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Abstract

Recently (arXiv:1205.5015), Waegell and Aravind have given a number of distinct sets of three-
qubit observables, each furnishing a proof of the Kochen-Specker theorem. Here it is demon-
strated that two of these sets/configurations, namely the 182 — 123 and 24145 — 4364 ones,
can uniquely be extended into geometric hyperplanes of the split Cayley hexagon of order two,
namely into those of types V22(37;0,12,15,10) and V4(49;0,0,21,28) in the classification of
Frohardt and Johnson (Communications in Algebra 22 (1994) 773). Moreover, employing an
automorphism of order seven of the hexagon, six more replicas of either of the two configurations
are obtained.

Keywords: ‘Magic’ Configurations of Observables — Three-Qubit Pauli Group — Split Cayley
Hexagon of Order Two

1 Introduction

For a relatively long time, the only known ‘magic’ configuration of three-qubit ob-
servables, that is a configuration furnishing a proof of the Kochen-Specker theorem
[1], was the so-called Mermin pentagram [2] — an aggregate of ten observables
forming five sets of four mutually commuting elements each, such that each ob-
servable belongs to two of these sets and the product of observables in one of
them is the minus identity, whilst in the remaining four it is the plus identity.
Very recently, Waegell and Aravind [3] have proposed a procedure that generates
a variety of such configurations. The purpose of this note is to provide the reader,
following the spirit and strategy of two recent papers [4, 5|, with an intriguing
finite-geometric insight into a couple of them. The relevant finite geometry is
here that of the split Cayley hexagon of order two [6, 7, 8], this being a distin-
guished subgeometry of the symplectic polar space W(5,2) associated with the



three-qubit Pauli group [10]-[15], and two (out of as many as 25) distinct types
of its geometric hyperplanes.

To be more explicit, we shall make use of a highly symmetric rendering/figure
[7, 8] of the split Cayley hexagon of order two, where each of its 63 points is asso-
ciated with one of 63 non-trivial elements of the three-qubit Pauli group in such a
way that the product of any three elements represented by the points on the same
line will be proportional to the identity [9]. Then, by embedding in the hexagon
(which amounts to highlighting in the figure) each of the two above-mentioned
Waegell-Aravind magic configurations, we shall diagrammatically illustrate con-
secutive steps of ‘line-completion’ that in either case lead to a unique geometric
hyperplane of the particular type. In addition, an automorphism of order seven
of the figure in question will, in either case as well, be shown to give birth to six
more configurations having the same ‘magic’ nature as the original one.

This short contribution is organized as follows. Sec. 2 highlights rudiments of
the three-qubit Pauli group and its associated symplectic polar space W (5,2),
introduces the split Cayley hexagon of order two and lists basic properties of all
25 types of its geometric hyperplanes. Sec. 3 deals with two particular three-qubit
magic configurations of Waegell and Aravind [3] and presents a detailed demon-
stration of their completion into specific geometric hyperplanes of the hexagon.
Finally, Sec.4 summarizes main findings, mentions a parallel with the two-qubit
Mermin(-Peres) magic square and outlines some prospective work.

2 Three-Qubit Pauli Group and Split Cayley Hexagon of
Order Two

The (generalized) three-qubit Pauli group, Ps, is generated by three-fold tensor
products of the matrices

10 01 0 —1 1 0
= (g ) = (1) =8 ) maz= (5 V).

Explicitly,
Ps = {’iaAl ® Ay ® Az : Aj S {I,X,Y,Z}, j e {1,2,3}, o€ {0,1,2,3}}

Here, we will be dealing with its factored version P3 = P53/ Z(Ps3), where the center
Z(P3) consists of 2T @ @I and +il ® I ® I,' and whose geometry is that of the
symplectic polar space W (5, 2) [10]-[15]. This space, freely speaking, is a collection
of all totally isotropic subspaces of the ambient five-dimensional binary projective
space, PG(5,2), equipped with a non-degenerate alternating bilinear form. The
63 elements of the group are in a bijective correspondence with the 63 points of
W(5,2) in such a way that two commuting elements correspond to two points
joined by a totally isotropic line; a maximum set of mutually commuting elements
of the group having its counterpart in a maximal totally isotropic subspace (also
called a generator), which is a projective plane of order two, the Fano plane. We

