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A SECOND ORDER ANTI-DIFFUSIVE LAGRANGE-REMAP SCHEME FOR
TWO-COMPONENT FLOWS

MARIE BILLAUD FRIESS!, BENJAMIN BOUTIN?, FILIPA CAETANO?, GLORIA FACCANONI?,
SAMUEL KokH?, FREDERIC LAGOUTIERE® ® AND LAURENT NAVORET’

Abstract. We build a non-dissipative second order algorithm for the approximate resolution of the
one-dimensional Euler system of compressible gas dynamics with two components. The considered
model was proposed in [1]. The algorithm is based on [8] which deals with a non-dissipative first order
resolution in Lagrange-remap formalism. In the present paper we describe, in the same framework,
an algorithm that is second order accurate in time and space, and that preserves sharp interfaces.
Numerical results reported at the end of the paper are very encouraging, showing the interest of the
second order accuracy for genuinely non-linear waves.

Résumé. Nous construisons un algorithme d’ordre deux et non dissipatif pour la résolution approchée
des équations d’Euler de la dynamique des gaz compressibles a deux constituants en dimension un.
Le modele que nous considérons est celui & cing équations proposé et analysé dans [1]. L’algorithme
est basé sur [8] qui proposait une résolution approchée a l'ordre un et non dissipative au moyen
d’un splitting de type Lagrange-projection. Dans le présent article, nous décrivons, dans le méme
formalisme, un algorithme d’ordre deux en temps et en espace, qui préserve des interfaces “parfaites”
entre les constituants. Les résultats numériques rapportés a la fin de 'article sont trés encourageants ;
ils montrent clairement les avantages d’un schéma d’ordre deux pour les ondes vraiment non linéaires.

1. INTRODUCTION

The present paper investigates the simulation, on Cartesian grids, of flows involving two compressible com-
ponents separated by a (sharp) interface. The discretization of the interface is achieved by means of an interface
capture technique. Within this framework, the interface is located by the discontinuity locus of an additional
parameter usually called a “color function”.

We propose in this work an adaptation to the second order of the numerical scheme introduced in [8] for
approximating the solution of the two-component flow model of [1]. This solver is based on a Lagrange-remap
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Figure 1: Two-fluid configuration with interface. Left: the two fluids are separated. Right: at the numerical
level, there is a (numerical) mixing and a need to define a gas law for this mixture.

strategy. Second order schemes for compressible dynamics are extensively used (see [11]), even in the Lagrange-
remap framework (see [6]). In the present contribution, the scheme is endowed with a special anti-diffusive
treatment in the remap step which preserves the sharpness of the discretized interface. While the anti-diffusive
mechanism allows to capture a very accurate profile for the contact discontinuity at the interface, it is not
active for the resolution of genuinely non-linear waves. The purpose of this paper is to couple an anti-diffusive
discretization technique for the color function with time and space second order schemes for the other unknowns,
while the method of [8] only involves order one upwind methods. The resulting scheme remains conservative
with respect to physically conserved parameters: global mass, partial masses, global momentum and energy.

The paper is structured as follows: we first briefly recall the five-equation system used for modeling the flow
and the first order anti-diffusive Lagrange-remap method. Then, in section 4, we introduce the second order
in space scheme, based on a second order Lagrange step and a second order remap step. Section 5 describes
briefly the Runge-Kutta method used to achieve second order in time. Finally, we propose numerical results in
section 6.

2. THE FIVE-EQUATION MODEL

In this section we briefly present, in dimension 1, the five-equation model derived and analyzed in [1], used
for the description of interface flows composed of two compressible (immiscible) fluids. We adopt the same
notations as in [8].

