(u
ε) + (−ϕ(uε) + ε∇uε) · ν(x) ∋ 0.

The Diri
hlet 
ondition 
ase dis
ussed below is a well-known illustration of this fa
t.

1.2. Classi
al results on the Diri
hlet 
ase. Within the whole variety of dissipative bound-

ary 
onditions, only the Diri
hlet 
ase re
eived mu
h attention in the framework of 
onservation

laws. The 
elebrated result of Bardos, LeRoux and Nédéle
 [10℄ states that the Diri
hlet 
on-

dition �u = uD on Σ� should be seen as a formal 
ondition; and that it must be interpreted by

stating that the tra
e (γu)(t, x) of u at a point (t, x) ∈ Σ belongs to the subset I(t, x) of R
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de�ned in terms of uD(t, x) and of the fun
tion r 7→ ϕν(x)(r) = ϕ(r)·ν(x) as follows:

(1.4)

I(t, x) =

{
z ∈ R

∣∣∣ sign (z − uD(t, x))(ϕν(x)(z)−ϕν(x)(k)) ≥ 0

∀k ∈ [uD(t, x) ∧ z, uD(t, x) ∨ z]
}
.

Here and in the sequel, ∧ (respe
tively, ∨) denotes the min (resp., the max) operation. We

denote by HN
the N−dimensional Hausdor� measure on Σ.

The e�e
tive boundary 
ondition

(1.5) (γu)(t, x) ∈ I(t, x) HN
-a.e. on Σ

is known as the BLN 
ondition; in this paper, we will use the reformulation of the BLN 
ondition

in terms of a maximal monotone (sub)graph. Su
h graph interpretation was �rst made expli
it,

for the Diri
hlet 
ase, by Dubois and LeFlo
h in [18℄ (see in parti
ular [18, Fig.1.1℄). Another

useful interpretation of the BLN 
ondition going ba
k to [18℄ is the following:

I(t, x) =
{
z ∈ R

∣∣ϕν(x)(z) = God[ϕν(x)](z, u
D(t, x))

}
,

where God[ψ] : R2 → R is the Godunov numeri
al �ux asso
iated to a given s
alar �ux ψ : R → R.

Re
all that the Godunov �ux is given by the expression

(1.6) God[ψ](a, b) =

{
minz∈[a,b] ψ(z), if a ≤ b
maxz∈[b,a] ψ(z), if b ≤ a.

The fun
tional framework of the paper [10℄ is the spa
e L∞(0, T ;BV (Ω)) (a
tually, the so-

lutions belong to the spa
e BV (QT )). There are two good reasons for that. Firstly, the BV
in spa
e regularity of u guarantees the existen
e of a tra
e γu of u on Σ, ne
essary in order to

give sense to the BLN 
ondition. Se
ondly, uniform in ε BV estimates on the solutions of the

approximating problems (1.3) are available, for BV data u0 and u
D
and for Lips
hitz 
ontinuous

�ux fun
tion ϕ. Bardos, LeRoux and Nédéle
 show that for the above data and �ux, there

exists a unique L∞(0, T ;BV (Ω)) entropy solution of the 
onservation law satisfying (pointwise

on Σ) the BLN boundary 
ondition; and that this solution is the limit of the vanishing vis
osity

approximation.

More re
ently, Otto in [27, 28℄ (see also [25℄) provided a formulation suitable for merely L∞

data u0 and uD; Porretta, Vovelle [35℄ and Ammar, Carrillo and Wittbold [2℄ extended the

de�nition and results to the framework of L1
data (see the papers for the pre
ise assumptions

on uD) and merely 
ontinuous �ux fun
tion ϕ, in a bounded domain Ω. The L1
framework

requires an appropriate notion of solution; in [35, 2℄ the notion of renormalized solution from

[11℄ was used. In the Otto formulation, existen
e of a (strong) boundary tra
e γu of u on Σ is

not assumed; a BLN kind 
ondition is reformulated in terms of weak normal boundary tra
es of

ϕ(u) and of the asso
iated boundary entropy �uxes F(u;uD, k) (the existen
e of the weak tra
es

is a relatively simple 
onsequen
e of the fa
t that u is a Kruzhkov entropy solution of the s
alar


onservation law inside (0, T )×Ω ). We refer to [27, 28, 25℄ and to [41, 35, 39℄ for details and

results related to the approa
h of Otto.

1.3. Strong tra
es of entropy solutions on the boundary. Although the de�nition of

[27, 28℄ and the aforementioned generalizations were a remarkable step forward in the study of

boundary value problems for 
onservation laws, it was possible to bypass the use of weak tra
es

and the asso
iated boundary entropies' te
hniques of [27, 28℄. Indeed, for the sake of simpli
ity

let us start with the following �ux non-degenera
y assumption:

(1.7) ∀ξ ∈ R
N \{0} ∀c ∈ R the Lebesque measure of the set {z | ξ · ϕ(z) = c} is zero.
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Using the approa
h of kineti
 solutions (see [24, 34℄), Vasseur in [40℄ has shown that for ϕ regular

enough,

(1.8) under (1.7), any L∞
Kruzhkov entropy solution in QT admits a strong tra
e γu on Σ.

The non-degenera
y assumption (1.7) on ϕ is typi
al for the "
ompa
ti�
ation properties" in the

theory of kineti
 solutions, see Perthame [34℄ and referen
es therein. As pointed out by Vasseur,

(1.8) gives sense to the pointwise BLN 
ondition (1.5) for general L∞
entropy solutions, and

not only for solutions 
orresponding to BV data; thus the weak tra
e te
hnique of Otto [27, 28℄

is bypassed (yet for general (t, x)-dependent �ux ϕ, the approa
h of [27, 28℄ remains the most

powerful; see in parti
ular the results of Vallet [39℄). Further results in the spirit of (1.8) were

obtained by Kwon and Vasseur [23℄ for the 
ase N = 1 (see also [7, 37℄ where we treat the


ase of a �at boundary using a hint due to Panov). To the authors' knowledge, the strongest

generalization of (1.8) is the result of Panov [32℄ obtained using the te
hnique of parametrized

families of H-measures (see also [30, 33℄); Panov drops all regularity assumption on ϕ, and, in
a sense, he also drops non-degenera
y assumptions of the kind (1.7). Be
ause of its importan
e

for our paper, we should make the latter statement more pre
ise:

• (upon rotating axes and lo
alizing around a point x∗ of the boundary)

the boundary ∂Ω is represented by the graph of a Lips
hitz

2

fun
tion g on W , i.e.,

∂Ω ∩ U = {(g(x′), x′) | x′ ∈W}, Ω ∩ U = {(x0, x′) | x0 = y + g(x′), x′ ∈ W, y ∈ (0, h)}
for some neighbourhood U of x∗, some neighbourhood V of zero in RN−1

, and some

h > 0; further, the unit exterior normal �eld

(
ν(g(x′), x′)

)
x′∈W

is lifted inside Ω∩U by

the formula ν(x0, x
′) = 1√

1+|∇g(x′)|2

(
−1,∇g(x′)

)
(the �eld is 
onstant in x0 ∈ [0, h));

• for x ∈ ∂Ω ∩ U , 
onsider the singular mapping Vϕν(x) : r 7→
∫ r

0 |ϕ′(s) · ν(x)| ds on R

(noti
e that the mapping is independent of x0, and it depends on x′ 
ontinuously)
• then for any u ∈ L∞(QT ) that is a Kruzhkov entropy solution in QT , there exists

(1.9) ess limy↓0 Vϕν(x)

(
u(t, y + g(x′), x′)

)
=:

(
γVϕν(x)(u)

)
(t, x) in L1((0, T )×W ),

where x := (g(x′), x′) is a generi
 point of U∩∂Ω; re
all that ν(y+g(x′), x′) ≡ ν(g(x′), x′).

Statement (1.9) is a
tually a re-interpretation of the lo
alization property that appears in the

proof [32, p.571℄ of Panov; we use it to give a sense to pointwise formulations of boundary


onditions, in the same vein as Vasseur in [40℄. If for all ξ ∈ R
N \ {0} the fun
tion r 7→ ϕ(r) · ξ

is non-
onstant on any interval (this is a weaker version of (1.7) typi
al for the te
hnique of

parametrized H-measures, see [30, 32, 33℄), then Vϕν(x0) is an invertible fun
tion (whi
h means

that strong tra
e γu exists). If ϕ is not a BV fun
tion, one 
an use another singular mapping

instead of the map r 7→
∫ r

0 |ϕ′(z)·ν(x0)| dz (whi
h is not well de�ned), e.g.,

Vϕν(x)(r) =

∫ r

0

1lF (s) ds,
F being the union of all the intervals

where the map s 7→ ϕ(s) · ν(x) does not vary.
Remark 1.1. By the de�nition of the singular mapping, Vϕν(x)(·) has the properties of being

monotone non-de
reasing and of being 
onstant on the same intervals where ϕν(x)(·) is 
onstant.
Therefore ϕ(r) · ν(x) = Φν(x) ◦ Vϕν(x) with some 
ontinuous fun
tion Φν(x) : R → R. As a


onsequen
e of (1.9), there exists the strong tra
e γϕ(u) · ν(x) (with the same meaning as in

(1.9)) whi
h is equal to Φν(x)

(
γVϕν(x)(u)

)
.

2

While the setting of Panov [32℄ is C1
regular domains, the author indi
ates that the generalization to Lips
hitz

and, more generally, Lips
hitz deformable boundaries in the sense of [17℄ is straightforward
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In the same way, one 
an represent the proje
tions on the dire
tion ν(x) of the semi-Kruzhkov

entropy �uxes

(1.10) q±(u, k) := sign±(u− k)
(
ϕ(u)− ϕ(k)

)

with the help of 
ontinuous fun
tions Q±
ν(x)(·, ·) of two variables:

(1.11) q±(u, k) · ν(x) = Q±
ν(x)

(
Vϕν(x)(u) , Vϕν(x)(k)

)
.

Hen
e for a 
ouple u, û of entropy solutions, it follows that a strong tra
e of q±(u, û) · ν(x) exists
and 
an be represented as Q±

ν(x)

(
γVϕν(x)(u) , γVϕν(x)(û)

)
. The same is true for the Kruzhkov

�uxes:

(1.12)

q(u, k) · ν(x) = Qν(x)

(
Vϕν(x)(u) , Vϕν(x)(k)

)

with q := q+ + q−, Qν(x) := Q+
ν(x) +Q−

ν(x).

1.4. Interpretation of a general boundary 
ondition. The Bardos-LeRoux-Nédéle
 
on-

dition (1.4),(1.5) is generally re
ognized as the 
orre
t interpretation of the Diri
hlet bound-

ary 
ondition; this is justi�ed in parti
ular by 
onvergen
e of vanishing vis
osity or numeri
al

approximations of the boundary value problem (see Vovelle [41℄), 
onsidered as quite natural

approximations. Observations of vis
ous or numeri
al boundary layers explain how the formal

boundary 
ondition u = uD on Σ transforms into the e�e
tive boundary 
ondition (1.4),(1.5).

The strong tra
e result of [40℄ was used by Bürger, Frid and Karlsen in [13℄ in order to

give sense to the formal zero-�ux boundary 
ondition (in our terminology, this is the Neumann

boundary 
ondition with g ≡ 0) in the parti
ular but important 
ase ϕ(0) = 0 = ϕ(1). Under this
assumption and for [0, 1]-valued initial data, the zero-�ux boundary 
ondition for ut+divϕ(u) = 0

an be understood literally (see [13℄) (in the sense that the problem is well-posed and solutions

are limits of the vanishing vis
osity approximation).

Let us stress that in general, also for the zero-�ux boundary 
ondition �ϕ(u)·ν = 0� a boundary
layer would form in approximate solutions, and this formal zero-�ux boundary 
ondition would

transform into some di�erent e�e
tive boundary 
ondition. For a simple example, 
onsider the

zero-�ux problem for the transport equation ut + ux = 0 on [0, 1]; as in [10℄, arguing along


hara
teristi
s one sees that the zero-�ux 
ondition (that reads �u = 0� be
ause ϕ = Id) at the
right boundary x = 1 must be merely dropped.

It is the purpose of this paper to provide a natural interpretation for a general dissipative

boundary 
ondition (formally given by a family β of maximal monotone graphs β(t,x)(·)) under
the form of an e�e
tive boundary 
ondition. Most generally, this e�e
tive boundary 
ondition


an be written under the form

(1.13) HN
-a.e. on Σ, the 
ouple

(
γVϕνu, ϕ(γVϕνu)·ν

)
lies in the graph β̃(t,x)(·) ◦

(
Vϕν

)−1

,

with β̃ to be de�ned, and with the notation γVϕνu :=
(
γVϕν(x)(u)

)
(t, x).

To 
larify the essen
e of the 
ondition (1.13), 
onsider the 
ase where Vϕν(x) = Id 
an be taken

(re
all that this is the 
ase if (1.7) holds). Then (1.13) means that (γu)(t, x) ∈ Dom β̃(t,x)(·);
and from the de�nition of β̃ in Se
tion 2 we will see that this automati
ally in
ludes the equality

β̃(t,x)(γu(t, x)) = ϕ(γu(t, x)) · ν. Thus the 
ondition �ϕ(u) · ν(x) = β̃(t,x)(u) on Σ� 
an be

understood literally as a pointwise equality; this is why we 
all it e�e
tive boundary 
ondition.

Noti
e that 
ondition (1.13) takes the form �(γVϕνu)(t, x) ∈ Vϕν(I(t, x)) a.e. on Σ�, i.e., it
pres
ribes some set I(t, x) of possible tra
e values of u on the boundary. Re
all that the BLN


ondition (1.4) has the same form.



BOUNDARY-VALUE PROBLEMS FOR CONSERVATION LAWS 7

The e�e
tive BC graph β̃(t,x) featuring in (1.13) will be 
hara
terized in Se
tion 2 as:

(Aβ̃)

β̃(t,x) is the �
losest� to β(t,x) maximal monotone subgraph

of the graph

{
(r, ϕ(r)·ν(x)) | r ∈ R

}
that 
ontains all the points of 
rossing

of β(t,x) with the graph of the fun
tion ϕν(x) = ϕ·ν(x).

For simpli
ity, let us look at the 
ase where ϕ is a C1
fun
tion; then the monotoni
ity of β̃(t,x)

means that the domain of the graph 
ontains either isolated points r ∈ R su
h that ϕ(r)·ν(x) ∈
β(t,x)(r), or intervals where ϕ

′(·)·ν(x) ≥ 0. Therefore heuristi
ally, (1.13) 
an be understood as

follows (assume for simpli
ity that γu exists):

(Bβ̃)

Fix a point (t, x) ∈ Σ; denote ũ := (γu)(t, x), ϕν := ϕν(x), and β(t,x) = β. Then

· either the boundary 
ondition is satis�ed literally in the sense that (ũ, ϕν(ũ)) ∈ β;

· or ϕ′
ν(ũ) ≥ 0, i.e., the 
hara
teristi
s at the point (t, x)

asso
iated with the expression ut + divϕ(u) exits the domain

(in whi
h 
ase it is natural to ignore the boundary 
ondition).

In the latter 
ase, the �ux ϕν(ũ) is as 
lose to β(ũ) as possible.

We also point out in Remark 2.7 a useful 
hara
terization of the e�e
tive BC graph β̃(t,x) in

terms of β(t,x) and of the Godunov numeri
al �ux (1.6) asso
iated with the s
alar �ux fun
tion

ϕν(x).

In view of the des
ription (Bβ̃) of β̃, the interpretation of the formal BC �ϕν(ũ) ∈ β(ũ)� as

�ϕν(ũ) = β̃(ũ)� 
an appear as a rather natural one. Yet the only 
onvin
ing justi�
ation we 
an

think about would be in terms of approximation. Namely, we should use the formal boundary


ondition given by β on one of the approximation s
hemes that are well-established in the 
ontext

of 
onservation laws (su
h as the vanishing vis
osity approximation or approximation with a

monotone 
onsistent �nite volume s
heme); pass to the limit in the sequen
e of the approximate

solutions; and identify the boundary 
ondition satis�ed at the limit. If this 
an be a
hieved only

for some restri
ted 
lass of �regular� data u0, f , graphs β or �uxes ϕ, then a further justi�
ation


an be provided by a passage to the limit from the �regular� problem (where the 
orre
t BC is

already identi�ed) to the general problem.

1.5. Former results and a summary of the paper. Beyond the Cau
hy-Diri
hlet problem

des
ribed in Se
tion 1.2 and the �simple 
ase� of the zero-�ux problem treated in [13℄, we are not

aware of works on initial-boundary value problems for 
onservation laws.

The present paper develops the approa
h initiated in the thesis [37℄ of K. Sbihi; see [7, 8℄.

The graph β̃ (in a di�erent, but equivalent representation, see Se
tion 2) was introdu
ed in

[7, 37℄. The passage from β to β̃ was justi�ed in [7, 37℄ in the 
ase of a �at boundary, of non-

degenerate in the sense (1.7) �ux ϕ and for qui
kly growing at in�nity, (t, x)-independent graph
β. A 
ombination of vanishing vis
osity method and nonlinear semigroup methods were used

in this argument. Noti
e that the te
hnique of [7, 37℄ is rather restri
tive be
ause it is based

upon a strong 
ompa
tness on the boundary of the sequen
e of approximate solutions. In [8℄,

the de�nition of β̃ was further supported through an argument of monotone dependen
e on β; a
notion of measure-valued (or entropy-pro
ess) solution was introdu
ed, in order to simplify the


onvergen
e analysis for di�erent approximation methods.

Let us give an outline of the paper. Proposition 3.3 and Theorems 4.1, 5.2 are its main results.

