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We present a new proof of the extended arc-sine law related to Walsh's Brownian motion, known also as Brownian spider. The main argument mimics the scaling property used previously, in particular by D. Williams [12], in the 1-dimensional Brownian case, which can be generalized to the multivariate case. A discussion concerning the time spent positive by a skew Bessel process is also presented.

1 Introduction a) Recently, some renewed interest has been shown (see e.g. [START_REF] Papanicolaou | Random Motion on Simple Graphs[END_REF]) in the study of the law of the vector -→ A 1 = 1 0 1 (Ws∈I i ) ds; i = 1, 2, . . . , n , where (W s ) denotes a Walsh Brownian motion, also called Brownian spider (see [START_REF] Walsh | A diffusion with discontinuous local time[END_REF] for Walsh's lyrical description) living on I = n i=1 I i , the union of n half-lines of the plane, meeting at 0.

For the sake of simplicity, we assume p 1 = p 2 = . . . = p n = 1/n, i.e.: when returning to 0, Walsh's Brownian motion chooses, loosely speaking, its "new" ray in a uniform way.

In fact, excursion theory and/or the computation of the semi-group of Walsh's Brownian motion (see [START_REF] Barlow | On Walsh's Brownian motion[END_REF]) allow to define the process rigorously.

Since (d(0, W s ); s ≥ 0), for d the Euclidian distance, is a reflecting Brownian motion, we denote by (L t , t ≥ 0) the unique continuous increasing process such that:

(d(0, W s ) -L s ; s ≥ 0) is a W s = σ {W u , u ≤ s} Brownian motion. Let -→ A t = A (1) t , A (2) 
t , . . . , A

(n) t denote the random vector of the times spent in the different rays. In Section 2 we will state and prove our main Theorem concerning the distribution of -→ A t for a fixed time. Section 3 deals with the general case of stable variables, First, we recall some known results and then we state and prove our main Theorem. Finally, Section 4 is devoted to some remarks and comments.

b) Reminder on the arc-sine law:

A random variable A follows the arc-sine law if it admits the density:

1 π x(1 -x) 1 [ 0,1 ) (x). (1) 
Some well known representations of an arc-sine variable are the following:

A (law) = N 2 N 2 + N2 (law) = cos 2 (U) (law) = T T + T (law) = 1 1 + C 2 , (2) 
where N, N ∼ N (0, 1) and are independent, U is uniform on [0, 2π], T and T stand for two iid stable (1/2) unilateral variables, and C is a standard Cauchy variable. With (B t , t ≥ 0) denoting a real Brownian motion, two well known examples of arc-sine distributed variables are:

g 1 = sup{t < 1 : B t = 0}, and A + 1 = 1 0 ds 1 (Bs>0) ,
a result that is due to Paul Lévy (see e.g. [START_REF] Lévy | Sur un problème de M. Marcinkiewicz[END_REF][START_REF] Lévy | Sur certains processus stochastiques homogènes[END_REF][START_REF] Yor | Local times and Excursions for Brownian motion: a concise introduction[END_REF]).

c) This point gives some motivation for Section 3. From (2), one could think that more general studies of the time spent positive by diffusions may bring 2 independent gamma variables (this because N 2 and N2 are distributed like two independent gamma variables of parameter 1/2), or 2 independent stable (µ) variables. It turns out that it is the second case which seems to occur more naturally. We devote Section 3 to this case.

Main result

Our aim is to prove the following:

Theorem 2.1. The random vectors -→ A T /T for:

(i) T = t; (ii) T = α (j) s = inf{t : A (j)
t > s}; (iii) T = τ l , the inverse local times, have the same distribution. In particular, it is specified by the iid stable (1/2) subordinators:

A (j) τ l , l ≥ 0 ; 1 ≤ j ≤ n . Hence: -→ A 1 (law) = -→ A τ 1 τ 1 , (3) 
which yields that:

-→ A 1 (law) = T j n i=1 T i ; j ≤ n , (4) 
where T j are iid, stable (1/2) variables.