In what follows, we shall use a shorthand notation for the tensor product: A; ® Az ® A3 = A; Az As.



shall, however, not be concerned with the full geometric structure of W (5,2),
but — as already mentioned — restrict ourselves to its important subgeometry
represented by the split Cayley hexagon of order two. Although the two structures
are identical as point-sets, the hexagon contains only 63 lines, which is much less
than W (5,2), is is thus more handy to work with.
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Figure 1: A diagrammatic illustration of the structure of the split Cayley hexagon of order two
(based on drawings given in [7, 8]). The points are illustrated by small circles and its lines by
segments of straight-lines and/or arcs; note that there are many intersections of segments that
do not represent any points of the hexagon. Labeling by the elements of P3 is adopted from [9].
Also obvious is an automorphism of order seven of the structure.

A split Cayley hexagon of order two, Gs, is a point-line incidence geometry that
satisfies the following three axioms [7, 8|: a) every line contains three points and
every point is contained in three lines; b) G, does not contain any ordinary k-gons



Table 1: Classes and types of geometric hyperplanes of the split Cayley hexagon of order two.
For each type one gives the size of its point- (‘Pts’) and line- (‘Lns’) sets, number of deep points
(‘DPts’), total number of distinct copies (‘Cps’) and the stabilizer group (‘StGr’) of its orbit;
for more group-theoretical details, see [6].

|| Class | FJ Type | Pts Lns DPts Cps StGr ||

I V2(21;21,0,0,0) 21 0 0 36 PGL(2,7)

II V+(23;16,6,0,1) 23 3 1 126 (4 x4):5;3

I V11(25;10,12,3,0) | 25 6 0 504 S,

IV V1(27;0,27,0,0) 27 9 0 28  XJ-:QDss
Vs(27:8,15,0,4) 27 9 3+1 252 2x Sy
V13(27;8,11,8,0) 27  8+1 0 756  Dig
V17(27;6,15,6,0) 27  6+3 0 1008 Dis

\ V12(29;7,12,6,4) 29 12 4 504 S,

V18(29;5,12,12,0) | 29 12 0 1008 Dis
V19(29;6,12,9,2) 29 12 2nc 1008 D12
V23(29;4,16,7,2) 29 12 2c 1512 Dy

VI V6(31;0,24,0,7) 31 15 6+1 63 (4x4): Dy
V2u(3134,12,12,3) | 31 15 2+1 1512 Dg
Vos5(31:4,12,12,3) | 31 15 3 2016 Ss

VII | V14(33;4,8,17,4) 33 18 2+2 756 Dig
V20(33;2,12,154) | 33 18 3+1 1008 Dis

VIIT | V3(35;0,21,0,14) 35 21 14 36 PGL(2,7)
V16(35;0,13,16,6) | 35 21 442 756  Dig
V21(35;2,9,18,6) 35 21 6 1008 Dis

IX V15(37;1,8,20,8) 37 24 8 756 D
V92(37;0,12,15,10) | 37 24  6+3+1 1008 Dis

X V10(39;0,10,16,13) | 39 27  8+4+1 378 8:2:2

XI Vo(43;0,3,24,16) 43 33 12+3+1 252 2x S,

XIT | V5(45;0,0,27,18) 45 36 18 56 X, : Dg

XIIT | V4(49;0,0,21,28) 49 42 28 36 PGL(2,7)

for 2 < k < 6; and ¢) given two points, two lines, or a point and a line, there is at
least one ordinary hexagon in G, that contains both objects; and, in addition, it
contains the incidence graph of the Fano plane [16]. As Gy is rather small, it can
easily be represented in a diagrammatical form, Figure 1, from which all essential
features of its geometrical structure can readily be ascertained.