In Se
tion 2, we dis
uss in detail the properties and di�erent 
hara
terizations of the proje
ted

graph β̃; this long se
tion 
an be omitted by a reader 
onvin
ed by the heuristi
 arguments of

Se
tion 1.4 and not interested in details of some proofs. In Se
tion 3 we provide several equivalent
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de�nitions of entropy solutions, sub- and super-solutions for the formal problem (Hϕ,β(u0, f)).
These de�nitions lead, in a rather straightforward way, to uniqueness, 
omparison and 
ontinuous

dependen
e results proved in Se
tion 4 under minimal restri
tions on β and ϕ.

In the existen
e part of the paper, several restri
tions on the behaviour of ϕ and β are

needed for ensuring boundedness and 
ompa
tness of sequen
es of approximate solutions. In

Se
tion 5, we give a short but somewhat arti�
ial proof of existen
e of entropy solutions (namely,

we use not β but the proje
ted graphs β̃ to 
onstru
t approximate solutions). In Se
tion 6,

we dis
uss in length the pertinen
e of the use of β̃. First, we justify the appearan
e of the

e�e
tive boundary 
ondition using the vanishing vis
osity paraboli
 approximation re
alled in

the Appendix. Se
ond, we give several stability results for entropy solutions of the hyperboli


problem (Hϕ,β(u0, f)), with a fo
us on stability with respe
t to di�erent approximations of the

BC graphs β. In Se
tion 7, �rst we improve the existen
e results in the one-dimensional 
ase,

dropping most of the assumptions on ϕ and β with the help of the BVloc estimates due to

Bürger, Karlsen, Gar
ía and Towers [14, 15℄. Se
ond, following Eymard, Gallouët and Herbin

[20℄ we present a notion of entropy-pro
ess solution that is useful in order to prove 
onvergen
e of

approximations with only weak 
ompa
tness properties; it 
an be exploited under the additional,

quite restri
tive assumption that an entropy solution exists already.

2. The effe
tive BC graph

Throughout the se
tion, we �x a point (t, x) ∈ Σ. We are given a maximal monotone graph

β(t,x) on R and a 
ontinuous fun
tion ϕν(x) on R; the asso
iated �semi-Kruzhkov� entropy �uxes

(more pre
isely, their normal 
omponents) are de�ned as

(2.1) q±ν(x)(z, k) := sign±(z − k)
(
ϕν(x)(z)− ϕν(x)(k)

)
.

2.1. Preliminaries: undershoot and overshoot sets, in
reasing envelopes. Let us start

with a series of de�nitions and notation.

De�nition 2.1 (see Figure 2.1 for an illustration).

• For a 
losed sub-interval I of R, introdu
e the upper in
reasing envelope

3 ϕ+
x (I; ·) and

the lower in
reasing envelope ϕ−
x (I; ·) of ϕν(x) on I by setting, for r ∈ I,

ϕ+
x (I; r) := inf

{
ψ(r) | ψ ≥ ϕν(x) and ψ is non-de
reasing on I

}
,(2.2)

ϕ−
x (I; r) := sup

{
ψ(r) | ψ ≤ ϕν(x) and ψ is non-de
reasing on I

}
.(2.3)

• De�ne the overshoot set D+
(t,x) ⊂ R and the undershoot set D−

(t,x) ⊂ R by

4

(2.4)

D+
(t,x) :=

{
z ∈ R | supβ(t,x)(z) ≥ ϕν(x)(z)

}
,

D−
(t,x) :=

{
z ∈ R | inf β(t,x)(z) ≤ ϕν(x)(z)

}
;

also introdu
e the 
rossing set

5 D0
(t,x) :=

{
r ∈ R | ϕν(x)(r) ∈ β(t,x)(r)

}
≡ D+

(t,x)∩D−
(t,x).

3

It is easily seen that ϕ+
x (I; ·), respe
tively ϕ−

x (I; ·) is a non-de
reasing fun
tion that is 
ontinuous and whi
h

graph lies above (respe
tively, below) from the graph of ϕν(x)|I .
4

In de�nition (2.4), we a
tually extend β(t,x) to a maximal monotone graph from R to R, so that β(t,x)(z) is

never empty but it may de redu
ed to {+∞} or to {−∞}. With this 
onvention, R = D+
(t,x)

∪D−

(t,x)
.

5

Indeed, D0
(t,x)

is the set of 
rossing points of β(t,x) with the graph of ϕν(x).
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• Subgraphs of the graph of ϕν(x) are de�ned as the graphs of restri
tions of ϕν(x)|E on

di�erent subsets E of R. Among these, we distinguish monotone subgraphs 
hara
terized

by the property ϕν(x)(a) ≤ ϕν(x)(b) for all a, b ∈ E with a ≤ b. Finally, those monotone

subgraphs that does not possess a nontrivial extension (within the 
lass of monotone

subgraphs) are 
alled maximal monotone subgraphs of the graph of ϕν(x).

• Denote by Bx the set of all maximal monotone subgraphs of the graph of ϕν(x). Denote

by B
0
(t,x) the set of all elements of Bx whi
h domain 
ontains D0

(t,x)
6

.

• Denote by Bx (respe
tively, by B
0
(t,x)) the set of all maximal monotone graphs on R

obtained as extensions of elements of Bx (respe
tively, of B
0
(t,x))

7

.

• De�ne the monotone fun
tion B̃(t,x) on R as the 
losest to β(t,x) element of B
0
(t,x).

The notion of �the 
losest� in the latter de�nition should be made pre
ise: indeed, we now

show that the de�nition of B̃(t,x) is 
orre
t, interpreted as the extremality property (2.5).

Proposition 2.2. The fun
tion B̃(t,x) is 
orre
tly de�ned, in the sense that

(2.5)

there exists B̃(t,x) ∈ B
0
(t,x) that realizes, simultaneously for all z ∈ R,

the minimum over all µ ∈ B
0
(t,x) of the distan
e dist

(
µ(z) , β(t,x)(z)

)
.

Furthermore, B̃(t,x) 
an be expressed in terms of the upper (respe
tively, lower) in
reasing en-

velopes of the graph of ϕν(x) on the 
onne
ted 
omponents

8 I of D+
(t,x) (respe
tively, of D

−
(t,x)):

B̃(t,x) :=

( ⋃
I

{(
z, ϕ−

x (I; z)
)
| I is a 
onne
ted 
omponent of D−

(t,x)

} )
(2.6)

⋃ ( ⋃
I

{(
z, ϕ+

x (I; z)
)
| I is a 
onne
ted 
omponent of D+

(t,x)

} )
.

Proof. By de�nition on the 
lass B
0
(t,x), B̃(t,x)|D0

(t,x)

oin
ides with ϕν(x)|D0

(t,x)
. Let I be a


onne
ted 
omponent of D+
(t,x) or of D

−
(t,x); the endpoints of I are either in�nite or belong to

D0
(t,x). Therefore, we only need to make expli
it the de�nition of B̃(t,x) on the interior of I; and

for a proof of (2.5) we 
an 
onsider z ∈ I separately for every 
onne
ted 
omponent I of D+
(t,x)

or of D−
(t,x). To be spe
i�
, 
onsider I ⊂ D+

(t,x). From (2.2), one easily sees that

(2.7) ϕν(x) ≤ ϕ+
x (I; ·) ≤ β on I.

Every fun
tion µ ∈ B
0
(t,x) is 
onstant on ea
h interval where it does not 
oin
ide with ϕν(x), while

ϕ+
x (I; ·) and β are monotone on these intervals. Thus from (2.7) it follows that

(2.8) ∀µ ∈ B
0
(t,x) µ ≤ ϕ+

x (I; ·) ≤ β on I.

Now, one easily 
he
ks that the family {µ|I | µ ∈ B
0
(t,x)} is stable by the sup operation; therefore

it possesses a greatest element that we 
all ψ. This element is the restri
tion of B̃(t,x) on I.

6

It follows that for any µ ∈ B
0
(t,x)

,

{

(z, ϕν(x)(z)) | z ∈ D0
(t,x)

}

⊂ µ ⊂
{

(z, ϕν(x)(z)) | z ∈ R

}

.

7

First, it easily follows from the 
ontinuity of ϕν(x) and the intermediate value theorem that for ea
h µ ∈ Bx

there exists a unique extension µ ∈ Bx. The graph µ is a
tually the graph of a single-valued 
ontinuous fun
tion

on R; moreover, on every 
onne
ted 
omponent (a, b) of the set {z ∈ R | µ(z) 6= ϕν(x)(z)} the fun
tion µ takes

the 
onstant value equal to the value of ϕν(x) on {a, b} ∩ R.

8

Let us re
all that I is a 
onne
ted 
omponent of K ⊂ R if I is an interval and moreover, for all interval J

su
h that I ⊂ J ⊂ K, one has J = I.
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Figure 1. Example of 
onstru
tion of the proje
ted graph β̃

Indeed, from (2.8), for all µ ∈ B
0
(t,x) one has in parti
ular µ ≤ ψ ≤ β. Therefore we 
an set

B̃(t,x)|I := ψ, and (2.5) gets veri�ed for all z ∈ I.

We have seen in (2.8) that B̃(t,x)|I = ψ ≤ ϕ+
x (I; ·). The fun
tion ψ is non-de
reasing and

its graph lies above ϕν(x)|I by (2.7); thus a

ording to (2.2), ψ ≥ ϕ+
x (I; ·). Therefore B̃(t,x)|I


oin
ides with ϕ+
x (I; ·), for every 
onne
ted 
omponent I of D+

(t,x) or of D−
(t,x). This yields

(2.6). �

2.2. De�nition and equivalent 
hara
terizations of β̃.

De�nition 2.3. The graph β̃(t,x) is the part of B̃(t,x) 
ontained within the graph of ϕν(x).

It is 
lear from the above de�nition that β̃(t,x) ∈ B
0
(t,x). Namely, β̃(t,x) is a maximal monotone

subgraph of ϕν(x) 
ontaining the 
rossing points with β(t,x). Moreover, the unique extension

B̃(t,x) of β̃(t,x) to a maximal monotone graph on R satis�es (2.5). Thus De�nition 2.3 is a pre
ise

expression of (Aβ̃), in view of the extremality property (2.5).

Noti
e that, a

ording to (2.6), β(t,x) intervenes in the 
onstru
tion of β̃(t,x) uniquely through

the sets D±
(t,x) that gather the points z ∈ R su
h that ±(β(t,x)(z)− ϕν(x)(z)) ∩R

+ 6= ∅.

Remark 2.4. The operation P̃x that transforms the maximal monotone graph β(t,x) into the

maximal monotone graph B̃(t,x) is a proje
tion on Bx. Indeed, we have P̃2
x = P̃x and P̃x|Bx

= Id.
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With a slight abuse of notation (the graph β̃(t,x) = B̃(t,x)|
Dom β̃(t,x)

being monotone but not

ne
essarily maximal)

9

, we will say that the operation ˜ : β(t,x) 7→ β̃(t,x) is a proje
tion.

Let us give alternative 
hara
terizations of β̃(t,x). Re
all that β̃(t,x) is a subgraph of the graph

of ϕν(x), thus it is fully 
hara
terized by its domain.

Proposition 2.5. The domain of the graph β̃(t,x) given by De�nition 2.3 
an be equivalently

de�ned by any of the following properties:

(i) In terms of the semi-Kruzhkov entropy �uxes (2.1), one has

Dom β̃(t,x) =
{
z ∈ R

∣∣∣
(
∀k ∈ D−

(t,x) q−ν (z, k) ≥ 0
)
&

(
∀k ∈ D+

(t,x) q+ν (z, k) ≥ 0
) }

.

(ii) For z ∈ R, denote β−1
(t,x)(ϕν(x)(z)) =:

[
m(t,x)(z),M(t,x)(z)

]
; this is a non-empty

10


losed

interval of R. Noti
e that z < m(t,x)(z) (resp., z > M(t,x)(z)) for z ∈ D−
(t,x) \D0

(t,x)

(resp., for z ∈ D−
(t,x)\D0

(t,x)). With this notation, we have

Dom β̃(t,x) = D0
(t,x)

⋃ {
z ∈ D−

(t,x)\D0
(t,x)

∣∣∣ ϕν(x)(k) ≥ ϕν(x)(z) ∀k∈
[
z , m(t,x)(z)

] }

⋃ {
z ∈ D+

(t,x)\D0
(t,x)

∣∣∣ ϕν(x)(k) ≤ ϕν(x)(z) ∀k∈
[
M(t,x)(z) , z

] }
.

Remark 2.6. Chara
terization (i), in its spirit, goes ba
k to the idea of Carrillo [16℄ further

developed by Ammar, Carrillo and Wittbold [2℄, for the 
ase of the Diri
hlet problem. In [16℄,

uD = 0 and thus β(t,x) = {0}×R; thereforeD±
(t,x) = R

±
in this 
ase. In [2℄, β(t,x) = {uD(t, x)}×R

and thus D−
(t,x) = (−∞, uD(t, x)], D+

(t,x) = [uD(t, x),+∞). Further, noti
e that for the Diri
hlet

boundary 
ondition, inf β−1
(t,x)(ϕν(x)(z)) = uD(t, x) = supβ−1

(t,x)(ϕν(x)(z)). Thus we see that


hara
terization (ii) is pre
isely the Bardos-LeRoux-Nédéle
 set (1.4). Representation (ii) of

β̃(t,x) is therefore a generalization of the BLN 
ondition; it appeared in the previous works [37℄

and [7, 8℄ of the authors (see in parti
ular [7, formula (4)℄).

Proof. Throughout the proof, we write D̃0
(t,x) := Dom β̃(t,x) =

{
z ∈ R | B̃(t,x)(z) = ϕν(x)(z)

}
.

(i) Let us assume that z ∈ D̃0
(t,x). Consider, e.g., k ∈ D−

(t,x): a

ording to (2.5) in this 
ase we

have ϕν(x)(k) ≥ B̃(t,x)(k). Then

q−ν (z, k) = sign−(z − k)(ϕν(x)(z)− ϕν(x)(k)) ≥ sign−(z − k)(B̃(t,x)(z)− B̃(t,x)(k)) ≥ 0

by the monotoni
ity of B̃(t,x). The 
ase k ∈ D−
(t,x) is analogous.

Re
ipro
ally, assume that for all k ∈ D±
(t,x) one has q±ν (z, k) ≥ 0. For the sake of being

de�nite, assume that z belongs to a 
onne
ted 
omponent I of D+
(t,x). Let k ∈ I, k < z; by

assumption we have ϕν(x)(k) ≤ ϕν(x)(z) for all su
h k. Keeping in mind the 
hara
terization

(2.6) in Proposition 2.2, we see that ϕ+
x (k) = ϕν(x)(k) if and only if k ∈ D̃0

(t,x). It follows that ũ

veri�es ϕ+
x (k) ≤ ϕν(x)(z) for all k ∈ I, k < z. By the de�nition of the upper in
reasing envelope

ϕ+
x , this exa
tly means that ϕν(x)(z) = ϕ+

x (z). Hen
e z ∈ D̃0
(t,x).

9

A
tually, uniqueness of solutions to the boundary value problems with dissipative boundary 
ondition en
oded

by a graph β stems from the monotoni
ity of β only. Existen
e may depend on how wide is the domain of β. In

the sequel we will see that the monotone graph β̃, while it is not maximal, leads to existen
e and uniqueness for

the problem in hand.

10

we mean that β̃(t,x) is extended to a maximal monotone graph on R
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(ii) The 
ase z ∈ D0
(t,x) is trivial. Let I be the 
onne
ted 
omponent of the 
omplementary of

D0
(t,x) that 
ontains z; for the sake of being de�nite, assume that I ⊂ D+

(t,x). Then from the

monotoni
ity of β(t,x) we have

(2.9) ϕν(x)(k) ≤ supβ(t,x)(k) ≤ β(t,x)(M(t,x)(z)) ∋ ϕν(x)(z)

for k ∈ I ∩ (−∞,M(t,x)(z)). By the 
hara
terization (2.6) of B̃(t,x) on I, z ∈ D̃0
(t,x)∩I if and only

if ϕν(x)(k) ≤ ϕν(x)(z) for all k ∈ I, k ≤ z. Taking into a

ount (2.9), we 
an reformulate this as

follows: z ∈ D̃0
(t,x) ∩ I if and only if, �rstly, [M(t,x)(z), z] ⊂ I and se
ondly, ϕν(x)(k) ≤ ϕν(x)(z)

for all k ∈ [M(t,x)(z), z]. This justi�es the statement of (ii). �

Remark 2.7. One more 
onvenient des
ription of β̃(t,x) 
an be given in terms of the Godunov

numeri
al �uxes (1.6):

(2.10) β̃(t,x) =
{
(z, F ) ∈ R

2
∣∣ ∃(r, F ) ∈ β(t,x) su
h that F = ϕν(x)(z) = God[ϕν(x)](z, r)

}
.

This des
ription is easily inferred from (1.6), (2.6) and De�nition 2.3.

2.3. Order and metri
 stru
ture on Bx. Fix x ∈ ∂Ω. Re
all that Bx is the set of all maximal

monotone subgraphs of ϕν(x); B is the set of all maximal monotone graphs of R and Bx is the

subset of B obtained by extension (whi
h is unique) from Domβ̃ to R of elements β̃ ∈ Bx.

Let us de�ne an order relation and a distan
e for maximal monotone graphs under study.

They are most naturally de�ned on Bx.

De�nition 2.8. For B̃1, B̃2 ∈ Bx, de�ne the uniform distan
e

dx(B̃1, B̃2) := ‖B̃1 − B̃2‖∞ = supR |B̃1 − B̃2|.
De�ne the order relation � �x � on Bx by:

B̃1 �x B̃2
if B̃1 ≥ B̃2

pointwise on R.

