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ABSTRACT

We propose a transcription on graphs of recent continuous

global active contours proposed for image segmentation to

address the problem of binary partitioning of data represented

by graphs. To do so, using the framework of Partial difference

Equations (PdEs), we propose a family of nonlocal regular-

ization functionals that verify the co-area formula on graphs.

The gradients of a sub-graph are introduced and their proper-

ties studied. Relations, for the case of a sub-graph, between

the introduced nonlocal regularization functionals and nonlo-

cal discrete perimeters are exhibited and the co-area formula

on graphs is introduced. Finally, nonlocal global minimiz-

ers can be considered on graphs with the associated energies.

Experiments show the benefits of the approach for nonlocal

image segmentation and high dimensional data clustering.

Index Terms— Partial difference Equations (PdEs),

Graphs, Global active contours, Nonlocal, Clustering.

1. INTRODUCTION

With the advent of our digital world, much different kind of

data are now available. On the contrary to classical images

and videos, these data do not necessarily lie on a Cartesian

grid and can be irregularly distributed. To represent a large

number of data domains (images, meshes, social networks,

etc.), the most natural and flexible representation consists in

using weighted graphs by modeling neighborhood relation-

ships. Therefore, there is much interest in the transposition of

signal and image processing tools for the processing of func-

tions on graphs, e.g., spectral graph wavelets [1] or PDE on

graphs [2, 3]. In this paper, we consider active contour mod-

els. They can be casted in two models: geometric models

with level sets and variational models with Total Variation.

We consider the second model and extend it to the process-

ing of arbitrary data on graphs as well as unify their local and

nonlocal processing for images. To do this transcription, we

use the framework of PdEs [3] along with a family of discrete

gradients. We introduce nonlocal perimeters as well as the co-

area on graphs. We then consider nonlocal global minimizers

for segmentation and clustering and provide an application

example with nonlocal Chan-Vese on graphs.

2. PARTIAL DIFFERENCE EQUATIONS ON

GRAPHS

In this section, we recall definitions and operators on graphs.

All the operators presented in this section are naturally local

and nonlocal [3]. Indeed, local and nonlocal configurations

are expressed by graph topology and edges’ weights.

2.1. Preliminary notations

A weighted graph G = (V,E,w) consists in a finite set V of

vertices and a finite set E⊂ V×V of weighted edges. We as-

sume G to be undirected, with no self-loops and no multiple

edges. Let ei j = (vi,v j) be the edge of E that connects ver-

tices vi and v j of V. Its weight, denoted by wi j = w(vi,v j),
represents the similarity between its vertices and is computed

using a positive symmetric function w. Notation vi ∼ v j is

also used to denote two adjacent vertices. The volume of a

set of vertices A can be computed by vol(A) = ∑vi∈A dA(vi)
with dA(vi) = ∑v j∼vi

w(vi,v j),∀vi ∈ A the degree of a vertex

relatively to a set of vertices A . Let H (V) be the Hilbert space

of real-valued functions defined on the vertices of a graph. A

function f : V → R of H (V) assigns a real value xi = f (vi)
to each vertex vi ∈ V. By analogy with functional analysis on

continuous spaces, the integral of a function f ∈ H (V), over

the set of vertices V, is defined as
∫
V

f = ∑V f . Similarly,

let H (E) be the space of real-valued functions defined on the

edges of G. Both Hilbert spaces are endowed with the usual

inner products.

2.2. Difference operators

Let f : V→ R be a function of H (V). The difference opera-

tor [3] of f , noted dw : H (V)→ H (E), is defined on an edge

(vi,v j) ∈ E by: (dw f )(vi,v j) = w(vi,v j)
1/2( f (v j)− f (vi)).

