
HAL Id: hal-00708888
https://hal.science/hal-00708888

Submitted on 16 Jun 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Process of Mapping between User Centric Concepts and
Lyee Internal Concepts

Selmin Nurcan, Mohamed Ben Ayed, Colette Rolland

To cite this version:
Selmin Nurcan, Mohamed Ben Ayed, Colette Rolland. Process of Mapping between User Centric Con-
cepts and Lyee Internal Concepts. International Workshop on New Trends on Software Methodologies,
Tools and Techniques (SoMET), Sep 2003, Stockholm, Sweden. pp.1-17. �hal-00708888�

https://hal.science/hal-00708888
https://hal.archives-ouvertes.fr

1

Process of Mapping between User Centric
Concepts and Lyee Internal Concepts

 Selmin NURCAN*+, Mohamed BEN AYED*, Colette ROLLAND*
(*) Université Paris 1 - Panthéon - Sorbonne, CRI, 90, rue de Tolbiac 75634 Paris cedex 13 France

(+) IAE de Paris (Business Administration Institute), 21, rue Broca 75005 Paris France

Abstract. The overall objective of the research activity of the UP1 unit is to apply a
method engineering approach to the Lyee methodology. This paper presents a
formalization of the Lyee Process Model using the concept of Map. It develops also
two methodological guidelines supporting (i) the mapping of the Lyee user-centric
requirements, which have been previously specified using Design Patterns, into
Lyee software requirements and (ii) the optimization of the latter. The motivation is
the search for efficiency and effectiveness in the formulation of requirements in
accordance with the two levels Lyee Product Meta-Model. The pay-off will be a
more productive process of requirements formulation and a better quality result.

1. Introduction

LyeeALL is a CASE environment which aims at transforming software requirements
into code. These requirements are expressed in rather low-level terms such as screen
layouts and database accesses. Moreover they are influenced by the LyeeALL internals
such as the Lyee identification policy of program variables, the generated program structure
and the Lyee program execution control mechanism. As a consequence, it is difficult to get
the Lyee customer away from the burden of Lyee internals instead of focusing his/her
attention on the requirements. The Sorbonne group develops research towards meeting this
need. The overall objective of the research activity of the UP1 unit is to apply a method
engineering approach to the Lyee methodology. As a first step, the group is aiming at (1)
defining a user-centric requirements model; (2) developing methodological rules to support
the capture of these requirements in a systematic way; (3) generating the Lyee software
requirements from these user requirements. In a second step, the objective is to provide an
intelligent software support for the elicitation of user centric requirements and the
automated generation of the Lyee software requirements.

Any method is defined as composed of a product model and a process model [Prakash
99]. The product model defines the set of concepts, their properties and relationships that
are needed to express the outcome of the process. The process model comprises the set of
goals, activities and guidelines to support goal achievement and action execution. Our
research approach is driven by these two elements, the Lyee product and process models.

• The Lyee requirements product model

We used a meta modelling approach to model (i) the set of concepts underlying the
Lyee software requirements and (ii) to abstract from them the user-centric requirements
model. The result of this effort is a 2-layer meta model. The upper layer corresponds to the
user-centric requirements model whereas the lower layer identifies the set of concepts
required to express software requirements in Lyee terms. We refer to those as Lyee user
requirements meta-model and Lyee software requirements meta-model respectively. These
two meta-models constitute the Lyee product model that we propose in the Lyee project.

2

• The Lyee requirements process model

As far as we are concerned with the Lyee process model, our aim is threefold:
(1) to systematise the capture of user-centric requirements and their formulation in terms

which comply with the upper layer of the meta-model thanks to the design patterns,
(2) to define rules for mapping to transform the set of Lyee requirements expressed with

the concepts of the upper layer of the meta-model into a set of equivalent requirements
expressed in terms of the lower layer of the meta-model,

(3) to implement software tools to support the capture and formulation of these
requirements, being Lyee user requirements and Lyee software requirements.

This paper is organized as follows. Section 2 defines Lyee Requirements Process
Model. In order to formalize this Process Model, we use the MAP formalism which helps
identifying the key process intentions and the possible strategies to achieve them. Section 3
develops one of the two alternative methodological guidelines to perform the mapping
between the concepts of the Lyee user requirements meta-model and the ones of the Lyee
software requirements meta-model. Section 4 presents the methodological guideline
supporting the optimization of a given Process Route Diagram (PRD). Some idea of future
work is given in the conclusion.

2. The Lyee Requirements Process Model

This section describes the Lyee Requirements Process Model using the MAP formalism.
We first recall the Lyee Requirements Product Model and than present the Lyee Map.

2.1. Lyee Requirements Product Model

As presented in [Rolland 02a], [Rolland 02b], [Rolland 02c] and [Souveyet 02], the
result of the conception effort for the Lyee product model is the two layers meta-model
shown in Figure 1. This shows the Product Meta-Model1 and highlights the separation
between the Lyee user requirements concepts and the Lyee software requirements concepts.