The law of the right-hand side of ( 3) is easily computed, and consequently so is its lefthand side. We refer the reader to [START_REF] Barlow | Une extension multidimensionnelle de la loi de l'arc sinus[END_REF] for explicit expressions of this law, which for n = 2 reduces to the classical arc-sine law.

Proof of Theorem 2.1. a) Clearly, (ii) plays a kind of "bridge" between (i) and (iii). b) We shall work with α

s , s ≥ 0 , the inverse of A

t , t ≥ 0 . It is more convenient to use the notation α (+) s , s ≥ 0 for α (1) (1) 
s , s ≥ 0 . We then follow the main steps of [START_REF] Yor | Local times and Excursions for Brownian motion: a concise introduction[END_REF] (Section 3.4, p. 42), which themselves are inspired by Williams [START_REF] Williams | Markov properties of Brownian local time[END_REF]; see also Watanabe (Proposition 1 in [START_REF] Watanabe | Generalized arc-sine laws for one-dimensional diffusion processes and random walks[END_REF]) and Mc Kean [START_REF] Mckean | Brownian local time[END_REF]. A (j) t denotes the time spent in I j , for any j = 1. Since

               A (j) α (+) 1 = A (j) τ (L α (+) 1 ) (law) = (L α (+) 1 ) 2 A (j) τ 1 , α (+) 1 = 1 + j A (j) α (+) 1
, and for every u, t ≥ 0, L 2

α (+) u < t = u < A (1) τ √ t ,
and invoking the scaling property, we can write jointly for all j's:

A (j) α (+) 1 , L 2 α (+) 1 , α (+) 1 (law) = L 2 α (+) 1 A (j) τ 1 , L 2 α (+) 1 , 1 + j L 2 α (+) 1 A (j) τ 1 (law) = A (j) τ 1 A (1) τ 1 , 1 
A (1) τ 1 , τ 1 A (1) τ 1 . (5) 
Dividing now both sides by α (+) 1

and remarking that:

α (+) 1 A (1) 
τ 1 = τ 1 , we deduce:

1 α (+) 1 A (j) α (+) 1 , L 2 α (+) 1 (law) = 1 τ 1 A (j) τ 1 , 1 . (6) 
With the help of the scaling Lemma below, we obtain:

E 1 (W 1 ∈I 1 ) f ( -→ A 1 , L 2 1 ) = E   1 α (+) 1 f   ---→ A α (+) 1 α (+) 1 , L 2 α (+) 1 α (+) 1     from (5) = E A (1) τ 1 τ 1 f -→ A τ 1 τ 1 , 1 τ 1 . (7) 
I 1 may be replaced by I m , for any m ∈ {2, . . . , n}. Adding the m quantities found in [START_REF] Lévy | Sur certains processus stochastiques homogènes[END_REF] and remarking that:

τ 1 = n i=1 A (i) τ 1 , (8) 
we get:

E f ( -→ A 1 , L 2 1 ) = E f -→ A τ 1 τ 1 , 1 τ 1 .
which proves (3). Note that from ( 6), the latter also equals:

E   f   ---→ A α (+) 1 α (+) 1 , L 2 
α (+) 1 α (+) 1     .
Equality in law ( 4) follows now easily. Indeed, we denote by ν the Itô measure of the Brownian spider, and we have:

ν = 1 n n j=1 ν j , (9) 
where ν j is the canonical image of n, the standard Itô measure of the space of the excursions of the standard Brownian motion, on the space of the excursions on I j . Hence, with λ j , j = 1, . . . , n denoting positive constants:

E exp - n j=1 λ j A (j) τ 1 = exp - 1 n n j=1 ν j (dε j )(1 -e -λ j ν j ) = exp - 1 n n j=1
2λ j , thus:

-→ A τ 1 = A (j) τ 1 ; j ≤ n (law) = 1 n 2 T j ; j ≤ n .
The latter, using (8) yields:

-→ A 1 = -→ A τ 1 τ 1 = -→ A τ 1 n i=1 A (i) τ 1 (law) = T j n 2 n i=1 n -2 T i ; j ≤ n ,
which finishes the proof.

