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Stochastic models for a chemostat and long time behavior

We introduce two stochastic chemostat models consisting in a coupled population-nutrient process reflecting the interaction between the nutrient and the bacterias in the chemostat with finite volume. The nutrient concentration evolves continuously but depending on the population size, while the population size is a birth and death process with coefficients depending on time through the nutrient concentration. The nutrient is shared by the bacteria and creates a regulation of the bacterial population size. The latter and the fluctuations due to the random births and deaths of individuals make the population go almost surely to extinction. Therefore, we are interested in the long time behavior of the bacterial population conditioned to the non-extinction. We prove the global existence of the process and its almost sure extinction. The existence of quasi-stationary distributions is obtained based on a general fixed point argument. Moreover, we prove the absolute continuity of the nutrient distribution when conditioned to a fixed number of individuals and the smoothness of the corresponding densities.

Introduction

Since some decades and the first work of J. Monod [START_REF] Monod | La technique de culture continue[END_REF] and Novik and Szilar [START_REF] Novick | Experiments with the Chemostat on Spontaneous Mutations of Bacteria[END_REF], [START_REF] Novick | Description of the Chemostat[END_REF], see also [START_REF] Smith | The Theory of the Chemostat[END_REF], biologists have developed procedures which allow to maintain a bacterial population at a stationary finite size while at the same time, the bacteria have a constant individual growth rate. The procedure is based on a chemostat: bacteria live in a growth container of constant volume in which liquid is injected continuously. The entering liquid contains a fixed concentration of nutrient but no bacteria (fresh liquid). In the container, the nutrient is consumed by the bacteria. We assume that the chemostat is well stirred, so that the distribution of bacteria and nutrient are spatially uniform. Since the container has a finite volume and fresh liquid enters permanently, an equal amount of liquid pours out containing both unconsumed nutrients and bacteria. These chemostats are extremely useful in the study of bacterial population dynamics, in particular in the study of the selection of the fastest growing species or the fixation of advantageous mutations (see [START_REF] Masci | Continuous selection of the fastest growing species in the chemostat[END_REF], [START_REF] Masci | Competitive exclusion in the generalized Droop model with N species[END_REF], [START_REF] Dykhuizen | Selection in chemostats[END_REF] or [START_REF] Leenheer | Competition in the chemostat: Some remarks[END_REF]). In the literature, their study is mainly based on deterministic models where both nutrient and bacteria population dynamics are described by a coupled deterministic continuous process. Deterministic approximations for the bacterial population's size are justified by a large population assumption.

In this work, we develop stochastic chemostat models based on a previous work of Crump and O' Young [START_REF] Crump | Some stochastic features of bacterial constant growth apparatus[END_REF] taking into account that the bacteria population may not be large enough so that a deterministic approximation can be justified. We introduce a coupled population-nutrient process reflecting the interaction between the nutrient and the bacterias in the chemostat. The nutrient concentration evolves continuously but depending on the population size, while the population size is a birth and death process with coefficients depending on time through the nutrient concentration. Moreover, the time derivative of the nutrient concentration jumps simultaneously with the population size. We thus take into account the random fluctuations of this population size due to the individual births and deaths. The bacteria need nutrient to reproduce. We will consider two cases. In the first one, the bacterial population dies instantaneously if the nutrient is missing. In the second case bacteria can survive without nutrient by undergoing some kind of hibernation and may wake up once nutrient reappears. The nutrient is shared by the bacteria. This creates an indirect competition between bacteria and leads to a regulation of their population size. In our models, the fluctuations due to the random births and deaths of individuals and the size regulation make the population go almost surely to extinction. Therefore, the long time behavior of the population's size is obvious and the interesting questions concern firstly the rate of extinction and secondly the long time behavior conditioned to the non-extinction which is captured by the notion of quasi-stationary distribution.

To our knowledge, the models introduced in this paper are the first stochastic chemostat models where interaction between bacteria is taken into account leading to extinction. The study of quasi-stationarity gives nevertheless a description of a quasi-stability which can happen in a faster time scale than extinction. This work concerns monotype individuals but could be generalized to a multi-type population.

In Section 2, we describe the two population-nutrient models described above and prove in Section 3 their global existence. We also show the extinction of the population when time increases. The existence of quasi-stationary distributions is obtained in Section 4. Our main theorem is based on a general argument proved in [START_REF] Collet | Quasi-stationary distributions for structured birth and death processes with mutations[END_REF]. In Section 5, we prove the absolute continuity of the nutrient distribution when conditioned to a fixed number of individuals and the smoothness of the corresponding densities.