Lyee Requirement User
Centric Layer

Lyee Requirement
Lyee Internals Layer

1 1..*

Name
Domain

{complete, or}

InputOutput

source

target Link

Condition

Duplex Continuous Multiplex

Name
Type

{complete, or}

Node

NodeID

PSG

PSGName
0..*

0..*

IntermediateEndBegin

1..*

1..1
1..*

1..*

1..* 1..*

0..1

{complete, or}

Action Word

W04

W02

W03

PNTR

PNTD

PNTE

Logical Unit

LogicalID
Device

SFID

1

1

1

1

1

1

1

1..*

NextpalletID

Routing Word
Word

WordID

Domain Word

L3-condition
L4-formula
Name
Domain

PRD1

POP1

PCL1

PCR1 PCR2 PBOX

PWT1
Word in
Pallet/Unit

1..*

InterSF

PNTA PNTM

IntraSF

PNTN

PNTC

PRD

PRDName

Pallet

PalletID

Passive

Active

{complete, or}

ItemDefined

condition
formula

Scenario Function

Condition

0..*

Lyee Requirement User
Centric Layer

Lyee Requirement
Lyee Internals Layer

1 1..*

Name
Domain

{complete, or}

InputOutput

source

target Link

Condition

Link

Condition

DuplexDuplex ContinuousContinuous MultiplexMultiplex

Name
Type

{complete, or}

Node

NodeID

Node

NodeID

PSG

PSGName

PSG

PSGName
0..*

0..*

IntermediateIntermediateEndEndBeginBegin

1..*

1..1
1..*

1..*

1..* 1..*

0..1

{complete, or}

Action Word

W04

W02

W03

PNTR

PNTD

PNTE

Logical Unit

LogicalID
Device

SFID

1

1

1

1

1

1

1

1..*

NextpalletID

Routing Word
Word

WordID

Domain Word

L3-condition
L4-formula
Name
Domain

PRD1

POP1

PCL1

PCR1 PCR2 PBOX

PWT1
Word in
Pallet/Unit

1..*

InterSF

PNTA PNTM

IntraSF

PNTN

PNTC

PRD

PRDName

PRD

PRDName

Pallet

PalletID

Pallet

PalletID

Passive

Active

{complete, or}

ItemDefined

condition
formula

Scenario Function

Condition

0..*

Figure 1: The Lyee Product Meta-Model

1 The term meta-model is used in the report in the same sense as the term meta schema.

3

2.2. The Lyee Map

The Lyee Requirements Process Model is formalized as a Process Map with the key
process intentions and the possible strategies to achieve them, and the associated
guidelines. This section is organized as follows: Section 2.2.1 introduces the Process Meta-
Model which allows us to specify the Lyee process model as a map. Section 2.2.2 describes
broadly the Lyee process model, i.e. the Lyee Map. Section 2.2.3 introduces guidelines
associated to the Lyee Map.

2.2.1. The Process Meta-Model

A map [Rolland 99], [Rolland 00], [Benjamen 99] is a process model in which a non-
deterministic ordering of intentions and strategies has been included. It is a labeled directed
graph with intentions as nodes and strategies as edges between intentions. As shown in
Figure 22, a map consists of a number of sections each of which is a triplet <source
intention I3

i, target intention I j, strategy S4
ij>. There are two distinct intentions called Start

and Stop respectively that represent the intentions to start navigating in the map and to stop
doing so. Thus, it can be seen that there are a number of paths in the graph from Start to
Stop. The map is a navigational structure that supports the dynamic selection of the
intention to be achieved next and the appropriate strategy to achieve it whereas the
associated guidelines help in the achievement of the selected intention.

Map

Start Stop

Intention

Section
Strategy

1,11,1

source

target

1,1

1,n

composed of

Legend: Entity-
type

Relationship-
type

Objectified
relationship-type

is defined as

0,1

Guideline

AtomicCompound

supported by

composed ofcomposed of

1,11,1

1,n

0,n
1,1

Start

End

Ij

Ii

Si Sij1

Sij2

Ik

Sik

Sk

Se

Sjk

Start

End

Ij

Ii

Si Sij1

Sij2

Ik

Sik

Sk

Se

Sjk

Figure 2: The map meta-model

A strategy is an approach, a manner to achieve an intention. The strategy, as part of the
triplet <I i,Ij,Sij> characterizes the flow from I i to I j and the way I j can be achieved. The
specific manner in which an intention can be achieved is captured in a section of the map
whereas the various sections having the same intention I i as a source and I j as target show
the different strategies that can be adopted for achieving Ij when coming from I i. Similarly,
there can be different sections having I i as source and Ij, Ik,In as targets. These show the
different intentions that can be achieved after the achievement of Ii.

There might be several flows from I i to I j, each corresponding to a specific strategy. In
this sense the map offers multi-thread flows. There might also be several strategies from
different intentions to reach an intention I i. In this sense the map offers multi-flow paths to
achieve an intention. The map contains a finite number of paths, each of them prescribing a
way to develop the product (a Lyee program), i.e. each of them is a Lyee process model.

2 We use an E/R like notation. A box represents en Entity Type (ET), the labeled link represents a Relationship Type (RT)
and the embedded box refers to an objectified RT.
3 Intention are in italics (I i, I j)
4 Strategies are in “ arial narrow ”(Sij)

4

Therefore the map is a multi-model. The approach suggests a dynamic construction of the
actual path by navigating in the map. Because the next intention and strategy to achieve it
are selected dynamically, guidelines that make available all choices open to handle a given
situation are of great importance. The Lyee Map has such associated guidelines. A guideline
is a set of indications on how to proceed to achieve an intention. A guideline embodies
method knowledge to guide the Lyee engineer in achieving an intention in a given situation.
The execution of each map section is supported by a guideline which can be atomic or
compound. Some sections in a map can be defined as maps in a lower level of abstraction.

2.2.2. The Lyee process model or the Lyee Map

This section describes the Lyee process model by instantiating the concepts of the

process meta-model presented in section 2.2.1. Figure 3 shows the Lyee process model, i.e.
the Lyee Map. As shown in this figure, there are three key intentions in the Lyee process
model, namely Capture Lyee User Requirements, Specify Lyee software requirements and
Generate Lyee program. We refer to them as ‘Process Intentions’. Capture Lyee User
Requirements refers to all activities required to instantiate the upper level of the Product
Model for a given application whereas Specify Lyee software requirements refers to all
those activities that are needed to map the concepts of the upper level of the Product Model
into the concepts of the lower layer. Eight strategies are used in the Lyee Process Model.

A Lyee program can be generated following different paths in the Lyee Map, in other
words, using several methodological approaches. For instance, the Lyee engineer can first
follow the section <Start, Specify Lyee Software Requirements, From scratch strategy>,
and then <Specify Lyee Software Requirements, Generate Lyee program, LyeeAll
generation strategy>. The path including these two sections was documented in [Nurcan
02]. In this paper, we focus on the two map sections drawn in bold in Figure 3.

Start

End

Capture
Lyee User

Requirements

Specify Lyee
Sotware

Requirements

Generate
Lyee Program

From Scratch
Strategy

Design Pattern
Driven strategy

Optimisation
Stategy

LyeeALL
Generation
Strategy

Completness

Strategy

Scenario
Driven
Strategy

N to M
Mapping Strategy

Integrated
Mapping Strategy

Start

End

Capture
Lyee User

Requirements

Specify Lyee
Sotware

Requirements

Generate
Lyee Program

From Scratch
Strategy

Design Pattern
Driven strategy

Optimisation
Stategy

LyeeALL
Generation
Strategy

Completness

Strategy

Scenario
Driven
Strategy

N to M
Mapping Strategy

Integrated
Mapping Strategy

Figure 3: The Lyee process model : the Lyee Map

2.2.3. The guidelines associated to the Lyee Map

The guideline corresponding to the map section <Start, Capture Lyee User

Requirements, Design pattern driven strategy> was reported in [Rolland 02b], [Rolland
02d] and [BenAyed 03]. The two map sections <Capture Lyee User Requirements, Specify
Lyee Software Requirements, Integrated mapping strategy> and <Capture Lyee User
Requirements, Specify Lyee Software Requirements, N to M Mapping Strategy> describe

5

two alternative ways to transform a PSG (concept of the upper layer of the Lyee Product
Model) into a PRD (concept of the lower layer of the Lyee Product Model).

The execution of the map section <Capture Lyee User Requirements, Specify Lyee
Software Requirements, Integrated mapping strategy> transforms each Node (related to a
Defined) in a given PSG into a Scenario Function in the corresponding PRD. The guideline
associated to this map section will be described and illustrated in §3.