The directional derivative of f , at a vertex vi ∈ V, along

an edge ei j = (vi,v j), is defined as
∂ f

∂ei j

∣

∣

∣

vi

= ∂v j
f (vi) =

(dw f )(vi,v j). Based on the difference operator, the weighted

morphological external and internal difference operators

are respectively [4]: (d+
w f )(vi,v j)=max

(

0,(dw f )(vi,v j)
)

and (d−
w f )(vi,v j)=−min

(

0,(dw f )(vi,v j)
)

. The correspond-



ing external and internal partial derivatives are ∂+v f (vi) =
(d+

w f )(vi,v j) and ∂−v f (vi) = (d−
w f )(vi,v j). The adjoint of

the difference operator, noted d∗
w : H (E)→ H (V), is a linear

operator defined, for all f ∈ H (V) and all H ∈ H (E), by

〈dw f ,H〉H (E) = 〈 f ,d∗
wH〉H (V). This adjoint operator d∗

w , of

a function H ∈ H (E), can by expressed at a vertex vi ∈ V

by the following expression: (d∗
wH)(vi) = −divw(H)(vi) =

∑v j∼vi
w(vi,v j)

1/2(H(v j,vi)−H(vi,v j)).

2.3. Gradients and norms

The weighted gradient operator of a function f ∈ H (V), at a

vertex vi ∈ V, is the vector operator defined by (∇wf)(vi) =
[∂v j

f (vi) : v j ∼ vi]
T . The Lp norm of this vector is defined

by [3]: ‖(∇wf)(vi)‖
p
p = ∑v j∼vi

w(vi,v j)
p/2

∣

∣ f (v j)− f (vi)
∣

∣

p
.

Similarly, we have (∇±
w
f)(vi)=[∂±v j

f (vi) : v j ∼ vi]
T and

‖(∇±
w
f)(vi)‖

p
p = ∑v j∼vi

w(vi,v j)
p/2

∣

∣M±
(

0, f (v j)− f (vi)
)∣

∣

p

with M+ = max and M− = min. These norms exhibit

the following property: ‖(∇wf)(vi)‖
p
p = ‖(∇+

w
f)(vi)‖

p
p +

‖(∇−
w
f)(vi)‖

p
p.

2.4. Anisotropic p-Laplace operator

The weighted p-Laplace anisotropic operator of a func-

tion f ∈ H (V), noted ∆a
w,p : H (V) → H (V), is defined

by: (∆a
w,p f )(vi) =

1
2
d∗

w(|(dw f )(vi,v j)|
p−2(dw f )(vi,v j)). Us-

ing the definitions of dw and d∗
w, we obtain this expression

[5]: (∆a
w,p f )(vi) = ∑v j∼vi

(γa
w,p f )(vi,v j)( f (vi)− f (v j)). with

(γa
w,p f )(vi,v j) = w

p/2
i j | f (vi)− f (v j)|

p−2. This operator is

nonlinear if p 6= 2. In this latter case, it corresponds to the

combinatorial graph Laplacian.

3. VARIATIONAL FRAMEWORK OF ACTIVE

CONTOURS ON GRAPHS

In this section, we introduce a family of nonlocal regulariza-

tion functionals that verify the co-area formula for p = 1. The

gradients of a sub-graph are introduced and their properties

studied. Then, we show that there are strong relations, for

the case of a sub-graph, between the introduced nonlocal reg-

ularization functionals and nonlocal discrete perimeters. Fi-

nally nonlocal global minimizers can be considered on arbi-

trary graphs with the associated nonlocal energies.

3.1. Nonlocal regularization functionals

Let us consider nonlocal regularization functionals based on

weighted total variation (TVw) on graphs Rw,p : H (V ) → R

of a function f ∈ H (V ): Rw,p( f ) = ∑vi∈V ‖Dwf(vi)‖
p
p with

0 < p < +∞. Dw is a discrete gradient operator that can

be among ∇w and ∇±
w

. By replacing Dw with the previous

previous discrete gradients one obtains several functionals:

Rw,p( f ) = ∑vi∈V ∑v j∼vi
w(vi,v j)

p/2
∣

∣ f (v j)− f (vi)
∣

∣

p
, and

R±
w,p( f ) = ∑v j∈V ∑v j∼vi

w(vi,v j)
p/2

∣

∣M±
(

0, f (v j)− f (vi)
)∣

∣

p

with property Rw,p( f ) = R+
w,p( f )+R−

w,p( f ). Finally, using the

chain rule, we can show [5] that
∂Ra

w,p( f )

∂ f (vi)
= 2p(∆a

w,p f )(vi).