Sin
e every β̃ ∈ Bx possesses a unique extension B̃2 ∈ Bx, we 
an de�ne dx and �x on

Bx by writing, e.g., dx(β̃
1, β̃2) := dx(B̃1, B̃2). Further, every β ∈ B gives rise to the proje
tion

B̃ := P̃xβ on Bx. Thus we 
an extend dx to a semi-distan
e on β ∈ B; and we 
an extend �x

to a binary relation on B by assigning β1 �x β
2
whenever P̃xβ �x P̃xβ.

In Se
tions 4, 6.2.2, 6.2.3 we will use these de�nitions in 
ombination with the following lemma.

Lemma 2.9. One 
an represent the distan
e dx(·, ·) by the formulas

(2.11)

dx(β̃
1, β̃2) = supa,b∈R sign (b− a)

(
B̃1(a)− B̃2(b)

)

= sup
{
sign (b− a)

(
ϕν(a)− ϕν(b)

)
| a ∈ Dom(β̃1), b ∈ Dom(β̃2)

}
.

One 
an express the relation β1 �x β
2
through the formula d−x (β̃

1, β̃2) = 0, where

(2.12)

d−x (β̃
1, β̃2) := supa,b∈R sign−(b − a)(B̃1(a)− B̃2(b)

)
= sup

{(
B̃1(a)− B̃2(b)

)− | a > b
}

= sup
{(
ϕν(a)− ϕν(b)

)− | a ∈ Dom(β̃1), b ∈ Dom(β̃2), a > b
}

= sup
{(
Q+

ν(x)(ã, b̃)
)−

| ã ∈ Vϕν(x)Dom(β̃1), b̃ ∈ Vϕν(x)Dom(β̃2)
}
,

where we have used the singular mapping Vϕν(x) and the notation of Se
tion 1.3.
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Proof. On the one hand, from the monotoni
ity of B̃2
, we have

supa,b∈R sign (b− a)
(
B̃1(a)− B̃2(b)

)
= supa,b∈R sign (b− a)

(
B̃1(a)− B̃2(a) + B̃2(a)− B̃2(b)

)

≤ |B̃1(a)− B̃2(a)| ≤ ‖B̃1 − B̃2‖∞ = dx(β̃
1, β̃2).

On the other hand, 
onsider a = k and bn = k + 1
n , then bn = k − 1

n in the left-hand side of the

above expression, with n→ ∞. Using the 
ontinuity of B̃2
we get for all k ∈ R,

∣∣B̃1(k)− B̃2(k)
∣∣ ≤ supa,b∈R sign (b − a)

(
B̃1(a)− B̃2(b)

)
.

Hen
e we derive the �rst equality in (2.11). Further, re
all that B̃i
is 
onstant on ea
h 
onne
ted


omponent of the 
omplementary of Dom β̃i
, while B̃i|

Dom β̃i = ϕν |
Dom β̃i ; this implies the se
ond

equality in (2.11).

In the same way, we justify the �rst three equalities in (2.12). The last equality in (2.12) is

evident from the de�nitions of Vϕν(x) and Q
+
ν(x). �

3. Notion of solution

Let us start with the following notation. Given β(t,x) ∈ B, in the previous se
tion we have


onstru
ted its proje
tion B̃(t,x) ∈ Bx. Then we write

D̃−
(t,x) :=

{
k ∈ R | B̃(t,x)(k) ≤ ϕν(x)(k)

}
≡ D−

(t,x)∪Dom β̃(t,x);

D̃+
(t,x) :=

{
k ∈ R | B̃(t,x)(k) ≥ ϕν(x)(k)

}
≡ D+

(t,x)∪Dom β̃(t,x);

D̃0
(t,x) := Dom β̃(t,x) ≡ D̃−

(t,x) ∩ D̃+
(t,x).

Re
all that D−
(t,x), D

+
(t,x) and D

0
(t,x) are the undershoot, the overshoot and the 
rossing sets for

the graph β(t,x) given the normal �ux ϕν(x); similarly, D̃−
(t,x), D̃

+
(t,x) and D̃

0
(t,x) are the undershoot,

the overshoot and the 
rossing sets for the proje
ted graph B̃(t,x). These sets appear as sets of

boundary tra
es of entropy sub-solutions, super-solutions and solutions, respe
tively, a

ording

to the de�nitions we now give.

Note the following lo
alized version of the 
elebrated de�nition of entropy solution due to

Kruzhkov [21℄. Re
all that q±(·, ·) are the semi-Kruzhkov entropy �uxes de�ned by (1.10).

De�nition 3.1. Let Q̂T be an open subdomain of QT = (0, T )× Ω. A fun
tion u ∈ L∞(Q̂T )
is 
alled entropy solution of problem ut + divϕ(u) = f , u|t=0 = u0 if for all k ∈ R, for all

ξ ∈ D
(
Q̂T ∪ ({0}×Ω)

)+

(3.1)

∫ T

0

∫

Ω

(
−(u− k)±ξt − q±(u, k) · ∇ξ

)
−
∫

Ω

(u0 − k)±ξ(0, ·) ≤
∫ T

0

∫

Ω

sign±(u− k)f ξ.

If only the sign �plus� (respe
tively, �minus�) is 
hosen in (3.1), then u is an entropy sub-solution

(respe
tively, an entropy super-solution) in Q̂T .

Remark 3.2. Noti
e that entropy solutions, sub- and super-solutions are quasi-solutions in the

sense of Panov (see [32℄). This implies that the boundary tra
es in the sense of Se
tion 1.3,

used in the de�nitions of the next se
tion, do exist. It should also be noted that, a

ording to

the result of [31℄ (see also [40℄), entropy solutions in the whole 
ylinder QT a
tually belong to

C(0, T ;L1
loc(Ω)), in parti
ular the initial datum u0 is assumed in the sense of strong L1

loc tra
e.
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3.1. Equivalent de�nitions of entropy solutions, sub-solutions, super-solutions. Now

we in
lude into the de�nition the boundary 
ondition. We need one more notation:

(3.2) Σ±(k) := {(t, x) ∈ Σ | k ∈ D±
(t,x)}.

In order to des
ribe simultaneously the key features of entropy solutions, we gather a series of

equivalent de�nitions in the following De�nition and Proposition.

Proposition 3.3 (De�nition of an entropy solution). Let u ∈ L∞(QT ).
If any of the below items (i)-(iv) is satis�ed, u is 
alled an entropy solution of problem (Hϕ,β(u0, f)).
Indeed, the assertions (i)-(iv) are equivalent:

(i) The fun
tion u veri�es the entropy inequalities (3.1) with ξ ∈ D([0, T )×Ω)+, moreover,

for HN
-a.e. (t, x) ∈ Σ, the strong tra
e γVϕν(x)u belongs to the set Vϕν(x)D̃

0
(t,x).

(ii) The fun
tion u veri�es the entropy inequalities (3.1) with ξ ∈ D([0, T )×Ω)+, moreover,

for HN
-a.e. (t, x) ∈ Σ, the strong tra
e γVϕν(x)u veri�es

(3.3) ∀k ∈ D̃0
(t,x) Qν(x)

(
γVϕν(x)u , Vϕν(x)k

)
≥ 0

Here, a

ording to (1.12), Qν(x) represents the normal 
omponent of the Kruzhkov en-

tropy �ux q(u, k) = sign (u− k)(ϕ(u) − ϕ(k)).
(iii) The fun
tion u veri�es the entropy inequalities (3.1) with ξ ∈ D([0, T )×Ω)+, moreover,

for HN
-a.e. (t, x) ∈ Σ, the strong tra
e γVϕν(x)u veri�es

(3.4) ∀k ∈ D±
(t,x) Q±

ν(x)(γVϕν(x)u, Vϕν(x)k) ≥ 0

Here, Q±
ν(x) are de�ned by (1.11).

(iv) The fun
tion u veri�es the up-to-the-boundary entropy inequalities with remainder term:

(3.5)

∀k ∈ R ∀ξ ∈ D([0, T )× Ω)+∫ T

0

∫

Ω

(
−(u− k)±ξt − q±(u, k) · ∇ξ

)
−
∫

Ω

(u0 − k)±ξ(0, ·)

≤
∫ T

0

∫

Ω

sign±(u− k)f ξ +

∫ ∫

Σ

Ck ∧
(
β(t,x)(k)− ϕν(x)(k)

)∓

ξ(t, x).

Here, Ck is a 
onstant

11

that depends on ‖u‖∞ and on k.

Moreover, if the sets Σ±(k) in (3.2) are regular enough in the sense that

12

(3.6)

for a 
ountable dense set of values of k,
the spa
e D(Σ±(k)) in dense in L1(Σ±(k)),

then (i)-(iv) are also equivalent to

(v) The fun
tion u veri�es the following up-to-the-boundary entropy inequalities:

(3.7)

∀k ∈ R ∀ξ ∈ D([0, T )× Ω)+ su
h that ξ|Σ\Σ±(k) = 0∫ T

0

∫

Ω

(
−(u− k)±ξt − q±(u, k) · ∇ξ

)
−
∫

Ω

(u0 − k)±ξ(0, ·) ≤
∫ T

0

∫

Ω

sign±(u− k)f ξ.

Remark 3.4. Let us provide a few 
omments to the di�erent items of Proposition 3.3 and their

use for establishing well-posedness for problem (Hϕ,β(u0, f)) in the setting of entropy solutions.

11

Trun
ation by Ck is needed in order that the right-hand side be �nite. Indeed, re
all that we have extended

β(t,x) to an R-valued graph.

12

This is a kind of separation property for Σ±
and the 
omplementary sets Σ \ Σ±

; is is satis�ed in many

pra
ti
al situations, but it fails e.g. in β(t,x) = {uD(t, x)}×R (the Diri
hlet 
ase) with uD
that is the 
hara
teristi


fun
tion of a Cantor set of positive measure.
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• Inequlities (3.5) are multi-valued; but, approximating k from below and from above, it is

enough to require that (3.5) holds in its less restri
tive version, i.e., with (inf β(t,x)(k)−
ϕν(x)(k))

−
and with (supβ(t,x)(k)− ϕν(x)(k))

+
, respe
tively, in the right-hand side.

• De�nition (i) is a straightforward interpretation of the formal BC, en
oded by β(t,x), as

the e�e
tive BC given by its proje
tion β̃(t,x): re
all that D̃
0
(t,x) is the domain of β̃(t,x).

• De�nition (ii) of entropy solutions en
rypts, in a rather dire
t way, the dissipative nature

of the boundary 
ondition expressed by β̃(t,x). Combination of items (i) and (ii) leads to

an immediate proof of uniqueness, 
omparison and L1

ontra
tion for entropy solutions.

• Expli
it use of boundary tra
es in De�nitions (i),(ii) makes it deli
ate to establish ex-

isten
e. Indeed, one of important features of a de�nition should be the stability of the

notion of entropy solution under L1
loc 
onvergen
e in QT . Existen
e arguments for De�-

nitions (i),(ii) were devised in [37, 7℄ but they are quite restri
tive (namely, they require

strong 
ompa
tness of boundary tra
es on Σ, whi
h is not implied by a mere L1
loc(QT )


onvergen
e).

• �Tra
eless� de�nitions (iv) and (v) by global entropy inequalities (
f. [8℄ for a di�erent

version of De�nition (iv)) are 
learly stable under L1
loc 
onvergen
e.

• De�nition (v) is reminis
ent of those of Carrillo [16℄, Ammar, Carrillo and Wittbold [2℄.

Yet in full generality, (v) 
annot be used e.g. when Σ±
have a fra
tal nature. De�nition

(iv) is a way to bypass the subtlety of the simultaneous 
hoi
e of k and ξ imposed in [16℄;

the idea is to in
orporate a remainder term that vanishes, on parts of the boundary, for

parti
ular 
hoi
es of k. Approa
h similar to (iv) was used by Vovelle [41℄, with a simpler


hoi
e of the remainder term suitable for inhomogeneous Diri
hlet boundary 
ondition.

• Finally, de�nition (iii) provides a link between (i)-(ii) and (iv)-(v): it uses both tra
es and

the �D±
vo
abulary�. This de�nition 
an be put in 
orresponden
e with the pointwise

interpretation by Rouvre and Gagneux [36℄ of the Carrillo boundary 
ondition.

The following proposition de�nes entropy sub- and super-solutions of problem (Hϕ,β(u0, f)).

Proposition 3.5 (De�nition of entropy sub- and super-solutions). Let u ∈ L∞(QT ).
If any of the below items (i)-(iv) is satis�ed, u is 
alled an entropy sub-solution of problem

(Hϕ,β(u0, f)). Indeed, the assertions (i)-(iv) are equivalent:

(i) The fun
tion u veri�es the entropy inequalities (3.1) with the sign �plus� and ξ ∈ D([0, T )×
Ω), ξ ≥ 0, moreover, for HN

-a.e. (t, x) ∈ Σ, the strong tra
e γVϕν(x)u lies in Vϕν(x)D̃
−
(t,x).

(ii) The fun
tion u veri�es the entropy inequalities (3.1) with the sign �plus� with ξ ∈
D([0, T ) × Ω), ξ ≥ 0, moreover, for HN

-a.e. (t, x) ∈ Σ, the strong tra
e γVϕν(x)u
veri�es

(3.8) ∀k ∈ D̃+
(t,x); Q+

ν(x)

(
γVϕν(x)u , Vϕν(x)k

)
≥ 0.

(iii) Item (ii) holds with k ∈ D+
(t,x) (in the pla
e of k ∈ D̃+

(t,x)) in (3.8).

(vi) The fun
tion u veri�es the up-to-the-boundary entropy inequalities with remainder term

(3.9)

∀k ∈ R ∀ξ ∈ D([0, T )× Ω), ξ ≥ 0,∫ T

0

∫

Ω

(
−(u− k)+ξt − q+(u, k) · ∇ξ

)
−
∫

Ω

(u0 − k)+ξ(0, ·)

≤
∫ T

0

∫

Ω

sign+(u− k)f ξ +

∫ ∫

Σ

Ck ∧
(
β(t,x)(k)− ϕν(x)(k)

)−

ξ(t, x).

Here, Ck is a 
onstant that depends on ‖u‖∞ and on k.

Further, ex
hange the signs �plus� and �minus� in the above properties: they remain equivalent,

and if any of them is satis�ed, u is 
alled an entropy super-solution of problem (Hϕ,β(u0, f)).
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The proof of Proposition 3.5 uses the same tools as the one of Proposition 3.3 given below;

we omit the details.

Remark 3.6. A fun
tion u is an entropy solution of problem (Hϕ,β(u0, f)) if and only if it is both

entropy sub- and super-solution of the problem.

3.2. Proof of the equivalen
e of di�erent de�nitions. Before turning to the proof, let

us state the key te
hni
al lemma that allows for a use of strong tra
es de�ned in the way of

Se
tion 1.3.

Lemma 3.7. There exists a sequen
e (ξn)n of Lips
hitz fun
tions on Ω su
h that 0 ≤ ξn ≤ 1,
ξn|∂Ω = 1, ξn → 0 on Ω as n→ ∞, and for all ξ ∈ D([0, T )× Ω), for all k ∈ R there holds

(3.10)

lim
n→∞

(∫ T

0

∫

Ω

(
−(u− k)±(ξξn)t − q±(u, k) · ∇(ξξn)

)
−
∫

Ω

(u0 − k)±(ξξn)(0, ·)
)

= − lim
n→∞

∫ T

0

∫

Ω

ξ q±(u, k) · ∇ξn = −
∫∫

Σ

ξ Q±
ν(x)

(
γVϕν(x)

u , Vϕν(x)
k
)

and

(3.11)

lim
n→∞

∫ T

0

∫

Ω

q±(u, k) · ∇(ξ(1− ξn)) =

∫ T

0

∫

Ω

q±(u, k) · ∇ξ −
∫∫

Σ

ξ Q±
ν(x)

(
γVϕν(x)

u , Vϕν(x)
k
)
.

Proof. For n ∈ N, the fun
tion ξn is de�ned almost expli
itly. Firstly, a partition of unity

(χi)Mi=0 on Ω is used su
h that suppχ0 ⊂ Ω and for i = 1..M , suppχi ⊂ U i
where U i

is an open

set of the kind 
onsidered in Se
tion 1.3. Then for ea
h i = 1..M , in the lo
al 
oordinates of Ui

as des
ribed in Se
tion 1.3 we take the fun
tion

πi
n(x0, x

′) := n
(

1
n − (x0 − gi(x′))

)+

(the fun
tion gi being asso
iated with the neighbourhood U i
). Then we assign

ξn :=
∑M

i=1
χi πi

n.

Clearly, it only remains to justify (3.10) and (3.11).

Noti
e that ∇ξn =
∑M

i=1 ∇χi πi
n +

∑M
i=1 χ

i∇πi
n and the �rst term in the right-hand side

vanishes as n→ ∞, while the se
ond one permits to make appeal to the strong normal tra
es of

Vϕν(x)
u. Indeed, by 
onstru
tion ∇πi

n(·) is aligned with the �eld of normals ν(·) lifted inside U i
;

it is supported on {0 < y = x0 − gi(x′) < 1
n} and its absolute value is n

√
1 + |∇gi(x′)|2. The

limit of the expression

∫ T

0

∫

Ui

ξχi q±(u, k) · ∇πi
n

≡ n

∫ 1
n

0

(∫ T

0

∫

W i

ξχi q±(u(t, y + gi(x′), x; ), k) · ν(x0, x′)
(√

1 + |∇gi(x′)|2dtdx
))

dy

(here W i
is a boundary neighbourhood 
orresponding to U i

, see Se
tion 1.3) exists and equals

∫∫

Σ

ξχiQ±
ν(x)

(
γVϕν(x)

u , Vϕν(x)
k
)

a

ording to Se
tion 1.3 and be
ause

(√
1 + |∇gi(x′)|2dtdx

)
is pre
isely the surfa
e measure on

the boundary Σ. Then by a straightforward passage to the limit, both (3.10) and (3.11) hold. �
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Proof of Proposition 3.3. Throughout the proof, we use the following notation. If a point (t, x) ∈
Σ is �xed, we set Ṽ := γVϕν(x)u, then pi
k (arbitrarily) ũ ∈ [Vϕν(x)]

−1(Ṽ ). We also use the

sequen
e (ξn)n of Lemma 3.7.

