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Abstract. The overall objective of the research activity of the UP1 unit is to apply a 
method engineering approach to the Lyee methodology. This paper presents a 
formalization of the Lyee Process Model using the concept of Map. It develops also 
two methodological guidelines supporting (i) the mapping of the Lyee user-centric 
requirements, which have been previously specified using Design Patterns, into 
Lyee software requirements and (ii) the optimization of the latter. The motivation is 
the search for efficiency and effectiveness in the formulation of requirements in 
accordance with the two levels Lyee Product Meta-Model. The pay-off will be a 
more productive process of requirements formulation and a better quality result. 

 
 
1. Introduction 
 

LyeeALL is a CASE environment which aims at transforming software requirements 
into code. These requirements are expressed in rather low-level terms such as screen 
layouts and database accesses. Moreover they are influenced by the LyeeALL internals 
such as the Lyee identification policy of program variables, the generated program structure 
and the Lyee program execution control mechanism. As a consequence, it is difficult to get 
the Lyee customer away from the burden of Lyee internals instead of focusing his/her 
attention on the requirements. The Sorbonne group develops research towards meeting this 
need. The overall objective of the research activity of the UP1 unit is to apply a method 
engineering approach to the Lyee methodology. As a first step, the group is aiming at (1) 
defining a user-centric requirements model; (2) developing methodological rules to support 
the capture of these requirements in a systematic way; (3) generating the Lyee software 
requirements from these user requirements. In a second step, the objective is to provide an 
intelligent software support for the elicitation of user centric requirements and the 
automated generation of the Lyee software requirements. 

Any method is defined as composed of a product model and a process model [Prakash 
99]. The product model defines the set of concepts, their properties and relationships that 
are needed to express the outcome of the process. The process model comprises the set of 
goals, activities and guidelines to support goal achievement and action execution. Our 
research approach is driven by these two elements, the Lyee product and process models. 

•  The Lyee requirements product model 

We used a meta modelling approach to model (i) the set of concepts underlying the 
Lyee software requirements and (ii) to abstract from them the user-centric requirements 
model. The result of this effort is a 2-layer meta model. The upper layer corresponds to the 
user-centric requirements model whereas the lower layer identifies the set of concepts 
required to express software requirements in Lyee terms. We refer to those as Lyee user 
requirements meta-model and Lyee software requirements meta-model respectively. These 
two meta-models constitute the Lyee product model that we propose in the Lyee project.  
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•  The Lyee requirements process model 

As far as we are concerned with the Lyee process model, our aim is threefold: 
(1) to systematise the capture of user-centric requirements and their formulation in terms 

which comply with the upper layer of the meta-model thanks to the design patterns, 
(2) to define rules for mapping to transform the set of Lyee requirements expressed with 

the concepts of the upper layer of the meta-model into a set of equivalent requirements 
expressed in terms of the lower layer of the meta-model, 

(3) to implement software tools to support the capture and formulation of these 
requirements, being Lyee user requirements and Lyee software requirements. 

This paper is organized as follows. Section 2 defines Lyee Requirements Process 
Model. In order to formalize this Process Model, we use the MAP formalism which helps 
identifying the key process intentions and the possible strategies to achieve them. Section 3 
develops one of the two alternative methodological guidelines to perform the mapping 
between the concepts of the Lyee user requirements meta-model and the ones of the Lyee 
software requirements meta-model. Section 4 presents the methodological guideline 
supporting the optimization of a given Process Route Diagram (PRD). Some idea of future 
work is given in the conclusion. 
 
 
2. The Lyee Requirements Process Model  
 

This section describes the Lyee Requirements Process Model using the MAP formalism. 
We first recall the Lyee Requirements Product Model and than present the Lyee Map. 

 
2.1. Lyee Requirements Product Model  

As presented in [Rolland 02a], [Rolland 02b], [Rolland 02c] and [Souveyet 02], the 
result of the conception effort for the Lyee product model is the two layers meta-model 
shown in Figure 1. This shows the Product Meta-Model1 and highlights the separation 
between the Lyee user requirements concepts and the Lyee software requirements concepts.  
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Figure 1: The Lyee Product Meta-Model  

                                                 
1 The term meta-model is used in the report in the same sense as the term meta schema.   
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2.2. The Lyee Map 
 

The Lyee Requirements Process Model is formalized as a Process Map with the key 
process intentions and the possible strategies to achieve them, and the associated 
guidelines. This section is organized as follows: Section 2.2.1 introduces the Process Meta-
Model which allows us to specify the Lyee process model as a map. Section 2.2.2 describes 
broadly the Lyee process model, i.e. the Lyee Map. Section 2.2.3 introduces guidelines 
associated to the Lyee Map. 
 