The Stochastic Population-Nutrient Process

We consider a stochastic discrete population process describing the dynamics of a bacteria population for which individuals develop and reproduce depending on the quantity of nutrient y in the solution. The dynamics of the nutrient is related to the consumption of the individuals. We assume that the concentration of nutrient in the injected solution (without bacteria) is a constant equal to y * . The chemostat has a finite volume equal to one. The liquid enters in the chemostat free of bacteria and pours out after being well stirred in the container. The pouring out liquid contains bacteria. The dilution coefficient of nutrient in the fresh liquid per unit of time is D. Since the liquid is well stirred, around N(t)D bacterias will be washed out in the pouring out, when N(t) is the size of the bacteria population at time t. Thus D is also the rate at which an individual will disappear due to the evacuation of liquid. We consider coupled processes in which the nutrient concentration evolves continuously while the bacteria population size evolves as a time-continuous birth and death process with coefficients depending on the nutrient concentration. We assume that the nutrient is partly consumed during the reproduction of bacteria.

We will denote by (Y (t), t ≥ 0) the concentration of nutrient and by (N(t) : t ≥ 0) the population size process. The stochastic process Z = (Z(t) := (N(t), Y (t)) : t ≥ 0) describes both the population size and the nutrient concentration in the chemostat.

Let us now define the parameters of the model.

If y is the quantity of nutrient, then the birth and death parameters driving the dynamics of the population are as follows.

• The birth rate per individual is b(y), where the function b : R + → R + is assumed to be an increasing continuous function and such that b(0) = 0 and b(y) > 0 for y > 0. We assume that b is bounded with an upper-bound b ∞ .

A usual example of a function b is, for some constant

K > 0, b(y) = b ∞ y K + y .
An extra hypothesis that we will add for some results is that b is differentiable and db dy (0) > 0. • The background death rate per individual is d(y), so it is supposed to be a function of the concentration of nutrient. The function d : R + → R + ∪ {∞} is assumed to be continuous non-increasing, strictly positive, and d(0) is the unique value that can be infinite.

• The dilution makes each individual disappear at rate D independently of the birth and death events.

• The per individual rate of consumption of nutrient for reproduction is b(y) R , where R denotes the biomass yield. Furthermore, individuals consume nutrient during their life and the quantity of nutrient consumed per individual will be denoted by η ≥ 0. • We will consider two cases. In the first case, individuals need nutrient to survive. Then we will assume that their death is instantaneous as soon as nutrient is missing, therefore d(0) = ∞. In the second case, bacteria enter in some kind of hibernation if nutrient is missing. That means that d 0 (0) can be finite. In both cases, we will set b(y) = b(y) R + η 1 y>0 .

Let us now describe the process. In both cases the nutrient concentration process Y = (Y (t) : t ≥ 0) evolves according to

dY (t) dt = D(y * -Y (t)) -b(Y (t)) N(t) . (1) 
The process Z has the following infinitesimal generator: for (n, y)

∈ N × R + , Lf (n, y) = b(y) n f (n + 1, y) + (D + d(y)) n f (n -1, y) -(b(y) + D + d(y)) n f (n, y) + D(y * -y) -n b(y) ∂ y f (n, y) . (2) 
We refer to [START_REF] Campillo | Stochastic models of the chemostat[END_REF] for the numerical study of similar models.

Below, we show that the hypotheses we gave on the coefficients leading the process, guarantee that Z is well-defined and takes values in N × [0, y * ].

Proposition 2.1. The process Z is well defined and takes values in

N × R + for all positive time t ∈ R + . Moreover, N + × [0, y * ] is an invariant set for the process Z, so Y (0) ∈ [0, y * ] implies Y (t) ∈ [0, y * ] for all t ∈ R + .
Proof. The process N = (N(t) : t ≥ 0) has a pathwise representation driven by a Point Poisson measure N (dθ, ds) defined on R + × R + :

N(t) = N 0 + R + ×(0,t]
1 θ≤b(Ys) N (dθ, ds)-

R + ×(0,t]
1 b(Ys)≤θ≤b(Ys)+D+d(Ys) N (dθ, ds);

Y (t) = Y (0) + t 0 D(y * -Y (s)) -b(Y (s)) N s ds. (3) 
It is obvious that the process N is stochastically upper-bounded by a birth process with individual birth rate b ∞ . This latter does not explode, so does N.

Let us now study the nutrient concentration Y = (Y (t) : t ≥ 0). Note that the assumptions on the parameters and Equation ( 1) ensure that Y (t) ≥ 0. Indeed, the derivative of Y (t) at y = 0 cannot be negative. 

Let us show that

N × [0, y * ] is invariant. Take Y (0) ∈ [0, y * ]. A standard comparison theorem yields Y (t) ≤ v(t) where v ′ (t) = D(y * -v(t)) ; v(0) = Y (0). But in that case, v(t) = y * -(y * -Y (0))e -Dt ≤

Study of Extinction

We are now interested in studying the extinction of the population or the complete consumption of the nutrient or other specific states of the populationnutrient process and the associated hitting times. The hitting time of the boundaries will be denoted in such a way that the reference to process N will be avoided, the contrary for Y where we will explicit it. More precisely,

T 0 = T {0}×R + = inf{t ≥ 0 : N(t) = 0}, T Y =0 = T N×{0} = inf{t ≥ 0 : Y (t) = 0}. ( 4 
) We will also denote by T ≤m = T {0,..,m}×R + = inf{t ≥ 0 : N(t) ≤ m}. Analogously for T <m .