We introduce py, px, €k, the partial density, pressure and specific internal energy associated to each com-
ponent of the flow (k = 0,1). We assume that each fluid is governed by an equation of state (EOS) of the
form (px,ex) — PPk, ex). For each fluid we assume that there exists an entropy sx and we denote by
ck = v/ (0pk/0pk)s, the sound speed of fluid k (see [1,8] for the modeling issues and details). The interface is
localized thanks to the color function (x,t) —— z(x,t) which is taken equal to 1 in the fluid 1 and 0 elsewhere.
The global density p and specific internal energy ¢ of the two-component flow are related to the partial ones by

p=zp1+(1—2)po and pe = zp1e1 + (1 —z)poco.

In addition, we define the mass fraction yx by setting

Z
yzylz% and Yo =1-y.
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The five-equation model in one space dimension reads

atp"‘ax(pu) :Ov
0¢(py) + 0x(pyu) =0,
0¢(pe) + Ox[u(pe +p)l =0,
0tz +udyxz =0,

P =P1(p1,€1) = Polpo, o),

where e is the specific total energy given by e = ¢ +u2/2.

The first, third and fourth lines of System (1), express the conservation of total mass, total momentum and
total energy. The fifth equation is the transport of the color function z with the velocity u common to both
fluids (this model assumes that there is a unique velocity for the two fluids). In the sequel, we shall only consider
initial conditions such that z(x,t =0) =y(x,t = 0) € {0,1}. Let us observe that for such initial values we have
z(x,t) =y(x,t) € {0,1}, for all t > 0, therefore the second and the fifth lines become redundant. However, this
relation will not be verified for the discrete approximate solution. Indeed, the numerical strategy proposed in
this paper will generate regions in the computational domain where 0 < z < 1 and 0 < y < 1. Such regions
are pure numerical artifacts that are a discretized representation of the sharp interface locus and cannot be
considered as a meaningful physical mixture.

The Two-Perfect Gas Case. When both fluids are governed by perfect gas law px = (yx — 1)pxéx, with
Yk > 1, then the pressure p verifies

1z +1_Z
y—1 vi—1 vyo—1’

p = (v —1)pe,

and sound velocity c is defined by

1
2 Yk 2 2 Yk
c —(y—l)g ci, cy = —7p- 2

= ve—1 K Tk @

In the sequel we shall suppose that both fluids are perfect gas, however the present work is not restricted to
this specific case and can be extended to more general equations of state using similar lines as in [1].

3. LAGRANGE-REMAP ALGORITHM

In this section, we review the first-order anti-diffusive Lagrange-remap scheme proposed in [8]. The Lagrange-
remap scheme relies on a two-step splitting that decouples the acoustic effects from the material transport which
are respectively associated with genuinely non-linear fields and linearly degenerate fields.

Let X denote the Lagrangian coordinate, defined by

(0X/0t)x = u(X(x,t),1t), X(x,t=0) =x.

The first step is the Lagrangian step that consists in solving the FEuler equations using Lagrangian coordinates.
If we abuse notations and use the same variable names for both Lagrangian and Eulerian coordinates, this reads

Po¢(1/p) = Oxu, potu+ 0xp =0, poie + dx(pu) =0, Yyt =0, z¢ =0. (3)

The second step remaps the variables back onto the original Eulerian frame. This step accounts for the
material convection of the fluid.

This splitting strategy allows to provide a careful treatment with a special non-dissipative algorithm for the
discretization of the transport effects.
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We refer to [4,7] for a detailed review of the Lagrange-remap method and [5,10] for an interpretation of the

Lagrange-remap approach as a splitting of operators in the Eulerian frame.

Notation. Let At > 0 and Ax > 0 be a time step and a space step (they will be linked through a Courant-
Friedrichs-Lewy condition in the following). The space domain R is meshed with uniform cells of length Ax

indexed by 1 € Z.