The execution of the map section <Capture Lyee User Requirements, Specify Lyee
Software Requirements, N to M Mapping Strategy> transforms N Nodes (with their related
Defineds) in a given PSG into M Scenario Functions in the corresponding PRD. The
methodological knowledge supporting this map section was formally defined and illustrated
in [BenAyed 03].

The execution of the map section < Specify Lyee Software Requirements, Specify Lyee
Software Requirements, Optimisation strategy> aims to perform a set of optimization
operations on the Lyee Software Requirements which are described by instantiation of the
concepts of the Lyee Product Model’s lower layer. The guideline associated to this map
section will be described and illustrated in §4.

3. The guideline supporting the map section <Capture Lyee User Requirements,
Specify Lyee Software Requirements, Integrated Mapping strategy>

The aim of this section is to present the guideline associated to the map section
<Capture Lyee User Requirements, Specify Lyee Software Requirements, Integrated
Mapping Strategy> (see Figure 3), and the set of underlying mapping rules useful to
establish the correspondence between the concepts of the two layers in the Lyee Product
Meta-Model. Each mapping rule exploits the structural relationships between some
concepts of the upper layer of the Product Meta-Model and some others in the lower layer
(Figure 1). The guideline supporting the Map section <Capture Lyee User Requirements,
Specify Lyee Software Requirements, Integrated Mapping Strategy> executes successively
the following mapping rules for a given PSG in order to produce a PRD:

- Apply the mapping rule R0 to transform the PSG into a PRD,
- For each intermediate Node of the PSG: Apply the mapping rule R1S11 to transform

the Node into a Scenario Function in the corresponding PRD,
- For each Defined of the PSG: Apply the mapping rule R2S11 to transform the

Defined into one or several Logical Units in the Scenario Function; and to transform
the items of the Defined into Domain Words shared by the Logical Units,

- Apply the mapping rule R3S11 to transform links between Nodes into InterSF
Routing Words,

- Apply the mapping rule R4 to add informations specific to the Lyee internal layer.

3.1. The Mapping Rule R0: Mapping a PSG into a PRD

In the Lyee process, each PSG is mapped into a PRD whatever the mapping strategy
used. The mapping rule R0 performs the following actions: (i) Create a PRD corresponding
to the PSG in hand and (ii) Define the PRD’s name.

3.2. The Mapping Rule R1S11 : Mapping a Node into a Scenario Function

The strategy of the Lyee Map presented in Section 3 is called Integrated Mapping
because each Node in a given PSG is mapped into a Scenario Function. In other words,
Integrated Mapping means “One to One mapping” for all Nodes. Figure 4 illustrates

6

graphically the ‘One to One Mapping’ strategy applied to two Nodes related to Defineds of
type ‘screen’.

W03W02W04 W03W03W02W02W04W04

SF01

W03W02W04 W03W03W02W02W04W04

SF02

END

SW02
Sc2
SW02
Sc2

SR02
Sc2
SR02
Sc2

SW01
Sc1
SW01
Sc1

SR01
Sc1
SR01
Sc1

Physical Screen

OkOk Defined Sc2

OkOk

Defined Sc1

CancelCancel

Figure 4: The illustration of the ‘One to One Mappi ng’ strategy

In order to illustrate the Integrated Mapping Strategy, we use the ‘Split a Goal’

example. Split a Goal is a functionality which, given a goal statement such as ‘Withdraw
cash from an ATM’, automatically decomposes it into a verb and its parameters. For
example, Withdraw is the verb, cash is the target parameter of the verb and from an ATM is
the means parameter. For this example, we will consider only the two parameters
exemplified above, target and means.

Goal :

Split

Verb :

Target :

Means :

Goal Split

Cancel

Goal :

Split

Verb :

Target :

Means :

Goal Split

Cancel

Figure 5: The user screen for

the ‘Split a Goal’ example

:Active
CmdCancel

K

: Output
target
X
target= f target (S plit .goal)
: Output
means
X
means= f means (S plit .goal)

: Defined
Split

screen

:Passive
Goal

X

:Active
cmdSplit

K

: Continuous
cmdCancel = true

:Begin
Node1

: Intermediate
Node2

:End
Node3

: PSG
psgSplit

: Continuous
Source

Target

Source

Target

: Output
verb
X
verb= f verb (Split .goal)

:Active
CmdCancel

K
:Active

CmdCancel
K

: Output
target
X
target= f target (S plit .goal)

: Output
target
X
target= f target (S plit .goal)
: Output
means
X
means= f means (S plit .goal)

: Output
means
X
means= f means (S plit .goal)

: Defined
Split

screen
: Defined

Split
screen

:Passive
Goal

X
:Passive

Goal
X

:Active
cmdSplit

K
:Active

cmdSplit
K

: Continuous
cmdCancel = true

:Begin
Node1
:Begin
Node1

: Intermediate
Node2

: Intermediate
Node2

:End
Node3
:End

Node3

: PSG
psgSplit
: PSG

PsgSplit

: Continuous : Continuous
Source

Target

Source

Target

: Output
verb
X
verb= f verb (Split .goal)

: Output
verb
X
verb= f verb (Split .goal)

Figure 6: Formulation of the user centric requireme nts

for the ‘Split a goal’ example

Figure 5 shows the user screen designed for the ‘Split a Goal’ example. The Split button
triggers the decomposition of the goal statement provided by the user in the Goal widget
and the display of the result of this decomposition in the widgets verb, target and means.
The Cancel button allows the user to stop the process at any moment.

Figure 6 presents the instance of the concepts in the upper layer of the Product Meta-
Model created during the formulation of the user centric requirements for the given
example. This instance is drawn using the UML object diagram notations. It shows that
there is one PSG ‘PsgSplit’ which is composed of one Defined of type screen, namely
‘Split’, gathering the input and output items of the interaction. The ‘Split’ Defined
comprises active items (cmdSplit and cmdCancel), output items (verb, target, means) and a
passive item (Goal). Each output item in the Defined ‘Split’ is associated with a formula
that is its calculation rule.

7

Mapping rule R1S11
5: An intermediate node in the upper layer is transformed into a

Scenario Function in the lower layer.

The mapping rule R1S11 performs the following actions for a given node in the PSG:

1. Create one SF for the intermediate node of the PSG; define SFID (concatenation of the
string ‘SF’ and a sequential number),

2. Link the SF to the PRD (the one which has been created by the execution of the
mapping rule)

3. Create the three pallets W04, W02 and W03,
4. Link the three pallets to the SF (Pallet belongs to SF)
5. For each pallet, define the PalletID (concatenation of SFID and the pallet name)

Example : The PSG ‘PsgSplit’ was previously transformed into the PRD ‘PrdSplit’ by the
application of the mapping rule R0. The intermediate node ‘Node2’ is transformed into the
Scenario Function ‘SF01’ linked to the PRD ‘PrdSplit’. The three pallets ‘SF01W04’,
‘SF01W02’ and ‘SF01W03’ are created and linked to ‘SF01’, their PalletID are specified.

