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Abstract

Motivated by recent advances in spectral cluster-
ing that show the relation between the non linear p-
Laplacian graph operator and the Cheeger cut problem,
we propose to study and apply this methodology for im-
age segmentation. Based on a `1 relaxation of the ini-
tial clustering problem, we show that these methods can
outperform usual well-known graph based approaches,
e.g., min-cut/max-flow algorithm or `2 spectral cluster-
ing, for unsupervised and very weakly supervised im-
age segmentation. Experimental results demonstrate
the benefits and the relevance of the proposed method-
ology especially for noisy image or when very few pixels
are labeled for interactive image segmentation.

1. Introduction

Graph cut methods consist in dividing a dataset
into two or more clusters where the data relations are
modeled as a similarity graph. Such approaches have
found several applications, for instance in image seg-
mentation, statistics or biology (see [9] and references
therein). Solving balanced graph cut problems is well-
known to be NP-hard [13]. One of the most popu-
lar approximation is to consider spectral graph cluster-
ing. These methods are usually based on a `2 relax-
ation of the initial problem [8]. They reduce the initial
cut problem to the computation and the thresholding of
the second smallest eigenvector of the associated graph
Laplacian operator. Different definitions of the Lapla-
cian operator correspond to an approximation of differ-
ent balanced graph cut criteria. We refer the interested
reader to [13] for an introduction on spectral clustering.
Recently, [3, 7, 11] have proposed a relaxation method
based on the general p-Laplacian and show that the re-
laxed problem provides an exact solution of the Cheeger
cut [4] when p=1. The authors show the superiority
of such approach in comparison with the `2 relaxation
based methods to cluster complex data.

Paper contributions. Inspired by these recent ad-
vances in graph clustering, we propose to study and ap-
ply such methods for image segmentation. We demon-
strate the superiority of theses approaches in presence of
noise and propose an extension for interactive segmen-
tation, which requires very few labeled pixels to obtain
correct segmentation results. To the best of our knowl-
edge, these novel methods have not been used for image
processing. Therefore, one of our contributions is to
demonstrate the relevance of theses methods for image
segmentation.
Paper organization. Section 2 recalls the Cheeger cut
and its spectral relaxation. Section 3 presents the ap-
plication of this methodology to image segmentation.
Results and comparisons with usual graph cut meth-
ods such as min-cut/max-flow algorithm or standard `2

spectral clustering for noisy and interactive image seg-
mentation are also provided. Finally, Section 4 con-
cludes and presents the perspectives of this work.

2. p-Laplacian and Cheeger Cut

We consider the general situation where a data set is
modeled as a graph G = (V,E) where V is a set of ver-
tices that represents the data points, andE : V ×V a set
of edges weighted by a function wij for all (i, j) ∈ E
that captures similarity relationship between the ver-
tices. A method to find the balanced clustering of V
is to consider the following Cheeger cut (CC):

CC(A,A) =
cut(A,A)

min(|A|, |A|)
=

∑
i∈A,j∈A wij

min(|A|, |A|)
(1)

where A ⊂ V , A = V \ A and |.| denotes the cardi-
nality of the considered set. One simple interpretation
of CC is that the weighted length of the cut boundary
is small relatively to the balanced constraint. Because
of the balanced condition, finding the global minimum
of (1) is NP-hard. The most well-known approach to
approximate the solution of (1) is to consider a `2 re-
laxation reducing the initial problem to an eigenvector
problem associated to the `2 graph Laplacian [13].



Recently, [3, 7, 11] have introduced a stronger relax-
ation based on the p-Laplacian: let Lp be the graph p-
Laplacian operator defined as

(Lpf)i =
∑
j∈V

wij |fi − fj |p−1 sign(fi − fj) (2)

where i ∈ V , sign(.) ∈ [−1, 1] and f : V → [0, 1].
In [3], the authors have shown that the optimal Cheeger
cut value hCC = infA⊂V CC(A,A) can be approxi-
mated by a relaxation based on (2). They have proved
that when p → 1 the solution of the relaxed prob-
lem tends to hCC. Inspired by these results, [11] and
later [6], have proved that when p = 1 the associated `1

relaxation problem leads to an exact solution of the CC
minimization. Finally, they have proposed to optimize
the following problem

f∗=argmin
f

{
〈f, L1f〉
‖f‖1

=

∑n
i,j=1 wij |fi − fj |
‖f‖1

}
(3)

s.t. m(f)=0 where m(.) is the median. To optimize
(3), the split Bregman method is used in [11] whereas
a primal-dual algorithm is used in [7]. Finally, f∗ is
thresholded (see for example [6]) to obtain the final
graph partitioning. In this paper, we will consider the
split Bregman approach.

3. Image Segmentation via Cheeger Cut

In this section, we describe and apply the previous
graph cut methodology in the context of image segmen-
tation and we compare the performance of theses meth-
ods for unsupervised and interactive cases.