Noti
e that all the de�nitions 
ontain entropy inequalities (3.1). We 
on
entrate on the

equivalen
e of the 
omplementary properties related to the boundary 
ondition.

(i) ⇒ (ii) The 
laim is straightforward, by the de�nition (1.11) of Q±
ν(x) and the monotoni
ity of

the graph of ϕν(x)|D̃0
(t,x)

.

(ii) ⇒ (i) This impli
ation is a 
onsequen
e of the maximality of the graph β̃(t,x) as a monotone

subgraph of ϕν(x). Thanks to (3.3), we have sign (ũ − k)(ϕν(x)(ũ) − ϕν(x)(k)) ≥ 0 for all k ∈
D̃0

(t,x); thus, ϕν(x) is monotone not only on D̃0
(t,x) but also on ũ ∪ D̃0

(t,x). Thus ũ ∈ D̃0
(t,x) and

Ṽ ∈ Vϕν(x)D̃
0
(t,x), whi
h proves (i).

(i) ⇔ (iii) This equivalen
e follows from Proposition 2.5(i).

(i) ⇒ (iv) As a preliminary step, we assess the following property (see [37, 7℄): for all k ∈ R, for

all ξ ∈ D([0, T )× Ω)+

(3.12)

∫ T

0

∫

Ω

(
−(u− k)±ξt − q±(u, k) · ∇ξ

)
−
∫

Ω

(u0 − k)±ξ(0, ·)

≤ −
∫ ∫

Σ

Q±
ν(x)

(
γVϕν(x)u , Vϕν(x)k

)
ξ(t, x).

Indeed, taking (by approximation) for the test fun
tion in (3.1) a nonnegative fun
tion ξ ∈
D([0, T )× Ω) multiplied by the trun
ation (1− ξn), we get (3.12) from (3.11) of Lemma 3.7.

It remains to justify using the information that ũ ∈ D̃0
(t,x), that

(3.13) −Q±
ν(x)

(
γVϕν(x)

u , Vϕν(x)
k
)
≡ −q±ν(x)(ũ, k) ≤ Ck ∧

(
β(t,x)(k)− ϕν(x)(k)

)∓

.

The upper bound of the left-hand side of (3.13) by Ck := 2max
{
|ϕ(z)|

∣∣ |z| ≤ k + ‖u‖∞
}
is

evident. Further, if k ∈ D±
(t,x), then we already know that (i) implies (3.4), whi
h gives

(3.14) −Q±
ν(x)

(
γVϕν(x)

u , Vϕν(x)
k
)

≤ 0 ≤
(
β(t,x)(k)− ϕν(x)(k)

)∓

,

proving (3.13) for this 
ase. Let us study the remaining values of k.
For the sake of being de�nite, let us 
onsider k ∈ D−

(t,x), k < ũ; then the goal is to estimate

−q+ν(x)(ũ, k) from above by Rk :=
(
β(t,x)(k)− ϕν(x)(k)

)−

. Consider the four possible 
ases.

• If ϕν(x)(ũ) ≥ ϕν(x)(k), there is nothing to prove be
ause −q+ν(x)(ũ, k) ≤ 0 ≤ Rk.

• If β(t,x)(k) ≤ ϕν(x)(ũ) < ϕν(x)(k), then

−q+ν(x)(ũ, k) ≡ ϕν(x)(k)− ϕν(x)(ũ) ≤ ϕν(x)(k)− β(t,x)(k) =
(
β(t,x)(k)− ϕν(x)(k)

)−

= Rk.

• If ũ ∈ D−
(t,x) then ϕν(x)(ũ) ≥ β(t,x)(ũ) and from the monotoni
ity of β(t,x), we do have

−q+ν(x)(ũ, k) ≡ ϕν(x)(k)− ϕν(x)(ũ) ≤ ϕν(x)(k)− β(t,x)(ũ) ≤ ϕν(x)(k)− β(t,x)(k) = Rk.

• It remains the 
ase ũ ∈ D+
(t,x), k ∈ D−

(t,x), and ϕν(x)(ũ) < β(t,x)(k) < ϕν(x)(k); let us show

that this is impossible. Indeed, in this 
ase there exists k′ ∈ (k, ũ] that belongs to D0
(t,x). Then
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k′ ∈ D̃0
(t,x) a

ording to the de�nition of this graph. Yet also ũ ∈ D̃0

(t,x); by the de�nition of

D0
(t,x) and the monotoni
ity of ϕν(x)|D̃0

(t,x)
, we infer

β(t,x)(k
′) ∋ ϕν(x)(k

′) ≤ ϕν(x)(ũ) < β(t,x)(k).

This 
ontradi
ts the monotoni
ity of β(t,x) be
ause k < k′.

(iv) ⇒ (iii) It is enough to justify inequalities (3.4). We work with mollifying sequen
es (ξα)α
on Σ (extended smoothly inside Ω) that are supported in an α-neighbourhood of some σ ∈ Σ;
as α→ 0, ξα 
on
entrates to the Dira
 measure supported at σ.

Fix k ∈ R and 
onsider e.g. σ = (t, x) ∈ Σ+(k). Almost every point of Σ+(k) is its point of
density (see, e.g., [19℄), whi
h means in parti
ular that, for HN

-a.e. σ ∈ Σ+(k),

(3.15) lim
α→0

∫ ∫

Σ

Ck ∧
(
β(t,x)(k)− ϕν(x)(k)

)−

ξα(t, x) = 0.

Indeed, the integrand in the right-hand side is bounded by Ck and by the de�nition (3.2), it is

zero for (t, x) ∈ Σ+(k).
Now we generate inequalities (3.4) by taking the test fun
tions ξαξn (with (ξn)n 
onstru
ted

in Lemma 3.7). Using 
onsequently (3.10), (3.5) and (3.15), we infer

−Q+
ν(x)

(
γVϕν(x)

u , Vϕν(x)
k
)
|(t,x)=σ = − lim

α→0

∫∫

Σ

ξα Q+
ν(x)

(
γVϕν(x)

u , Vϕν(x)
k
)

= lim
α→0

lim
n→∞

(∫ T

0

∫

Ω

(
−(u− k)±(ξαξn)t − q+(u, k) · ∇(ξαξn)

)
−
∫

Ω

(u0 − k)±(ξαξn)(0, ·)
)

≤ lim
α→0

∫ ∫

Σ

Ck ∧
(
β(t,x)(k)− ϕν(x)(k)

)−

ξα(t, x) = 0.

Similarly, the 
ase σ ∈ Σ−(k) leads to the inequality −Q−
ν(x)

(
γVϕν(x)

u , Vϕν(x)
k
)
|(t,x)=σ ≤ 0.

(iv) ⇒ (v) Inequalities (3.7) are immediate from (3.5).

(v)&(3.6) ⇒ (i) A
tually, we rather prove (iii). Under the assumption that there exists a mol-

lifying sequen
e (ξα)α on Σ that 
on
entrates at σ ∈ Σ±(k) and, moreover, that is identi
ally

zero on Σ \ Σ±(k), we 
an repeat the proof of the above impli
ation �(iv) ⇒ (iii)�. A su�
ient


ondition is the density of D(Σ±(k)) in L1(Σ±(k)). Moreover, this assumption is needed only

for a 
ountable dense set of values of k: indeed, the proof of the impli
ation �(iii) ⇒ (i)� 
an be

rewritten so that it use only a dense subset of values of k satisfying (3.4). Thus, (3.6) is enough

to derive the tra
e 
ondition in (i). �

4. Uniqueness, 
omparison, 
ontinuous dependen
e

Following the ideas of [22, 12, 26, 6℄, introdu
e the �uniqueness 
ondition�

(4.1) either Ω is bounded, or N = 1, or ϕ is lo
ally Hölder 
ontinuous of order 1− 1
N .

In the 
lassi
al 
ase of a lo
ally Lips
hitz 
ontinuous �ux ϕ this assumption holds automati
ally.

The following result 
ontains uniqueness of an entropy solution for problem (Hϕ,β(u0, f)), L
1


ontra
tion and 
omparison property with respe
t to the initial datum u0 and the sour
e term

f , and a 
omparison and stability property with respe
t to the 
hoi
e of β(t,x)(·).

Theorem 4.1. Assume (4.1). Let u1 be an entropy sub-solution for Problem (Hϕ,β1(u10, f
1));

let u2 be an entropy super-solution for Problem (Hϕ,β2(u20, f
2)). Then for a.e. s ∈ (0, T ),

(4.2)

∫

Ω

(u1−u2)+(s) ≤
∫

Ω

(u10−u20)++
∫ s

0

∫

Ω

sign

+(u1−u2)(f1−f2)+

∫ t

0

∫

∂Ω

d−x (β̃
1
(t,x), β̃

2
(t,x)).



BOUNDARY-VALUE PROBLEMS FOR CONSERVATION LAWS 19

In parti
ular, if u10 ≤ u20 a.e. on Ω, f1 ≤ f2
a.e. on QT and if β1

(t,x) �x β
2
(t,x) HN

-a.e. on Σ, then

u1 ≤ u2 a.e. on QT . In parti
ular, there exists at most one entropy solution to (Hϕ,β(u0, f)).

Note that, whenever ϕ is lo
ally Lips
hitz 
ontinuous, we 
an lo
alize the 
ontra
tion property

using the �nite speed of propagation, following Kruzhkov [21℄.

Proof. Consider the 
ase of a bounded domain Ω. We apply the Kruzhkov doubling of variables

argument inside the domain to dedu
e the Kato inequality: for a.e. s ∈ (0, T ), for all ξ ∈ D(Ω),

(4.3)

∫

Ω

(u1−u2)+(s) ξ−
∫

Ω

(u10−u20)+ξ(0, ·) ≤
∫ s

0

∫

Ω

(
q+(u1, u2) ·∇ξ+sign

+(u1−u2)(f1−f2) ξ
)
.

Now we take ξ = 1− ξn with (ξn)n 
onstru
ted in Lemma 3.7, and let n→ ∞. Sin
e there exists

a strong normal boundary tra
e of q+(u1, u2) expressed in the way of Remark 1.1 in Se
tion 1.3,

we �nd the inequality

∫

Ω

(u1−u2)+(s) ≤
∫

Ω

(u10−u20)+ +

∫ s

0

∫

Ω

sign

+(u1−u2)(f1−f2)

−
∫ s

0

∫

Ω

Q+
ν(x)(γVϕν(x)(u

1), γVϕν(x)(u
2)).

It remains to show that−Q+
ν(x)(γVϕν(x)(u

1), γVϕν(x)(u
2)) ≤ d−x (β̃

1
(t,x), β̃

2
(t,x)) pointwise on (0, T )×

∂Ω. This is true be
ause whenever the term on the left is non-zero, we have

(4.4) −Q+
ν(x)(γVϕν(x)(u

1), γVϕν(x)(u
2)) = −(ϕν(x)(ũ

1)− ϕν(x)(ũ
2))

with some ũ1 > ũ2 su
h that

Vϕν(x)(ũ
1) = γVϕν(x)(u

1) ∈ Vϕν(x)D̃
−(t, x) and Vϕν(x)(ũ

2) = γVϕν(x)(u
2) ∈ Vϕν(x)D̃

+(t, x)

(here we have used the tra
e properties of entropy sub- and super-solutions, see Proposition 3.5(i)).

Thus ϕν(x)(ũ
1) ≥ B̃1

(t,x)(ũ
1), ϕν(x)(ũ

2) ≤ B̃2
(t,x)(ũ

2), so that the right-hand side of (4.4) ful�lls

−(ϕν(x)(ũ
1)− ϕν(x)(ũ

2)) ≤ −(B̃1
(t,x)(ũ

1)− B̃2
(t,x)(ũ

2)) ≤ d−x (B̃1
(t,x), B̃2

(t,x)),

where we have used the de�nition of d−x and the fa
t that ũ1 > ũ2.
For the 
ase when Ω is unbounded, in the same way we get the up-to-the boundary Kato

inequality, i.e., inequality (4.3) with a test fun
tion ξ ∈ D(Ω). Assuming either that N = 1, or
that N ≥ 2 and ϕ is lo
ally Hölder 
ontinuous of order 1 − 1

N we use the te
hniques known for

s
alar 
onservation laws with in�nite speed of propagation (see, e.g., [22, 12, 6℄), and eventually

dedu
e (4.2). �

5. Existen
e: a formal proof

In this se
tion, we establish existen
e on an entropy solution but we take for granted that

the formal BC, en
rypted by the graphs β(t,x), should be repla
ed by the boundary 
ondition

expressed with the help of their proje
tions B̃(t,x) = P̃xβ(t,x). Se
tion 6 
ontains a longer but

more 
onvin
ing dis
ussion of the problem of existen
e and 
onvergen
e of approximations.

For general graphs β satisfying the measurability assumption (1.1), we 
annot hope for ex-

isten
e of a bounded solution (it is enough to 
onsider, e.g., the situation where unbounded

Diri
hlet data are imposed: in this 
ase, one needs the notion of a renormalized solution, as used

by Porretta, Vovelle [35℄ and by Ammar, Carrillo and Wittbold [2℄). We 
ontrol the L∞
norm

of solutions or approximate solutions by assuming existen
e of a ri
h enough family of simple
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(
onstant in spa
e) sub- and super-solutions to the problem. Namely, we require that one of the

two following assumptions be ful�lled: either

(5.1)

f = 0, and there exist (A−
m)m∈N, (A

+
m)m∈N ⊂ R

±
su
h that A±

m → ±∞
as m→ ∞ and for HN−a.e. (t, x)∈Σ, for all m ∈ N A±

m ∈ D̃±
(t,x);

or

(5.2) the measures of the sets A± :=
{
k ∈ R

± | k ∈ D̃±
(t,x) for HN−a.e. (t, x)∈Σ

}
are in�nite.

Note that (5.2) is ensured by the following:

(5.3) ∃A for HN
-a.e.(t, x) ∈ Σ (−∞,−A] ⊂ D̃−

(t,x) and [A,+∞) ⊂ D̃+
(t,x).

Remark 5.1. Given a formal BC graph β, it is not immediate to 
he
k whether (5.3), (5.1), or

(5.2) hold. Let us give su�
ient 
onditions.

Firstly, by de�nition we have D±
(t,x) ⊂ D̃±

(t,x), where D
+
(t,x), resp. D

−
(t,x) is the overshoot (resp.,

the undershoot) set de�ned in Se
tion 2; D±
(t,x) are 
omputed dire
tly from the relative positions

of the graphs β(t,x) and ϕν(x). Thus repla
ing D̃
±
(t,x) by D

±
(t,x) in ea
h of the assumptions (5.3),

(5.1), or (5.2), we get stronger but easier-to-
he
k restri
tions (
f. [7, 8℄).

Se
ondly, if there exists C > 0 su
h that for all x ∈ ∂Ω ea
h of the fun
tions ϕν(x)|(−∞,C] and

ϕν(x)|[C,+∞) is either non-de
reasing or non-in
reasing, then it is easily 
he
ked that assumption

(5.3) (and thus also (5.2)) holds.

Assume in addition that the limit �ux ϕ is genuinely nonlinear in the sense

(5.4) ∀Ξ ∈ R
N+1\{0} ∀c ∈ R the Lebesque measure of the set {z |Ξ · (z, ϕ(z)) = c} is zero.

Noti
e that the latter assumption implies (1.7), in parti
ular the singular mapping Vϕν(x) 
an

be taken to be Id in this 
ase.

The main result is the following theorem.

Theorem 5.2. Assume that ϕ satis�es (4.1), (5.4). Let u0 ∈ L∞(Ω) and
∫ T

0 ‖f(t, ·)‖∞ dt <∞.

Assume that β satis�es (1.1) and any of the assumptions (5.1), (5.2). Then there exists a unique

entropy solution of problem (Hϕ,β(u0, f)).

Proof. Uniqueness is 
ontained in Theorem 4.1. For proving existen
e, we exploit the vanishing

vis
osity method in whi
h we use dire
tly the proje
ted graphs B̃(t,x) = P̃xβ(t,x). We apply two

results that are justi�ed in the sequel. Firstly, we 
onstru
t approximate solutions uε by the

vanishing vis
osity method, using Proposition 9.6 (see also Remark 9.7) of Appendix. Indeed,

k 7→ B̃(t,x)(k) =: b(t, x; k) being a 
ontinuous fun
tion for �xed (t, x) ∈ Σ, from (1.1) we dedu
e

that the map b on Σ× R is Carathéodory. Be
ause Proposition 9.6 requires that b be bounded,

we pi
k some value M > 0 depending on ‖u0‖∞ +
∫ T

0 ‖f(t, ·)‖∞ dt and on (A±
m)m or A±

in the

assumptions (M is 
hosen as a priori bound of ‖u‖∞, to be justi�ed later). We pro
eed by

trun
ating ϕ and B̃(t,x) as follows: e.g., under assumption (5.1) we take m su
h that [A−
m, A

+
m] ⊃

[−M,M ] with M = ‖u0‖∞ and take the 
onvention that

(5.5)

ϕ is 
onstant on (−∞, A−
m] and on [A+

m,+∞) (equal to ϕ(A±
m), respe
tively),

B̃(t,x) is 
onstant on (−∞, A−
m] and on [A+

m,+∞) (equal to B̃(t,x)(A
±
m), respe
tively).