3.3. The Mapping Rule R2S11 : Mapping a Defined into Logical Unit(s)

Mapping rule R2S11 : A Defined is transformed into one or several Logical Units in the
Scenario Function created by the application of the mapping rule R1 S11 . The items of
the Defined become Domain Words shared by the Logical Units.

A Defined is mapped into one or several Logical Units according to the Defined type.
An Item is mapped into one or several Domain Words. These Words can belong to Logical
Units in the same or in different Scenario Functions.

Let us consider an instance of PSG called PSGi
6. The intermediate node of PSGi

(corresponding to the Defined in hand) has already been transformed into an instance of
Scenario Function by the application of R1S11 . Let us call Definedj the Defined in hand.
The Scenario Function corresponding to the intermediate node of PSGj related to Definedj
is called SFj . The mapping rule R2S11 performs the following actions:

• If the type of Definedj is ‘Screen’ :
1. Create two logical units SRj and SWj
2. Specify the LogicalID and the Device (Defined name) of SRji and SWj
3. For each input item in Definedj : (i) Create one instance of domain word, we call

it wordk (ii) Specify the name (item name) and the domain (item domain) of
wordk (iii) Associate the domain word wordk to the pallet W02 of the SFj and to
the SRj logical unit using a ternary relationship

4. For each output item in Definedj : (i) Create one instance of domain word, we
call it wordm (ii) Specify the name (item name), the domain (item domain), the
L4-formula (output item formula), and the L3-condition (item L3- condition),
(iii) Associate the domain word wordm to the pallet W04 of the SFj and to the
SWj logical unit using a ternary relationship, (iv) Associate wordm to the pallet
W03 of the SFj and the to SWj logical unit using a ternary relationship.

• If the type of Definedj is ‘Database’ :

5 This notation expresses that R1S11 is the first rule corresponding to the ‘Integrated mapping’ strategy. In fact, the
mapping rule R0 and R4 are also used when the ‘N to M mapping’ strategy is applied.
6 The sub-index letter is used to indicate an instance of a concept, for example Definedj is an instance of
concept Defined.

8

1. If there are input items in Definedj :
- Create one logical unit FRj
- Specify LogicalID and Device (Defined name) of FRj
- For each input item in Definedj : (i) Create a domain word, we call it wordk ,

(ii) Specify the name (item name) and the domain (item domain), (iii)
Associate wordk to the pallet W02 of the SFj and the FRj logical unit using a
ternary relationship

2. If there are output items in Definedj :
- Create one logical unit FWj
- Specify LogicalID and Device (Defined name) of FWj
- For each output item in Definedj : (i) Create a domain word, we call it wordm ,

(ii) Specify the name (item name), the domain (item domain), the L4-formula
(output item formula), and the L3-condition (item L3- condition), (iii)
Associate wordm to the pallet W04 of the SFj and to the FWj logical unit, (iv)
Associate wordm to the pallet W03 of the SFj and to the FWj logical unit.

Example : Figure 7 shows the instances of the concepts of the Lyee internal layer of the
Product Meta-Model created by the application of the mapping rule R2S11 to the ‘Split a
Goal’ example. The PSG ‘PsgSplit’ contains a single Defined ‘Split’ as shown in Figure 6.
The Defined ‘Split’ will be transformed into one or several Logical Units by the application
of R2S11. The SF ‘SF01’ and the three pallets ‘SF01W02’, ‘ SF01W03’ and ‘SF01W04’
were created by the transformation of the ‘Node2’ by applying R1S11.

: Domain Word
means
X
means= f means (Split.goal)

: Output
target
X
target= f target (Split.goal)

: Output
means
X
means= f means (Split.goal)

: Defined
Split
screen

:Passive
Goal

X
: Output

verb
X
verb= f verb (Split.goal)

:Active
cmdCancel

K
:Active
cmdSplit

K

:W02
SF01W02

:W03
SF01W03

:W04
SF01W04

: Logical Unit
SR01
Splitt

: Logical Unit
SW01
Split

: Domain Word
Goal

X
: Domain Word
target
X
target= f target (Split.goal) : Domain Word

verb
X
verb= f verb (Split.goal)

Instance of Lyee
Requirements User
Centric Layer

Instance of Lyee
Requirements Lyee
Internal Layer

: Domain Word
cmdSplit

K
: Domain Word

cmdCancel
k

: Scenario Function
SF01

: Domain Word
means
X
means= f means (Split.goal)

: Domain Word
means
X
means= f means (Split.goal)

: Output
target
X
target= f target (Split.goal)

: Output
means
X
means= f means (Split.goal)

: Defined
Split
screen

: Defined
Split
screen

:Passive
Goal

X
:Passive

Goal
X

: Output
verb
X
verb= f verb (Split.goal)

:Active
cmdCancel

K
:Active

cmdCancel
K

:Active
cmdSplit

K
:Active
cmdSplit

K

:W02
SF01W02

:W02
SF01W02

:W03
SF01W03

:W03
SF01W03

:W04
SF01W04

:W04
SF01W04

: Logical Unit
SR01
Splitt

: Logical Unit
SR01
Splitt

: Logical Unit
SW01
Split

: Logical Unit
SW01
Split

: Domain Word
Goal

X
: Domain Word

Goal
X

: Domain Word
target
X
target= f target (Split.goal)

: Domain Word
target
X
target= f target (Split.goal) : Domain Word

verb
X
verb= f verb (Split.goal)

: Domain Word
verb
X
verb= f verb (Split.goal)

Instance of Lyee
Requirements User
Centric Layer

Instance of Lyee
Requirements Lyee
Internal Layer

: Domain Word
cmdSplit

K
: Domain Word

cmdSplit
K

: Domain Word
cmdCancel

k
: Domain Word

cmdCancel
k

: Scenario Function
SF01

: Scenario Function
SF01

Figure 7 :The product resulting of the application of the mapping rule R2 S11

to the ‘Split a Goal’ Example

3.4. The Mapping Rule R3S11 : transforming Links between Nodes into InterSF
Routing Words

Links between PSG Nodes are of three different types: Continuous, Duplex and

Multiplex.

Mapping rule R3S11 : Continuous, Multiplex or Duplex links between two Nodes are
transformed into InterSF Routing Words.