3.1. Methodology

Graph construction. An image is represented as a 4-
adjacency grid graph where each vertex is associated
to an image pixel and edges encode the 4-adjacency
spatial relationship. The segmentation is performed
only by using the pixel grayscale value as image fea-
ture in order to demonstrate the relevance and the ef-
ficiency of CC. For the same reason, the weight func-
tion uses only the pixel grayscale value. A weight
wij = exp(−‖I(i) − I(j)‖2/2β2

ij) is defined for two
adjacent pixels i and j where I(.) is a pixel grayscale
value and β is a bandwidth parameter. In the rest of
this paper, β will be set to the mean value over all
‖I(i)− I(j)‖, ∀i, j ∈ I .

Obviously, incorporating higher level information
that capture more complex image features in the graph
structure and weights could improve the results but are
out of the scope of this paper.

Unsupervised segmentation algorithm. Unsuper-
vised image segmentation consists in extracting objects
from images without any human intervention. Algo-
rithm 1 describes the optimization of relaxed CC which
is applied on the graph constructed on the image.

First, the solution f∗ of (3) is computed in steps 2
to 6, where R(.) and S(.) correspond to the numerator
and the denominator of (3) respectively. Then, the final
partitioning (A,A) is obtained with: ∀i ∈ V , i ∈ A if
f∗i ≤ 0.5, i ∈ A otherwise.

Algorithm 1 Approximation of (3) and hCC.
1: f0 = random, ‖f0‖ = 1, λ0 = R(f0)/S(f0)
2: repeat
3: fk+1 = argminR(fk)− λkS(fk)

s.t. m(fk+1) = 0 and ‖fk+1‖2 ≤ 1
4: λk+1 = R(fk+1)/S(fk+1)
5: until |λk+1 − λk|/λk < ε
6: f∗=fk+1

7: (A,A) = thresholding of f∗

8: return (A,A)

The inner problem in step 3 of Algorithm 1 is trans-
formed into the following constrained minimization
problem [2, 11]

min
f,g∈[0,1],d

‖d‖1 − λ‖g‖1

s.t. d = Df, g = f and
∑
i∈V

gi < |V |/2.
(4)

D is a linear operator with ‖Df‖1 =
∑n

i,j=1 wij |fi −
fj |. The last constraint on g ∈ [0, 1] corresponds
to a linear approximation of the non linear constraint
m(g) = 0 (see [2]). Optimization of (4) can be per-
formed with an augmented Lagrangian method where
three sub-minimizations w.r.t f , g and d are considered.
Due to the lack of space, we refer the reader to [2, 11]
for a detailed description of this split Bregman approach
and the sub-minimizations resolution.

Adaptation to weakly supervised image segmenta-
tion. Interactive segmentation has received a lot of at-
tention in recent years. In its binary version, it con-
sists in separating the image foreground from the back-
ground using initial labels (strokes) defined by the user
for both objects to detect. One objective of this ap-
proach is to perform the segmentation with the fewest
user interaction as possible. Moreover, most of such
methods use prior information on images: for exam-
ple, color likelihood, boundary prior or geometric con-
straints (see [12] and references therein).

In order to incorporate user provided initial labels,
we slightly modify the optimization of (4). Let Vf and



Vb be the initial foreground and background labeled
pixel sets. Function f0 in Algorithm 1 is initialized as
f0i = 0 if i ∈ Vb, f0i = 1 if i ∈ Vf and f0i = 0.5 other-
wise. Throughout the optimization process, the values
of g at the labeled pixels are maintained to their initial
value at the end of each sub-minimization w.r.t. g, i.e.,
gi = 0 and gi = 1 if i ∈ Vb and i ∈ Vf, respectively.

3.2. Results

In this section, we apply the previously describe
methodology for unsupervised and interactive segmen-
tation. In the following results, boundaries of obtained
segmentations (presented in Figures 1, 2 and 3) are su-
perimposed on initial test images and are artificially di-
lated to increase the visibility.

Unsupervised image segmentation. We first com-
pare CC with the popular min-cut/max-flow algorithm
(MC) [1] and `2 spectral methods: the Ratio Cut (RC)
[5] and the Normalized Cut (NC) [10]. Results for MC
are obtained by using publicly available C code from
authors where the sink and source vertices are set to a
pixel within the partitions to segment. Since we use [1]
to optimize the min-cut problem, the data fidelity term
involving in [1] energy is not used. For RC and NC,
different 2-Laplacian operators are used, and the cut is
obtained by thresholding the associated second smallest
eigenvector [13].