The final notion that remains to be introduced is that of a geometric hyper-
plane. Given any point-line incidence structure, its geometric hyperplane is a
subset of the point-set such that every line of the structure either lies fully in the
subset, or shares with it just one point [17]; a point of a geometric hyperplane is
called deep if all the lines passing through it are fully contained in the hyperplane.
It has been found [6] that G, features 24 — 1 = 16 383 geometric hyperplanes that
fall into 25 distinct types (according to the orbits of its automorphism group) and
13 classes (in terms of the sizes of their point-sets). This classification is given
in Table 1, where we also adopt the Frohardt-Johnson ‘five-tuple’ notation [6],
Vi(n; 1o, n1,n2,n3), meaning that a hyperplane of the k-th type, 1 < k < 25,



is endowed with n points of which ng, s € {0,1,2,3}, belong to exactly s lines
contained in the hyperplane; thus, ns is the number of deep points of a hyper-
plane. It is of some interest to note in passing that there are two distinct types
of hyperplanes that have the same five-tuple, namely V4 and Vss.

At this point we have introduced all the necessary finite-geometrical technical-
ities to be employed in the next section to analyse some ‘magic’ configurations of
three-qubit observables.

3 Waegell-Aravind Configurations Uniquely Extendible into
Geometric Hyperplanes

We shall first deal with the configuration shown in Figure 5 of [3], bearing there
symbol 18, — 123. It consists of 18 observables forming 12 sets of mutually com-
muting elements of size three each, namely:

(121,221,211}, {ZII,Z1Z,11Z}, {I1Z,12Z 121},
{(IXI,XXI,XII}, {XII,XIX,IIX}, {IIX,IXX, IXI},
{(IYI,YYI,YII}, {YIIYIY,IIY}, {IIY,IYY,IYI}
(221, XXI1,YYI}, {YIY,XIX,ZIZ}, {IZZ,IXX,IYY},

each of which represents a line in W (5,2). It is readily verified that the product
of observables in each set is +111 except for the last three sets where it is —I11.
Given this fact and the fact that each observable belongs to exactly two sets, it is
impossible to assign the eigenvalue +1 or —1 to each observable in such a way that
these obey the same product rules as the observables themselves — this rendering
a proof of the Kochen-Specker theorem [3].

It is, however, not this theorem that is of concern for us here. Rather, it is
the configuration as a whole and, in particular, its image within our split Cayley
hexagon, as depicted in Figure 2, top, by red bullets. Let us try to find a geometric
hyperplane this configuration sits in. To this end, one has simply to recall that a
line of the hexagon is either fully contained in a hyperplane, or shares with it a
single point. A brief look at Figure 2, top, reveals that there are a number of lines
of the hexagon that contains two red points and, hence, must lie completely within
our sought-for hyperplane; any such line, as well as the remaining third point on
it, is illustrated in blue. By extending our original configuration by the blue points
and lines, we shall find some lines to feature one red and one blue point; these are
highlighted in yellow and must equally belong fully to the sought-for hyperplane.
At this step our process of extension ends, for this doubly-extended aggregate of
points, illustrated in a colorless version in Figure 2, bottom, already satisfies the
properties of a geometric hyperplane. From this figure we easily discern that our
hyperplane has 37 points and 10 deep points, and from Table 1 we find out that
it must be of type Var(37;0,12,15,10), since the only other type of the same size
has, for example, only 8 deep points.