2.2.1. The Process Meta-Model 
 

A map [Rolland 99], [Rolland 00], [Benjamen 99] is a process model in which a non-
deterministic ordering of intentions and strategies has been included. It is a labeled directed 
graph with intentions as nodes and strategies as edges between intentions. As shown in 
Figure 22, a map consists of a number of sections each of which is a triplet <source 
intention I3

i, target intention I j, strategy S4
ij>. There are two distinct intentions called Start 

and Stop respectively that represent the intentions to start navigating in the map and to stop 
doing so. Thus, it can be seen that there are a number of paths in the graph from Start to 
Stop. The map is a navigational structure that supports the dynamic selection of the 
intention to be achieved next and the appropriate strategy to achieve it whereas the 
associated guidelines help in the achievement of the selected intention. 
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Figure 2: The map meta-model  

A strategy is an approach, a manner to achieve an intention. The strategy, as part of the 
triplet <I i,Ij,Sij> characterizes the flow from I i to I j and the way I j can be achieved. The 
specific manner in which an intention can be achieved is captured in a section of the map 
whereas the various sections having the same intention I i as a source and I j as target show 
the different strategies that can be adopted for achieving Ij when coming from I i. Similarly, 
there can be different sections having I i as source and Ij, Ik, ....In as targets. These show the 
different intentions that can be achieved after the achievement of Ii. 

There might be several flows from I i to I j, each corresponding to a specific strategy. In 
this sense the map offers multi-thread flows. There might also be several strategies from 
different intentions to reach an intention I i. In this sense the map offers multi-flow paths to 
achieve an intention. The map contains a finite number of paths, each of them prescribing a 
way to develop the product (a Lyee program), i.e. each of them is a Lyee process model. 
                                                 
2 We use an E/R like notation. A box represents en Entity Type (ET), the labeled link represents a Relationship Type (RT) 
and the embedded box refers to an objectified RT. 
3 Intention are in italics (I i, I j) 
4 Strategies are in “ arial narrow ”(Sij) 
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Therefore the map is a multi-model. The approach suggests a dynamic construction of the 
actual path by navigating in the map. Because the next intention and strategy to achieve it 
are selected dynamically, guidelines that make available all choices open to handle a given 
situation are of great importance. The Lyee Map has such associated guidelines. A guideline 
is a set of indications on how to proceed to achieve an intention. A guideline embodies 
method knowledge to guide the Lyee engineer in achieving an intention in a given situation. 
The execution of each map section is supported by a guideline which can be atomic or 
compound. Some sections in a map can be defined as maps in a lower level of abstraction. 

 
2.2.2. The Lyee process model or the Lyee Map 

 
This section describes the Lyee process model by instantiating the concepts of the 

process meta-model presented in section 2.2.1. Figure 3 shows the Lyee process model, i.e. 
the Lyee Map. As shown in this figure, there are three key intentions in the Lyee process 
model, namely Capture Lyee User Requirements, Specify Lyee software requirements and 
Generate Lyee program. We refer to them as ‘Process Intentions’. Capture Lyee User 
Requirements refers to all activities required to instantiate the upper level of the Product 
Model for a given application whereas Specify Lyee software requirements refers to all 
those activities that are needed to map the concepts of the upper level of the Product Model 
into the concepts of the lower layer. Eight strategies are used in the Lyee Process Model. 

A Lyee program can be generated following different paths in the Lyee Map, in other 
words, using several methodological approaches. For instance, the Lyee engineer can first 
follow the section <Start, Specify Lyee Software Requirements, From scratch strategy>, 
and then <Specify Lyee Software Requirements, Generate Lyee program, LyeeAll 
generation strategy>. The path including these two sections was documented in [Nurcan 
02]. In this paper, we focus on the two map sections drawn in bold in Figure 3. 
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Figure 3: The Lyee process model : the Lyee Map  

 

2.2.3. The guidelines associated to the Lyee Map  
 
The guideline corresponding to the map section <Start, Capture Lyee User 

Requirements, Design pattern driven strategy>  was reported in [Rolland 02b], [Rolland 
02d] and [BenAyed 03]. The two map sections <Capture Lyee User Requirements, Specify 
Lyee Software Requirements, Integrated mapping strategy> and <Capture Lyee User 
Requirements, Specify Lyee Software Requirements, N to M Mapping Strategy> describe 
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two alternative ways to transform a PSG (concept of the upper layer of the Lyee Product 
Model) into a PRD (concept of the lower layer of the Lyee Product Model).  

The execution of the map section <Capture Lyee User Requirements, Specify Lyee 
Software Requirements, Integrated mapping strategy> transforms each Node (related to a 
Defined) in a given PSG into a Scenario Function in the corresponding PRD. The guideline 
associated to this map section will be described and illustrated in §3. 