For convenience, we keep the notations introduced in [9], avoiding the use of a time index n: the numerical

quantities in cell number i are denoted in the following as A; at the beginning of the time step, A; after the

resolution of the Lagrange part, and ;‘\\i after the remapping step.
For an interfacial flux variable (Fi;1/2)icz, let us call

[[Fﬂi = Fi+1/2 - F171/2
the flux differences.
3.1. Lagrange step £! (first order in space)
We set T =1/p and use the following discretization for System (3)
pi(Ti — i) = Afuls, pi(ui —ui) = —A[pls, piler — ei) = —A[puls,
Yi = Yi, zi =zy,

where A = At/Ax.
Therefore, setting p; = 1/Ti, p; = Pitli, pei = Pili, PY; = Piyi and defining the volume variation

I_i =14 ?\[[u]]i,
we finally get the equivalent system in the Eulerian (conservative) variables

Lipi = pi,

Li(pw)i = (puw)i — A[p]i,
Li(pe)i = (pe)i — Alpuls,
Yi = Vi,

Zi = zi.

It remains to choose the numerical fluxes that appear in the right hand sides: [u]i = Wiy1/2 —ui—1/2, [P]i =
Pit1/2 —Pi—1/2 and [pu]i = pit1/2Uit1/2 —Pi—1/2Wi—1/2. They are defined following [3], where it is proved to

lead to numerical discrete entropy inequalities:

Pitpiy1 1
Pi+1/2 = % - i(pc)i+1/2(ui+1 —uy),
i =M L L gy
i+1/2 9 2 (PC)1+1/2 i+1 i),

where

(pC)it1/2 = v/max ((pc?)i, (pc2)iv1) min (pi, Pit1)-
Here (pc?); is computed thanks to (2). The Courant-Friedrichs-Lewy stability condition for this step is

At

Ay hax ((pc)it1/2/ min(py, pis1)) < 1.

(®)
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3.2. Remap step ! (first order in space)

For the remap step, we use the general form (see [5,7,8])

pi = pi — Alpufi +Apifus,

pY; = py; — Alpyufi + Apy; [uls,
pu; = puy — Alpuu]i + Apuy [us,
pe; = pei — Alpeu]i + Apei[uls,

~

Zi = Zi — )\[[Zu]}l + AZi[[u]]i.

In this scheme, the flux differences [u]; are those defined in the Lagrangian step. However, all the fluxes
Pit1/2> PUiy1/2, P€it1/2, PYit1/2 and Zi /o remain to be defined. Following [5] and (8], we first take advantage
of the anti-diffusive technology to compute the fluxes z; /9.

Note that the global Lagrange-remap scheme reads

pi = pi — Alpuls,

Py = piyi — A[pyuls,

pu; = piuy — Afpun + ps, (9)
pe; = piei — A[peu + puf;,

/Z\i =2Zzi— A[[zu]]i + )\zi[[uﬂi,

and is thus conservative (except for the quantity z).
At the end of the time step, Ui, U, €; are computed as Ji = py;/pi, Ui = pu;/Pi, €1 = p€;/Pi.

3.2.1. Anti-diffusive fluz for z

The principle of the anti-diffusive scheme is to take the flux as downwinded as possible, but under some
constraints guaranteeing stability and consistency: for instance, if u; /9 and u;_; /o are positive, it means that
Zi41,2 should be the nearest value to zZi;1 = zi41 that keeps the scheme consistent and stable. Let us precise
the consistency and stability conditions.

Let us define m?,, , = min(zi,zi4+1) and M%, | , = max(zi, zi41), m?+1/2 = min(yi,yir1) and Mlij+1/2 =
max(yi, Yi+1) and

(50)i+1/2m$+1/2

diy12= 7= = )
2T B2 (T—mY o) + (Bo)icramy,,

(Po)it1/2MY 4 /5

D; = — — ,
bz (P1)ir1/2(1 = MYy o) + (Bo)iv1/2MY,

where the fluxes (pg)iy1/2 and (p1)iy1/2 will be defined later (and as upwind fluxes). Now

o If uji /2 >0anduy_;,5 >0, we set

1 Wi_1/2
Gir1/2 = zi+ (20— My 5) (?\u'+1/2 - U«T+1/2> ’

1 1

1 Ui1/2
Aipr/2 =zt (ze—mi ) ()\U‘+1/2 B uT+1/2> 7

i i
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and
b — 6i(M?_1/2 _yl) <U.i_1/2 - 1 )
N N MY )+ (B0)iMY p \Uip12 Mbigaye/)’
B, =z + Pi(mi 5 — i) (uim 1 )
N N - m?_l/g) + (50)1111?_1/2 Uip12  Aigtie/)