It now remains to state the scaling Lemma which played a role in [START_REF] Lévy | Sur certains processus stochastiques homogènes[END_REF], and which we lift from [START_REF] Yor | Local times and Excursions for Brownian motion: a concise introduction[END_REF] (Corollary 1, p. 40) in a "reduced" form.

Lemma 2.2. (Scaling Lemma) Let U t = t 0 dsθ s , with the pair (W, θ) satisfying:

(W ct , θ ct ; t ≥ 0) (law) = √ cW t , θ t ; t ≥ 0 . (10) 
Then,

E [F (W u , u ≤ 1) θ 1 ] = E 1 α 1 F 1 √ α 1 W vα 1 , v ≤ 1 , (11) 
where α t = inf{s : U s > t}.

3 Stable subordinators

Reminder and preliminaries on stable variables

In this Section, we consider S µ and S ′ µ two independent stable variables with exponent µ ∈ (0, 1), i.e. for every λ ≥ 0, the Laplace transform of S µ is given by:

E[exp(-λS µ )] = exp(-λ µ ). (12) 
Concerning the law of S µ , there is no simple expression for its density (except for the case µ = 1/2; see e.g. Exercise 4.20 in [START_REF] Chaumont | Exercises in Probability: A Guided Tour from Measure Theory to Random Processes, via Conditioning[END_REF]). However, we have that, for every s < 1 (see e.g. [START_REF] Zolotarev | On the representation of the densities of stable laws by special functions[END_REF] or Exercise 4.19 in [START_REF] Chaumont | Exercises in Probability: A Guided Tour from Measure Theory to Random Processes, via Conditioning[END_REF]):

E[(S µ ) µs ] = Γ(1 -s) Γ(1 -µs) . ( 13 
)
We consider now the random variable of the ratio of two µ-stable variables:

X = S µ S ′ µ . ( 14 
)
Following e.g. Exercise 4.23 in [START_REF] Chaumont | Exercises in Probability: A Guided Tour from Measure Theory to Random Processes, via Conditioning[END_REF], we have respectively the following formulas for the Stieltjes and the Mellin transforms of X:

E 1 1 + sX = 1 1 + s µ , s ≥ 0 , (15) 
E [X s ] = sin(πs) µ sin( πs µ ) , 0 < s < µ . ( 16 
)
Moreover, the density of the random variable X µ is given by (see e.g. [START_REF] Zolotarev | Mellin-Stieltjes transforms in probability theory[END_REF][START_REF] Lamperti | An occupation time theorem for a class of stochastic processes[END_REF] or Exercise 4.23 in [START_REF] Chaumont | Exercises in Probability: A Guided Tour from Measure Theory to Random Processes, via Conditioning[END_REF]):

P (X µ ∈ dy) = sin(πµ) πµ dy y 2 + 2y cos(πµ) + 1 , y ≥ 0, (17) 
or equivalently:

S µ S ′ µ µ = (C µ |C µ > 0), (18) 
where, with C denoting a standard Cauchy variable and U a uniform variable in [ 0, 2π ),

C µ = sin(πµ)C -cos(πµ) (law) 
= sin(πµ -U) U .