The execution of the map section <Capture Lyee User Requirements, Specify Lyee 
Software Requirements, N to M Mapping Strategy> transforms N Nodes (with their related 
Defineds) in a given PSG into M Scenario Functions in the corresponding PRD. The 
methodological knowledge supporting this map section was formally defined and illustrated 
in [BenAyed 03]. 

The execution of the map section < Specify Lyee Software Requirements, Specify Lyee 
Software Requirements, Optimisation strategy> aims to perform a set of optimization 
operations on the Lyee Software Requirements which are described by instantiation of the 
concepts of the Lyee Product Model’s lower layer. The guideline associated to this map 
section will be described and illustrated in §4. 

 
3. The guideline supporting the map section <Capture Lyee User Requirements, 
Specify Lyee Software Requirements, Integrated  Mapping strategy> 
 

The aim of this section is to present the guideline associated to the map section 
<Capture Lyee User Requirements, Specify Lyee Software Requirements, Integrated 
Mapping Strategy> (see Figure 3), and the set of underlying mapping rules useful to 
establish the correspondence between the concepts of the two layers in the Lyee Product 
Meta-Model. Each mapping rule exploits the structural relationships between some 
concepts of the upper layer of the Product Meta-Model and some others in the lower layer 
(Figure 1). The guideline supporting the Map section <Capture Lyee User Requirements, 
Specify Lyee Software Requirements, Integrated Mapping Strategy> executes successively 
the following mapping rules for a given PSG in order to produce a PRD: 

- Apply the mapping rule R0 to transform the PSG into a PRD, 
- For each intermediate Node of the PSG: Apply the mapping rule R1S11 to transform 

the Node into a Scenario Function in the corresponding PRD, 
- For each Defined of the PSG: Apply the mapping rule R2S11  to transform the 

Defined into one or several Logical Units in the Scenario Function; and to transform 
the items of the Defined into Domain Words shared by the Logical Units, 

- Apply the mapping rule R3S11  to transform links between Nodes into InterSF 
Routing Words, 

- Apply the mapping rule R4 to add informations specific to the Lyee internal layer. 
 
3.1. The Mapping Rule R0: Mapping a PSG into a PRD 
 

In the Lyee process, each PSG is mapped into a PRD whatever the mapping strategy 
used. The mapping rule R0 performs the following actions: (i) Create a PRD corresponding 
to the PSG in hand and (ii) Define the PRD’s name. 
 
3.2. The Mapping Rule R1S11 : Mapping a Node into a Scenario Function 
 

The strategy of the Lyee Map presented in Section 3 is called Integrated Mapping 
because each Node in a given PSG is mapped into a Scenario Function. In other words, 
Integrated Mapping means “One to One mapping” for all Nodes. Figure 4 illustrates 
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graphically the ‘One to One Mapping’ strategy applied to two Nodes related to Defineds of 
type ‘screen’. 
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Figure 4: The illustration of the ‘One to One Mappi ng’ strategy 

 
In order to illustrate the Integrated Mapping Strategy, we use the ‘Split a Goal’ 

example. Split a Goal is a functionality which, given a goal statement such as ‘Withdraw 
cash from an ATM’, automatically decomposes it into a verb and its parameters. For 
example, Withdraw is the verb, cash is the target parameter of the verb and from an ATM is 
the means parameter. For this example, we will consider only the two parameters 
exemplified above, target and means. 
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Figure 5: The user screen for 

the ‘Split a Goal’ example  
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Figure 6: Formulation of the user centric requireme nts 

for the ‘Split a goal’ example  

Figure 5 shows the user screen designed for the ‘Split a Goal’ example. The Split button 
triggers the decomposition of the goal statement provided by the user in the Goal widget 
and the display of the result of this decomposition in the widgets verb, target and means. 
The Cancel button allows the user to stop the process at any moment. 

Figure 6 presents the instance of the concepts in the upper layer of the Product Meta-
Model created during the formulation of the user centric  requirements for the given 
example. This instance is drawn using the UML object diagram notations. It shows that 
there is one PSG ‘PsgSplit’ which is composed of one Defined of type screen, namely 
‘Split’, gathering the input and output items of the interaction. The ‘Split’ Defined 
comprises active items (cmdSplit and cmdCancel), output items (verb, target, means) and a 
passive item (Goal). Each output item in the Defined ‘Split’ is associated with a formula 
that is its calculation rule.  
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Mapping rule R1S11 
5:  An intermediate node in the upper layer is transformed into a 

Scenario Function in the lower layer. 
 