All links in the PSG becomes InterSF routing words in the corresponding PRD. The
Multiplex link in the upper layer of the meta-model matches up with the PNTM routing

9

word in the lower layer. The Duplex link in the upper layer of the meta-model matches up
with the PNTD routing word in the lower layer. The Continuous link in the upper layer of
the meta-model matches up with the PNTC, PNTA and PNTE routing words in the lower
layer according to the situation.

Let us consider SFi and SFj, two Scenario Functions obtained by the transformation of
two nodes Ni and Nj when the rule R1S11 has been performed. Let us consider also that Ni
and Nj are respectively the source and the target nodes for a link Lij . We distinguish five
situations depending of the types of the link, of the source and target nodes in the PSG.
According to the situation, the mapping rule R3S11 performs the following actions:

Situation 1: If the link Lij is of type Continuous and the target node is ‘End’:
- Create a PNTEi routing word, specify the WordID
- Specify NextPalletID of PNTEi (NextPalletID = End)
- Link PNTEi to the W03 pallet of SFi (corresponding to the source node)

Situation 2: If the link L ij is of type Continuous and the target node is related to a Defined
of type database:

- Create a PNTAi routing word, specify the WordID
- Specify NextPalletID of PNTAi (NextPalletID = Pallet W04 of SFj

corresponding to the target node)
- Link PNTAi to the W03 pallet of SFi (corresponding to the source node)

Situation 3: If the link L ij is of type Continuous and the target node is related to a Defined
of type screen :

- Create a PNTCi routing word, specify the WordID
- Specify NextPalletID of PNTCi (NextPalletID = Pallet W04 of SFj

corresponding to the target node)
- Link PNTCi to the W03 pallet of SFi (corresponding to the source node)

Situation 4: If the link Lij is of type Multiplex :
- Create a PNTMi routing word, specify the WordID
- Specify NextPalletID of PNTMi (NextPalletID = Pallet W04 of SFj

corresponding to the target node)
- Link PNTMi to the W03 pallet of SFi (corresponding to the source node)

Situation 5: If the link Lij is of type Duplex :
- Create a PNTDi routing word, specify the WordID
- Specify NextPalletID of PNTDi (NextPalletID = Pallet W03 of SFj

corresponding to the target node)
- Link PNTDi to the W03 pallet of SFi (corresponding to the source node)

Example: The user centric requirements shown in Figure 6 includes two Continuous links.
The first Continuous link has ‘Begin’ as source node; this concept has not an equivalent in
the lower layer, in fact the immediate start point of ‘PrdSplit’ is the pallet W04 of the
Scenario Function SF01. The second continuous link has intermediate node ‘Node2’ as
source and ‘End’ as target. SFi corresponds to ‘SF01’ according to R3S11. We are in the first
situation identified in this rule. Then we create a PNTE routing word and we link it to the
W03 pallet of SF01.

3.5. The Mapping Rule R4 : Adding information specific to the Lyee internal layer

Some concepts of the lower layer of the meta model have no direct correspondence with
the upper layer. These concepts are related to the Lyee knowledge and are necessary to

10

execute the Tense Control Function [Negoro01a], [Negoro01b], [BenAyed02], [Nurcan02].
Thus, the mapping rule supports the specifications of additional information specific to the
Lyee Requirements of the Lyee Internal Layer.

Mapping rule R4: Add additional information specific to the Lyee Requirements of the
Lyee Internal Layer

The elements of the Lyee Internal Layer involved in this rule are IntraSF Routing
Words (PNTR, PNTN) and Action Words (PCR1, PCR2, PBOX, PWT1, PCL1, POP1,
PRD1). The rule R4 performs the following actions (see [BenAyed 03] for more details):

1. Add one PNTR routing word to the W03 pallet of each Scenario Function SFi in the
PRD (the PRD was obtained by the transformation of the PSG in hand by the
application of the mapping rule R0)

2. Add one PNTN routing word to the W04 pallet of each SFi in the PRD
3. Add one PNTN routing word to the W02 pallet of each SFi in the PRD
4. Add one or several Input Vectors to each Scenario Function SFi in the PRD
5. Add one or several Output Vectors to each Scenario Function SFi in the PRD
6. For each output Logical Unit LUi of the PRD (created by the transformation of the

PSG in hand by applying the rule R0), add Structural Vectors

Figure 8 shows the instances of the concepts of the Lyee internal layer of the Product Meta-
Model created by the application of the mapping rules R3S11 and R4 to the ‘Split a Goal’
example.

:Domain Word

target
X
target=ftarget (Screen1.Goal)

:Domain Word

verb
X
verb=fverb (Screen1.Goal)

:Logical Unit

SW01
Screen

: PRD

PrdSplit

:Scenario Function

SF01
:W04

SF01W04

:W03

SF01W03

:Domain Word

means
X
means=fmeans(Screen1.Goal)

:PCR1

PCR1SR01:PCR2

PCR2SW01

:PBOX

PBOXSR01

:PNTN

PNTNSF01R4
SF01W02

:PNTN
PNTNSF01R2

SF01W03

:PNTR

PNTRSF01R3
SF01W04

:PNTE

PNTESF01R3
END

:Logical Unit

SR01
Screen

:W02

SF01W02

:Domain Word

CmdCancel
K

:Domain Word

CmdSplit
K

:Domain Word

Goal
X

:PBOX

PBOXSW01

:PRD1

PRD1SR01

:PWT1
PWT1SW01

:Domain Word

target
X
target=ftarget (Screen1.Goal)

:Domain Word

target
X
target=ftarget (Screen1.Goal)

:Domain Word

verb
X
verb=fverb (Screen1.Goal)

:Domain Word

verb
X
verb=fverb (Screen1.Goal)

:Logical Unit

SW01
Screen

:Logical Unit

SW01
Screen

: PRD

PrdSplit

: PRD

PrdSplit

:Scenario Function

SF01

:Scenario Function

SF01
:W04

SF01W04

:W04

SF01W04

:W03

SF01W03

:W03

SF01W03

:Domain Word

means
X
means=fmeans(Screen1.Goal)

:Domain Word

means
X
means=fmeans(Screen1.Goal)

:PCR1

PCR1SR01

:PCR1

PCR1SR01:PCR2

PCR2SW01

:PCR2

PCR2SW01

:PBOX

PBOXSR01

:PBOX

PBOXSR01

:PNTN

PNTNSF01R4
SF01W02

:PNTN

PNTNSF01R4
SF01W02

:PNTN
PNTNSF01R2

SF01W03

:PNTN
PNTNSF01R2

SF01W03

:PNTR

PNTRSF01R3
SF01W04

:PNTR

PNTRSF01R3
SF01W04

:PNTE

PNTESF01R3
END

:PNTE

PNTESF01R3
END

:Logical Unit

SR01
Screen

:Logical Unit

SR01
Screen

:W02

SF01W02

:W02

SF01W02

:Domain Word

CmdCancel
K

:Domain Word

CmdCancel
K

:Domain Word

CmdSplit
K

:Domain Word

CmdSplit
K

:Domain Word

Goal
X

:Domain Word

Goal
X

:PBOX

PBOXSW01

:PBOX

PBOXSW01

:PRD1

PRD1SR01

:PRD1

PRD1SR01

:PWT1
PWT1SW01

:PWT1
PWT1SW01

Figure 8 : The product resulting of the application of the mapping rules R3 S11 and R4

to the ‘Split a Goal’ Example

4. The guideline supporting the map section < Specify Lyee Software Requirements,
Specify Lyee Software Requirements, Optimization strategy>