3.2. Nonlocal perimeters and co-area on graphs

3.2.1. Gradients of a sub-graph

Let A be a set of connected vertices with A⊂V. We denote by

∂+A and ∂−A , the external and internal boundary sets of A ,

respectively. A−=V\A is the complement of A . For a given

vertex vi∈V, ∂+A = {vi∈A− : ∃v j∈A with (vi,v j)∈E} and

∂−A = {vi∈A : ∃v j∈A− with (vi,v j)∈E}. We now consider

the gradients of a sub-graph and study their properties. We

denote by χA the indicator function defined by χ :V→{0,1}.

Proposition 1

For a given vertex, if vi ∈ A , then χA(vi) = 1 and χA(vi) = 0

otherwise. The Lp-norm of the directional gradient of the

indicator function is defined as:

‖∇±
w

χA(vi)‖
p
p = χ∂±A(vi) ∑

v j∼vi,v j∈A±

w(vi,v j)
p/2 (1)

with the notation A+=A and A−=V\A .

Proof. By studying cases where vi ∈ A , vi /∈ A and similarly

with the neighbors of vi, we can prove that only the inner and

outer set of vertices ∂±A are concerned.

This leads to the following property:

‖∇wχA(vi)‖
p
p = ‖∇+

w
χA(vi)‖

p
p +‖∇−

w
χA(vi)‖

p
p

3.2.2. Nonlocal functionals and nonlocal perimeters

Now, we show that there are strong relations, for the case of a

sub-graph, between the previous discrete regularization func-

tionals and discrete perimeters.

Proposition 2

By replacing f by the indicator function χA in the regulariza-

tion functionals, one has: R±
w,p(χA) =

1
2
vol(∂A).

Proof. Using equation (1) and the nonlocal function-

als, R+
w,p(χA) = ∑vi∈V ∑v j∼vi,v j∈A w(vi,v j)

p/2χ∂+A(vi) =

∑vi∈∂+A ∑v j∈∂−A w(vi,v j)
p/2 = ∑vi∈∂+A d∂−A(vi) =

1
2
vol(∂A).

Similarly, one has R−
w,p(χA) =

1
2
vol(∂A), and Rw,p(χA) =

vol(∂A).
All the previous functionals can be then seen as the inner

(R−
w,p(χA)), outer (R+

w,p(χA)) or global (Rw,p(χA)) p-cost of a

cut between two set of vertices A and A−. As a consequence,

all these previous expressions can be seen as nonlocal discrete

perimeters of a sub-graph:

2Per±w,p(A) = Perw,p(A) = 2R±
w,p(χA) = Rw,p(χA)



This shows explicitly the relations between the functionals we

defined with Total Variation and nonlocal discrete perimeters

of a sub-graph. Interestingly, we can recover on grid graphs

with specific weights, a discrete analogue of the continuous

nonlocal perimeters introduced in [6].

3.2.3. Co-area formula on weighted graphs

Now we show that for p = 1, the introduced nonlocal func-

tionals do verify the co-area formula.

Proposition 3

For any function f ∈ H (V) and for p = 1, one has the follow-

ing property:

R∗
w,1( f ) =

∫ +∞

−∞
R∗

w,1(χ{ f>t})dt (2)

where R∗
w,1( f ) is among Rw,1( f ) and R±

w,1( f ) with χ{ f>t}(vi)
= 0 if f (vi)< t and χ{ f>t}(vi) = 1 if f (vi)≥ t.