The mapping rule R1S11  performs the following actions for a given node in the PSG: 

1. Create one SF for the intermediate node of the PSG; define SFID (concatenation of the 
string ‘SF’ and a sequential number), 

2. Link the SF to the PRD (the one which has been created by the execution of the 
mapping rule) 

3. Create the three pallets W04, W02 and W03,  
4. Link the three pallets to the SF (Pallet belongs to SF) 
5. For each pallet, define the PalletID (concatenation of SFID and the pallet name) 

Example : The PSG ‘PsgSplit’ was previously transformed into the PRD ‘PrdSplit’ by the 
application of the mapping rule R0. The intermediate node ‘Node2’ is transformed into the 
Scenario Function ‘SF01’  linked to the PRD ‘PrdSplit’. The three pallets ‘SF01W04’, 
‘SF01W02’ and ‘SF01W03’ are created and linked to ‘SF01’, their PalletID are specified. 

 
3.3. The Mapping Rule R2S11 : Mapping a Defined into Logical Unit(s) 
 
Mapping rule R2S11 :  A Defined is transformed into one or several Logical Units in the 
Scenario Function created by the application of the mapping rule R1 S11 .  The items of 
the Defined become Domain Words shared by the Logical Units. 
 

A Defined is mapped into one or several Logical Units according to the Defined type. 
An Item is mapped into one or several Domain Words. These Words can belong to Logical 
Units in the same or in different Scenario Functions.  

Let us consider an instance of PSG called PSGi
6. The intermediate node of PSGi 

(corresponding to the Defined in hand) has already been transformed into an instance of 
Scenario Function by the application of R1S11 . Let us call Definedj the Defined in hand. 
The Scenario Function corresponding to the intermediate node of  PSGj  related to Definedj 
is called SFj . The mapping rule R2S11  performs the following actions: 

•  If  the type of Definedj is ‘Screen’ : 
1. Create two logical units SRj and SWj   
2. Specify the LogicalID and the Device (Defined name) of  SRji and SWj   
3. For each input item in Definedj : (i) Create one instance of domain word, we call 

it wordk  (ii) Specify the name (item name) and the domain (item domain) of 
wordk  (iii) Associate the domain word wordk to the pallet W02 of the SFj and to 
the SRj logical unit using a ternary relationship 

4. For each output item in Definedj : (i) Create one instance of domain word, we 
call it wordm  (ii) Specify the name (item name), the domain (item domain), the 
L4-formula (output item formula), and the L3-condition (item L3- condition), 
(iii) Associate the domain word wordm to the pallet W04 of the SFj and to the 
SWj logical unit using a ternary relationship, (iv) Associate wordm to the pallet 
W03 of the SFj and the to SWj logical unit using a ternary relationship. 

•  If the type of Definedj is ‘Database’ : 

                                                 
5 This notation expresses that R1S11 is the first rule corresponding to the ‘Integrated mapping’ strategy. In fact, the 
mapping rule R0 and R4 are also used when the ‘N to M mapping’ strategy is applied. 
6 The sub-index letter is used to indicate an instance of a concept, for example Definedj is an instance of 
concept Defined. 
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1. If there are input items in Definedj :  
- Create one logical unit FRj 
- Specify LogicalID and Device (Defined name) of FRj 
- For each input item in Definedj : (i) Create a domain word, we call it wordk , 

(ii) Specify the name (item name) and the domain (item domain), (iii) 
Associate wordk  to the pallet W02 of the SFj and the FRj logical unit using a 
ternary relationship  

2. If there are output items in Definedj : 
- Create one logical unit FWj 
- Specify LogicalID and Device (Defined name) of FWj 
- For each output item in Definedj : (i) Create a domain word, we call it wordm , 

(ii) Specify the name (item name), the domain (item domain), the L4-formula 
(output item formula), and the L3-condition (item L3- condition), (iii) 
Associate wordm  to the pallet W04 of the SFj and to the FWj logical unit, (iv) 
Associate wordm  to the pallet W03 of the SFj and to the FWj logical unit. 

Example : Figure 7 shows the instances of the concepts of the Lyee internal layer of the 
Product Meta-Model created by the application of the mapping rule R2S11  to the ‘Split a 
Goal’ example. The PSG ‘PsgSplit’ contains a single Defined ‘Split’  as shown in Figure 6. 
The Defined ‘Split’  will be transformed into one or several Logical Units by the application 
of  R2S11. The SF ‘SF01’ and the three pallets ‘SF01W02’, ‘ SF01W03’ and ‘SF01W04’ 
were created by the transformation of the ‘Node2’ by applying R1S11.   
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Figure 7 :The product resulting of the application of the mapping rule R2 S11 

to the ‘Split a Goal’ Example 
 
3.4. The Mapping Rule R3S11 : transforming Links between Nodes into InterSF 
Routing Words  

 
Links between PSG Nodes are of three different types: Continuous, Duplex and 

Multiplex. 
 
Mapping rule R3S11 :  Continuous, Multiplex or Duplex links between two Nodes are 
transformed into InterSF Routing Words. 
 

