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A scaling proof for Walsh’s Brownian motion

extended arc-sine law

S. Vakeroudis ∗† M. Yor ∗‡

September 18, 2012

Abstract

We present a new proof of the extended arc-sine law related to Walsh’s Brownian
motion, known also as Brownian spider. The main argument mimics the scaling
property used previously, in particular by D. Williams [12], in the 1-dimensional
Brownian case, which can be generalized to the multivariate case. A discussion
concerning the time spent positive by a skew Bessel process is also presented.
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secondary: 60J70, 60G52.
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1 Introduction

a) Recently, some renewed interest has been shown (see e.g. [9]) in the study of the law
of the vector

−→
A1 =

(
∫ 1

0

1(Ws∈Ii)ds; i = 1, 2, . . . , n

)

,

where (Ws) denotes a Walsh Brownian motion, also called Brownian spider (see [10] for
Walsh’s lyrical description) living on I =

⋃n

i=1 Ii, the union of n half-lines of the plane,
meeting at 0.

To keep the discussion as simple as possible, we assume p1 = p2 = . . . = pn = 1/n,
i.e.: when returning to 0, Walsh’s Brownian motion chooses, so to speak, its "new" ray
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in a uniform way. In fact, excursion theory and/or the computation of the semi-group of
Walsh’s Brownian motion (see [1]) allow to define the process rigorously.

Since (d(0,Ws); s ≥ 0), for d the Euclidian distance, is a reflecting Brownian motion,
we denote by (Lt, t ≥ 0) the unique continuous increasing process such that:
(d(0,Ws)− Ls; s ≥ 0) is a Ws = σ {Wu, u ≤ s} Brownian motion.
Let −→

At =
(

A
(1)
t , A

(2)
t , . . . , A

(n)
t

)

denote the random vector of the times spent in the different rays. In Section 2 we will

state and prove our main Theorem concerning the distribution of
−→
At for a fixed time.

Section 3 deals with the general case of stable variables, First, we recall some known
results and then we state and prove our main Theorem. Finally, Section 4 is devoted to
some remarks and comments.

b) Reminder on the arc-sine law:
A random variable A follows the arc-sine law if it admits the density:

1

π
√

x(1 − x)
1[ 0,1 )(x). (1)

Some well known representations of an arc-sine variable are the following:

A
(law)
=

N2

N2 + N̂2

(law)
= cos2(U)

(law)
=

T

T + T̂

(law)
=

1

1 + C2
, (2)

where N, N̂ ∼ N (0, 1) and are independent, U is uniform on [0, 2π], T and T̂ stand for
two iid stable (1/2) unilateral variables, and C is a standard Cauchy variable.
With (Bt, t ≥ 0) denoting a real Brownian motion, two well known examples of arc-sine
distributed variables are:

g1 = sup{t < 1 : Bt = 0}, and A+
1 =

∫ 1

0

ds 1(Bs>0) ,

a result that is due to Paul Lévy (see e.g. [6, 7, 13]).

c) This point may help to motivate Section 3. From (2), one may think that more
general studies of the time spent positive by diffusions may bring 2 independent gamma
variables (as N2 and N̂2 are distributed like two independent gamma variables of param-
eter 1/2), or 2 independent stable (µ) variables. It turns out that it is the second case
which seems to occur most naturally. We devote Section 3 to this case.

2 Main result

Our aim is to prove the following:

Theorem 2.1. The random vectors
−→
AT/T for:

(i) T = t; (ii) T = α
(j)
s = inf{t : A(j)

t > s}; (iii) T = τl, the inverse local times,
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have the same distribution. In particular, it is specified by the iid stable (1/2) subor-
dinators:

((

A(j)
τl
, l ≥ 0

)

; 1 ≤ j ≤ n
)

.

Hence:

−→
A1

(law)
=

−→
Aτ1

τ1
, (3)

and consequently:

−→
A1

(law)
=

(

Tj
∑n

i=1 Ti

; j ≤ n

)

, (4)

where Tj are iid, stable (1/2) variables.

Consequently, the law of the right-hand side of (3) is easily computed, and so is its left-
hand side. We refer the reader to [2] for explicit expressions of this law, which for n = 2
reduces to the classical arc-sine law.