Note that the set {0}×R + is an absorbing set, that is N(t) = 0 for all t ≥ T 0 .

After T 0 the nutrient Y (t) is absorbed linearly at y * , in fact:

Y (t) = y * for t ≥ T 0 + (y * -Y (T 0 ))/D y * and Y (t) = Y (T 0 ) + D(t -T 0 ) for t ∈ [T 0 , T 0 + (y * -Y (T 0 ))/D].
Let us see what happens after T Y =0 . In the case η ≥ Dy * the nutrient Y (t) remains at 0 up to the extinction of the population, so Y (t) = 0 when T Y =0 < t < T 0 . The evolution of the nutrient after T 0 was already described. Now assume n η > Dy * for some n ≥ 1, and denote n 0 the minimal of these values, so (n 0 -1) η ≤ Dy * < n 0 η. In this case Y (t) = 0 when T Y =0 < t < T <n 0 . In the case where d 0 (0) = ∞, we get

T Y =0 ≤ T 0 =⇒ T Y =0 = T 0 because all individuals die instantaneously.
Let us firstly study the stationary nutrient concentration states at fixed population size. (5)

Then, (i) If η = 0, then for any n ∈ N, Equation (5) has a unique simple root y n , which belongs to [0, y * ]. In addition, the sequence (y n : n ∈ N * ) of the roots decreases to 0.

(ii) If η > 0 then Equation (5) has no root for n > Dy * η and admits a simple root y n for n ≤ Dy * η .

Proof. Let us fix n. Obviously for n = 0, Equation ( 5) has the trivial root y 0 = y * , so we restrict n to be in N * . By assumption, the function G n is strictly decreasing so for each n ∈ N * there exists at most one root. Note that for all such n we have G n (y * ) < 0 and so there is no root to (5) in the set [y * , ∞).

Assume η = 0. For all n we have G n (0) > 0 then there exists a unique root which is denoted y n , so it satisfies G n (y n ) = 0. On the other hand, we have

G n+1 (y n ) = D(y * -y n ) -(n + 1) b(y n ) = -b(y n ) . Then, G n+1 (0) > 0, G n+1 (y n ) < 0. We deduce 0 < y n+1 < y n < y * . Let y ∞ = lim n→∞ y n . By continuity D(y * -y ∞ ) -n b(y ∞ ) = lim n→∞ D(y * -y n ) -n b(y n ) = 0.
Then, necessarily b(y ∞ ) = 0 and so y ∞ = 0, and b(y

n ) ∼ Dy * R n as n → ∞.
Assume η > 0. Then for all n > Dy * /η we have G n (0) < 0 and so (5) has no solution. Hence the same argument as before gives the existence of a finite set of roots (y n : 1 ≤ n ≤ ⌊Dy * /η⌋) decreasing with n, where ⌊Dy * /η⌋ the biggest integer that is smaller or equal to Dy * /η.

Note that when n 0 = Dy * /η then y n 0 = 0 and if Dy * < η, there is no root.

From Lemma 3.1, we know that the set

S = {y ∈ R + : ∃n ∈ N * , D(y * -y) -b(y)n = 0}. ( 6 
)
is a countable set included in [0, y * ). If η = 0, it is infinite and accumulates at 0 and if η > 0, it is finite.

In the sequel, when we refer to y n , we will assume implicitly that it exists, namely we are in the case η = 0 or η > 0 but n ∈ {1, ..⌊Dy * /η⌋}.

Corollary 3.2. (i) The set N × [0, y 1 ] is invariant for the process Z T 0 = (Z(t) : t ≤ T 0 ) up to extinction, that is if Z(0) = (N(0), Y (0)) ∈ N × [0, y 1 ] then Z(t) = (N(t), Y (t)) ∈ N × [0, y 1 ] for all t ≤ T 0 .
(ii) The set N × [0, y n ] is invariant for the process Z T<n = (Z(t) : t ≤ T <n ).

Proof. Let us show the first part. We have

Z(t) = (N(t), Y (t)) ∈ N * × [0, y 1 ]
for all t < T 0 because dY (t)/dt ≤ 0 when y ≥ y 1 and n ≥ 1, and so if the trajectory arrives to y 1 the variable Y (t) immediately decreases. For n = 0 it is evident, because we stop the process at T 0 , and so

Y (T 0 ) = Y (T - 0 ) but Y (T - 0 ) ≤ y 1 since N(T - 0 ) = 1. Part (ii)
is shown in a similar way as (i).