o If Uit1/2 < 0 and Uit3/2 < 0, we set

1 " ui+3/2> ’
AUiyi/2 Uigi/2

1 n Ui+3/2> 7
)\Ui+1/2 Wit1/2

z
Qiy1/2 = Zit1 — (Ziy1 — Mii3)0) (

z
Air1/2 = Zit1 — (Zig1 — M 3)0) (

and
b n 5i+1(M1{J+3/2 - yiJrl) (ui+3/2 n 1 )
i+1/2 = Zi+1 = = ,
s ' (P)ir1(1 =M 5 ,0) + (Po)irtMY 50 \Wiv12  Miigayo
51'.+1(miy+3/2 —VYi+1) Wiy3/2 1
Biti1/2 =2zi1+ = v = g + :
(P1)ire(1— mi+3/2) + (po)i+1mi+3/2 Uir1/2  AUigi/

Now let us define the sets i1 /o:

[miz+1/27 Miz+1/2] N [ai+1/27 Ai+1/2}

Nldit1/2, Dig1/2] N [big1/2, Biyi o] if ui11/2 >0 and uj_q,2 >0,
Ii+1/2 = or if Uit/ < 0 and Uit3/2 < 0,
{zi} ifuiii/0 =2 0and uy_i/9 <0,
{zit1} if wiy1/2 <0 and uiy3,0 > 0.

Then one has the following result (cf. [8]).

Proposition 3.1. Assume that all the fluzes of the remap step, as functions of the flures Zi 11 /2, are computed
in accordance with formulae (10) and (12) in the following. Then, under the Courant-Friedrichs-Lewy condition
(Wit1/2lAt/Ax < 1 for all i € Z, the sets 1;41,9 are not empty and contain the upwind flux zi if Wiy1/2 2 0,
ziy1 if Wip1/2 < 0. Furthermore, if Ziyq /2 € lit1/2 for every i € Z, the scheme is consistent and stable for z
and y in the sense that for alli € Z one has

® Zit1/2 € [miz+1/27MiZ+1/2]’
® Uis/z € MYy, 5, MY, o),

o ifuiii2 >0 thenzy € [(mf | 0, ME | 5l and if wiy1/2 <O then Z; € [(mf, )0, ME ol
. ifui+1/2 >0 then y; € [mil/Q, M?71/2]7 and ifui+1/2 < 0 then y; € [m?+1/2, M?Jrl/Q}'

Choice of the flux z;;/9: the chosen flux z; ;45 is the one that minimizes |5?i1/2 —Zit1/2| in the interval
Iit1/2, where 2?21/2 is the downwind value: 2?21/2 =2z if U0 >0, 2?21/2 =z if Uj41/2 < 0. This is done
in the following way. Let us denote Iii1/9 = [Wit1/2,Qi41,2], the non-empty (under the Courant-Friedrichs-
Lewy condition) consistency and stability interval for the flux z;i /2. Then,

(e >d
Wit12 250 ) < Wigq)2,
g >do :r >do
Ziviy2 = Zig1yo 250 9 € [Wit1/2, Qig/al,
g
Qiv1y2 i Z{9 5 > Qigryo
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This flux will be denoted as Z’;‘il /o in the following.

3.2.2. Upwind flux for the other unknowns

The fluxes for conservative unknowns are computed using the upwind choice for partial quantities (P )i1,2,
(51_<\€/k)i+1/27 k =0,1, and for 1~J—i+1/21

~ \u ———\u ~u (Ek)iv (m)iaﬁi) ) if ui+1/2 > Oa
(P)L% ) s (PRER)TT g WL ) = ( ~ s _ , (10)
( /2 vh/2r T2 ((pk)i+17 (pkik)i+1,ui+1) ;o ifugyge <0.
We recall here that the partial densities are given through
PUi . pill—yi) .
~ — if z; #£0, ~ — ifzy #1,
(P1)i=1q zi e and  (po)i = 1—2z e

0 otherwise, 0 otherwise.