This section presents the guideline associated to the map section <Specify Lyee
Software Requirements, Specify Lyee Software Requirements, Optimization strategy> (see
Figure 3). The optimization of a PRD consists in transforming (merging) successively two
or several Scenario Functions into single ones. Two merge tactics are proposed,
respectively ‘Father-Child Merge’ and ‘Brotherhood Merge’. For a given PRD, these two
tactics can be used in an intertwined manner.

11

4.1. The Father-Child merge tactics

The ‘Father-Child merge’ term means that two Scenario Functions SFi and SFj related
with a Continuous link are merged into a single Scenario Function. In addition, let us
specify that the Scenario Function SFi is not the source of a backward link (multiplex or
duplex). In this case, SFi is called the Father Scenario Function and SFj is called the Child
Scenario Function. This tactics is applicable:

 (i) in the situations where the external environment or the user requirements impose
one physical screen to the Human Computer Interface; in this case the father and child
Scenario Functions are related to Defineds of type ‘screen’;

(ii) in the situations where optimization considerations require a set of clustered
database accesses and where database distribution considerations allow that; in this case the
father and child Scenario Functions are related to Defineds of type ‘database’.

W03W02W04

SF01

W03W02W04

SF02

END

SW02 SR02

SW01 SR01

W03W02W04

END

The “father” (SF01) and its “child” (SF02)
are merged into a single Scenario Function

SF01

SW01

SW02

SR01

SR02

W03W02W04 W03W03W02W02W04W04

SF01

W03W02W04 W03W03W02W02W04W04

SF02

END

SW02 SR02

SW01 SR01

W03W02W04 W03W03W02W02W04W04

END

The “father” (SF01) and its “child” (SF02)
are merged into a single Scenario Function

SF01

SW01

SW02

SR01

SR02

Figure 9: The father-child merge

The tactics can be applied successively several times to perform the merging between
several Scenario Functions which are in sequence in the PRD. Figure 9 presents two PRDs,
respectively before and after the optimization strategy being applied using the ‘Father-Child
merge’ tactics. This figure presents the two PRDs and the related SFs using the Lyee
community notations. The ‘father’ Scenario Function ‘SF01’ and the ‘child’ Scenario
Function ‘SF02’ are merged in a single Scenario Function called ‘SF01’.

4.1. 1 Example of Father-Child merge

In order to illustrate this optimization rule, we make use of a variant of the ‘Split a
Goal’ example.

Goal :

SplitCancel

Goal :

Split

Goal :

SplitCancel

Screen “Sc1”

Verb :

Target :

Means :

Goal Split

StopReturn

Verb :

Target :

Means :

Goal Split

StopReturn

Screen “Sc2”

Figure 10: The user screens for the ‘Split a
goal’ example

W03W02W04

SF01

W03W02W04

SF02

END

SW02 SR02

SW01 SR01

Sc1

Sc2W03W02W04 W03W03W02W02W04W04

SF01

W03W02W04 W03W03W02W02W04W04

SF02

END

SW02 SR02

SW01 SR01

Sc1

Sc2

Figure 11 : The PRD of ‘Split a Goal’ example

The PRD corresponding to the ‘Split a Goal’
example is shown in Figure 11.

12

Let us suppose that, thanks to the Design Patterns, the user interactions have been
initially designed as requiring two Defineds of type screens. Figure 10 shows the two
screens of the adopted variant of the ‘Split a Goal’ example: the Split button triggers the
decomposition of the goal statement provided by the user in the Goal widget and its display
in the widgets verb, target and means. The Cancel button allows the user to stop the
process at any moment. The Split button triggers the decomposition of the Goal. The Stop
button ends the interaction with the user.

Let us now assume that user requirements impose the use of a single physical screen to
support the ‘Split a goal’ example. Consequently, screens ‘Sc1’ and ‘Sc2’ should be
merged in the single screen ‘Split’. Figure 12 shows this screen. The application of the
father-child optimization rule will produce the PRD shown in Figure 13.

Goal :

Split

Verb :

Target :

Means :

Goal Split

Stop

Cancel

Return

Goal :

Split

Verb :

Target :

Means :

Goal Split

Stop

Cancel

Return

Figure 12 : The user screen for

the ‘Split a goal’ example

W03W02W04

END

SF01bis

SW01

SW02

SR01

SR02

Split

W03W02W04 W03W03W02W02W04W04

END

SF01bis

SW01

SW02

SR01

SR02

Split

Figure 13 : The ‘Optimized PRD’ for

the ‘Split a Goal’ example

4.1.2. Optimization rule for the ‘Father-child merge’ tactics

This rule performs the following set of actions for a given couple of Scenario Functions
(SFf, SFc) identified as candidate to the father-child merge in the given PRDi. We consider
SFf as ‘Father’ Scenario Function and SFc as ‘Child’ Scenario Function. SFk is the Scenario
Function produced by the application of the optimization rule.

1. Create one Scenario Function SFk, define SFID
2. Link SFk to the PRDi.
3. Create the three Pallets W04, W02 and W03
4. Link the three pallets to SFk
5. For each pallet, define the PalletID
6. Copy InterSF routing words related to the pallets W03 of SFf and SFc to the pallet

W03 of SFk, The InterSF routing word corresponding to the continuous, multiplex
or duplex link between SFf and SFc should be deleted.