Proof. All the functionals R∗
w,1 appearing in (2) are

of the form Rw,1( f ) = ∑vi∈V ∑v j∼vi
w(vi,v j)| f (v j)− f (vi)|

or R±
w,1( f ) = ∑vi∈V ∑v j∼vi

w(vi,v j)( f (v j) − f (vi))
± with

x+ = max(0,x) is the nonnegative part of the real number

x (x− = (−x)+). Since |a−b| =
∫ +∞
−∞ |χ{a>t}−χ{b>t}|dt and

(a − b)± =
∫ +∞
−∞ (χ{a>t} − χ{b>t})

±dt, R∗
w,1 clearly satisfies

(2).

This result is different from [7] that assumes that the set of

vertices of the graph belong to a submanifold and then make

use of the co-area formula on manifolds. Our proposal does

not need this assumption and is much simpler since have the

co-area formula for any weighted graph with p = 1.

3.3. Nonlocal active contours models as global minimiz-

ers for segmentation and clustering

The usual drawback of active contours methods is the exis-

tence of local minimizers with the solution highly dependent

of the initial condition. A recent method, introduced by Bres-

son and Chan [8, 7], proposes to redefine the active contour

model into a model which gives global minimizers. Using our

framework we show how we can introduce nonlocal global

minimizers of active contours models on graphs. Let us con-

sider this very general minimization problem on graphs:

min
f :V→{0,1}

{

TVw( f )+λH( f , f 0)
}

(3)

where TVw( f ) is a weighted total variation of f . Both TVw( f )
and H( f , f 0) are considered as satisfying the co-area formula.

When λ 6= 0, this energy can be considered as the nonlocal

discrete analogue on graphs of [7]. When λ = 0, it is the dis-

crete analogue to the continuous min-cut of [9] since this re-

duces to minimize Per∗w,p(A) = vol(∂A) = cut(A ,A−). Now,

we show how such a minimization can be solved but we re-

strict ourselves to the following minimization problem:

min
f :V→{0,1}

{

Ew,1( f ) = R∗
w,1( f )+λ ∑

vi∈V

r( f 0(vi)) f (vi)

}

(4)

where R∗
w,1( f ) is among Rw,1( f ) and R±

w,1( f ). As previously

shown, the first part R∗
w,1( f ) of the energy Ew,p( f ) satisfies

the co-area formula. It can also be easily shown that it is also

the case for the second part of the energy. Minimization prob-

lem (4) is non-convex and, as shown in [10] for the continu-

ous analogue, can be reformulated to consider a convex re-

laxation problem to determine a global minimizing solution.

Therefore, a new minimization problem is considered:

min
f̂ :V→[0,1]

{

Êw,1( f ) = R∗
w,1( f )+λ ∑

vi∈V

r( f 0(vi)) f (vi)

}

(5)

Following the approach in [10], one can show, that every level

set of a minimizer of (5) is a solution of the original opti-

mization problem (4). As a consequence, to obtain a global

solution f : V→{0,1} to the problem (4), one thresholds any

function f̂ : V→ [0,1] that is a solution of (5) and f = χA( f̂ ).
To establish the solution of the minimization problem (4), we

can solve the following system of equations:

∂Êw,1( f )

∂ f (vi)
=

∂R∗
w,1( f )

∂ f (vi)
+λr( f 0(vi)) = 0, ∀vi ∈ V, (6)

First it is easy to show that one has the following relation
∂Rw,1( f )

∂ f (vi)
= 2

∂R+
w,1( f )

∂ f (vi)
= 2

∂R−
w,1( f )

∂ f (vi)
= 2∆a

w,1 f (vi). To approximate

the solution of the minimization problem (5), the algorithms

exposed in [7] can be used (dual/projection, graph cuts). We

choose to use, for the sake of simplicity, the linearized Gauss-

Jacobi method and obtain the following iterative algorithm,

∀vi ∈V :

f (t+1)(vi) =

−λr( f 0(vi))+α ∑
v j∼vi

γ
f (t)

w (vi,v j) f (t)(v j)