Finally the fluxes for conservative unknowns read

51+1/2 = z?il/z (50)?51/2 +(1 _2?11/2) (51)1‘14]?1/27

(PY)is12 = Z?il/g (P1)i}1 /20

(5\5)1+1/2 = vaiajl-l/z (‘%)?«21/2 + (- 2?21/2) (9/1\51)31/2’ (12)
(fﬁ)mm = 5i+1/2 ﬁ?i1/27

(P€)iv12 = (PE)iv1y2 +1/2(pWiq1/2 ﬁlﬁl/y

The Courant-Friedrichs-Lewy stability condition for this step is

At (Iu I) <1
max i .
A Rax (Ui/2l) S

Thus the stability condition that we impose for the Lagrange-remap iterate is

At

Ay Rax (Twit1/2l, (pC)is1/2/ min(pyi, pis1)) < 1.

We refer to [8] for numerical results.

4. SECOND ORDER IN SPACE

The goal is now to develop a second order scheme in space, that will improve the numerical resolution of
smooth solutions without breaking down the anti-diffusive properties.

To obtain second order accuracy in space, we use the classical MUSCL strategy (see [11] for example). For
any variable w, the solution is approximated by a piecewise linear numerical solution (instead of the usual
piecewise constant solution):

wi(x) = wi + 0yx,

where o0; denotes a (numerical) slope of the solution (see Figure 2). To define these slopes, we use the slope
limiter function:

. Wi —Wi_1 Wit — Wy
07 = minmod , ,
Ax Ax



156 ESAIM: PROCEEDINGS

| | |

| | |

I I I

| I Wit1 I |
I I —_—— I - I
I I . I I I I
I ! Wi | I I I
I i - I I I I
| Wi—1 | | | | Wi |
—— l l l I
| | | | | |
| | | | |
| | | | | |
I I I I I I
i i N i i i i
I I 1 I I I I
I I I I I I
I I I I I I
I I I I I I

1i-1/2 i4+1/2
first order second order

Figure 2: MUSCL reconstruction (minmod).

where the minmod function! is defined as:

a if |al <|b] and ab > 0,
minmod(a,b) =< b if |b| < |a| and ab > 0,
0 ifab<0,

and is aimed at preventing from oscillations. This reconstruction enables to define a left value wiL =w;(—Ax/2)
and a right value wl = w;(Ax/2), see Figure 2.

In the next two subsectlons, we describe how it is incorporated into the Lagrange-remap scheme. The basic
principle is to write any of the preceding first order fluxes Fi /o as a function of the left and right values of

the unknowns wi and wiy1: Fij1/0 = F(Wi, wiy1), and to replace it here with F(wf W1L+1)

4.1. Lagrange £ (second order in space)

The second-order version of the Lagrange step (7)-(8) is written as follows:

R 4L
Py +P; 1
Pit1/2 = % - §(PC)1+1/2(UiL+1 —uf),
R L
ug +ug; 1 1 L R
u -5 i+1— Fil
iz 2 2 (pc)iv1y2 iy = i)

(PC)it1/2 = \/max ((pe2)E, (pc2)k ;) min (pR, oL, ),

where the values of pb®, ubR and p™R are defined from the values of p, u and p thanks to the affine recon-
struction defined above. The values of (pc?)t and (pc?)R are obtained with Equation (2) and the values of p&R
and z.

11t can be implemented as minmod(a,b) = max(0, min(a, b)) + min(0, max(a,b)).
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Remark 4.1. Note that reconstructions of the mass fraction y and the color function z are not needed in this
Lagrange step because z; = z; and y; = y;.