7. Each InterSF routing word in the PRD having SFf or SFc as target should be
modified :
- if routing word type is PNTC, PNTA or PNTM then NextPalletID = Pallet W04

of SFk
- if routing word type is PNTD then NextPalletID = Pallet W03 of SFk

8. Logical units and words related to the Scenario Functions SFf and SFc are linked to
the corresponding pallets of the Scenario Function SFk.
- Copy and link input logical units and the related words to the W02 pallet of the

Scenario Function SFk using a ternary relationship
- Copy and link output logical units and the related words to the W04 and the

W03 pallets of the Scenario Function SFk using a ternary relationship.
9. Add additional information specific to the Lyee internal layer7

7 See [BenAyed 03] for more details.

13

a) Add one PNTR routing word to the W03 pallet of the Scenario Function SFk,
specify NextpalletID as Pallet W04 of SFk

b) Add one PNTN routing word to the W04 pallet of SFk, specify NextpalletID as
Pallet W02 of SFk

c) Add one PNTN routing word to the W02 pallet of SFk, specify NextpalletID as
Pallet W03 of SFk

d) Add Input Vectors to the Scenario Function SFk
e) Add Output Vectors to the Scenario Function SFk
f) For each output Logical Unit LUi related to SFk add Structural Vectors

10. Delete the Scenario Functions SFF and SFC and their related logical units and words.

The application of this rule for the PRD of the ‘Split a goal’ example shown in Figure

11 produces the PRD shown in Figure 13. The Scenario Functions SF01 and SF02 are
merged into a single Scenario Function ‘SF01bis’. The input logical units ‘SR01’ and
‘SR02’ are added to W02 pallet of ‘SF01bis’. The output logical units ‘SW01’ and ‘SW02’
are added to W04 pallet of ‘SF01bis’.

4.2. The Brotherhood merge tactics

The ‘Brotherhood merge’ means that N scenarios functions having the same source

Scenario Function SFi in N Continuous Links for which they are targets are merged into a
single Scenario Function. In addition, let us specify that the source Scenario Function SFi is
not the source of any backward link (multiplex or duplex). This tactics is applicable:

 (i) in the situations where the external environment or the user requirements impose one
physical screen to the Human Computer Interface; in this case the brotherhood Scenario
Functions are related to Defineds of type ‘screen’;

(ii) in the situations where optimization considerations require a set of clustered database
accesses and where database distribution considerations allows that; in this case
brotherhood Scenario Functions are related to Defineds of type ‘database’.

Figure 14 illustrates graphically the ‘brotherhood merge’ tactics. The tactics can be
applied successively several times to perform the merging of several set of brotherhood
Scenario Functions.

The “brothers” SF02 and
SF03 are merged into a
single Scenario Function

W03W02W04

SF01

W03W02W04

END

SW01 SR01

SW02

W03W02W04

SR02

SF02

SF03

SW03 SR03

W03W02W04

SW02 SR02

SF02

condition1

condition2

SW03 SR03

The “brothers” SF02 and
SF03 are merged into a
single Scenario Function

W03W02W04 W03W03W02W02W04W04

SF01

W03W02W04 W03W03W02W02W04W04

END

SW01 SR01SR01

SW02SW02

W03W02W04 W03W03W02W02W04W04

SR02SR02

SF02

SF03

SW03SW03 SR03SR03

W03W02W04 W03W03W02W02W04W04

SW02 SR02

SF02

condition1

condition2

SW03SW03 SR03

Figure 14 : The brotherhood merge

4.2.1 Example of Brotherhood merge

In order to illustrate the optimization rule we defined for the ‘Brotherhood merge’

tactics, we use the ‘Room booking’ example. Room Booking is a functionality of a traveller
support system which helps the users of the system to make hotel room reservations for the

14

customers according to their specific needs. The database includes information about
customers and rooms offered for booking. The system shall let the user state his/her
booking requirements in terms of date (beginning and ending dates of the booking period),
as well as location of the hotel (name of the city in which the hotel shall be chosen), and
category of the hotel (expressed as a number of stars).

Let us suppose that, for implementing the ‘room booking’ functionality, the user
interactions have been initially designed as requiring three Defineds of type screens as
shown in Figure 15. The user specifies the customer for which the booking is recorded, and
the booking requirements for a room (booking dates, location, and desired hotel category).
When the OK button is pressed, the system checks first if the customer exists. For an
unknown customer, the ‘customer error message’ is displayed in an output screen. If the
customer exists, the system checks the availability of a room satisfying the customer’s
requirements. If there is no available room which meets the customer’s requirement, the
‘Not Available Room’ error message is displayed in a second output screen. The Cancel
button allows the user to stop the process at any moment. The Stop button ends the
interaction with the user.

Customer

Begindate

Enddate

Room Booking

City

Stars

Ok Cancel

Customer

Begindate

Enddate

Room Booking

City

Stars

Ok Cancel

Customer existence error Message

Return Stop

Customer existence error Message

Return Stop

Customer Error Message

No Available room error Message

Return Stop

No Available room error Message

Return Stop

Not Available Room Error

Message

Figure 15: The user screens for the ‘Room booking’ example

The PRD corresponding to the ‘Room booking’ example obtained by the execution of
the map section <Capture Lyee User Requirements, Specify Lyee Software Requirements,
Integrated Mapping Strategy> is shown in Figure 16.

W04

SF01

SW01 SR01

Sc1

W02 W03

W04

SF02

W02 W03

FR01

W04

SW02 SR02

Scase1

W02 W03

W04

SW03 SR03

Scase2

W02 W03

End
CmdCancel=true

∃∃∃∃ Customer

No Available room

SF03

SF04

W04

SF01

SW01 SR01

Sc1

W02 W03

W04

SF02

W02 W03

FR01

W04

SW02 SR02

Scase1

W02 W03

W04

SW03 SR03

Scase2

W02 W03

End
CmdCancel=true

∃∃∃∃ Customer ∃∃∃∃ Customer

No Available room

SF03

SF04

Figure 16 : The PRD of ‘Room booking’ example

Let us now assume that user requirements impose the use of a single physical screen to
support the ‘error messages’. Consequently, screens ‘Scase1’ and ‘Scase2’ should be
merged in the single screen. Figure 17 shows this screen.

The application of the optimization rule will produce the PRD shown in Figure 18.

15

Customer existence error Message

Return Stop

No Available room error Message

Return Stop

Customer existence error Message

Return Stop

No Available room error Message

Return Stop

Figure 17 : The user screen
For the two error messages

W04

SF01

SW01 SR01

Sc1

W02 W03

W04

SF02

W02 W03

FR01

W04

SW02 SR02

Scase

W02 W03

EndCmdCancel=true

∃∃∃∃ Customer or No Available room

SF03bis

SW03 SR03

W04

SF01

SW01 SR01

Sc1

W02 W03

W04

SF02

W02 W03

FR01

W04

SW02 SR02

Scase

W02 W03

EndCmdCancel=true

∃∃∃∃ Customer or No Available room∃∃∃∃ Customer or No Available room

SF03bis

SW03 SR03

Figure 18 : The ‘Optimized PRD’ for the ‘Room booki ng’

example

4.2.2. Optimization rule for the ‘Brotherhood merge’ tactics

This rule performs the following set of actions for a given set of brotherhood Scenario
Functions SFj identified as candidate to the brotherhood merge in the given PRDi. We
consider SFi as the source Scenario Function in the N Continuous Links for which the
brotherhood Scenario Functions SFj are targets. SFk is the Scenario Function produced by
the application of the rule to the brotherhood Scenario Functions SFj.