Let us state a useful lemma. Lemma 3.3. For any n 0 ∈ N * , there exists t 0 > 0 such that inf y∈[0,y * ], 1≤n≤n 0 P (n,y) T 0 < t 0 > 0 .

Proof. This follows at once from the fact that the population process is stochastically dominated by a birth and death process with birth rate b(y * ) and death rate D + d(y * ).

Theorem 3.4. We have extinction of the population almost surely, namely for any y ∈ [0, y * ] and any integer n,

P (n,y) T 0 < ∞ = 1 .
Proof. Remark that an obvious comparison theorem as used in the previous proof cannot be applied. Indeed the birth and death rates b(y * ) and D+d(y * ) could correspond to a supercritical case. The effect of the chemostat through the nutrient is a regulation of the population. We will exhibit an integer n 0 such that the population process will spend an infinite amount of time below n 0 + 1.

Let ỹ > 0 be such that b(ỹ) < D + d(ỹ). Note that by monotonicity, for all y ∈ [0, ỹ] we have b(y) < D + d(y). Let us define n 0 as an integer such that y n 0 < ỹ if some exists or equal to [Dy * / b(0)] + 1 otherwise. Let τ be the random time defined by

sup t≥τ N(t) ≤ n 0 .
Then, it follows from Lemma 3.3 and the Markov property that if P (n,y) τ < ∞ > 0, then

P (n,y) T 0 < ∞ τ < ∞ = 1 .
Assume now P (n,y) τ = ∞ = 1. Let τ ′ be the random time defined by inf t≥τ ′ N(t) > n 0 . Assume P (n,y) τ ′ < ∞ > 0. Let y 0 (t) be the solution of the differential equation

dy 0 dt = D(y * -y 0 (t)) -(n 0 + 1) b(y 0 (t)) ,
with initial condition y 0 (0) = y * . Let t 1 > 0 be the finite solution of

y 0 (t 1 ) = ỹ .
The time t 1 is finite from the choice of n 0 . It is easy to verify that for any integer valued measurable function n(t) ≥ n 0 + 1, the solution y(t) of the equation

dy dt = D(y * -y(t)) -n(t) b(y(t)) ,
with initial condition y(0) ≤ y * , satisfies y(t) ≤ ỹ for any t ≥ t 1 . On the set τ ′ < ∞ , the process (N(t), t ≥ τ ′ + t 1 ) is dominated by a linear birth and death process with birth rate b(ỹ) and death rate D+d 0 (ỹ) (from the monotonicity of the functions). This birth and death chain attains n 0 almost surely in finite time since b(ỹ) < D + d 0 (ỹ), see [START_REF] Van Doorn | Quasi-stationary distributions and convergence to quasistationarity of birth-death processes[END_REF]. Hence on τ ′ < ∞ , the process (N(t), t ≥ τ ′ + t 1 ) should also attains n 0 in finite time. This contradicts our assumption P (n,y) τ ′ < ∞ > 0. It remains to consider the case τ = τ ′ = ∞ almost surely. In this case there exist two infinite sequences of random times

T 1 < S 1 < T 2 < S 2 < • • • such that N(t) ≤ n 0 for t ∈ [T j , S j ) , N(t) > n 0 for t ∈ [S j , T j+1 ) .
Since we visit the set {N ≤ n 0 } infinitely many times, and at each visit we have a uniformly positive probability of extinction, it follows by the Markov property and the Borel Cantelli Lemma that

P (n,y) T 0 < ∞ τ = τ ′ = ∞ = 1 .
One of our main objectives of this work is to study the processes up to the moment the population is extinct Z T 0 = (Z(t) : t ≤ T 0 ), or before the moment of extinction Z T - 0 = (Z(t) : t < T 0 ). All the statements related to quasi-stationary distributions depend on Z T - 0 .

Existence of Quasi-Stationary Distributions

A quasi-stationary distribution ν (with respect to the absorbing time T 0 ) is a probability measure defined on N * × R + that verifies

P ν (Z(t) ∈ D | T 0 > t) = ν(D) , ∀D ∈ B(N * × R + ) . (7) 
It is known that starting from a quasi-stationary distribution, the time of absorption is exponential, that is P ν (T > t) = e -λt where λ = λ(ν) > 0. Let M b = {f : N * × R + → R bounded and measurable}. Equation ( 7) can be written as,

∃ λ > 0 : E ν (f (Z(t)), T 0 > t) = e -λt ∞ 0 f (y)ν(dy) ∀t > 0, f ∈ M b . (8) 
Denote by

κ n = ν({n} × R + ) = P ν (N(0) = n) ,
and the probability measure conditioned to have n individuals by