4.2. Remap R? (second order in space)

For the remap step, we also reconstruct the left and the right values of all the quantities appearing in the
fluxes, except for z. Indeed, in order to keep the interfaces sharp, we conserve the anti-diffusive flux for z:
Zit1/0 = Zﬁl /2 (see the end of Subsection 3.2.1). The algorithm is here based on a second order reconstruction
of the partial densities:

((pk) (pkak) ﬁuPZ ) _ ((51()57(5]:5()571’15) ifui+1/2 > 0,
i+1/2 1+1/2a i+1/2 ((5k)iL+1, (m)h—lvﬁhl) if w2 <0.

Recall that the stability property of Proposition 3.1 is true only if the fluxes are upwinded following Equa-
tion (12). Thus, in the vicinity of the interface, these first order fluxes have to be kept. Nevertheless one can
choose second order fluxes away from it, when z(1 — z) = 0. This is done within the following procedure:

o Ifzi 1 =2z =2i41 =2zi42 =0 or 1 then the fluxes are second order:

~ _ ~ad ~ p2 ~ad ~ 2
Pit1/2 = Ziyi2 (90)3+21/2 + 1=z ) (pl)luil/y
(Py)i+1/2 = Zlil/g (91)511/27 ,
(Pﬁ)i+1/2 = 1+1/2 (00'320)1“/2 +(1— Z‘fil/g) (0161)31/2,
(Pu)i+1/2 = Pi+1/2 ulfil/g,

— ~ —~ ~up?2

(Pe)iv1i2 = (PE€)ig1/2+ i(pu)iJrl/Q u?f:l/g

(but note that in this case Zl+1/2 =0or1).

e If not, the fluxes are first order and given by formula (12).

5. SECOND ORDER IN TIME

To obtain second order accuracy in time, several strategies are possible. We propose here to use the Runge-
Kutta method (RK2) (we also tested the method mentioned in [2], with no notable differences on numerical
results).

The Runge-Kutta (RK2 or Heun) method is classical but for the sake of completeness, we recall here its
principle. It consists in writing System (9) under the (vector) form W = W + AG(W) and to replace (4,5,9)
here with .

W =W+ (A/2)G(W)
W =W +AG(W).
It is clear that this scheme is still conservative (except for z).

Remark 5.1. To have both the interfaces sharp and the stability result of Proposition 3.1, we have to keep
order 1 (non-dissipative) accuracy when z is not equal to 0 nor to 1. This is done by computing the first oder
in time fluxes in the vicinity of the interface, in the manner described at the end of subsection 4.2.

6. NUMERICAL RESULTS

We compare first order and second order schemes on the two-component Sod shock tube. This test is a
Riemann problem with initial condition

_ [ (1,0, L1) ifx<1/2,
(p,u,p,z) (x,O){ (1/8,0,1/10,0) if x > 1/2,
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with yg = 2.4 and y; = 1.4. We observe the results at time t = 0.14, so that the waves do not reach neither
x =0 nor x = 1, and the boundary conditions are easy to handle.

Figures 3, 4, 5 represent the density, pressure, velocity, color function and mass fraction profiles at the final
time with 400 cells. Here, solutions obtained with the first order, second order in space and second order in
both space and time antidissipative scheme are compared to the exact ones.

In the following, “CYRIT*” (“LiRjTK” in the figures) means that the considered numerical solution has been
computed with the (antidissipative if not precised) scheme composed of the Lagrange step of order i, remap step
of order j and time integration discretization of order k.

Figures 6 and 7 present zooms of these numerical results. We remark that the second order improves a lot the
precision of the approximation, especially along the rarefaction wave and on the shock wave. Nevertheless, there
is no notable difference on the contact discontinuity. Indeed, the contact discontinuity, which corresponds to
the color function discontinuity, is treated using an anti-dissipative scheme. One should note the overshoot and
undershoot at the contact discontinuity. This so-called ”wall-heating” phenomenon is usually smoothed when
using classical schemes (like upwind scheme). Here, since the scheme is anti-dissipative, this artefact is not
diffused. However, these oscillations are generally bounded and for finer mesh this phenomenon vanishes and
does not affect the solution convergence even for more complex EOS (see for example [8]). Furthermore, the
Runge-Kutta scheme for the time integration seems to bring no additional precision, but this may be test-case
dependent.

exact soi ution
1 L1IRIT1 ——
L2R2T1 —
L2R2T2 —
0.8 | f
0.6 | f
04 | f

0.2 | ]

Figure 3: Two-component Sod shock tube: density.