The (only) other W-A configuration that is subject to a unique extension into
a geometric hyperplane is the 24145 — 4364 one, [3, Figure 8, right], comprising
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Figure 2: Top: — An illustration of the process of extension of the set of three-qubit observables

of the 185 — 123 magic configuration of Waegell and Aravind [3, Figure 2] into a geometric
hyperplane of the split Cayley hexagon of order two. Red bullets are the points/observables of
the configuration itself, blue bullets represent the remaining points on the lines of the hexagon
featuring two red points and yellow bullets stand for the remaining points on the lines of the
hexagon having one red and one blue point. Bottom: — A simplified illustration of the structure
of the corresponding hyperplane; encircled are all the ten deep points of the hyperplane.
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Figure 3: Left: — The same as in Figure 2 for the 2,145 — 436, ‘magic’ configuration. The
meaning of colors is also the same as in the preceding figure save for the fact that we now need
a few more steps (for simplicity all illustrated by green color) to arrive at a hyperplane; in
particular, a green point is the third point on the line of the hexagon that features either a red
point and a yellow one, or a blue/yellow point and a(n already supplied in a previous step) green
one. Right: — A simplified sketch of the resulting hyperplane with its deep points encircled.

the following sets of pairwise commuting observables:

(212,211,117}, (112,121,122},
(211,121,221}, {I1ZZ, XYY, XXX},
{IIX,YII,IYI,YYX}, {IYIIIY,XII, XYY},
(YII,IIV,IXI,YXY}, {IIX XII,IXI, XXX},
(122,221, YXY, XXX}, {122,212, YYX,XXX}.

Geometrically speaking, each three-element set corresponds to a line of W(5,2),
whereas each four-element set represents an affine plane of order two (located in
a certain Fano plane) of W(5,2). Again, we are interested in the configuration as
a whole and highlighting this set of observables in the figure of the hexagon and
following the same strategy as in the preceding case we shall find that this configu-
ration is uniquely extendible into a geometric hyperplane of type V,(49; 0, 0, 21, 28)
— see Figure 3. A hyperplane of this type, apart of being of the largest possible
size (see Table 1), is also remarkable by the fact that its complement is nothing
but the incidence graph of the Fano plane.

As for the remaining W-A configurations, none of them was found to be
uniquely extendible into a geometric hyperplane. FExcept for the 14115 — 2354
configuration [3, Figure 8, left], which does not seem to be embeddable into any




hyperplane, all the other configurations were found to sit in at least two dis-
tinct types of hyperplanes; in particular, the three-qubit Peres-Mermin square |3,
Figure 4] was found in as many as 12 different types of hyperplanes.

We shall conclude this section by observing that an automorphism of order
seven of our hexagon can be used to generate six more replicas (listed below in
columns b to g) for either of the above discussed W-A configurations (column a).
Technically, this action is performed by rotating consecutively Figure 2, top, and
Figure 3, left, by 360/7 degrees around the center of the hexagon. Thus, rotating
the figures in question counterclockwise, the interested reader can easily check
that for the 18, — 125 case we get

a — b — c — d — e — f — g,
XIX — IXX — IIX — XXI - IXI — XXX - XII
1Z1 = ZI7Z —  ZII — ZZI — I1IZ — ZI1Z — 177,
XII — XIX ~— IXX — 1IIX — XXI — IXI — XXX,
I1ZzZ — 1IZI W L7 —  ZII — ZZI — I1IZ — ZI1Z,
YII — YZX +— IXY — ZIY — XYZ — IYI — YYY,
Yy — IZX — YYZ — ZXI — YYX — XIZ — YIY,
YIY — IYY — IZX — YYZ — ZXI — YYX — XIZ
Y1 — YYY — YII = YZX +— IXY —  ZIY — XYZ,
IXX — IIX — XXI — IXI — XXX — XII — XIX,
ZI11 — ZZI — I1IZ — ZIZ — 17 — 171 — ZZZ,
IIX - XXI — IXI = XXX - XII — XIX — IXX,
ZzZ1I — IIZ — ZI1Z — 1ZZ — IZI — 477 — ZII,
YYI — IXZ — YXY — XZZ — XZX — 2ZYY — ZIX,
XXI — IXI = XXX — XII — XIX ~ IXX ~ IIX,
11z — ZIZ — 1ZZ — I1Z1 — ZZZ — ZII — ZZI,
IXI — XXX — XII = XIX - IXX — IIX — XXI,
Z1Z — 1Z7Z — 171 = 277 —  ZII — 71 — I1Z,
I1Y — YXZ — IYZ — XYX — YZZ +— YIX — ZYX,