Therefore we get existen
e of vanishing vis
osity approximations (uε)ε 
orresponding to the

trun
ated graphs.

Let us stress the fa
t that, be
ause A±
m ∈ D̃±

(t,x), trun
ation (5.5) does not 
hange the fa
t

that B̃(t,x) is a maximal monotone subgraph of ϕν(x). For the same reason, the trun
ated graphs
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ϕ and B̃ ful�ll assumption (5.1) with the same sequen
es (A±
m)m; hen
e by Proposition 9.6(ii)

the solutions obey an L∞
estimate that does not depend on the trun
ation level 
hosen in (5.5).

Now we 
an exploit Theorem 6.2 stated and proved in Se
tion 6.1. Its assumptions (6.1)�(6.3)

are ful�lled: indeed, noti
e that we have required the genuine nonlinearity property (5.4) that

implies 
ompa
tness (see, e.g., [30, 33℄) and that B̃ are bounded by max[A−
m,A+

m] |ϕ| due to the

trun
ation 
onvention (5.5). We dedu
e existen
e of an entropy solution u to the trun
ated

problem (Hϕ,β(u0, f)). Yet we have also ensured that ‖u‖∞ ≤ M , therefore the 
onstru
ted

solution u also solves the original problem (Hϕ,β(u0, f)) (before the trun
ation (5.5)). This ends

the proof. �

6. Justifi
ation of the effe
tive boundary 
ondition

The goal of this se
tion is to provide eviden
e in favor of the interpretation (1.13),(Aβ̃) of

the e�e
tive boundary 
ondition. As it was already stated in the introdu
tion, a natural way to

justify a notion of solution is to see problem (Hϕ,β(u0, f)) as the limit of a family of problems for

whi
h the notion of solution is unambiguous: one derives the solution notion from passage-to-

the-limit arguments. In this se
tion, we do it in two 
omplementary ways, following the general

idea of our previous works ([7℄ and [8℄, respe
tively).

Firstly, in Se
tion 6.1 we rely on the 
lassi
al notion of weak solution to paraboli
 problems

with additional vis
osity term, vanishing at the limit. The entropy formulation of (Hϕ,β(u0, f)) is
obtained as a singular limit formulation: indeed, the limit problem looses its paraboli
 
hara
ter.

Unfortunately, for a pra
ti
al appli
ation of this te
hnique we will need several restri
tions on

the behaviour of β and ϕ. To separate the te
hni
al details from the key idea of the proof,

we assume, without 
omment, that approximate solutions possess uniform bounds and a strong


ompa
ti�
ation property. Noti
e that the te
hniques of Se
tion 6.1 are very di�erent from the

ones of the pre
eding works [37, 7℄, where we also needed the di�
ult to ensure 
ompa
ti�
ation

assumptions on the sequen
e of approximate solutions on the boundary.

Remark 6.1. Although the arguments of [37, 7℄ are less general, they have the advantage of show-

ing quite expli
itly how the proje
ted graph β̃ (in its 
hara
terization [7, formula (4)℄, equivalent

to the 
hara
terization of Proposition 2.5(ii)) appears from β.
In a sense, with [7, formula (4)℄ one 
an �observe� the formation of the boundary layer (see

[37℄ for details). The arguments we use in this paper are more indire
t; they lead to the 
hara
-

terization of Proposition 2.5(i), via the formulation (3.5).

Se
ondly, in Se
tion 6.2 we 
onsider approximations of (Hϕ,β(u0, f)) by purely hyperboli


problems of the same type (but with possibly di�erent data and non-linearities) and exploit the

stability and 
omparison prin
iple of Theorem 4.1 in order to extend the entropy formulation �by

heredity�. This allows, e.g., to 
on
entrate on the 
ase of smooth and/or 
ompa
tly supported

initial data, that may be useful in the 
ontext of a lo
ally Lips
hitz �ux ϕ (
f. Se
tion 7.1). For

the Diri
hlet or obsta
le 
ondition, we 
an approximate the boundary data either pointwise or

using the Lusin theorem. For a less evident appli
ation, one 
an approximate a general graph β
by a bi-monotone sequen
e of graphs βδ,λ

satisfying the assumptions of the previous se
tion (by

bi-monotoni
ity, it is meant that βδ,λ
de
reases as δ ↓ 0 and in
reases as λ ↓ 0). In this way we


an justify the use of the proje
ted graph β̃ for the homogeneous Neumann boundary 
ondition

(whereas the justi�
ation in the way of Se
tion 6.1 does not work in this 
ase); see [8℄.

6.1. Convergen
e of the vanishing vis
osity approximation. Let us provide a basi
 
on-

vergen
e argument for the vanishing vis
osity approximation (without any additional regulariza-

tion or approximation of data and nonlinearities).
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We make the following a priori assumptions on data and nonlinearities of problem (1.3):

(6.1)

For all ε ∈ (0, 1) there exists a weak solution

13 uε ∈ L2(0, T ;H1
loc(Ω)) of (1.3),

moreover, the family (
√
ε∇uε)ε is bounded in L2

loc([0, T ]× Ω);

(6.2)

There exists u ∈ L∞(QT ) and a sequen
e εm de
reasing to zero as m→ ∞
su
h that uεm → u in L1

loc([0, T ]× Ω) as m→ ∞.

(6.3)

There exists G ∈ L1
loc([0, T ]× ∂Ω) su
h that

|bε(t, x)| ≤ G(t, x) for HN
-a.e. (t, x) ∈ Σ, uniformly in ε ∈ (0, 1),

where bε(t, x) ∈ β(t,x)(u
ε(t, x)) is the value realized in the multi-valued boundary 
ondition

of (1.3) (namely, bε(t, x) := γw(ϕ(u
ε) − ε∇uε) · ν(x), the right-hand side having the meaning

of the weak normal boundary tra
e of the divergen
e-measure �eld (ϕ(uε) − ε∇uε), see [17℄).

Writing β(t,x)(u
ε(t, x)), we use without further mention the restri
tion uε|Σ of uε on the boundary,

understood in the sense of tra
es of Sobolev fun
tions.

Theorem 6.2. Assume that u0, f and ϕ, β are su
h that (6.1),(6.2) and (6.3) hold. Then u is

an entropy solution of problem (Hϕ,β(u0, f)).

Remark 6.3. In pra
ti
e, (6.2) 
an be ful�lled as a 
ompa
tness property. In this 
ase, let us

suppose that the uniqueness 
ondition (4.1) of Theorem 4.1 holds. Then from the uniqueness of

the a

umulation point u we dedu
e that the whole family uε 
onverges, as ε→ 0, to the entropy
solution of (Hϕ,β(u0, f)).

Proof. It is 
lassi
al (see e.g. Carrillo [16℄) to dedu
e from the weak formulation of (1.3) the

Kruzhkov entropy inequalities (3.1) with D([0, T ) × Ω) test fun
tions (i.e., entropy formulation

inside the domain). One readily passes to the limit in this entropy formulation using the property

(6.2) and the uniform L2
loc bound on

√
ε∇uε 
ontained in assumption (6.1). In our 
ase, the

deli
ate issue is to pass to the limit in the up-to-the-boundary entropy formulation of (1.3). Our

goal is to dedu
e the 
hara
terization (3.5) of entropy solution.

To this end, we reprodu
e the arguments of [16℄, but we now take ξ ∈ D([0, T )× Ω), ξ ≥ 0.
We multiply (1.3) by the test fun
tion Hα(u

ε − k)ξ, where Hα is a Lips
hitz regularization of

sign+
(the 
ase of sign−

is similar) su
h that H ′
α(r) = 1

α1l(0,α)(r). In addition, we substitute

the term ϕ(uε) in (1.3) by ϕ(uε)− ϕ(k), whi
h results in the �new� boundary 
ondition

(ϕ(uε)− ϕ(k)− ε∇uε) · ν(x) ∈ β(t,x)(u
ε)− ϕν(x)(k).

Using the 
hain rule in time (see, e.g., [1, 29℄), using in addition [16, Lemma 1℄ to make disappear

the term limα→0+
∫
Ω(ϕ(u)− ϕ(k))H ′

α(u
ε − k)ξ, dropping the positive term εH ′

α(u
ε − k)|∇uε|2,

at the limit α→ 0+ we derive the �paraboli
 up-to-the-boundary entropy equality�

(6.4)

∫ T

0

∫

Ω

(
−(uε−k)+ξt − q+(uε, k) · ∇ξ

)
−
∫

Ω

(u0−k)+ξ(0, ·)

≤ −
∫

Σ

sign+(uε−k)(bε(t, x)−ϕν(x)(k))ξ − ε

∫ T

0

∫

Ω

sign+(uε−k)∇uε · ∇ξ

with some bε(t, x) ∈ β(t,x)(u
ε) satisfying (6.3). Re
all that we have assumed that f = 0, the

general 
ase being similar. In the right-hand side of (6.4), by the monotoni
ity of β(t,x) we have,
pointwise on Σ, the multi-valued inequality

(6.5) − sign+(uε−k)(bε(t, x)−ϕν(x)(k)) ≤ (β(t,x)(k)−ϕν(x)(k))
−.

13

see Appendix for a pre
ise de�nition of a weak solution
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Here, the quantity in the right-hand side 
an be in�nite, whi
h makes problemati
 the lo
alization

arguments. Under assumption (6.3) (see Remarks 6.6�6.9 for 
omments and generalizations) the

left-hand side of (6.5) is upper bounded by the L1
loc([0, T ]× ∂Ω) fun
tion de�ned by Gk(t, x) :=

G(t, x) + |ϕ(k)|. Letting ε→ 0+, from the L1
loc 
onvergen
e assumption (6.2) we dedu
e

(6.6)

∫ T

0

∫

Ω

(
−(u−k)+ξt − q+(u, k) · ∇ξ

)
−
∫

Ω

(u0−k)+ξ(0, ·)

≤
∫ T

0

∫

∂Ω

Gk(t, x) ∧ (β(t,x)(k)−ϕν(x)(k))
− ξ.

Now, sin
e u is an entropy solution inside the domain, we 
an use the strong normal boundary

tra
e γq+ν(x)(u, k) of q
+(u, k) and generate it with the help of the sequen
e (ξn)n of Lemma 3.7.

The positive test fun
tion ξ being arbitrary, we dedu
e

γq+ν(x)(u, k) ≤ Gk(t, x) ∧ (β(t,x)(k)−ϕν(x)(k))
− HN

-a.e. on Σ

(the inequality holds at the Lebesgue points of the left- and right-hand sides). Now noti
e that

we 
an provide a more pre
ise upper bound for the left-hand side: taking

Ck := 2max
{
|ϕ(z)|

∣∣ |z| ≤ k + ‖u‖∞
}
≥ ‖q+(u, k)‖∞,

we have |q+ν(x)(u, k)| ≤ Ck pointwise, so that

(6.7) γq+ν(x)(u, k) ≤ Ck ∧ (β(t,x)(k)−ϕν(x)(k))
−.

Combining the entropy inequalities inside the domain (namely, (6.6) with ξ repla
ed by ξ(1−ξn),
with boundary 
ut-o� fun
tions (ξn)n 
onstru
ted in Lemma 3.7) with (3.11) and (6.7), we �nally

dedu
e (3.5). �

The simplest example 
ombining Proposition 9.6 and Theorem 6.2 is the following:

Example 6.4. Assume that ϕ satis�es (4.1) and (5.4). Assume that β ful�lls the analogues of

assumptions (5.2) or (5.1) with D̃±
(t,x) repla
ed byD

±
(t,x) (this makes the assumptions stronger, see

Remark 5.1). Assume that the graphs β(t,x) are single-valued uniformly bounded on R fun
tions.

Then for all vis
osity parameter ε > 0 solutions uε of the paraboli
 problem (1.3) exist;

moreover, uε 
onverge, as ε→ 0, to the unique entropy solution of (Hϕ,β(u0, f)).

The justi�
ation of this example is 
ontained in the proof of Theorem 5.2.

Several 
omments are of order: indeed, we need to dis
uss generalizations and further appli
a-

tions of Theorem 6.2. First, 
onsider the existen
e and 
ompa
ti�
ation assumptions (6.1),(6.2).

Remark 6.5.

(i) As we show in Appendix, the existen
e assumption (6.1) is veri�ed e.g. in the 
ase where

β(t,x) are monotone 
ontinuous fun
tions having R for their domain. But this assumption is not

a ne
essary one. E.g., existen
e for the Diri
hlet problem for (1.3) is well known, for regular

enough bounded Diri
hlet data uD. If the la
k of regularity (in (t, x)) of the family (β(t,x))(t,x)∈Σ

does not allow for existen
e of a solution uε, repla
ing β with a regularized graph βε
(e.g., the

Yosida regularization 
an be used, pointwise in (t, x)) one 
an easily generalize the 
onvergen
e

result of Theorem 6.2.

(ii) Property (6.2) is ensured in the 
ase where, �rstly, the �ux ϕ is genuinely non-linear in the

sense (5.4); and se
ondly, a uniform L∞
estimate on the family (uε)ε is available.

(iii) A

ording to Proposition 9.6(ii) (see also Remark 9.7), uniform L∞
estimates on uε are

available in the 
ase (9.17) or (9.18) hold. These assumptions ex
lude important 
ases. Indeed,

for (e.g., homogeneous) Neumann and Robin boundary 
onditions it is easy to get existen
e of
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uε; but uniform L∞
bounds may require additional restri
tions on ϕ: see e.g. the work Bürger,

Frid and Karlsen [13℄ on the Neumann BC 
ase.

(iv) Without L∞
estimates, the issue of 
onvergen
e of vanishing vis
osity approximations be-


omes quite deli
ate. E.g., in the 
ase of homogeneous Neumann boundary 
onditions the family

(uε)ε may be unbounded, and nevertheless 
onverge pointwise to a limit u ∈ L∞(QT ).
In the present paper, we limit our investigation to the 
ase where uniform L∞

bounds (
oming

from 
onstant sub- and super-solutions) are available. We leave the study of the more deli
ate

situations to a future work.

Further, assumption (6.3) is made in order to simplify the proof of Theorem 6.2 and also be
ause

it is enough for the existen
e result of Theorem 5.2. Assumption (6.3) is of te
hni
al nature;

unfortunately, it 
annot be 
ompletely bypassed. We make several 
omments on (6.3).

Remark 6.6. Assumption (6.3) is trivially satis�ed whenever the graphs β(t,x) are uniformly

bounded; it also holds if uε are uniformly bounded and for all M > 0, the sets β(t,x)([−M,M ])
are bounded uniformly in (t, x) ∈ Σ. A di�erent situation where (6.3) holds is when the sequen
e

(bε)ε is 
onvergent in L1(Σ) (or even in L1
loc([0, T ]× ∂Ω)). This was a
tually the 
ase under the

restri
tions imposed in our previous works (see [37, 7℄).

Remark 6.7. Assumption (6.3) 
an be repla
ed by the equi-integrability assumption on (bε)ε.
Indeed, setting Gε

k(t, x) := |bε(t, x)|+ |ϕ(k)|, we get (6.6) with Gε
k in the pla
e of Gk. The equi-

integrability assumption implies that the family of fun
tions

(
Gε

k(t, x)∧ (β(t,x)(k)−ϕν(x)(k))
−
)
ε

weakly 
onverges to an L1
loc([0, T ]× ∂Ω) fun
tion that we denote Bk. The proof of Theorem 6.2

leads to the inequalities

(6.8)

∫ T

0

∫

∂Ω

ξγq+ν(x)(u, k) ≤
∫ T

0

∫

∂Ω

ξBk

for non-negative 
ontinuous 
ompa
tly supported fun
tions ξ on Σ. Moreover, γq+ν(x)(u, k) ≤ Ck,

therefore γq+ν(x)(u, k) ≤ Ck ∧Bk ≤ Ck ∧ (β(t,x)(k)−ϕν(x)(k))
−
pointwise on Σ.

Remark 6.8. In view of pra
ti
al appli
ation of Theorem 6.2 (whi
h is a 
onditional result) it

would be mu
h useful to repla
e the domination assumption (6.3) on (bε)ε by the mere L1
loc

boundedness assumption

(6.9)

∫ T

0

∫

∂Ω∩K

|bε(t, x)| ≤ constK uniformly in ε ∈ (0, 1), for all 
ompa
t K ⊂ ∂Ω.

E.g. for the 
ase where ϕ(0) = 0, β(t,x)(0) ∋ 0 and 0 is in the interior of Domβ(t,x), the bound

(6.9) is satis�ed automati
ally. Indeed, under these restri
tions, along with the existen
e result

for uε (see Proposition 9.6 and Remark 9.7 in Appendix) there 
omes a uniform estimate

∫ T

0

∫

∂Ω∩K

bε(t, x)uε(t, x) ≤ constK .

Due to the monotoni
ity of β(t,x), (6.9) follows readily, while (6.3) is not guaranteed.
With (6.9) in hand the approa
h of the pre
eding remark 
an be applied, but with a lo
ally

�nite measure repla
ing the L1
loc fun
tion Bk. Unfortunately, starting from (6.8) with Bk a

measure the lo
alization argument 
annot be 
ontinued (see [9, Example 2℄).

Remark 6.9. Yet in many important 
ases, (6.3) is not needed; it 
an be bypassed whenever the

set of �nite values of β(t,x)(k) is regular enough.



BOUNDARY-VALUE PROBLEMS FOR CONSERVATION LAWS 25

Indeed, introdu
e S±
k := {(t, x) ∈ Σ | sup(±β(t,x)) < +∞}. For instan
e, assume that for a

dense set of values of k,

(6.10)

S±
k = E±

k,∞

⋃(
∪M∈NE

±
k,M

)
where HN(E±

k,∞) = 0,

the sets E±
k,M are open in Σ and (β(t,x)(k)−ϕν(x)(k))

± ≤M on E±
k,M .