ν n (B) = ν({n} × B | {n} × R + ) = P ν (Y (0) ∈ B | N(0) = n) ∀B ∈ B(R + ) . Then ν(D) = n∈N * κ n ν n (D∩{n}×R + ), ν n (R + ) = 1 ∀n ∈ N * and n∈N * κ n = 1.
In order that the probability measure ν is a quasi-stationary distribution, it must satisfy the infinitesimal condition deduced from [START_REF] Leenheer | Competition in the chemostat: Some remarks[END_REF], which is given by,

∃ λ > 0 : n∈N * κ n ∞ 0 dν n (y) Lf (n, y) -λf (n, y) = 0 ∀f ∈ M b .
In terms of the adjoint operator L † of L defined in (2) the equation to be a quasi-stationary distribution is,

∃ λ > 0 : L † ν = -λ ν . ( 9 
)
Theorem 4.1. Assume there exists 0 ≤ σ < 1 such that lim sup

yց0 y σ d(y) < ∞.
Then there exists a quasi-stationary distribution. Moreover there exists at least a quasi-stationary distribution such that Y is supported in [0, y * ].

Proof. It suffices to show the existence of a quasi-stationary distribution. In fact, the last part of the statement follows when the existence proof is applied to the process Z taking values in the invariant set N × [0, y * ].

The idea for showing the existence is to use the abstract Theorem 4.2 proved in [START_REF] Collet | Quasi-stationary distributions for structured birth and death processes with mutations[END_REF]. We assume y ∈ [0, y * ]. We define a function

ϕ 1 (y, n) = 1 n≥1 .
Then a simple computation (it is the same computation as for a birth and death process since ϕ 1 does not depend on y) leads to

Lϕ 1 (y, n) = 0 if n > 1 , -D -d(y) if n = 1 .
Therefore if d 0 is bounded above by a constant d * 0 , then

e -t(D+d * 0 ) ϕ 1 ≤ e tL ϕ 1 ≤ ϕ 1 .
If d 0 is not bounded, we will prove the lower bound inf

n 0 ≥1, y 0 ∈]0,y * ] P n 0 ,y 0 (N(1) ≥ 1) ≥ Q .
for a constant Q > 0. By the Markov property it suffices to prove that there exists Q > 0 such that inf

y 0 ∈[0,y * ] P 1,y 0 (N(t) = 1, ∀ 0 ≤ t ≤ 1) ≥ Q .
Since N = 1 on the whole time interval [0, 1], y(t) satisfies the differential equation

dy dt = D(y * -y) -b(y) , (10) 
with initial condition y 0 . Since there neither birth, nor death on the time interval [0, 1] we get

P 1,y 0 (N(t) = 1, ∀ 0 ≤ t ≤ 1) = e -1 0 d(y(t))+b(y(t) dt .
Since b(y) is bounded uniformly in y, the above quantity does not vanish if

1 0 d(y(t)) dt < ∞ .
It is easy to show that there is a constant c > 0 such that for any y * ≥ y 0 ≥ 0, we have y(t) ≥ ct for any t ∈ [0, 1]. Since d(y) ≤ O(1)y -σ for y small, we get

1 0 d(y(t)) dt ≤ O(1) 1 0 y(t) -σ dt < ∞ .

It now follows immediately that

Q ϕ 1 ≤ e L ϕ 1 ≤ ϕ 1 .
The second function is

ϕ 2 (y, n) = 1 n≥1 e a(y)n ,
with a(y) = αy + a 0 , α > 0 and a 0 > 0. A simple computation for n > 1 (it is the same computation as for a birth and death process since ϕ 2 does not depend on y) leads to,

Lϕ 2 (y, n) = n e a(y)n Ξ(n, y) ,
where Ξ(n, y) = b(y) e a(y) -1-αn R + (D+d(y)) e -a(y) -1 +Dα(y * -y)-αη1 y>0 .

Let us show that there exists A > 0 and N 0 such that for all n > N 0 , sup

y∈[0,y * ] Ξ(n, y) ≤ -A. Define ζ(y) = (D + d(y
)) e -a(y) -1 +Dα(y *y) -αη1 y>0 . We choose a 0 and α such that D (e -a 0 -1) +Dαy * < 0. Then ζ(0) < 0. It follows that ∀y ∈ [0, y * ], ζ(y) < -A for some A > 0. Consider N0 such that e a(y * ) -1 -α N0 R < 0. We still have for n > N0 that e a(y * ) -1 -αn R < 0. Then for n > N0 , we get Ξ(n, y) ≤ -A. Therefore for any C > 0 there exists N(C) such that for any n > N(C),

Lϕ 2 (y, n) ≤ -C ϕ 2 (y, n) .
Therefore, for any C > 0 there exists Γ(C) > 0 (finite) such that

Lϕ 2 ≤ -C ϕ 2 + Γ(C) ϕ 1 .
(the estimate for n = 1 is by direct computation taking Γ(C) adequately large enough). Hence,

e tL ϕ 2 ≤ e -tC ϕ 2 + Γ(C) C ϕ 1 .
In the case where Proof. We recall that a quasi-limiting distribution ν is a probability measure on N * × R + such that for some initial point (n 0 , y 0 )