All links in the PSG becomes InterSF routing words in the corresponding PRD. The 
Multiplex link in the upper layer of the meta-model matches up with the PNTM routing 
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word in the lower layer. The Duplex link in the upper layer of the meta-model matches up 
with the PNTD routing word in the lower layer. The Continuous link in the upper layer of 
the meta-model matches up with the PNTC, PNTA and PNTE routing words in the lower 
layer according to the situation. 

Let us consider SFi and SFj, two Scenario Functions obtained by the transformation of 
two nodes Ni and Nj when the rule R1S11 has been performed. Let us consider also that Ni 
and Nj are respectively the source and the target nodes for a link Lij . We distinguish five 
situations depending of the types of the link, of the source and target nodes in the PSG. 
According to the situation, the mapping rule R3S11  performs the following actions:  

Situation 1: If  the link  Lij is of type Continuous and the target node is ‘End’:  
- Create a PNTEi routing word, specify the WordID   
- Specify NextPalletID of PNTEi (NextPalletID = End) 
- Link PNTEi to the W03 pallet of SFi (corresponding to the source node) 

Situation 2: If the link L ij is of type Continuous and the target node is related to a Defined 
of type database:  

- Create a PNTAi routing word, specify the WordID   
- Specify NextPalletID of PNTAi (NextPalletID = Pallet W04 of SFj 

corresponding to the target node) 
- Link PNTAi  to the W03 pallet of  SFi (corresponding to the source node) 

Situation 3: If  the link L ij is of type Continuous and the target node is related to a Defined 
of type screen : 

- Create a PNTCi routing word, specify the WordID   
- Specify NextPalletID of PNTCi (NextPalletID = Pallet W04 of SFj  

corresponding to the target node) 
- Link PNTCi  to the W03 pallet of  SFi (corresponding to the source node) 

Situation 4: If the link Lij is of type Multiplex : 
- Create a PNTMi routing word, specify the WordID 
- Specify NextPalletID of PNTMi (NextPalletID = Pallet W04 of SFj 

corresponding to the target node) 
- Link PNTMi  to the W03 pallet of  SFi (corresponding to the source node) 

Situation 5: If the link Lij is of type Duplex : 
- Create a PNTDi routing word, specify the WordID 
- Specify NextPalletID of PNTDi (NextPalletID = Pallet W03 of SFj 

corresponding to the target node) 
- Link PNTDi  to the W03 pallet of SFi (corresponding to the source node) 

Example: The user centric requirements shown in Figure 6 includes two Continuous links. 
The first Continuous link has ‘Begin’ as source node; this concept has not an equivalent  in 
the lower layer, in fact the immediate start point of ‘PrdSplit’ is the pallet W04 of the 
Scenario Function SF01. The second continuous link has intermediate node ‘Node2’ as 
source and ‘End’ as target. SFi corresponds to ‘SF01’ according to R3S11. We are in the first 
situation identified in this rule. Then we create a PNTE routing word and we link it to the 
W03 pallet of SF01. 
 
3.5. The Mapping Rule R4 : Adding information specific to the Lyee internal layer 
 

Some concepts of the lower layer of the meta model have no direct correspondence with 
the upper layer. These concepts are related to the Lyee knowledge and are necessary to 
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execute the Tense Control Function [Negoro01a], [Negoro01b], [BenAyed02], [Nurcan02]. 
Thus, the mapping rule supports the specifications of additional information specific to the 
Lyee Requirements of the Lyee Internal Layer. 
 
Mapping rule R4:  Add additional information specific to the Lyee Requirements of the 
Lyee Internal Layer  

The elements of the Lyee Internal Layer involved in this rule are IntraSF Routing 
Words (PNTR, PNTN) and Action Words ( PCR1, PCR2, PBOX, PWT1, PCL1, POP1, 
PRD1). The rule R4  performs the following actions (see [BenAyed 03] for more details): 

1. Add one PNTR routing word to the W03 pallet of each Scenario Function SFi in the 
PRD (the PRD was obtained by the transformation of the PSG in hand by the 
application of the mapping rule R0)  

2. Add one PNTN routing word to the W04 pallet of each SFi in the PRD 
3. Add one PNTN routing word to the W02 pallet of each SFi in the PRD 
4. Add one or several Input Vectors  to each Scenario Function SFi in the PRD  
5. Add one or several Output Vectors to each Scenario Function SFi in the PRD 
6. For each output Logical Unit LUi of the PRD (created by the transformation of the 

PSG in hand by applying the rule R0), add Structural Vectors 

Figure 8 shows the instances of the concepts of the Lyee internal layer of the Product Meta-
Model created by the application of the mapping rules R3S11  and R4 to the ‘Split a Goal’ 
example.  
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Figure 8 : The product resulting of the application  of the mapping rules R3 S11 and R4 

to the ‘Split a Goal’ Example 
 
4. The guideline supporting the map section < Specify Lyee Software Requirements, 
Specify Lyee Software Requirements, Optimization strategy> 
 