Under this assumption, we 
an simply lo
alize inequalities (6.4) using test fun
tions ξ su
h that

ξ|Σ is supported in E−
k,M and then apply (6.5) in the situation where its right-hand side is �nite.

Then we dire
tly get

γq+ν(x)(u, k) ≤ (β(t,x)(k)−ϕν(x)(k))
−

HN
-a.e. on S−

k ≡ {(t, x) | (β(t,x)(k)−ϕν(x)(k))
− 6= +∞}

being understood that we have q+ν(x)(u, k) ≤ Ck on the 
omplementary of this set. This establishes

(6.7) and 
omplements the proof of Theorem 6.2 with assumption (6.3) repla
ed by (6.10).

Su
h modi�
ation of Theorem 6.2 
an be applied, e.g., to Diri
hlet or obsta
le problems

under mild regularity assumptions on the boundary data. Indeed, the existen
e result for the

Diri
hlet problem is well known, as well as the uniform L∞
bound on uε. Assumption (6.3)

of Theorem 6.2 is 
ir
umvented in the way of Remark 6.9. To be spe
i�
, for the Diri
hlet

graphs β(t,x) = {uD(t, x)} × R property (6.10) is ful�lled for 
ontinuous and even for pie
ewise


ontinuous uD (yet it is not ful�lled in the 
ase of �fra
tal� data uD).

Example 6.10. (
f. Bardos, LeRoux and Nédéle
 [10℄ and Vasseur [40℄)

Assume that Ω is bounded, ϕ satis�es (5.4), and u0 ∈ L∞(Ω). Assume that β is the Diri
hlet

graph 
orresponding to a pie
ewise 
ontinuous datum uD ∈ L2(0, T ;H1/2(∂Ω)) ∩ L∞(Σ).
Then for all vis
osity parameter ε > 0 solutions uε of the paraboli
 problem (1.3) exist; then

uε 
onverge, as ε→ 0, to the unique entropy solution of (Hϕ,β(u0, f)).

Analogous results hold for the 
ase of obsta
le boundary 
onditions with pie
ewise 
ontinuous

data um, uM ∈ ∩L2(0, T ;H1/2(∂Ω)) ∩ L∞(Σ).

6.2. Stability of the notion of entropy solution. Let us 
onsider a sequen
e of problems

of the kind (Hϕ,β(u0, f)) asso
iated with data uδ0, f
δ
and nonlinearities ϕδ, βδ

(here δ is a

parameter; for the sake of being de�nite assume that δ is positive and 
onverges to zero). We

assume that there exist asso
iated entropy solutions uδ; we want to dedu
e an entropy formulation

for an a

umulation point u of uδ, assuming ad ho
 
onvergen
e of uδ0, f
δ, ϕδ, βδ

to some limits

uδ0, f
δ, ϕδ, βδ

.

In the three paragraphs � 6.2.1�6.2.3 below, we will demonstrate three di�erent kinds of

heredity for the notion of entropy solution: the one 
oming from 
ompa
ti�
ation of (uδ)δ (due to
a genuine nonlinearity assumption on the �ux ϕ); the one 
oming from monotone approximation

pro
edures; and the one where the L1

ontra
tion property of Theorem 4.1 makes (uδ)δ a Cau
hy

sequen
e. Be
ause we now treat of a hyperboli
 problem, the boundary 
ondition 
an be en
oded

either by the formal BC graphs β(t,x) (via formulation (3.5)) or by the proje
ted graphs B̃(t,x) =

P̃xβ(t,x) that dire
tly des
ribe the e�e
tive BC. We will exploit the two possibilities.

In � 6.2.1, we will need a notion of 
onvergen
e of maximal monotone graphs. Let us take the

following:

(6.11)

βδ
(t,x) → β(t,x) as δ → 0 if lim

δ→0
inf βδ

(t,x)(k) ≤ β(t,x)(k) ≤ lim
δ→0

supβδ
(t,x)(k)

at every point k of 
ontinuity of β(t,x)(k).

This assumption is satis�ed, e.g., if βδ
(t,x) are the Yosida approximations of β(t,x) (Yosida approx-

imation is a 
lassi
al way for regularizing maximal monotone graphs; see, e.g., [38℄ and � 6.2.1).
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A di�erent notion of 
onvergen
e of βδ

an be given in terms of the distan
e dx between the

proje
ted graphs P̃xβ
δ
; it is used in � 6.2.3, and the 
orresponding order relation is exploited in

� 6.2.2.

Throughout the se
tion, we assume that

(6.12) ∃M > 0 ‖uδ‖∞ ≤M uniformly in δ.

(in parti
ular, ‖uδ0‖∞ and

∫ T

0
‖f δ(t, ·)‖∞ dt should obey uniform in δ bounds). In order to enfor
e

the L∞
estimate (6.12), we a
tually assume that either (5.1) or (5.2) is ful�lled (with δ-dependent

f and the sets D̃±
(t,x)).

Lemma 6.11. Assume (4.1).

(i) Assume ‖uδ0‖∞ and

∫ T

0 ‖f δ(t, ·)‖∞ dt are bounded uniformly in δ and assumption (5.2) holds

with A±
independent of δ. Then (6.12) holds.

(ii) Assume that ‖uδ0‖∞ is bounded uniformly in δ and assumption (5.1) holds with (A±
m)m

independent

14

of δ. Then (6.12) holds.

The lemma is shown by using the 
omparison prin
iple of Theorem 4.1 and the appropriate

sub- and super-solutions of problems (Hϕδ,βδ(uδ0, f
δ)) that stem either from assumption (5.1)

(
onstants A±
m are used) or from assumption (5.2) (in this 
ase, the 
onstru
tion des
ribed in

Remark 9.7 is used).

6.2.1. Heredity by 
ompa
tness. In this paragraph, let us assume the following properties:

(6.13)

uδ0 
onverge to u0 in L1
loc(Ω), f δ


onverge to f in L1
loc(QT ),

ϕδ

onverge to ϕ uniformly on every 
ompa
t interval of R,

and for HN
-a.e. (t, x) ∈ Σ, βδ

(t,x) → β(t,x) in the sense (6.11).

(note that it is enough to assume relative 
ompa
tness of (uδ)δ and of (f δ)δ).

Proposition 6.12. Assume the data uδ0, f
δ, ϕδ, βδ


onverge in the sense (6.13). Assume (5.3)

or (5.1) hold with A or (A±
m)m that are suitable for ϕδ

,βδ
simultaneously for all δ > 0. Assume

ϕ is genuinely nonlinear in the sense (5.4), and assume that (4.1) holds.

Assume ‖uδ0‖∞ is uniformly bounded; in the 
ase (5.3) assume

∫ T

0 ‖f δ(t, ·)‖∞ dt is uniformly

bounded. Consider a family (uδ)δ of entropy solutions of (Hϕδ,βδ(uδ0, f
δ)). Then there exists

an a

umulation point u of (uδ)δ, as δ → 0, and u is an entropy solution of the limit problem

(Hϕ,β(u0, f)).

Proof. First of all, the uniform L∞
bound (6.12) follows by Lemma 6.11. Then L1

loc relative


ompa
tness of (uδ)δ is a 
onsequen
e of the 
onvergen
e of ϕδ
to ϕ and of assumption (5.4)

(see, e.g., [30, 33℄ and [24℄). It remains to pass to the limit in the entropy formulation for

Hϕδ,βδ(uδ0, f
δ); to do this, we pi
k the up-to-the-boundary entropy inequalities (3.5) written for

uδ. Let us fo
us on the 
ase of the entropies (· − k)+; the 
ase of (· − k)− is analogous. Passage

to the limit in the left-hand side is straightforward, using (6.13). Thus we only have to establish

that, for ξ ∈ D(Σ),

(6.14)

lim inf
δ→0

∫∫

Σ

Ck ∧
(
inf βδ

(t,x)(k)− ϕδ
ν(x)(k)

)−

ξ

≤
∫∫

Σ

Ck ∧
(
inf β(t,x)(k)− ϕν(x)(k)

)−

ξ

14

This assumption 
an be generalized; e.g., it is enough that cm ≤ ±A
±,δ
m ≤ Cm with cm → ∞ as m → ∞.
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(see the �rst point of Remark 3.4). Re
all that Ck may depend only on k, ‖uδ‖∞ and a lo
al

bound of |ϕδ|, thus we 
an take Ck independent of δ. Consequently, the dominated 
onvergen
e

theorem for (6.14) 
an be used.

A

ording to Lemma 6.13 below, 
onvergen
e (6.11) of βδ
does imply that for a.e. k ∈ R,

there holds inf βδ
(t,x)(k) → inf β(t,x)(k) for HN

-a.e. (t, x) ∈ Σ as δ → 0 (the 
onvergen
e takes

pla
e in R). Sin
e ϕδ(k) tends to ϕ(k), the left-hand side integrand in (6.14) 
onverges HN
-a.e.

to the integrand of the right-hand side. This justi�es (6.14) for all k ∈ R ex
ept, may be, for a

set of measure zero. Be
ause the left-hand side of (3.5) is 
ontinuous in k, one readily extends

(3.5) to all k ∈ R. This ends the proof. �

Lemma 6.13. Under assumption (1.1), a.e. point k ∈ R is a 
ontinuity point of β(t,x) simulta-

neously for HN
-a.e. (t, x) ∈ Σ.

Proof. Consider the [0,+∞]-valued map θ(t, x; k) := supβ(t,x)(k)−inf β(t,x)(k); it is measurable

on Σ × R due to (1.1). Indeed, by (1.1), for all ℓ, c ∈ R, mℓ(c) := {(t, x) ∈ Σ | inf β(t,x)(ℓ) > c}
is an HN

-measurable subset of Σ, thus mℓ(c) × [ℓ,+∞] is measurable on Σ × R w.r.t. to the

measure HN ⊗ µ where µ is given, for instan
e, by µ([a, b)) := arctan b − arctana. Now, due to
the lower semi
ontinuity of the map ℓ 7→ inf β(t,x)(ℓ), the sets {k | inf β(t,x)(k) > c} are open.

Therefore {
(t, x; k) | inf β(t,x)(k) > c

}
=

⋃
ℓ∈Q

mℓ(c)× [ℓ,+∞],

whi
h is a 
ountable union of measurable sets. Hen
e it is measurable on Σ× R w.r.t. HN ⊗ µ,
thus (t, x; k) 7→ inf β(t,x)(k) is measurable.

Now, for all σ = (t, x) ∈ Σ, θ(t, x; ·) is zero µ-a.e on R due to the monotoni
ity of β(t,x).

Applying the Fubini-Tonnelli theorem, we see that

∫
R

(∫
Σ
θ(σ; k) dHN (σ)

)
dµ(k) = 0. Thus for

a.e. k ∈ R, the fun
tion θ(·; k) is zero HN
-a.e. on Σ, whi
h was to be proved. �

Now let us give an appli
ation of Proposition 6.12 to a Yosida-like approximation of β.

Example 6.14. Assume that ϕ satis�es (4.1) and (5.4). Assume that β ful�lls the analogues of

assumptions (5.2) or (5.1) with D̃±
(t,x) repla
ed by D±

(t,x) (this makes the assumptions stronger).

Then entropy solution u of (Hϕ,β(u0, f)) is the limit of uδ, where uδ are limits of the vanishing

vis
osity method applied to problems (Hϕ,βδ(u0, f)) with β
δ
the approximation (6.15) of β that

we des
ribe below.

Indeed, 
onsider, e.g., the 
ase where (5.1) holds with D±
(t,x) in the pla
e of D̃±

(t,x), and pi
k

m su
h that u0 takes values in [A−
m, A

+
m]. Then there exist b±m(t, x) ∈ β(t,x)(A

±
m) su
h that

b+m(t, x) ≥ ϕν(x)(A
+
m) and b−m(t, x) ≤ ϕν(x)(A

−
m) Without loss of generality, we may assume that

±b+m(t, x) > 0 (otherwise we 
an modify β without 
hanging the e�e
tive BC graph β̃ in the

interval [A−
m, A

+
m], as in the 
ase of trun
ations (5.5)). We 
an use the result of Theorem 6.2 for

the 
ase of single-valued 
ontinuous graphs βδ
m, δ > 0, de�ned as follows:

(6.15) βδ
m =

{
(z, b) | z + δ b+m

z+

A+
m

− δ b−m
z−

A−
m

∈ β−1(b) + δb
}
;

(here we have skipped the parameters (t, x) ∈ Σ). Approximation (6.15) ensures the 
onvergen
e

property (6.11). It is inspired by the Yosida approximation βδ = (β−1 + δI)−1
, but by 
onstru
-

tion, it has the additional property that βδ
m(A±

m) = b±m. Therefore A±
m ∈ D±,δ

(t,x) for all (t, x) ∈ Σ;

hen
e we 
an use the trun
ation 
onvention (5.5) simultaneously for all δ. Applying Proposi-

tion 6.12, we dedu
e that solutions uδ of (Hϕ,βδ(u0, f)) (uδ being obtained via Theorem 6.2)


onverge to the unique entropy solution of (Hϕ,β(u0, f)).
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6.2.2. Heredity by monotoni
ity. In this paragraph, let us assume the following properties:

(6.16)

ϕδ = ϕ for all δ, uδ0 ↓δ→0 u0, f δ ↓δ→0 f,

and for HN
-a.e. (t, x) ∈ Σ, βδ

(t,x) �x β
α
(t,x) if 0 < δ ≤ α.

The 
ase where uδ0 ↑δ→0 u0, f
δ ↑δ→0 f and βδ

(t,x) ↓δ→0 (in the sense �x) 
an be 
onsidered in

the same way. In this paragraph, we will work with proje
ted graphs B̃δ
(t,x) in the pla
e of βδ

(t,x).

By De�nition 2.8, we have B̃δ
(t,x) ≥ B̃α

(t,x) pointwise on R, if 0 < δ < α. Therefore it is

automati
 that, for a.e. (t, x), B̃δ
(t,x) ↑ Ψ(t,x) as δ → 0, with some non-de
reasing fun
tion Ψ(t,x)

whi
h 
ould possibly take in�nite values. Under the assumptions we take, we 
an trun
ate ϕ,
β (whi
h means that, e.g., (5.5) is assumed) without 
hanging the solutions uδ. It follows that
Ψ(t,x) is �nite everywhere be
ause it is bounded by ‖ϕ‖∞ <∞. Finally, re
all that for all δ > 0,

B̃δ
(t,x) is a 
ontinuous monotone fun
tion that is 
onstant on every 
onne
ted 
omponent of the

set

{
k ∈ R | B̃δ

(t,x)(k) 6= ϕν(x)(k)
}
. It is easy to see that this stru
ture is inherited by passage to

a monotone limit, therefore in the sequel we will write B̃(t,x) in the pla
e of Ψ.

The 
ompa
tness of (uδ)δ is automati
 from its monotoni
ity, ensured by the 
omparison

prin
iple of Theorem 4.1. We have

Proposition 6.15. Assume the data uδ0, f
δ, βδ


onverge monotoni
ally, in the sense (6.16).

Assume (5.1) or (5.2) hold, with (A±
m)m or A±

that are suitable for ϕδ
,βδ

simultaneously for all

δ > 0. Assume that (4.1) holds.

Assume ‖uδ0‖∞ is uniformly bounded; in the 
ase (5.2) assume

∫ T

0
‖f δ(t, ·)‖∞ dt is uniformly

bounded. Consider a family (uδ)δ of entropy solutions of (Hϕ,βδ(uδ0, f
δ)). Then there exists a

limit u of uδ, as δ → 0, and u is an entropy solution of the limit problem (Hϕ,β(u0, f)) with the

graph β given by β(t,x) := B̃(t,x) = limδ→0 B̃δ
(t,x).

Proof. The uniform L∞
bound (6.12) follows by Lemma 6.11. By Theorem 4.1 and due to

the monotone 
onvergen
e assumption (6.16) on the data, we dedu
e that uδ ≤ uα a.e. on QT

for 0 < δ ≤ α. Thus u := limδ→0 u
δ
is well de�ned a.e. on QT (one 
an start by 
onsidering

a sequen
e (δn)n de
reasing to zero; at the very end, we �nd that u is an entropy solution of

(Hϕ,β(u0, f)), whi
h ensures the uniqueness of an a

umulation point of (uδ)δ).
As in Proposition 6.12, we readily pass to the limit in the left-hand side of the entropy

formulation (3.5) written for uδ. In the right-hand side, we 
an 
hoose to write

(B̃δ
(t,x)(k)− ϕν(x)(k))

∓
in the pla
e of (βδ

(t,x)(k)− ϕν(x)(k))
∓.

Indeed, uδ, being the entropy solution 
orresponding to β(t,x), is also the entropy solution 
orre-

sponding to the graph B̃δ
(t,x) (both graphs lead to the same admissible tra
es set D̃0

(t,x)). Then

by the monotone 
onvergen
e theorem we readily pass to the limit in the right-hand side of

inequalities (3.5) written for uδ. The proof is 
omplete. �

Remark 6.16. It is easy to 
he
k that for all x ∈ ∂Ω the proje
tion P̃x on B is an order-

preserving operator. Therefore the monotoni
ity property of βδ
(t,x) in the sense of the relation

�x is implied by its monotoni
ity in δ in the pointwise (multi-valued) sense. In this 
ase the

limit u of Proposition 6.15 is also an entropy solution of (Hϕ,β(u0, f)) with the graph β(t,x)
obtained as limδ→0 β

δ
(t,x) (the limit here is in the sense (6.11)).

The following example 
omplements Example 6.14. The 
orresponding existen
e 
laim even-

tually attains the same generality that the result of Theorem 5.2.
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Example 6.17. Assume that ϕ satis�es (4.1) and (5.4). Assume that β ful�lls (5.2) or (5.1).