The case of 2 stable variables

We turn now our study to the random variable:

A = S ′ µ S ′ µ + S µ = 1 1 + X , (19) 
Theorem 3.1. The density function of the random variable A is given by:

P (A ∈ dz) = sin(πµ) π dz z(1 -z) 1-z z µ + z 1-z µ + 2 cos(πµ) , z ∈ [0, 1]. (20) 
Proof of Theorem 3.1. Identity ( 19) is equivalent to:

X = 1 A -1 .
Hence, [START_REF] Zolotarev | On the representation of the densities of stable laws by special functions[END_REF] yields:

E 1 1 + sX = E A (1 -s)A + s = 1 1 + s µ .
We consider now a test function f and invoking the density (17) we have (ν = 1 µ > 1):

E f 1 1 + X = sin(πµ) πµ ∞ 0 dy y 2 + 2y cos(πµ) + 1 f 1 1 + y ν .
Changing the variables z = 1 1+y ν , we deduce:

E [f (A)] = sin(πµ) π 1 0 dz(1 -z) µ-1 z µ+1 f (z) ∆(z),
where:

∆(z) = 1 (z -1 -1) 2µ + 2(z -1 -1) µ cos(πµ) + 1 = z 2µ (1 -z) 2µ + 2(1 -z) µ z µ cos(πµ) + z 2µ ,
and (20) follows easily.

In Figure 1, we have plotted the density function g of A, for several values of µ. Remark 3.2. Similar discussions have been made in [START_REF] Kasahara | On a generalized arc-sine law for onedimensional diffusion processes[END_REF] in the framework of a skew Bessel process with dimension 2 -2α and skewness parameter p. Formula (20) is a particular case of formula in [START_REF] Kasahara | On a generalized arc-sine law for onedimensional diffusion processes[END_REF] for the density of the time spent positive (called f p,α in [START_REF] Kasahara | On a generalized arc-sine law for onedimensional diffusion processes[END_REF]). 

The case of many stable (1/2) variables

In this Subsection, we consider again n iid stable (1/2) variables, i.e.: T 1 , . . . , T n , and we will study the distribution of:

A (1) 1 = T 1 T 1 + . . . + T n . (21) 
The following Theorem answers to an open question (and even in a more general sense) stated at the end of [START_REF] Papanicolaou | Random Motion on Simple Graphs[END_REF].

Theorem 3.3. The density function of the random variable A

1 is given by: P A

(1)

1 ∈ dz = 1 π dz √ z √ 1 -z (n -1)z + 1 n-1 (1 -z) , z ∈ [0, 1]. (22) 
Proof of Theorem 3.3.

We first remark that, with C denoting a standard Cauchy variable, using e.g. (2):

A (1) 1 (law) = T 1 T 1 + (n -1) 2 T 2 (law) = 1 1 + (n -1) 2 C 2 . ( 23 
)
Hence, with f standing again for a test function, and invoking the density of a standard 

1 , for several values of n.

Cauchy variable, that is: for every x ∈ R, g(x) = 1 π(1+x 2 ) we have:

E f A (1) 1 = E f 1 1 + (n -1) 2 C 2 = 1 π ∞ -∞ dx 1 + x 2 f 1 1 + (n -1) 2 x 2 x 2 =y = 2 π ∞ 0 dy 2 √ y(1 + y) f 1 1 + (n -1) 2 y
Changing the variables z = 1 1+(n-1) 2 y , we deduce: = C -1 . Hence:

E f A (1) 1 = 1 π 1 0 dz (n -1) 2 z 2 (n -1) √ z √ z -1 1 + 1 (n-1) 2 1 z -1 f (z) ,
n 2 A (1) 1 (n) = n 2 1 + (n -1) 2 C 2 = 1 1 n 2 + n-1 n 2 C 2 n→∞ -→ 1 C 2 (law) = C 2 .

Conclusion and comments

We end up this article with some comments: usually, a scaling argument is "one-dimensional", as it involves a time-change. Exceptionally (or so it seems to the authors), here we could apply a scaling argument in a multivariate framework. We insist that the scaling Lemma plays a key role in our proof. The curious reader should also look at the totally different proof of this Theorem in [START_REF] Barlow | Une extension multidimensionnelle de la loi de l'arc sinus[END_REF], which mixes excursion theory and the Feynman-Kac method.
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 1 Figure 1: The density function g of A, for several values of µ.
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 2 Figure 2: The density function h of A

  and (22) follows easily.
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