Proof of Theorem 2.1.
a) Clearly, (ii) plays a kind of "bridge" between (i) and (iii).

b) We shall work with
(

α
(1)
s , s ≥ 0

)

, the inverse of
(

A
(1)
t , t ≥ 0

)

. It is more convenient

to use the notation
(

α
(+)
s , s ≥ 0

)

for
(

α
(1)
s , s ≥ 0

)

. We then follow the main steps of [13]

(Section 3.4, p. 42), which themselves are inspired by Williams [12]; see also Watanabe
(Proposition 1 in [11]) and Mc Kean [8].
(

A
(j)
t

)

denotes the time spent in Ij , for any j 6= 1. Since































A
(j)

α
(+)
1

= A
(j)
τ(L

α
(+)
1

)

(law)
= (L

α
(+)
1

)2A
(j)
τ1 ,

α
(+)
1 = 1 +

∑

j A
(j)

α
(+)
1

,

and

for every u, t ≥ 0,
(

L2

α
(+)
u

< t
)

=
(

u < A
(1)
τ√t

)

,

and invoking the scaling property, we can write jointly for all j’s:

(

A
(j)

α
(+)
1

, L2

α
(+)
1

, α
(+)
1

)

(law)
=

(

L2

α
(+)
1

A(j)
τ1
, L2

α
(+)
1

, 1 +
∑

j

L2

α
(+)
1

A(j)
τ1

)

(law)
=

(

A
(j)
τ1

A
(1)
τ1

,
1

A
(1)
τ1

,
τ1

A
(1)
τ1

)

, (5)

and now we deduce:

1

α
(+)
1

(

A
(j)

α
(+)
1

, L2

α
(+)
1

)

(law)
=

1

τ1

(

A(j)
τ1
, 1
)

. (6)
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With the help of the scaling Lemma below, we obtain:

E
[

1(W1∈I1)f(
−→
A1, L

2
1)
]

= E





1

α
(+)
1

f





−−−→
A

α
(+)
1

α
(+)
1

,
L2

α
(+)
1

α
(+)
1









from(5)
= E

[

A
(1)
τ1

τ1
f

(−→
Aτ1

τ1
,
1

τ1

)]

. (7)

Replacing I1 by Im, for any m ∈ {2, . . . , n}, and adding the m quantities found in (7),
we obtain:

E
[

f(
−→
A1, L

2
1)
]

= E

[

f

(−→
Aτ1

τ1
,
1

τ1

)]

,

and from (6) this is also:

E



f





−−−→
A

α
(+)
1

α
(+)
1

,
L2

α
(+)
1

α
(+)
1







 ,

which proves (3).
Equality in law (4) follows now easily. Indeed, we denote by ν the Itô measure of the
Brownian spider, and we have:

ν =
1

n

n
∑

j=1

νj , (8)

where νj is the canonical image of n, the standard Itô measure of the space of the
excursions of the Brownian spider, on the space of the excursions on Ij. Hence, with
λj, j = 1, . . . , n denoting positive constants:

E

[

exp

(

−
n
∑

j=1

λjA
(j)
τ1

)]

= exp

(

−1

n

n
∑

j=1

∫

νj(dεj)(1− e−λjνj)

)

= exp

(

−1

n

n
∑

j=1

√

2λj

)

,

thus:

−→
Aτ1

(law)
=

(

1

n2
Tj ; j ≤ n

)

,

which finishes the proof.

It now remains to state the scaling Lemma which played a role in (7), and which we
lift from [13] (Corollary 1, p. 40) in a "reduced" form.
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Lemma 2.2. (Scaling Lemma) Let Ut =
∫ t

0
dsθs, with the pair (W, θ) satisfying:

(Wct, θct; t ≥ 0)
(law)
=
(√

cWt, θt; t ≥ 0
)

. (9)

Then,

E [F (Wu, u ≤ 1) θ1] = E

[

1

α1
F

(

1√
α1

Wvα1 , v ≤ 1

)]

, (10)

where αt = inf{s : Us > t}.

3 Stable subordinators

3.1 Reminder and preliminaries on stable variables

In this Section, we consider Sµ and S ′

µ two independent stable variables with exponent
µ ∈ (0, 1), i.e. for every λ ≥ 0, the Laplace transform of Sµ is given by:

E[exp(−λSµ)] = exp(−λµ). (11)

Concerning the law of Sµ, there is no simple expression for its density (except for the
case µ = 1/2; see e.g. Exercise 4.20 in [3]). However, we have that, for every s < 1 (see
e.g. [15] or Exercise 4.19 in [3]):

E[(Sµ)
µs] =

Γ(1− s)

Γ(1− µs)
. (12)

We consider now the random variable of the ratio of two µ-stable variables:

X =
Sµ

S ′

µ

. (13)

Following e.g. Exercise 4.23 in [3], we have respectively the following formulas for the
Stieltjes and the Mellin transforms of X:

E

[

1

1 + sX

]

=
1

1 + sµ
, s ≥ 0 , (14)

E [Xs] =
sin(πs)

µ sin(πs
µ
)
, 0 < s < µ . (15)

Moreover, the density of the random variable Xµ is given by (see e.g. [14, 5] or Exercise
4.23 in [3]):

P (Xµ ∈ dy) =
sin(πµ)