Figure 1 shows unsupervised segmentation results
with two synthetic examples where different additive
Gaussian noise level are applied on binary images to il-
lustrate the effect of noise. The σ parameters presented
in these results are chosen in order to illustrate the noise
level at which these methods begin to fail. The green,
yellow, blue and red colors in Figure 1 correspond to
MC, RC, NC and CC, respectively. To give a quanti-
tative evaluation of the segmentation results, an error
rate is computed. It is defined as a percentage of mis-
classified pixels with respect to the ground truth. Ta-
ble 1 presents the corresponding measures computed
for each segmentation in Figure 1 where best results are
presented in bold.

Regarding the measures obtained in the first part of
Table 1 that correspond to segmentation results of Fig-
ure 1(a)-(d), one can see that CC outperforms the other
methods whatever the noise level. We can observe that
MC fails up to σ = 0.07 where segmentation results
correspond to the initialization involving in the algo-
rithm (Figures 1(b) to 1(d)). As shown in Figures 1(c)
and 1(d), RC and NC are not able to provide correct seg-
mentation when the noise level increases. The second
part of Table 1 and Figures 1(e)-(h) show approximately

(a) σ = 0.05 (b) σ = 0.07 (c) σ = 0.16 (d) σ = 0.25

(e) σ = 0.05 (f) σ = 0.07 (g) σ = 0.16 (h) σ = 0.25

Figure 1. Qualitative comparison. MC:
green, RC: yellow, NC: blue, CC: red (see
text for more details)

σ MC RC NC CC
(a) 0.05 0.02 0.02 0.02 0.02
(b) 0.07 48.87 11.88 11.48 0.06
(c) 0.16 48.87 22.88 22.58 0.22
(d) 0.25 48.87 24.89 24.68 0.46
(e) 0.05 0.02 0.02 0.02 0.02
(f) 0.07 21.5 38.54 38.54 0.02
(g) 0.16 21.5 48.35 47.89 0.07
(h) 0.25 21.5 48.72 48.00 18.69

Table 1. Error rates for segmentations of
Figure 1 (see text for more details)

the same behaviors. Nevertheless, we can notice that for
σ = 0.25, CC results are better on the first image than
on the second one where objects are not of the same
size.

The previous results clearly demonstrate the effi-
ciency of CC for unsupervised noisy image segmenta-
tion. They also show the benefit of the `1 relaxation as
compared to `2 one for balanced cuts approximations.

Very weakly supervised image segmentation. We
show how CC can be applied to interactive image seg-
mentation where very few labels (some pixels) are used
as initialization and without any data fidelity or prior
term while obtaining satisfying qualitative results.

Figure 2 shows results and comparisons of CC and
MC. the boundaries of the segmentation results and
the initial labels are superimposed on the initial images
where white color are used for boundaries, red and blue
colors for initial foreground and background labels, re-
spectively (initial labels are artificially dilated to in-
crease the visibility). Figures 2(a) and 2(c) show inter-
active CC segmentation results on natural images where



(a) |Vf|=2, |Vb|=2 (b) |Vf|=242, |Vb|=573

(c) |Vf|=3, |Vb|=1 (d) |Vf|=366, |Vb|=430

Figure 2. Results of interactive segmen-
tation. At left CC with very few labeled
pixels. At right MC with large number of
labeled pixels (see text for more details)

(a) |Vf|=1, |Vb|=2 (b) |Vf|=2, |Vb|=3 (c) |Vf|=3, |Vb|=4

Figure 3. Iterative segmentation in three
steps (see text for more details)

only 4 pixels are needed to obtain correct final segmen-
tation. In our experiments, using the same few labeled
pixels with MC produce totally incorrect segmentations
similarly to Figure 1. Figures 2(b) and 2(d) illustrate
the correctness of the MC segmentation but only after
increasing the number of initial labels. Figure 2 clearly
demonstrates the potential of CC in interactive segmen-
tation allowing less human interaction while not requir-
ing a global color model or prior as compared to usual
approaches.

Finally, Figure 3 illustrates the potential of this meth-
odology in iterative interactive segmentation process.
Starting from 3 pixels to obtain a first segmentation, this
method allows the user to add few pixels (Figures 3(b)
and 3(c)) to have the final segmentation.

4. Conclusion and Future Work

In this paper, we have presented a novel methodol-
ogy based on `1 relaxation of Cheeger cut problem for

image segmentation. Our study shows the potential and
the relevance of this novel approach in a noisy context
and for interactive segmentation where very few initial-
ization is needed to obtain comparable result with the
state of the art.

Due to the iterative optimization process, methods
presented in this work are less efficient in term of
computation time compared to, for instance, the min-
cut/max-flow algorithm. Nevertheless, due to the lo-
cality of computations, it could be implemented on
CPU/GPU platforms.

Finally, the ability of the proposed method to han-
dle a very sparse initial labeling could be leveraged by
allowing automated initialization by non dense interest
point detectors. This opens new possibilities in the ini-
tial phase of the segmentation, when only little informa-
tion is known about the objects to extract.
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