There exists a family of bi-monotone graphs

(
βδ,λ

)
δ,λ>0

whi
h satis�es the assumptions of Ex-

ample 6.14. The entropy solutions uδ,λ (that 
an be 
onstru
ted, e.g., in the way of Example 6.14)

of the asso
iated problem (Hϕ,βδ,λ(u0, f)) 
onverge to an entropy solution u of (Hϕ,β(u0, f)) as
δ, λ tend to zero.

Indeed, assume, e.g., that β satis�es (5.1). We approximate β by βδ,λ := β+∂I[−1/δ,1/λ], where

∂I[a,b] (the subdi�erential of the indi
ator fun
tion of [a, b]) is the obsta
le graph 
orresponding

to the interval [a, b]. This ensures that

βδ,λ(k) = +∞ ≥ ϕν(x)(k) for k > 1/λ and βδ,λ(k) = −∞ ≤ ϕν(x)(k) for k < −1/δ,

so that (−∞,−1/δ] ⊂ D−,δ,λ
(t,x) and [1/λ,+∞) ⊂ D+,δ,λ

(t,x) for all (t, x) ∈ Σ. Thus βδ,λ
ful�lls the

assumptions of Example 6.14.

Furthermore, whenever

(6.17) −1/δ ∈ D−
(t,x) and 1/λ ∈ D+

(t,x),

as in the lo
alization pro
edure in the proof of Theorem 5.2 we see that B̃δ,λ
(t,x) := P̃xβ

δ,λ
(t,x) 
oin
ides

with B̃(t,x) in the interval [−1/δ, 1/λ]. Due to assumption (5.1), we 
an 
onstru
t sequen
es of

parameters δ and λ going to zero and satisfying (6.17). Moreover, due to (5.1) solutions uδ,λ


onstru
ted in Example 6.14 take their values within some �xed interval [−M,M ].

By 
onstru
tion, (βδ,λ
(t,x))δ>0 de
reases as δ ↓ 0 for every λ > 0; and (βδ,λ

(t,x))λ>0 in
reases as

λ ↓ 0 for every δ > 0. As δ → 0, we 
an use Proposition 6.15 to infer that uδ,λ ↑δ→0+ u0,λ

and u0,λ is the entropy solution asso
iated with the graph β0,λ := β + ∂I(−∞,1/λ]. As λ → 0,

using the analogue of Proposition 6.15 we dedu
e that u0,λ ↓λ→0+ u and u is the unique entropy

solution of problem (Hϕ,β(u0, f)). Ex
hanging the order of passage to the limit, we also get

uδ,λ ↓λ→0+ uδ,0 ↑δ→0+ u. By the squeeze lemma, we infer that uδ,λ → u as (δ, λ) → (0, 0).

6.2.3. Heredity by L1

ontra
tion. In this paragraph, let us assume the following properties:

(6.18)

ϕδ = ϕ for all δ, uδ0 − u0 → 0 in L1(Ω), f δ − f → 0 in L1(QT ),

and for HN
-a.e. (t, x) ∈ Σ, dx(β

δ
(t,x), β(t,x)) → 0 as δ → 0

with dx(β
δ
(t,x), β(t,x)) ≡ dx(β̃

δ
(t,x), β̃(t,x)) given by De�nition 2.8. The pra
ti
al interpretation of

the above 
onvergen
e is therefore,

(6.19) B̃δ
(t,x) = P̃xβ

δ
(t,x) −→ B̃(t,x) = P̃xβ(t,x) uniformly on R.

The 
onvergen
e of (uδ)δ follows by the L1

ontra
tion prin
iple of Theorem 4.1. We have

Proposition 6.18. Assume the data uδ0, f
δ, βδ


onverge in the sense (6.18). Assume that (5.1)

or (5.2) hold, with (A±
m)m or A±

that are suitable for ϕδ
,βδ

simultaneously for all δ > 0. Assume

that (4.1) holds.

Assume ‖uδ0‖∞ is uniformly bounded; in the 
ase (5.2) assume

∫ T

0
‖f(t, ·)‖∞ dt is uniformly

bounded. Consider a family (uδ)δ of entropy solutions of (Hϕ,βδ(uδ0, f
δ)). Then there exists a

limit u of uδ, as δ → 0, and u is an entropy solution of the limit problem (Hϕ,β(u0, f)).

Proof. As in Propositions 6.12,6.15, the L∞
bound (6.12) is immediate. To 
ontinue, from

inequalities (4.2) of Theorem 4.1 we dedu
e

(6.20)

∫

Ω

|uδ − uα|(t) ≤
∫

Ω

|uδ0 − uα0 |+
∫ t

0

∫

Ω

|f δ − fα|+
∫ t

0

∫

∂Ω

dx(β
δ
(t,x), β

α
(t,x)).
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By the triangular inequality (re
all that dx, when used on Bx, is a distan
e) and the 
onvergen
e

properties (6.18) we see that the right-hand side of (6.20) tends to zero as max{δ, α} → 0. Thus
by the Cau
hy 
riterion, (uδ)δ 
onverges in L∞(0, T ;L1(Ω)), as δ → 0, to some limit u. Then

u ful�lls (3.5). Indeed, the passage to the limit in up-to-the-boundary entropy inequalities (3.5)

written for uδ is straightforward. In parti
ular, in the right-hand side we 
an substitute βδ(k) by

B̃δ(k); the latter expression 
onverges to B̃(k), due to (6.19). We 
on
lude using the dominated


onvergen
e theorem. �

A trivial appli
ation of (6.18) is for approximation of the initial data u0 and sour
e data f .
Let us give another appli
ation whi
h is suitable, e.g., for approximation in the sense of the Lusin

theorem of merely measurable Diri
hlet or obsta
le boundary data by 
ontinuous in (t, x) data:

Example 6.19. Assume that (5.1) or (5.2) hold, with (A±
m)m or A±

that are suitable for ϕδ
,βδ

simultaneously for all δ > 0. Assume that (4.1) holds.

Assume that βδ → β in the following sense:

(6.21) the HN
measure of the set Rδ :=

{
(t, x) ∈ Σ |βδ

(t,x) 6= β(t,x)

}
vanishes as δ → 0.

Then solution uδ of problem (Hϕ,βδ(u0, f)) tends, as δ → 0, to a limit u that solves problem

(Hϕ,β(u0, f)).

This result follows readily from Proposition 6.18: indeed, u0,f being �xed, (6.21) gives (6.18).

The next appli
ation, that 
omplements Example 6.10, uses pointwise approximation of the

obsta
le problem (the 
ase um = uM of the obsta
le problem yields the Diri
hlet problem).

Example 6.20. In the setting of Example 6.19, in the pla
e of (6.21) assume that βδ
is the

obsta
le graph

βδ
(t,x) =

(
{umδ (t, x)}×R

−
)
∪

(
[umδ (t, x), uMδ (t, x)]×{0}

)
∪

(
{uMδ (t, x)}×R

+
)
.

Assume that umδ and uMδ obey uniform L∞
bounds and 
onverge HN

-a.e. on Σ to limits um and

uM , respe
tively. Then solutions uδ of problem (Hϕ,βδ(u0, f)) 
onverge to a limit u that solves

problem (Hϕ,β(u0, f)) with the obsta
le graph β 
orresponding to um,uM .

The proof is straightforward, taking into a

ount the following lemma:

Lemma 6.21. Assume βδ
, β are obsta
le graphs 
orresponding to umδ , u

m
and uMδ , uM that

take values in some 
ompa
t subset I of R. Let ωϕ : R+ 7→ R
+
is the modulus of 
ontinuity of ϕ

on I. Then for all (t, x) ∈ Σ there holds dx(β
δ, β) ≤ ωϕ

(
max{|umδ − um|, |uMδ − uM |}

)
.

The proof relies on the fa
t that B̃δ
(t,x)(z) and B̃(t,x)(z) 
oin
ide ex
ept when their values fall

within one of the two strips

Sm := ϕν(x)([min{um, umδ },max{um, umδ }) and SM := ϕν(x)([min{uM , uMδ },max{uM , uMδ }]);
then dx(β

δ, β) = ‖B̃δ
(t,x) − B̃(t,x)‖∞ is less than or equal to the width of the strips, whi
h does

not ex
eed ωϕ

(
max{|umδ − um|, |uMδ − uM |}

)
.

7. Further existen
e and 
onvergen
e results

Here we explore 
onvergen
e of approximations in two 
omplementary dire
tions. In Se
-

tion 7.1 we dis
ard the genuine nonlinearity assumption (5.4) and exploit BVloc estimates for

proving 
ompa
tness. This te
hnique is limited to one-dimensional 
ase (with a simple gener-

alization to half-spa
e or strip domains). In Se
tion 7.2 we set up a framework for studying
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measure-valued (entropy-pro
ess) solutions, so that to repla
e the strong 
ompa
tness in L1
loc of

sequen
es of approximate solutions by their weak-* 
ompa
tness in L∞
.

7.1. The one-dimensional 
ase: existen
e via BVloc estimate. The te
hnique of this se
-

tion relies upon translation arguments for proving lo
alized BV estimates. It goes ba
k to

Bürger et al. [14, 15℄ where the idea was introdu
ed in the 
ontext of �nite volume numeri
al

approximations.

Theorem 7.1. Assume that Ω = [0,+∞) and ϕ is lo
ally Lips
hitz 
ontinuous. Let β be a

maximal monotone graph on R, independent of t ∈ (0, T ). Then for all u0 ∈ L∞((0,+∞)) there
exists an entropy solution of (Hϕ,β(u0, f)) with f = 0.

Remark 7.2. In the 
ase of a single boundary point x and of a t-independent graph β, assumption

(5.1) is automati
ally ful�lled. Indeed, in this 
ase we 
an drop the subs
ripts (t, x); the points

±∞ are a

umulation points of the sets D̃±
be
ause otherwise we have, e.g., ϕν > B̃ on [M,+∞),

whi
h 
ontradi
ts the maximality of B̃.
Proof. A

ording to Proposition 6.18, it is enough to prove the theorem for a dense subset

of data in L1
. In order to re
over existen
e for general L∞

data, we 
an use Proposition 6.15

applied to a bi-monotone data approximation. Uniform L∞
bounds are ensured by (5.1) and the

assumption f = 0, due to Remark 7.2. Substituting β by B̃ as in Se
tion 5, we may assume that

β is bounded.

Thus we pi
k u0 ∈ C∞(Ω) with 
ompa
t in R
+

support, and su
h that u0 ≡ k0 = const
on some interval (0, η). Existen
e of a solution uε to the paraboli
 regularized problem (1.3)

follows by the results of [37, 38℄; we 
an also apply Proposition 9.6 from Appendix. Therefore

assumptions (6.1),(6.3) of Theorem 6.2 hold, and it remains to guarantee (6.2) in order to apply

Theorem 6.2 and 
on
lude the proof.

To this end, we extend uε 
ontinuously by u0 for t ≤ 0; noti
e that for t < 0, the so extended

fun
tion uε satis�es uεt + ϕ(uε)x = εuεxx + r(x) where

(7.1) r : x 7→ ϕ(u0)x − ε(u0)xx

is an L∞(R)∩L1(R) fun
tion, by the assumptions on ϕ and u0. Moreover, we 
an 
hoose k0 ∈ D̃0
,

whi
h means that ϕν(k0) = B̃(k0). Therefore the so extended fun
tion uε is an entire solution

(i.e., a solution de�ned for t ∈ R) of problem

(7.2)





uεt − div (−ϕ(uε)+ε uεx) = r(x) 1lt<0,(
B̃(uε) + (−ϕ(uε) + ε uεx) · (−1)

)
|x=0 = 0.

Now, the key fa
t is that we 
an 
ontrol the L1
time translates of uε by a linear modulus of


ontinuity, be
ause solutions of (7.2) verify the L1

ontra
tion prin
iple that 
an be shown, e.g.,

as in [29℄ or a in [16℄ (we only have to take into a

ount an original boundary 
ondition):

(7.3)

∫

R

|ũε(t)− ũε(t− τ)| ≤
∫

R

|ũε(0)− ũε(−τ)| +
∫ t

0

∫

R

|r 1ls<0 − r 1ls−τ<0| ds = τ ‖r‖L1 .

Therefore uε ∈ BV (0, T ;L1(0,+∞)), with a uniform in ε bound. Then we 
an use the idea of

[14, Lemma 4.2℄ and [15, Lemma 5.4℄: for a > 0, using the mean-value theorem for ea
h ε > 0
we 
an �nd a 
ontour (0, T ) × {cε} with 0 < cε < a su
h that TotVaruε along these 
ontours

is uniformly bounded by

C
a . The variation of u0 is also bounded, therefore using the 
lassi
al

estimate of Bardos, LeRoux and Nédéle
 [10℄ for the Diri
hlet problem for vis
ous 
onservation

law (with boundary datum given by the values of uε on our 
ontour), we get the bound

(7.4) TotVaruε|{(t,x) | t∈(0,T ), x≥a} ≤ C

a
,
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with C that only depends on u0 and on the Lips
hitz 
onstant of ϕ. With the Cantor diago-

nal argument, we dedu
e 
ompa
tness of (uε)ε in L1
loc((0, T ) × (0,+∞)). Combined with the

aforementioned uniform L∞
bound on uε, this �nally proves (6.2). �

7.2. Entropy-pro
ess solutions. As soon as existen
e of an entropy solution is established

15

and the uniqueness assumption (4.1) is ful�lled, we 
an prove 
onvergen
e of, e.g., vanishing

vis
osity approximations without the genuine nonlinearity assumption (5.4) (though we still

need a uniform L∞
estimate). To do so, it is enough to adapt the devi
e of measure-valued

solutions; here, we use the version 
alled entropy-pro
ess solution due to Gallouët et al. [20℄.

De�nition 7.3. Let µ ∈ L∞(QT × (0, 1)). Then µ is 
alled an entropy-pro
ess solution of

problem (Hϕ,β(u0, 0)) if µ veri�es the following up-to-the-boundary entropy inequalities with

remainder term (whi
h is, in general, multi-valued):

(7.5)

∀k ∈ R ∀ξ ∈ D([0, T )× Ω)+
∫ 1

0

∫ T

0

∫

Ω

(
−(µ(α)− k)±ξt − q±(µ(α), k) · ∇ξ

)

−
∫

Ω

(u0 − k)±ξ(0, ·) ≤
∫ ∫

Σ

Ck ∧
(
β(t,x)(k)− ϕν(x)(k)

)∓

ξ(t, x).

Here, Ck is a 
onstant that depends on ‖µ‖∞ and on k.

Proposition 7.4.

(i) Let µ be an entropy-pro
ess solution of (Hϕ,β(u0, 0)). Then it veri�es the entropy-pro
ess

inequalities

(7.6) ∀k ∈ R

∫ 1

0

∫ T

0

∫

Ω

(
−(µ(α)− k)±ξt − q±(µ(α), k) · ∇ξ

)
−
∫

Ω

(u0 − k)±ξ(0, ·) ≤ 0

with ξ ∈ D([0, T ) × Ω)+, moreover, for HN
-a.e. (t, x) ∈ Σ, the weak normal boundary tra
e of

the �ux veri�es

(7.7) ∀k ∈ D±
(t,x) γw

(∫ 1

0

q±(µ(·;α), k) dα · ν(·)
)
(t, x) ≥ 0.

(ii) Let µ ∈ L∞(QT × (0, 1)) su
h that µ satis�es (7.6),(7.7). Then for HN
-a.e. (t, x) ∈ Σ, the

weak normal boundary tra
e of the �ux veri�es

(7.8) ∀k ∈ D̃0
(t,x) ≡ Dom β̃(t,x) γw

(∫ 1

0

q(µ(·;α), k) dα · ν(·)
)
(t, x) ≥ 0.

(iii) Let µ ∈ L∞(QT × (0, 1)) su
h that µ satis�es (7.6),(7.8). If, in addition, (4.1) holds, then

µ 
oin
ides with the entropy solution u in the sense µ(·;α) = u(·) a.e. on QT × (0, 1).

Noti
e that, although we do not prove dire
tly the equivalen
e of De�nition 7.3 and any of

the formulations (7.6),(7.7) and (7.6),(7.8), su
h equivalen
e holds whenever an entropy solution

exists and it is unique.

Proof.

(i) Inequalities (7.6) are immediate from the de�nition of an entropy-pro
ess solution. In order

to dedu
e (7.7), one pro
eeds as in the proof of the 
laim �(iv) ⇒ (iii)� in Proposition 3.3.

The only di�eren
e is that, while using the analogue of (3.10), one repla
es the (strong) tra
e

Q±
ν(x)

(
γVϕν(x)

u , Vϕν(x)
k
)
by the (weak) tra
e γw

(∫ 1

0
q±(µ(·;α), k) dα · ν(·)

)
(t, x).

15

Let us stress that neither for 
onservation laws in the whole spa
e, nor for the Diri
hlet problem (see, e.g.,

Vovelle [41℄) this assumption is not needed.
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(ii) Assume, for instan
e, that k ∈ D+
(t,x). Let us show that (7.8) holds for this value of k. It is

enough to prove (7.8) separately with q+ and q− in the pla
e of q; moreover, the �rst of the two

inequalities is already 
ontained in (7.7) sin
e k ∈ D+
(t,x). Set k0 := sup

{
κ ≤ k |κ ∈ D−

(t,x)

}
; note

that k0 may take the value −∞. In order to prove the statement, it is enough to get

(7.9) γw

(∫ 1

0

q−(µ(·;α), k) dα · ν(·)
)

≥ γw

(∫ 1

0

q−(µ(·;α), k0) dα · ν(·)
)

at the point (t, x)

(indeed, the latter quantity is nonnegative by (7.7) be
ause k0 ∈ D−
(t,x): re
all that D−

(t,x) is a


losed set). Be
ause k ∈ Dom β̃(t,x), by Proposition 2.5(ii) we have

(7.10) ϕν(x)(κ) ≤ ϕν(x)(k) for all κ ∈ (k0, k).