∈ N * × R + ν(A) = lim t→∞ P (n 0 ,y 0 ) (Z(t) ∈ A | T 0 > t) , ∀A ∈ B(N * × R + ).
If y 0 ∈ [0, y * ], the assertion follows from Proposition 2.1. Let us now assume that y 0 > y * . We introduce the function t → v(t) defined by

dv dt (t) = D(y * -v) -b(y * ) ; v(0) = y 0 .
Let τ 0 (y 0 ) be defined by v(τ 0 (y 0 )) = y * . For t ≤ T 0 ∧ τ 0 (y 0 ), we have

Y (t) ≤ v(t). It follows from Proposition 2.1 that P (n 0 ,y 0 ) (Y (t) > y * |T 0 > t) = 0 , ∀t ≥ τ 0 (y 0 )
, which concludes the proof.

Theorem 5.2. For all n ∈ N * and any quasi-stationary distribution, the probability measure ν n is absolutely continuous with respect to the Lebesgue measure, with C ∞ -density on the set R + \ {0, y n }.

The proof of this theorem is obtained from the following lemmas. Recall that the set S has been defined in [START_REF] Dykhuizen | Selection in chemostats[END_REF].

Lemma 5.3. For all n ∈ N * , the measure ν n satisfies

dν n = c n 0 δ 0 + j∈N * c n j δ y j + u n (y) dy (11) 
with c n j ≥ 0 for j ∈ N and u n is the density of the absolutely continuous part of ν n (so it is a non-negative integrable function) and it is a C ∞ function outside S ∪ {0}.

Proof. The measures ν n satisfy in the sense of distributions the differential equations

∂ y D(y * -y) -n b(y) ν n = b(y)n ν n-1 +(D+d(y))n ν n+1 -(b(y)+D+d(y))n ν n +λν n . (12)
Since the right hand side is a measure, we conclude by a recursive argument that the measures ν n have a C ∞ density on (S ∪ {0}) c . This also shows that these measures have no singular part, and the Lebesgue decomposition theorem gives relation [START_REF] Novick | Description of the Chemostat[END_REF]. Proof. Assume that there is an interval I not intersecting S ∪ {0} such that for some integer n ∈ N * , ν n (I) = 0 vanishes on I. From [START_REF] Smith | The Theory of the Chemostat[END_REF] we deduce that ν n+1 and ν n-1 also vanish at I. Therefore, we conclude recursively that ν j (I) = 0 for all j ∈ N * .

Lemma 5.5. The probability measure ν n is absolutely continuous on R + \ {0, y n } and its density is bounded on any compact set contained in R + \ {0, y n }.

Proof. Let us show that if j = n, ν n cannot have a Dirac mass in y j . We will do it by contradiction, so assume it does. Let f be a C ∞ function with compact support containing y j and such that its support does not contain any other point of S ∪ {0} except y j . By using formula [START_REF] Novick | Description of the Chemostat[END_REF] 

It is not difficult to construct a sequence of functions (f q : q ∈ N * ) contained in C ∞ with support in a fixed small enough neighborhood of y j and such that,

f ′ q (y j ) = 1; lim q→∞ sup y∈R + |f q (y)| = 0; sup y∈R + |f ′ q (y)| ≤ 1 ∀q; lim q→∞ |f ′ q (y)| = 0 ∀y = y j .
This leads to a contradiction, when we take f = f q in (13) and make q tend to infinity. Now, using again equation ( 12), we deduce easily the boundedness of the density of ν n outside a neighborhood of {y n , 0}.

Lemma 5.6. The probability measure ν n cannot have a Dirac mass in y n .

Proof. Assume it does. Then in a neighborhood of y n , by using (11) since c n j = 0 for j = 0, n and by writing c n = c n n , we can write

dν n = c n 0 δ 0 + c n δ yn + u n (y) dy .
Let f be a function C ∞ with compact support containing y n but that does not contain 0. We have 

-f ′ (
+c n f (y n ) λ -(b(y n ) + D + d(y n )) n .
We now construct a sequence (f q : q ∈ N * ) of C ∞ functions with support in a fixed small enough neighborhood of y n such that for some constant C ′ ,

f q (y n ) = 1 ∀q ; sup y∈R + |f q (y)| = 1 ; lim q→∞ |f q (y)| = 0 ∀y = y n and sup y∈R + |y -y n ||f ′ q (y)| ≤ C ′ ∀q ; lim q→∞ (y -y n )f ′ q (y) = 0 ∀y = y n .
Such a sequence can be easily constructed.

Recall that ν n-1 and ν n+1 are absolutely continuous with C ∞ density near y n . We conclude that if

c n = 0 λ = (b(y n ) + D + d(y n )) n .
In the case d is constant, it is known that the eigenvalue λ satisfies λ = κ n (D + d) < D + d, and so it is strictly less than (b(y n ) + D + d(y n )) n and we obtain a contradiction.