This section presents the guideline associated to the map section <Specify Lyee 
Software Requirements, Specify Lyee Software Requirements, Optimization strategy> (see 
Figure 3). The optimization of a PRD consists in transforming (merging) successively two 
or several Scenario Functions into single ones. Two merge tactics are proposed, 
respectively ‘Father-Child Merge’ and ‘Brotherhood Merge’. For a given PRD, these two 
tactics can be used in an intertwined manner.  
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4.1. The Father-Child merge tactics 

The ‘Father-Child merge’ term means that two Scenario Functions SFi and SFj related 
with a Continuous link are merged into a single Scenario Function. In addition, let us 
specify that the Scenario Function SFi is not the source of a backward link (multiplex or 
duplex). In this case, SFi is called the Father Scenario Function and SFj is called the Child 
Scenario Function. This tactics is applicable: 

 (i) in the situations where the external environment or the user requirements impose 
one physical screen to the Human Computer Interface; in this case the father and child 
Scenario Functions are related to Defineds of type ‘screen’; 

(ii) in the situations where optimization considerations require a set of clustered 
database accesses and where database distribution considerations allow that; in this case the 
father and child Scenario Functions are related to Defineds of type ‘database’. 
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are merged into a single Scenario Function

SF01

SW01

SW02

SR01

SR02

W03W02W04 W03W03W02W02W04W04

SF01

W03W02W04 W03W03W02W02W04W04

SF02

END

SW02 SR02

SW01 SR01

W03W02W04 W03W03W02W02W04W04

END

The “father” (SF01) and its “child” (SF02) 
are merged into a single Scenario Function

SF01

SW01

SW02

SR01

SR02

 
Figure 9: The father-child merge  

The tactics can be applied successively several times to perform the merging between 
several Scenario Functions which are in sequence in the PRD. Figure 9 presents two PRDs, 
respectively before and after the optimization strategy being applied using the ‘Father-Child 
merge’ tactics. This figure presents the two PRDs and the related SFs using the Lyee 
community notations. The ‘father’ Scenario Function ‘SF01’ and the ‘child’ Scenario 
Function  ‘SF02’ are merged in a single Scenario Function called ‘SF01’. 
 

4.1. 1 Example of Father-Child merge  

In order to illustrate this optimization rule, we make use of a variant of the ‘Split a 
Goal’ example.  
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Figure 10: The user screens for the ‘Split a 
goal’ example  
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Figure 11 : The PRD of ‘Split a Goal’ example 
 
The PRD corresponding to the ‘Split a Goal’ 
example is shown in Figure 11. 
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Let us suppose that, thanks to the Design Patterns, the user interactions have been 
initially designed as requiring two Defineds of type screens. Figure 10 shows the two 
screens of the adopted variant of the ‘Split a Goal’ example: the Split button triggers the 
decomposition of the goal statement provided by the user in the Goal widget and its display 
in the widgets verb, target and means. The Cancel button allows the user to stop the 
process at any moment. The Split button triggers the decomposition of the Goal. The Stop 
button ends the interaction with the user. 

Let us now assume that user requirements impose the use of a single physical screen to 
support the ‘Split a goal’ example. Consequently, screens ‘Sc1’ and ‘Sc2’ should be 
merged in the single screen ‘Split’. Figure 12 shows this screen. The application of the 
father-child optimization rule will produce the PRD shown in Figure 13. 
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Figure 12 : The user screen for  

the ‘Split a goal’ example 
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Figure 13 : The ‘Optimized PRD’ for 

the ‘Split a Goal’ example 

 

4.1.2. Optimization rule for the ‘Father-child merge’ tactics 

This rule performs the following set of actions for a given couple of Scenario Functions 
(SFf,  SFc) identified as candidate to the father-child merge in the given PRDi. We consider 
SFf as ‘Father’ Scenario Function and SFc as ‘Child’ Scenario Function. SFk is the Scenario 
Function produced by the application of the optimization rule. 

1. Create one Scenario Function SFk, define SFID 
2. Link SFk to the PRDi. 
3. Create the three Pallets W04, W02 and W03 
4. Link the three pallets to SFk  
5. For each pallet, define the PalletID 
6. Copy InterSF routing words related to the pallets W03 of SFf and SFc to the pallet 

W03 of SFk, The InterSF routing word corresponding to the continuous, multiplex 
or duplex link between SFf and SFc  should be deleted.  