α ∑
v j∼vi

γ
f (t)

w (vi,v j)
(7)

where γ
f (t)

w (vi,v j) = w(vi,v j)
1/2| f t(vi)− f t(v j)|

−1
ε . With α =

1 for R±
w,1( f ) and α = 2 for Rw,1( f ), and the initial condition

f (0) = f 0. The problem being relaxed on R, at each iteration

t, the solution is projected on [0,1] by max(min( f t ,1),0).

4. APPLICATIONS

In the following, we discuss the application of our proposed

approach to Chan-Vese (CV) model. Since graphs of the ar-

bitrary topologies can be considered, our approach enables to

consider any type of discrete data that can be represented by a



graph. Moreover, it can be used to segment image with non-

local configurations and to cluster high dimensional data. We

can directly express the discrete analogue on graphs of the

CV model as the following minimization, ∀vi ∈V :

min
f :V→{0,1}

{

R∗
w,1( f )+λ ∑

vi∈V

f (vi)m(c1,vi)+(1− f (vi))m(c2,vi)

}

(8)

where m(a,vi) = (a − f 0(vi))
2. c1 and c2 are the means

inside and outside the object. For a fixed f , the minimizer

(c1( f ),c2( f )) can be explicitly computed. For fixed (c1,c2),
the minimization over f can be solved with algorithm (7) with

r( f 0(vi)) = (c1 − f 0(vi))
2 − (c2 − f 0(vi))

2. Therefore, the

minimization of CV model on graphs is performed as an al-

ternate minimization with respect to (c1,c2) and with respect

to f . Figure 1 shows the application of our CV model on

Fig. 1. Chan-Vese on various graphs (local and nonlocal,

super-pixel, mesh, k-nearest neighbors) for image segmenta-

tion and data clustering.

many different graphs with Rw,1( f ). First column presents a

noisy textured image with an initial contour, the segmenta-

tion result on local (4-adjacency graph with Gaussian weights

computed on pixel values) and nonlocal (4-adjacency graph

coupled with a 4-Nearest Neighbor graph selected in a 9× 9

window and Gaussian weights computed on 3× 3 patches)

graphs. The benefits of nonlocal patch-based configurations

for image segmentation is evident for segmenting textured ob-

jects. Second column presents an image with an initial con-

tour, the considered graph (a super-pixel graph obtained from

an over-segmentation with Gaussian weights on region mean

values), and the obtained partition of the super-pixel graph.

This shows the interest of our formulation that can be used on

a different representation of the image. Third column presents

a mesh with an initial contour (on pig’s back), the considered

mesh (a triangular mesh with Gaussian weights on vertices

grey values) with an image of text projected onto the sur-

face, and the obtained partition of the mesh (all the text is ex-

tracted). Again, the algorithm remains the same, only graph

changes. Our approach on meshes is therefore much more

general than the recent framework proposed in [11]. Last col-

umn presents an example of high-dimensional data classifica-

tion: an image database with an initial random partition, the

considered graph (a 10 nearest neighbors graph weighted with

Gaussian weights on 16×16 vectors associated to the image

of each vertex). This shows how our CV models can be used

in the space of images for classification; our CV model also

corresponding a TV-regularized 2-means on graphs.

5. CONCLUSION

In this paper we proposed nonlocal PdEs on graphs for ac-

tive contours models with applications to image segmenta-

tion and data clustering. Starting from nonlocal regulariza-

tion functionals on graphs, we showed they verify the co-

area formula on graphs and introduced nonlocal perimeters

on graphs. These ingredients are then used for nonlocal active

contours models as global minimizers for segmentation and

clustering. Experimental results with the Chan-Vese models

showed the benefits of the approach that enables to perform

the binary partitioning of any graph.
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