The idea of the proof is the following: we have q−ν (µ(α), k) = −ϕν(x)(µ(α)) + ϕν(x)(k) ≥ 0
whenever µ(α) ∈ (k0, k), and therefore

(7.11)

∫ 1

0

q−(µ(α), k) dα · ν =

∫

[µ(α)≤k0]

q−ν (µ(α), k) dα +

∫

[k0<µ(α)<k]

q−ν (µ(α), k) dα + 0

≥
∫

[µ(α)≤k0]

q−ν (µ(α), k0) dα+ 0 =

∫ 1

0

q−(µ(α), k0) dα · ν.

Here we have used (7.10) that holds at the point (t, x) but not ne
essarily at every point. We

want to write down an inequality of the kind (7.11) in a neighbourhood Bδ ∩Ω of (t, x), and then

take weak tra
es at the point (t, x). In order to do so, we use an ε-approximate inequality of the

kind (7.11) for (s, y) ∈ Ω ∩ Bδ with Bδ a δ-sized neighbourhood of (t, x), and with ε vanishing

as δ vanishes. This is possible due to the 
ontinuity arguments. Indeed, a generi
 point of Σ is

a point of approximate 
ontinuity of the normal �eld; thus we 
an write (in the pla
e of (7.10))

that ϕν(y)(κ) ≤ ϕν(y)(k) + ε for κ ∈ (k0, k) and for a set of points (s, y) ∈ Bδ \ Cδ su
h that

meas(Cδ)/meas(Bδ) → 0 as δ → 0. Taking the weak tra
e, we get (7.9) with the additional term

(−ε) on the right-hand side. Then, letting δ go to zero, we see that (7.9) is justi�ed and the

proof is 
omplete.

(iii) The proof is analogous to the one of Theorem 4.1, ex
ept that it is based on the doubling

of variables (inside the domain) for entropy-pro
ess solutions. As in [20, 41℄, for entropy-pro
ess

solution µ and an entropy solution u 
orresponding to the same data, we get the Kato inequality

analogous to (4.3):

(7.12) ∀ ξ ∈ D(Ω)

∫ 1

0

∫

Ω

|µ(α)−u|(t) ξ dα ≤ −
∫ 1

0

∫ t

0

∫

Ω

q(µ(α), u) · ∇ξ dα.

Assume for simpli
ity that Ω is bounded (other 
ases will exploit ξ ∈ D(Ω) that is then sent to

the limit 1, as in [22, 12, 6℄). We simply take ξ = 1− ξn with the 
onstru
tion of Lemma 3.7; as

in the proof of (3.11), we dedu
e at the limit n→ ∞,

(7.13)

∫ 1

0

∫

Ω

|µ(α)−u|(t) dα ≤ −
∫ t

0

∫

Ω

γw

∫ 1

0

q(µ(α), u) · ν(x) dα.

Transforming the right-hand side of (7.13), using the existen
e of strong tra
e γVϕν(x)
u we get

(7.14)

∫ 1

0

∫

Ω

|µ(α)−u|(t) dα ≤ −
∫ t

0

∫

Ω

γw

∫ 1

0

Qν(x)(Vϕν(x)
µ(α), Vϕν(x)

u) dα

≡ −
∫ t

0

∫

Ω

γw

∫ 1

0

Qν(x)(Vϕν(x)
µ(α), γVϕν(x)

u) dα.
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Yet, a

ording to the 
hara
terization Proposition 3.3(i) of u, γVϕν(x)
u ∈ Domβ̃(t,x) in a generi


point of Σ; thus using (7.8) (noti
e that one 
an repla
e q(µ(α), k)·ν(x) in (7.8) by the expression

Qν(x)(Vϕν(x)
µ(α), Vϕν(x)

k)) we readily �nd that the right-hand side of (7.14) is non-positive. It

follows that µ(α) − u is zero a.e., whi
h ends the proof. �

Corollary 7.5. In the assumptions of Theorem 6.2, drop the genuine nonlinearity assumption

(5.4) but suppose that there exists an entropy solution of problem (Hϕ,β(u0, f)). Then the 
on-


lusion of the theorem still holds.

For the proof, it is enough to use the devi
e of nonlinear weak-∗ 
onvergen
e, following [20, 41℄,
to derive the entropy-pro
ess formulation (7.5) along the lines of the proof of Theorem 6.2. One


on
ludes using Proposition 7.4(i)-(iii).

Con
lusion

We investigated the issue of de�nition, justi�
ation and uniqueness of entropy solutions to

s
alar 
onservation laws with nonlinear dissipative boundary 
onditions. Although existen
e of

entropy solutions and 
onvergen
e of approximations are addressed in mu
h generality, te
hni
al

restri
tions we had to impose leave pla
e for a future work, e.g., exploiting the notions of renor-

malized entropy solutions ([11, 35, 2℄) and of weak boundary tra
es and boundary entropy-�ux

pairs ([28℄), as was done for the Diri
hlet problem.

Appendix: existen
e for the vis
osity regularized problem

In this paper, we establish existen
e of entropy solutions of (Hϕ,β(u0, f)) via 
onstru
tion of

approximate solutions (in most 
ases, we need a multi-step approximation). Therefore we need

some basi
 existen
e result to produ
e approximate solutions; this is the purpose of the present

Appendix. Existen
e results of this kind were already established by the se
ond author and

Wittbold in [38℄ (see also [37℄), for the 
ase of t-independent graph β su
h that 0 ∈ β(0). Other
results 
an be found in [4℄.

Here we follow a di�erent strategy (in the pla
e of the 
onvex analysis and nonlinear semigroup

methods of [38, 37℄, we use the Galerkin s
heme and time 
ompa
tness arguments), in the 
ontext

that better suits our needs. Consider the following paraboli
 problem (for simpli
ity, we set

f ≡ 0):

(9.15)

{
ut − div (−ϕ(u)+ε∇u) = 0, u|t=0 = u0,

b(t, x;u) + (−ϕ(u) + ε∇u) · ν(x) = 0

where b is a Caratheodory fun
tion (single-valued b(t, x; ·) repla
es the maximal monotone graph

β(t,x)), more pre
isely

for all z ∈ R b(·, ·;u) is measurable,

and for a.e. (t, x) ∈ Σ b(t, x; ·) is a 
ontinuous stri
tly in
reasing fun
tion.

Moreover, we assume that b is bounded:

sup
(t,x)∈Σ, z∈R

|b(t, x; z)| < +∞.

The parameter ε in (9.15) 
ould be removed by a s
aling argument, but we keep it in order to

state an ε-independent L∞
estimate on uε that is needed in order to generate a limit of the

sequen
e (uε)ε, as ε→ 0.
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Proposition 9.6.

(i) Under the above assumptions, suppose in addition that ϕ is bounded on R. Then there exists

a solution uε to problem (9.15): namely, uε ∈ L2(0, T ;H1
loc(Ω)) and for all ξ ∈ D([0, T )× Ω)

(9.16)

∫ T

0

∫

Ω

−uξt −
∫

Ω

u0ξ(0, ·) +
∫ T

0

∫

Ω

(
−ϕ(u)+ε∇u

)
· ∇ξ +

∫ T

0

∫

∂Ω

b(·;u) ξ = 0.

Moreover,

√
ε∇uε is bounded in L2(0, T ;L2

loc(Ω)) uniformly in ε ∈ (0, 1).

(ii) Under the assumption that, upon a modi�
ation of b on a subset of Σ of zero HN
measure,

(9.17)

there exist (A−
m)m∈N, (A

+
m)m∈N ⊂ R

±
su
h that A±

m → ±∞
as m→ ∞ and for all (t, x) ∈ Σ, for all m ∈ N ±b(t, x;A±

m) ≥ ±ϕν(x)(A
±
m)

we have, uniformly in ε > 0, the estimate ‖uε‖∞ ≤ M with M that depends on ‖u0‖∞ and on

(A±
m)m in assumption (9.17).

Remark 9.7. For non-zero f , existen
e is shown in the same way. In property (ii), hypothesis

(9.18) A± :=
{
k ∈ R

± | ± b(t, x; k) ≥ ±ϕν(x)(k) for all (t, x) ∈ Σ
}
are of in�nite measure


an be assumed in the pla
e of (9.17), and the boundM would depend on ‖u0‖∞,

∫ T

0 ‖f(t, ·)‖∞ dt

and on the sets A±
in assumption (9.18).

In the pla
e of a 
onstant in t and x sub- and super-solutions, in this 
ase we 
onstru
t

supersolutions of the kindM±(t) taking values in A±
and su
h that ±M±(·) are non-de
reasing,

with ±M±(0) ≥ ‖u0‖∞ and with the absolutely 
ontinuous part of the derivative ±(M±)′(t)
that is greater than or equal to ‖f(t, ·)‖∞ on (0, T ).

Proof. For the proof, it is enough to use the Galerkin method, whi
h we expose brie�y in order

to fo
us on the di�
ulties indu
ed by the non-linearities ϕ and b.
In the 
ase Ω is bounded, pi
king an orthonormal basis (vi)i∈N in H1(Ω), we 
onstru
t un ∈

C1([0, T ]; span{v1, . . . , vn}) as a solution to the ODE system obtained from (9.16) by substituting

u by the unknown fun
tion un(t, x) =
∑n

i=1 ci(t)vi(x), substituting u0 by its proje
tion u0,n on

span{v1, . . . , vn}, and testing it with ξ(t, x) = vi(x)µ(t), i = 1, . . . , n, µ ∈ D([0, T )). Lo
al

existen
e of a solution follows from the Cau
hy-Peano theorem. Taking un itself for the test

fun
tion, with µ(t) approximating 1l[0,s)(t) we �nd
(9.19)

1

2

∫

Ω

u2n(s, ·) +
∫ s

0

∫

Ω

(
ε|∇un|2 − ϕ(un) · ∇un

)
+

∫ s

0

∫

∂Ω

b(·;un)un =
1

2

∫

Ω

u20,n ≤ 1

2

∫

Ω

u20.

Thanks to tra
e inequalities and the boundedness assumptions on ϕ and b together with the

L∞
bound on u0 we get an L2(QT ) estimate on ∇un. Su
h estimate pre
ludes the blow-up and

guarantees the global in time existen
e of un. For the 
ase of unbounded domain, the mere L∞

bounds on u0, ϕ, b are not su�
ient: thus we have to lo
alize the estimate taking e.g. the weight

η(x) = exp(−c|x − x0|) for some x0 /∈ Ω. In this 
ase, we work in the weighted H1
spa
e and

use weighted tra
e inequalities; as an out
ome, we get an L2(0, T ;L2
loc(Ω)) bound on un.

Thus we have, in addition, the uniform in n estimate of∇un in L2(0, T ;H1
loc(Ω)). We extra
t a

subsequen
e weakly 
onvergent to a limit uε, and pass to the limit in the formulation. To this end,

the a.e. 
onvergen
e of un to uε is needed in order to pass to the limit in the nonlinearity ϕ(un). It
is obtained by translation te
hniques in time, following [1℄. Indeed, assume for simpli
ity that Ω
is bounded (otherwise we use exponentially de
reasing in x weights, as above). We �integrate� the

weak formulation (9.16) from t to t+δt, then test it with ξ = un(t+δt)−un(t) (this 
orresponds to
taking well-
hosen test fun
tions in the formulation (9.16) written for un and with test fun
tions
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ξ ∈ D([0, T ); span{v1, . . . , vn})). Using the Fubini theorem, the aforementioned L2(0, T ;H1(Ω))
bound on un, the tra
e inequality and the L∞

bound on ϕ(un) and b(·;un), we dedu
e that
∫ T−δt

0

∣∣∣un(t+ δt)− un(t)
∣∣∣
2

≤ const δt.

The estimate of the spa
e translates being trivial due to the L2(QT ) bound on ∇un, by the

Fré
het-Kolmogorov 
ompa
tness 
riterion we 
on
lude to the L1(QT ) 
onvergen
e of un (if Ω is

unbounded, we use weights η and get L1((0, T );L1
loc(Ω)) 
onvergen
e). The limit being unique in

D′
, it is identi�ed with uε; extra
ting a further subsequen
e, we may assume the a.e. 
onvergen
e

in QT . Finally, (b(·;un))n being bounded, it 
onverges weakly-* in L∞(Σ) to some limit that

we denote by bε. Now for all i, we 
an take vi as a test fun
tion and pass to the limit in the

Galerkin formulation; we �nd that

(9.20)

∫ T

0

∫

Ω

−uεξt −
∫

Ω

u0ξ(0, ·) +
∫ T

0

∫

Ω

(
−ϕ(uε)+ε∇uε

)
· ∇ξ +

∫ T

0

∫

∂Ω

bε ξ = 0

for all ξ ∈ D′([0, T ) × Ω) (this is obtained by density). It remains to identify bε with b(·;uε),
whi
h is done using the monotoni
ity of b(t, x; ·) and the 
lassi
al Minty argument.

To do so, for the sake of simpli
ity assume that Ω is bounded (for the general 
ase, one has to

repla
e the test fun
tions uε, un below by trun
ated test fun
tions uεη, unη with an exponentially

de
aying weight η). Comparing the Galerkin formulation for un (with test fun
tion un) and the

weak formulation (9.20) for uε (with test fun
tion uε, taken by density), using the Fatou lemma

to ensure that ‖uε(T, ·)‖2L2(Ω) ≤ lim infn→∞ ‖un(T, ·)‖2L2(Ω), we 
an eventually write

(9.21)

∫ T

0

∫

∂Ω

bεuε + ε

∫ T

0

∫

Ω

|∇uε|2 ≥ lim sup
n→∞

(∫ T

0

∫

∂Ω

b(·;un)un + ε

∫ T

0

∫

Ω

|∇un|2
)
.

Due to the weak lower semi
ontinuity of the L2
norm, we infer

(9.22)

∫ T

0

∫

∂Ω

bεuε ≥ lim sup
n→∞

∫ T

0

∫

∂Ω

b(·;un)un.

Here we are in the following setting: un|Σ 
onverges to uε|Σ in L2(Σ) weakly (this is due to

the tra
e inequalities); b(·;un) 
onverges to bε in L∞(Σ) weakly-* (and thus, in L2(Σ) weakly,
be
ause we have assumed that ∂Ω is bounded); moreover, z 7→ b(·; z) is monotone and inequality

(9.22) holds. In this setting, the Minty argument applies (see, e.g., [1, 29, 38℄) whi
h allows to


on
lude that bε = b(·;uε) a.e. on Σ. Thus (9.20) be
omes (9.16), and the proof of existen
e is


omplete.

(ii) Now using (9.17), take A±
m satisfying A−

m ≤ −‖u0‖∞ and ‖u0‖∞ ≤ A+
m; due to (9.17), the


onstants A−
m and A+

m are sub- and super-solutions to problem (9.15), respe
tively. The result

stems from the 
omparison prin
iple for weak solutions, sub-solutions and super-solutions of

(9.15) using, e.g., the te
hnique of [16℄. It 
onsists in takingHα(u
ε−A+

m)ξ (with Hα the Lips
hitz

regularization of sign+
fun
tion as used in the proof of Theorem 6.2) with ξ ∈ D([0, T )× Ω)+;

the fa
tor ξ 
an be dropped if Ω is bounded. As in the proof of Theorem 6.2, we dedu
e the

Kato inequality

−
∫ T

0

∫

Ω

(uε −A+
m)+ ξt +

∫ T

0

∫

Ω

sign+(uε −A+
m)

(
−ϕ(uε) + ϕ(A+

m) + ε∇uε
)
· ∇ξ ≤ 0.

We let ξ 
onverge to e−t
and prove that (uε − A+

m)+ ≤ 0 a.e. (if Ω is unbounded, we use (4.1)

as in [26, 6℄). A uniform upper bound for uε is proved; the lower bound by A−
m is analogous.

Noti
e that the te
hnique we've used exploits assumption (4.1); yet it is possible to bypass

this assumption. Indeed, by approximation one 
an always 
onstru
t solutions satisfying the
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above L∞
bound. To this end, one 
an, e.g., substitute the original problem by the problem

set up in (0, T ) × (Ω ∩ BR) where BR is the ball of radius R 
entered at the origin; the part

Σ′
R := (0, T )× ∂BR ∩ Ω of the boundary 
an be supplemented with the homogeneous Diri
hlet

boundary 
ondition. Then existen
e of solutions uR in the spa
e L2(0, T ;H1
0,R(Ω)) of fun
tions

that are zero in (0, T ) × (Ω \ BR) is proved by the same Galerkin method. Noti
e that the


onstants A±
m are still sub- and super-solutions of this modi�ed problem; BR being bounded,

assumption (4.1) is automati
ally satis�ed and the L∞
bound on uR is valid. Finally, 
onvergen
e

of uR to a limit uε is established with the same tools as in the proof of (i). �

Remark 9.8. While estimating ∇uε in L2
loc, for the sake of simpli
ity we have assumed that b

is bounded and thus we have not exploited the monotoni
ity of b in these estimates. A
tually,

it is enough to assume, e.g., that b(t, x; 0) is bounded; in addition, estimate (9.19) brings an

L1
loc([0, T ]× ∂Ω) estimate of the produ
t (b(·;un) − b(t, x; 0))un ≥ 0, whi
h is inherited at the

limit un → uε. Similarly, instead of the uniform bound on ϕ we 
ould assume inequalities of the

kind

∣∣∣
∫ z

0 ϕ(s) ds
∣∣∣ ≤ C + sign z (b(t, x′z)− b(t, x; 0)).
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