7. Each InterSF routing word in the PRD having SFf or SFc as target should be 
modified : 
- if routing word type is PNTC, PNTA or PNTM then NextPalletID = Pallet W04 

of SFk  
- if routing word type is PNTD  then NextPalletID = Pallet W03 of SFk 

8. Logical units and words related to the Scenario Functions SFf and SFc are linked to 
the corresponding pallets of the Scenario Function SFk. 
- Copy and link input logical units and the related words to the W02 pallet of the 

Scenario Function SFk using a ternary relationship 
- Copy and link output logical units and the related words to the W04 and the 

W03 pallets of the Scenario Function SFk using a ternary relationship. 
9. Add additional information specific to the Lyee internal layer7 

                                                 
7 See [BenAyed 03] for more details. 
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a) Add one PNTR routing word to the W03 pallet of the Scenario Function SFk, 
specify NextpalletID as Pallet W04 of SFk 

b) Add one PNTN routing word to the W04 pallet of SFk, specify NextpalletID as 
Pallet W02 of SFk 

c) Add one PNTN routing word to the W02 pallet of SFk, specify NextpalletID as 
Pallet W03 of SFk 

d) Add Input Vectors  to the Scenario Function SFk 
e) Add Output Vectors to  the Scenario Function SFk  
f) For each output Logical Unit LUi related to SFk add Structural Vectors 

10. Delete the Scenario Functions SFF and SFC  and their related logical units and words.  
 
The application of this rule for the PRD of the ‘Split a goal’ example shown in Figure 

11 produces the PRD shown in Figure 13. The Scenario Functions SF01 and SF02 are 
merged into a single Scenario Function ‘SF01bis’. The input logical units ‘SR01’ and 
‘SR02’ are added to W02 pallet of ‘SF01bis’. The output logical units ‘SW01’ and ‘SW02’ 
are added to W04 pallet of ‘SF01bis’. 

 
4.2. The Brotherhood merge tactics 

 
The ‘Brotherhood merge’ means that N scenarios functions having the same source 

Scenario Function SFi in N Continuous Links for which they are targets are merged into a 
single Scenario Function. In addition, let us specify that the source Scenario Function SFi is 
not the source of any backward link (multiplex or duplex). This tactics is applicable: 

 (i) in the situations where the external environment or the user requirements impose one 
physical screen to the Human Computer Interface; in this case the brotherhood Scenario 
Functions are related to Defineds of type ‘screen’;  

(ii) in the situations where optimization considerations require a set of clustered database 
accesses and where database distribution considerations allows that; in this case 
brotherhood Scenario Functions are related to Defineds of type ‘database’. 

Figure 14 illustrates graphically the ‘brotherhood merge’ tactics. The tactics can be 
applied successively several times to perform the merging of several set of brotherhood 
Scenario Functions. 
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Figure 14 : The brotherhood merge 

 
4.2.1 Example of Brotherhood merge 

 
In order to illustrate the optimization rule we defined for the ‘Brotherhood merge’ 

tactics, we use the ‘Room booking’ example. Room Booking is a functionality of a traveller 
support system which helps the users of the system to make hotel room reservations for the 
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customers according to their specific needs. The database includes information about 
customers and rooms offered for booking. The system shall let the user state his/her 
booking requirements in terms of date (beginning and ending dates of the booking period), 
as well as location of the hotel (name of the city in which the hotel shall be chosen), and 
category of the hotel (expressed as a number of stars).  

Let us suppose that, for implementing the ‘room booking’ functionality, the user 
interactions have been initially designed as requiring three Defineds of type screens as 
shown in Figure 15. The user specifies the customer for which the booking is recorded, and 
the booking requirements for a room (booking dates, location, and desired hotel category). 
When the OK button is pressed, the system checks first if the customer exists. For an 
unknown customer, the ‘customer error message’ is displayed in an output screen. If the 
customer exists, the system checks the availability of a room satisfying the customer’s 
requirements. If there is no available room which meets the customer’s requirement, the 
‘Not Available Room’ error message is displayed in a second output screen. The Cancel 
button allows the user to stop the process at any moment. The Stop button ends the 
interaction with the user. 
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Figure 15: The user screens for the ‘Room booking’ example 
 

The PRD corresponding to the ‘Room booking’ example obtained by the execution of 
the map section  <Capture Lyee User Requirements, Specify Lyee Software Requirements, 
Integrated Mapping Strategy> is shown in Figure 16. 

W04

SF01

SW01 SR01

Sc1

W02 W03

W04

SF02

W02 W03

FR01

W04

SW02 SR02

Scase1

W02 W03

W04

SW03 SR03

Scase2

W02 W03

End
CmdCancel=true

∃∃∃∃ Customer 

No Available room

SF03

SF04

W04

SF01

SW01 SR01

Sc1

W02 W03

W04

SF02

W02 W03

FR01

W04

SW02 SR02

Scase1

W02 W03

W04

SW03 SR03

Scase2

W02 W03

End
CmdCancel=true

∃∃∃∃ Customer ∃∃∃∃ Customer 

No Available room

SF03

SF04

 
Figure 16 : The PRD of ‘Room booking’ example  

Let us now assume that user requirements impose the use of a single physical screen to 
support the ‘error messages’. Consequently, screens ‘Scase1’ and ‘Scase2’ should be 
merged in the single screen. Figure 17 shows this screen. 