and for the 24145 — 4564 case we obtain

a — b — c — d — e — f — g,
1Z1 = ZZZ —  ZII — ZZI — I1IZ — ZI1Z — 177,
I1Y — YXZ — IYZ — XYX — YZZ — YIX +— ZYX,
XII — XIX +— IXX — IIX — XXI — IXI — XXX,
1Z7Z — I1Z1 W ZZZ w— ZII — ZZI — I1IZ — ZI1Z,
XYY — XZI — YZY — ZXX — ZZX — XXZ w— ZXZ,
XXX — XII — XIX — IXX — IIX — XXI — IXI,
YXY - XZ7Z - XZX — 2ZYY — ZIX ~— YYI — IXZ
Z1Z — 1ZZ — I1Z1 — ZZZ — ZII — ZZI — 117,
IXI — XXX — XII — XIX — IXX +— IIX —  XXI,
I11Z — ZI1Z — 177 — I1Z1 = ZZZ w— ZII — ZZI,
Z7Z1 — I1IZ — ZI1Z — 1ZZ — IZI — ZZ7Z w— ZII,
11X — XXI — IXI — XXX — XII — XIX — IXX,
ZI11 — ZZI — I1IZ — ZI1Z — 17 — I1Z1 — 277,
YII — YZX — IXY — ZIY — XYZ — 1IYI — YYY,
Y1 — YYY — YII — YZX — IXY — ZIY — XYZ,
YYX — XIZ — YIY — 1YY — IZX — YYZ — ZXI.

We have also verified that all these replicas are ‘magic’ in the same way as the
configuration we started with, and each of them can thus be used as a proof of the
KS theorem. Similarly, we can get six magic replicas for any other W-A configu-
ration by embedding it into the hexagon and ‘acting’ on it by the automorphism
in question.



4 Conclusion

Employing the structure of the split Cayley hexagon of order two, the smallest
non-trivial generalized hexagon and a distinguished subgeometry of the symplectic
polar space W (5,2) of the three-qubit Pauli group, we got an intriguing finite-
geometric insight into the nature of a couple of ‘magic’ three-qubit configura-
tions proposed recently by Waegell and Aravind [3], namely the 18, — 123 and
24145 — 4364 ones. Either of the two configurations was found to be uniquely
extendible into a geometric hyperplane of the hexagon, this being, respectively,
of type Va2(37;0, 12,15, 10) and V4(49; 0,0, 21, 28) in the classification of Frohardt
and Johnson [6]. Moreover, an automorphism of order seven of the hexagon gave
birth, for either of the two, to six more replicas, each having the same ‘magical’
nature as the parent one.

It is important to emphasize that this is, to our best knowledge, only the second
instance where geometric hyperplanes are related to certain ‘magic’ configurations
of observables. The first instance was the Mermin square of two-qubits, which was
recognized to be a full geometric hyperplane of the generalized quadrangle of order
two, GQ(2,2) (see, e. g., [13]-[15]). However, in a more general setting of quantum
information theory, geometric hyperplanes have already entered the game through
the concept of a Veldkamp space [18, 19]. Last but not least, we have to mention
that this smallest split Cayley hexagon has also been found to play a role in
the closely-related context of the so-called black-hole-qubit correspondence [9];
here also one of its geometric hyperplanes, the so-called distance-2-ovoid (of type
V»(21;21,0,0,0)), was mentioned in connection with a certain class of quantum
codes.

In their paper [3, Page 7], Waegell and Aravind stress that “we have not dis-
played all the diagrams we have found, but only a representative sample.” It would
certainly be of great interest for us to become familiar with those yet unpublished
and analyze them in the above-described fashion in order to see whether there
is some underlying link between those that can uniquely be extended into a geo-
metric hyperplane of our hexagon. We would, eventually, be most curious to see
if each type of a geometric hyperplane can serve as a unique extension of some
‘magic” configuration(s), or whether this is a privilege for only some of them.
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