If d is not constant, the proof of the contradiction is more intricate.

Coming back to Equation ( 12) for u n in a neighborhood of y n but outside that point we get

∂ y G n (y) u n (y) = f n (y) G n (y) u n (y) + h n (y) with (see Lemma 3.1) G n (y) = D(y * -y) -n b(y) = β n (y -y n ) + O (y -y n ) 2 ,
with β n < 0, and

f n (y) = n b(y n ) -b(y) + d(y n ) -d(y) G n (y) = O(1) ,
Proof. In the proof we will assume y 0 < y ′ (the case y 0 ∈ (y ′ , y 1 ) is shown similarly). Let β > 0 be smaller than min(y 0 , y ′y 0 )/2 and let t > 0 be fixed. Then, there is ǫ = ǫ(n 0 , β) such that the following event has a strictly positive probability:

-On the interval time [0, ǫ] there are exactly n 0 -1 deaths and there is no other jump of N, and so N(t) decreases from n 0 to N 

(ǫ) = 1; -Y (ǫ) belongs to (Y (0) -β, Y ( 
dY (t) dt = D(y * -Y (t)) -b(Y (t)) is bounded below by D(y * -y ′ ) -b(y ′ ). Take t = (y ′ -Y (0) + β)/(D(y * - y ′ ) -b(y ′ ))
, let us see that the number t(y ′ ) = ǫ + t′ makes the job. In fact, we have ensured that in a time smaller or equal to t(y ′ ) we have attained {m} × [y ′γ, y ′ + γ]. For any time bigger than t(y ′ ) it suffices to modify slightly the above argument and allow a sequence of jumps up to the moment that Y (t) has negative derivate and in this way we can postpone the time of attaining the set {m} × [y ′γ, y ′ + γ] from t(y ′ ) to a prescribed time t > t(y ′ ).

Proposition 5.10. For all n ∈ N * , the probability measure ν n has a support dense in (0, y 1 ).

Proof. Denote by n ⊗ ν n the probability measure defined on N × R + by n ⊗ ν n ({m} × B) = δ n (m)ν n (B) for all B ∈ B(R + ). From Lemma 5.9 and the quasi-stationary distribution property (8) we have Then, the result follows.

6 Bound on the asymptotic survival rate Proof. In Section 3 in [START_REF] Collet | Quasi-stationary distributions for structured birth and death processes with mutations[END_REF], it was shown that this extinction rate is an eigenvalue of the dual problem associated with the probability measure

L † ν = -λν.
For simplicity, we will prove inequality (14) in case of n = 1. The general case proved in a similar way is left to the reader. We introduce the notation 

  y * then it remains in [0, y * ] forever proving the invariance.For the initial condition N(0) ∈ N * and Y (0) ∈ R + \ [0, y * ] we have that at time t = (Y (0)y * )/ b(y * ) the process has already attained the invariant set [0, y * ] × R + or became extinct.

  Let B(N × R + ) be the class of Borel sets of N × R + and B(R + ) the class of Borel sets of R + . For D ∈ B(N × R + ) we put by T D = inf{t ≥ 0 : Z(t) ∈ D} the hitting time of D by the process, with the usual convention ∞ = inf ∅.

Lemma 3 . 1 .

 31 Consider the equation G n (y) = 0 with G n (y) := D(y *y)n b(y) .

Proposition 5 . 1 .

 51 d is bounded above by d * < ∞, we now choose C > D + d * and t = 1 and apply Theorem 4.2 in [2]. In the case d unbounded, we choose C >log Q and apply Theorem 4.2 in [2]. 5 Properties of the Quasi-Stationary Distributions Any quasi-limiting distribution has support in N * × [0, y * ].

Lemma 5 . 4 .

 54 Let I be an open interval included in (S ∪ {0}) c . If there exists n ∈ N * such that ν n (I) = 0, then ν j (I) = 0 for all j ∈ N * .

  we get, -f ′ (y j ) D(y * -y j )n b(y)f ′ (y) D(y * -y)n b(y) ψ n (y)dy = f (y) b(y) n dν n-1 (y) + (D + d(y)) n dν n+1 (y) + f (y) λ -(b(y) + D + d(y)) n dν n (y) .

  y) D(y *y)n b(y) u n (y) dy = f (y) b(y) n dν n-1 (y) + (D + d(y)) n dν n+1 (y) + f (y) λ -(b(y) + D + d(y)) n u n (y) dy

P

  n⊗νn (N(0) = m, Y (0) ∈ (y ′ -γ, y ′ +γ) = e -λt P n⊗νn (N(t) = m, Y (t) ∈ (y ′ -γ, y ′ +γ) = e -λt P (n,y 0 ) (N(t) = m, Y (t) ∈ (y ′ -γ, y ′ +γ))dν n (y 0 ) > 0.