The application of the optimization rule will produce the PRD shown in Figure 18. 
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Figure 17 : The user screen 
For the two error messages 
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Figure 18 : The ‘Optimized PRD’ for the ‘Room booki ng’ 

example 
 

4.2.2. Optimization rule for the ‘Brotherhood merge’ tactics 
 

This rule performs the following set of actions for a given set of brotherhood Scenario 
Functions SFj identified as candidate to the brotherhood merge in the given PRDi. We 
consider SFi as the source Scenario Function in the N Continuous Links for which the 
brotherhood Scenario Functions SFj are targets. SFk  is the Scenario Function produced by 
the application of the rule to the brotherhood Scenario Functions SFj. 

1. Create one Scenario Function SFk, define SFID 
2. Link SFk to the PRDi. 
3. Create three Pallets W04, W02 and W03. 
4. Link the three pallets to the SFk  
5. For each pallet, define the PalletID  
6. Copy InterSF routing words related to the W03 pallet of each SFj to the W03 pallet 

of SFk. The InterSF routing word corresponding to the continuous, multiplex or 
duplex link between SFf and SFc  should be deleted. 

7. Each InterSF routing words in the PRD which have SFf or SFc as target should be 
modified (same sub-actions than in the Father-Child merge) 

8. Logical units and words related to each Scenario Function SFj are linked to the 
corresponding pallets of the Scenario Function SFk (same sub-actions than in the 
Father-Child merge) 

9. Add additional information specific to the Lyee internal layer (same sub-actions 
than in the Father-Child merge) 

10. Delete all  Scenario Functions SFj  and their related logical units and words. 

The application of this rule for the PRD of the ‘Room booking’ example shown in 
Figures 15 and 16 produces the PRD shown in Figure 18. The Brotherhood Scenario 
Functions ‘SF03’ and ‘SF04’ are merged into a single Scenario Function ‘SF03bis’.  The 
input logical units ‘SR02’ and ‘SR03’ are added to W02 pallet of ‘SF03bis’. The output 
logical units ‘SW02’ and ‘SW03’ are added to W04 pallet of ‘SF03bis’.  
 
4.3. The guideline associated to the Map section 

The guideline associated to the Map section <Specify Lyee Software requirement, 
Specify Lyee Software requirement, Optimization strategy> implements the following 
optimization rules: 
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For each set of Scenario Functions in a PRD describing an atomic interaction (see 
[Rolland02d])  

For each set of SFs candidates to a brotherhood merge 
List the brotherhood SFs to the user 
If requested Apply the ‘Brotherhood Merge’ tactics for these SFs 

For each set of SFs candidates to a Father-child merge 
List the couple of  SFs to the user 
If requested Apply the ‘Father-Child Merge’ tactics 

 
5. Conclusion  

 
We presented in this paper a formalization of the Lyee Process Model using the concept 

of Map. We also developed two methodological guidelines associated to two sections of the 
Lyee Map, respectively <Capture Lyee User Requirements, Specify Lyee Software 
Requirements, Integrated Mapping Strategy>, <Specify Lyee Software requirements, 
Specify Lyee Software requirements, Optimization strategy>.  

For a given PSG, the mapping between the concepts of the Lyee user requirements 
meta-model and the Lyee software requirements meta-model can be performed in two 
alternative ways,  following one of the two sections of the Lyee Map, namely <Capture 
Lyee User Requirements, Specify Lyee Software Requirements, Integrated Mapping 
Strategy> and <Capture Lyee User Requirements, Specify Lyee Software Requirements, N 
to M Mapping Strategy>. The guideline associated to the former allows us to generate 
automatically a PRD from a PSG. Experimentation with various examples shown that the 
mapping is possible by following the rules presented in Section 3. The result is however a 
PRD that could be transformed to support improvements. Furthermore, the second 
guideline presented in this paper implements the PRD optimization strategy. 

Still now, we defined the guidelines which support the execution of the map sections. 
The Lyee process knowledge should be completed in order to guide the Lyee engineer to 
choose between two alternative sections from a source intention towards a target intention 
in the Lyee Map. This type of guideline, describing how other guidelines should be applied 
is required, for instance, to guide the selection of one of the two strategies, Integrated 
Mapping and N to M Mapping during  the execution of the Lyee Map.  

The future work includes the following tasks: (i) to develop a software support for the 
elicitation of the user centric Lyee requirements and  the automated generation of the Lyee 
software requirements; (ii) to define the methodological guidelines supporting the 
navigation in the Lyee Map and to offer an automatic support for their execution. 
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