In figure 8, the L' norm errors for the different quantities are depicted (in logarithmic scale) as a function of
the space step for these three different schemes (with a ratio At/Ax kept constant). In table 1, we have reported
the relative convergence orders (also compared to the classical first order and second order upwind schemes).
Let us make some comments:

(1) For first and second order schemes, note that the anti-diffusive flux provides always better convergence

rates than the upwind flux, for all the quantities. In particular for the mass fractions y and z, the
anti-diffusive flux enables to overcome order 1 errors (although these quantities are not smooth).
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Figure 4: Two-component Sod shock tube: pressure (left) and velocity (right).
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Figure 5: Two-component Sod shock tube: color function z (left) and mass fraction y (right).

In comparison with the first order schemes, the second order methods improved the numerical con-
vergence orders. However, the numerical orders that are reached are less or approximately equal to 1
instead of 2. This is partially due to the fact that the solution is discontinuous. We cannot expect to
reach order 2 convergence. Furthermore, the order 1 convergence for the mass fractions is really the
“best” that we can have. Besides, figure 8 shows that the error (as well as the the convergence rate) is

also decreased when using second order schemes.

We can also observe that the scheme £29R%%'gives better results than £293'T': more precisely, the
second order method in the Lagrange step enables to improve the convergence rates of the mass fractions
y and z, while the second order in the remap step enables to improve the convergence rates of the density

p, the velocity z and the pressure .

7. CONCLUSION

In this paper we explore a second order improvement of the antidissipative scheme for two-component com-

pressible dynamics derived in [8].

Since this scheme is based on a Lagrange-projection strategy, the present
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exact solution

exact solution
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(a) “Head” of the rarefaction wave. (b) Contact discontinuity.

Figure 6: Two-component Sod shock tube: density, zoom along the rarefaction wave (left) and on the contact
discontinuity (right).
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LIRIT1 —— LIRIT1 ——
0.49 + L2R2T1 —— 0.2 £ L2R2T1 ——
L2R2T2 —x— \‘§§\\ L2R2T2 —x—
0.48 . 0.18 .
047 = 0.16 =
046 w | 014+ 1
0.45 + . 0.12 + .
0.44 I I I I 0.1 I I I I I
0.45 0.5 0.55 0.6 0.65 0.79 0.8 0.81 0.82 0.83 0.84 0.85
(a) Intermediate constant part. (b) Shock wave.

Figure 7: Two-component Sod shock tube: density, zoom between the rarefaction wave and the contact discon-
tinuity (left) and on the shock wave (right).

paper proposes a second order Lagrange step as well as a second order remap step. This is done carefully, allow-
ing to keep the former antidissipative properties for the color function and the mass fraction, which guaranties
to have sharp interfaces between components. The preliminary numerical results reported in this paper show
that the aim is reached: the computation of non-linear waves is improved while the interfaces remain sharp
(located on only one cell).

Extension to the dimensions 2 and 3 are in progress, as well as the extension to the treatment of more than
two components.
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z flux P u P y z
LIRITY upwind 0.63265 0.82033 0.77921 0.49348 0.51874
SIRITL  antidiffusive  0.75714  0.82360 0.78031 1.12061  1.09585
£2R2%1 upwind 0.83484 1.03140 1.08738 0.69883  0.7288

£2R2%1  antidiffusive  1.08943  1.04647 1.10479 1.12100 1.25928

Table 1: Two-component Sod shock tube - convergence orders
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Figure 8: Two-component Sod tube: convergence curves for different quantities.