1. Create one Scenario Function SFk, define SFID
2. Link SFk to the PRDi.
3. Create three Pallets W04, W02 and W03.
4. Link the three pallets to the SFk
5. For each pallet, define the PalletID
6. Copy InterSF routing words related to the W03 pallet of each SFj to the W03 pallet

of SFk. The InterSF routing word corresponding to the continuous, multiplex or
duplex link between SFf and SFc should be deleted.

7. Each InterSF routing words in the PRD which have SFf or SFc as target should be
modified (same sub-actions than in the Father-Child merge)

8. Logical units and words related to each Scenario Function SFj are linked to the
corresponding pallets of the Scenario Function SFk (same sub-actions than in the
Father-Child merge)

9. Add additional information specific to the Lyee internal layer (same sub-actions
than in the Father-Child merge)

10. Delete all Scenario Functions SFj and their related logical units and words.

The application of this rule for the PRD of the ‘Room booking’ example shown in
Figures 15 and 16 produces the PRD shown in Figure 18. The Brotherhood Scenario
Functions ‘SF03’ and ‘SF04’ are merged into a single Scenario Function ‘SF03bis’. The
input logical units ‘SR02’ and ‘SR03’ are added to W02 pallet of ‘SF03bis’. The output
logical units ‘SW02’ and ‘SW03’ are added to W04 pallet of ‘SF03bis’.

4.3. The guideline associated to the Map section

The guideline associated to the Map section <Specify Lyee Software requirement,
Specify Lyee Software requirement, Optimization strategy> implements the following
optimization rules:

16

For each set of Scenario Functions in a PRD describing an atomic interaction (see
[Rolland02d])

For each set of SFs candidates to a brotherhood merge
List the brotherhood SFs to the user
If requested Apply the ‘Brotherhood Merge’ tactics for these SFs

For each set of SFs candidates to a Father-child merge
List the couple of SFs to the user
If requested Apply the ‘Father-Child Merge’ tactics

5. Conclusion

We presented in this paper a formalization of the Lyee Process Model using the concept

of Map. We also developed two methodological guidelines associated to two sections of the
Lyee Map, respectively <Capture Lyee User Requirements, Specify Lyee Software
Requirements, Integrated Mapping Strategy>, <Specify Lyee Software requirements,
Specify Lyee Software requirements, Optimization strategy>.

For a given PSG, the mapping between the concepts of the Lyee user requirements
meta-model and the Lyee software requirements meta-model can be performed in two
alternative ways, following one of the two sections of the Lyee Map, namely <Capture
Lyee User Requirements, Specify Lyee Software Requirements, Integrated Mapping
Strategy> and <Capture Lyee User Requirements, Specify Lyee Software Requirements, N
to M Mapping Strategy>. The guideline associated to the former allows us to generate
automatically a PRD from a PSG. Experimentation with various examples shown that the
mapping is possible by following the rules presented in Section 3. The result is however a
PRD that could be transformed to support improvements. Furthermore, the second
guideline presented in this paper implements the PRD optimization strategy.

Still now, we defined the guidelines which support the execution of the map sections.
The Lyee process knowledge should be completed in order to guide the Lyee engineer to
choose between two alternative sections from a source intention towards a target intention
in the Lyee Map. This type of guideline, describing how other guidelines should be applied
is required, for instance, to guide the selection of one of the two strategies, Integrated
Mapping and N to M Mapping during the execution of the Lyee Map.

The future work includes the following tasks: (i) to develop a software support for the
elicitation of the user centric Lyee requirements and the automated generation of the Lyee
software requirements; (ii) to define the methodological guidelines supporting the
navigation in the Lyee Map and to offer an automatic support for their execution.

6. References:

[Alexander 77] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I. Fiksdahl-King, S. Angel, ‘A

Pattern Language’, Oxford University Press, New York, 1977.
[Benjamen 99] A. Benjamen, “Une Approche Multi-démarches pour la modélisation des demarches

méthodologiques”, Ph. D thesis, University Paris1.
[BenAyed 02] M. BenAyed, "Lyee Program Execution Patterns". Proceeding of Lyee-W02: New Trends in

Software Methodologies, Tools and Techniques, pp 212-224, Paris, 2002.
[BenAyed 03] M. Ben Ayed, S. Nurcan, “Technical Report TR2-1”, Lyee International Research Project,

University Paris1, 2003.
[Coplien 95] J. Coplien, D. Schmidt (eds.), “Pattern Languages of Program Design”, Addison Wesley,

Reading, MA, 1995.
[Gamma 95] E. Gamma, R. Helm, R. Johnson, J. Vlissides, “Design Patterns : Elements of Reusable Object

Oriented Software”, Addison Wesley, Reading, MA, 1995.

17

[Negoro 01a] F. Negoro, “Methodology to Determine Software in a Deterministic Manner”, Proceeding of
ICII, Beijing, China, 2001.

[Negoro 01b] F. Negoro, “A proposal for Requirement Engineering”, Proceeding of ADBIS, Vilnius,
Lithuania, 2001.

[Nurcan 02] S. Nurcan, M. BenAyed, C. Rolland, “Scientific Report Sc1”, Lyee International Research
Project, University Paris1, 2002.

[Prakash 99] N. Prakash, “On Method Statics and Dynamics”, Information Systems, Vol 24, No 8, pp 613-
637, 1999.

[Rolland 99] C. Rolland, N. Prakash, A. Benjamen, “A Multi-Model View of Process Modelling”,
Requirements Engineering Journal, Vol 4, No 4, 169-187, 1999.

[Rolland 00] C. Rolland et al., “Bridging the Gap Between Organizational Needs and ERP Functionality”,
Requirement Engineering, pp. 180-193, Springer-Verlag London Limited, 2000.

[Rolland 02a] C. Rolland, M. Ben Ayed, "Understanding the Lyee Methodology through Meta Modelling",
Proceeding of EMMSAD, Toronto, 2002.

[Rolland 02b] C. Rolland, “A User Centric View of Lyee Requirement” , Proceedings of Lyee-W02: New
Trends in Software Methodologies, Tools and Techniques, pp 155-169, Paris, 2002.

[Rolland 02c] C. Rolland, C. Souveyet, M. Ben Ayed, "Users Requirements Elicitation in the Lyee Software
Factory". Proceeding of SCI, Orlando, 2002.

[Rolland 02d] C. Rolland, “Technical Report TR1-2”, Lyee International Research Project, University Paris1,
2002.

[Souveyet 02] C. Souveyet, C. Salinesi, “Generating Lyee Program from User Requirements with a Meta-
Model based Methodology”, Proceedings of Lyee-W02: New Trends in Software Methodologies, Tools
and Techniques, Paris, 2002.