Theorem 6 . 1 .

 61 Let λ be the exponential extinction rate associated with a quasi-stationary distribution ν. Then λ < inf n (n(b(y n ) + D + d(y n )).(14)

G

  (y) = D(y *y) -b(y) H(y) = D + d(y) The quasi-stationary distribution equation for n = 1 is given by d dy G(y) u 1 (y)b(y) + H(y) u 1 (y) + 2H(y) u 2 (y) + λ u 1 (y) = 0 . Let a ∈]0, y 1 [. We have for y ∈]0, y 1 [ d dy G(y) u 1 (y) e y a (b(s)+H(s)-λ)/G 1 (s)ds = e y a (b(s)+H(s)-λ)/G(s)ds 2 H(y) u 2 (y) , and integrating between a and y we get G(y) u 1 (y) e y a (b(s)+H(s)-λ)/G(s)ds -G(a)u 1 (a) s)+H(s)-λ)/G(s)ds H(σ) u 2 (w) dw ≥ 0 . Therefore u 1 (y) ≥ G(a)u 1 (a) G(y) e -y a (b(s)+H(s)-λ)/G(s)ds . Let us study more carefully the quantity e -y a (b(s)+H(s)-λ)/G(s)ds . We recall that G only vanishes at y 1 and that G is decreasing since b is increasing. By a simple computation one gets b(s) + H(s)λ)/G(s) = b(y 1 ) + H(y 1 )λ (sy 1 ) G ′ (y 1 ) + O(1) , s) + H(s)λ)/G(s)ds = b(y 1 ) + H(y 1 )λ G ′ (y 1 ) log |yy 1 | + O(1) .

Finally, since G(y 1 ) 1 G 1 ,

 111 = 0, and G ′ (y 1 ) < 0, we get for y ≤ y (y)= (yy 1 ) G ′ (y 1 ) + O (yy 1 ) 2 = |yy 1 | |G ′ (y 1 )| + O(|yy 1 |) . Therefore u 1 (y) ≥ G(a)u 1 (a) G(y) |yy 1 | -(b(y 1 )+H(y 1 )-λ)/G ′ (y 1 ) e O(1) ≥ G(a)u 1 (a) |yy 1 | |G ′ (y 1 | |yy 1 | -(b(y 1 )+H(y 1 )-λ)/G ′ (y 1 ) e O(1) .As we have u 1 (a) > 0 by Theorem 5.7, the integrability of u 1 on [0,y 1 ] implies 1 + b(y 1 ) + H(y 1 )λ G ′ (y 1 ) <we finally get λ < b(y 1 ) + H(y 1 ) .

  0) + β); -On the interval of time [ǫ, ǫ + t] there is no jump of N (no birth and no death); -On the interval of time [ǫ + t, ǫ + t + β] there are exactly m -1 births and no other jump when m > 1, there is no jump if m = 1, or there is a unique death and no other jump when m = 0;

-|Y (ǫ + t) + β) -Y (ǫ + t)| < γ/2.

For t ∈ [ǫ, ǫ + t) we have N(t) = 1, then in this interval of time and before the process Y (t) has attained y ′ , the derivate

and recall that h n (y) is C ∞ near y n . The only solution which is integrable near y n is given by

y yn e -s yn fn(w)dw h n (s) ds .

If h n > 0 on a subset of positive measure of a small neighborhood of y n , we have u n < 0 which is a contradiction. Therefore, h n must vanish on both sides of y n . By the above result on the support, we conclude that u n vanishes in a neighborhood of y n as well as all the ν j with j = n (see Lemma 5.4). In particular, if we consider the equation for ν n+1 in this neighborhood (see ( 12)), we get

Theorem 5.7. On (0, y 1 ), the density of ν n satisfies u n > 0 except perhaps in y n .

The proof uses two lemmas.

Lemma 5.8. If ν n+1 or ν n-1 has a support dense in (0, y 1 ) then u n can be 0 only in y n .

Proof. The function G n has a simple zero in y n . Assume that for z ∈ (0, y 1 ), z = y 1 , u n (z) = 0 (and G n (z) = 0). Computation as in the proof of Lemma 5.6 gives

The conclusion follows.

Let us show that the process is irreducible up to extinction and before y 1 .

Lemma 5.9. Starting from any initial condition on N * × (0, y 1 ) the process Z has dense support on N × (0, y 1 ), that is, ∀m ∈ N, ∀y ′ ∈ (0, y 1 ), ∀γ > 0, ∃t(y ′ ) > 0 such that ∀t > t(y ′ ), ∀(y 0 , n 0 ) ∈ N * × (0, y 1 ) : P (n 0 ,y 0 ) (N(t) = m, Y (t) ∈ (y ′ -γ, y ′ +γ)) > 0.