πµ

dy

y2 + 2y cos(πµ) + 1
, y ≥ 0, (16)

or equivalently:
(

Sµ

S ′

µ

)µ

= (Cµ|Cµ > 0), (17)

where, with C denoting a standard Cauchy variable and U a uniform variable in [ 0, 2π ),

Cµ = sin(πµ)C − cos(πµ)
(law)
=

sin(πµ− U)

U
.
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3.2 The case of 2 stable variables

We turn now our study to the random variable:

A =
S ′

µ

S ′

µ + Sµ

=
1

1 +X
, (18)

Theorem 3.1. The density function of the random variable A is given by:

P (A ∈ dz) =
sin(πµ)

π

dz

z(1 − z)
[(

1−z
z

)µ
+
(

z
1−z

)µ
+ 2 cos(πµ)

] , z ∈ [0, 1]. (19)

Proof of Theorem 3.1.
Identity (18) is equivalent to:

X =
1

A
− 1 .

Hence, (14) yields:

E

[

1

1 + sX

]

= E

[

A

(1− s)A+ s

]

=
1

1 + sµ
.

We consider now a test function f and invoking the density (16) we have (ν = 1
µ
> 1):

E

[

f

(

1

1 +X

)]

=
sin(πµ)

πµ

∫

∞

0

dy

y2 + 2y cos(πµ) + 1
f

(

1

1 + yν

)

.

Changing the variables z = 1
1+yν

, we deduce:

E [f (A)] =
sin(πµ)

π

∫ 1

0

dz(1− z)µ−1

zµ+1
f (z)∆(z),

where:

∆(z) =
1

(z−1 − 1)2µ + 2(z−1 − 1)µ cos(πµ) + 1

=
z2µ

(1− z)2µ + 2(1− z)µzµ cos(πµ) + z2µ
,

and (19) follows easily.

In Figure 1, we have plotted the density function g of A, for several values of µ.

Remark 3.2. Similar discussions have been made in [4] in the framework of a skew Bessel
process with dimension 2 − 2α and skewness parameter p. Formula (19) is a particular
case of the formula in [4] for the density of the time spent positive (called fp,α in [4]).
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Figure 1: The density function g of A, for several values of µ.

3.3 The case of many stable (1/2) variables

In this Subsection, we consider again n iid stable (1/2) variables, i.e.: T1, . . . , Tn, and we
will study the distribution of:

A
(1)
1 =

T1

T1 + . . .+ Tn

. (20)

The following Theorem answers to an open question (and even in a more general sense)
stated at the end of [9].

Theorem 3.3. The density function of the random variable A
(1)
1 is given by:

P
(

A
(1)
1 ∈ dz

)

=
1

π

dz√
z
√
1− z

[

(n− 1)z + 1
n−1

(1− z)
] , z ∈ [0, 1]. (21)

Proof of Theorem 3.3.
We first remark that, with C denoting a standard Cauchy variable, using e.g. (2):

A
(1)
1

(law)
=

T1

T1 + (n− 1)2T2

(law)
=

1

1 + (n− 1)2C2
. (22)

Hence, with f standing again for a test function, and invoking the density of a standard
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Figure 2: The density function h of A
(1)
1 , for several values of n.

Cauchy variable, that is: for every x ∈ R, g(x) = 1
π(1+x2)

we have:

E
[

f
(

A
(1)
1

)]

= E

[

f

(

1

1 + (n− 1)2C2

)]

=
1

π

∫

∞

−∞

dx

1 + x2
f

(

1

1 + (n− 1)2x2

)

x2=y
=

2

π

∫

∞

0

dy

2
√
y(1 + y)

f

(

1

1 + (n− 1)2y

)

Changing the variables z = 1
1+(n−1)2y

, we deduce:

E
[

f
(

A
(1)
1

)]

=
1

π

∫ 1

0

dz

(n− 1)2z2
(n− 1)

√
z

√
z − 1

(

1 + 1
(n−1)2

(

1
z
− 1
)

) f (z) ,

and (21) follows easily.

Figure 2 presents the plot of the density function h of A
(1)
1 , for several values of n.

Corollary 3.4. The following convergence in law holds:

n2A
(1)
1 (n)

(law)−→
n→∞

C2 . (23)
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Proof of Corollary 3.4.

It follows from Theorem 3.3 by simply remarking that C
(law)
= C−1. Hence:

n2A
(1)
1 (n) =

n2

1 + (n− 1)2C2
=

1
1
n2 +

(

n−1
n

)2
C2

n→∞−→ 1

C2

(law)
= C2.

4 Conclusion and comments

We end up this article with some comments: usually, a scaling argument is "one-dimensional",
as it involves a time-change. Exceptionally (or so it seems to the authors), here we could
apply a scaling argument in a multivariate framework. We insist that the scaling Lemma
plays a key role in our proof. The curious reader should also look at the totally different
proof of this Theorem in [2], which mixes excursion theory and the Feynman-Kac method.
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