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Abstract

In this work, we study the problem of mean-variance hedging with a random horizon
T A7, where T is a deterministic constant and 7 is a jump time of the underlying asset
price process. We first formulate this problem as a stochastic control problem and
relate it to a system of BSDEs with jumps. We then provide a verification theorem
which gives the optimal strategy for the mean-variance hedging using the solution of
the previous system of BSDEs. Finally, we prove that this system of BSDEs admits a
solution via a decomposition approach coming from filtration enlargement theory.

Keywords: Mean-variance hedging, Backward SDE, random horizon, jump processes, pro-
gressive enlargement of filtration, decomposition in the reference filtration.

AMS subject classifications: 91B30, 60G57, 60H10, 93E20.

1 Introduction

In most of the financial markets, the simplifying assumption of completeness fails to be
true. In particular, investors cannot always hedge the financial products that they are
interested in. A possible approach is the mean-variance hedging one. It consists, for a
financial product of terminal income H at a fixed horizon time T and an initial capital

*The research of the author benefited from the support of the French ANR research grant LIQUIRISK.
fThe research of the author benefited from the support of the “Chaire Risque de Crédit”, Fédération
Bancaire Francaise.



x, in finding a strategy m such that the portfolio V™ of initial amount = and strategy
realizes the minimum of the mean square error

sfvi- ]

over all the possible investment strategies.

In this paper, we are concerned with the mean-variance hedging problem over a random
horizon. More precisely, we consider a random time 7 and a contingent claim with a gain
of the form

H = Hlp, + Hp>,, (1.1)

where T' < oo is a fixed deterministic terminal time and study the mean-variance hedging
problem over the horizon [0,T A 7] defined by

inf ||V — H[] (1.2)

Financial products with gains of the form (I) naturally appear on financial markets, see
e.g. Examples 2Tl and 2.2 presented in Subsection 2.3l Their valuations are therefore of an
important interest.

The mean-variance hedging problem with deterministic horizon 7' is one of the classical
problems from mathematical finance and has been considered by several authors via two
main approaches. One of them is based on martingale theory and projection arguments and
the other considers the problem as a quadratic stochastic control problem and describes
the solution using BSDE theory.

The bulk of the literature primarily focuses on the continuous case where both ap-
proaches are used (see e.g. Delbaen and Schachermayer [5], Gouriéroux et al. [9], Laurent
and Pham [24] and Schweizer [25] for the first approach, and Lim and Zhou [22] and Lim
[21] for the second one).

In the discontinuous case, the mean-variance hedging problem is considered by Arai
[1], Lim [23] and Jeanblanc et al [14]. In [I], the author uses the projection approach for
general semimartingale price process model whereas in [23] the problem is considered via
the stochastic control view for the case of diffusion price processes driven by Brownian
motion and Poisson process. The author provides under a so-called ”martingale condition”
the existence of solution to the associated BSDEs. In the recent paper [14], the authors
combine tools from both approaches, which allows them to work in a general semimartingale
model and to give a description of the optimal solution to the mean-variance hedging via
the BSDE theory. More precisely the authors prove that the value process of the mean-
variance hedging problem has a quadratic structure and that the coefficients appearing in
this quadratic expression are related to some BSDEs. Then, they provide an equivalence
between the existence of an optimal strategy and the existence of a solution to a BSDE
associated to the control problem. They also show in some specific examples, via the
control problem, existence of solutions for BSDEs of interest, but let the problem open in
the general case.

In this paper, we also use a stochastic control approach and describe the optimal solution
by a solution to a system of BSDEs.



We consider a model of diffusion price process driven by a Brownian motion and a
random jump time 7 for which we study the mean-variance hedging with horizon 1" A T
given by ([2]). We follow the progressive enlargement approach initiated by Jeulin [15],
Jeulin and Yor [16] and Jacod [12], which lead to consider an enlargement of the initial
information given by the Brownian motion to make 7 a stopping time. We note that this
approach allows to work under wide assumptions, in particular, no a priori law is fixed for
the random time 7 contrary to the Poisson case.

Following the quadratic form obtained in [I4], we use a martingale optimality principle
to get an associated system of nonstandard BSDE. We then provide a verification theorem
(Theorem [3.2]) which provides an explicit optimal investment strategy via the solution to
the associated system of BSDEs. Our contribution is twofold.

e We link the mean-variance hedging problem on a random horizon with a system of BSDE,
in a general progressive enlargement setup which avoids to suppose any a priori law for the
jump part. We show that, under wide assumptions, the mean-variance hedging problem
admits an optimal strategy described by the solution of the associated BSDE.

e We prove that the associated system of BSDEs, which is nonstandard, admits a solution.
The main difficulty here is that the obtained system of BSDEs is nonstandard since it is
driven by a Brownian motion and a jump martingale and has generators with quadratic
growth in the variable z and are undefined for some values of the variable y. To solve these
BSDE we follow a decomposition approach inspired by the result of Jeulin (see Proposition
2.1) which allows to consider BSDEs in the smallest filtration (see Theorem [£3]). Then
using BMO properties, we provide solutions to the decomposed BSDEs which lead to the
existence of a solution to the BSDE in the enlarged filtration.

We notice that, for the studied problem i.e. mean-variance hedging with horizon T'A T,
the interest of our approach is that it provides a solution to the associated BSDE, without
supposing any additional assumption specific to the studied BSDE as done in [23] where
the author introduces the "martingale condition” to prove existence of a solution to the
BSDE or in [I4] where the existence of a solution to the BSDE is given in specific cases.

The rest of the paper is organized as follow. In Section 2, we present the details of
the probabilistic model for the financial market, and set the mean-variance hedging on
random horizon. In Section 3, we show how the construct the associated BSDEs via the
martingale optimality principle. We then state the two main theorems. The first one
concerns the existence of a solution to the associated system of BSDEs and the second one
is a verification Theorem which gives an optimal strategy via the solution of the BSDEs.
Then, Section 4 is dedicated to the proof of the existence of solution to the associated
system of BSDEs. Finally, some technical results are relegated to the appendix.



2 Preliminaries and market model

2.1 The probability space

Let (©2,G,P) be a complete probability space. We assume that this space is equipped with
a one-dimensional standard Brownian motion W and we denote by F := (F;);>0 the right
continuous complete filtration generated by W. We also consider on this space a random
time 7, which modelizes for example a default time in credit risk or a death time in actuarial
issues. The random time 7 is not assumed to be an F-stopping time. We therefore use in
the sequel the standard approach of filtration enlargement by considering G the smallest
right continuous extension of F that turns 7 into a G-stopping time (see e.g. [15] [16], 12]).
More precisely G := (G¢)>0 is defined by

gt = ﬂgt-i-aa

e>0

for all t > 0, where G := F, V o(l,<y ,u € [0,5]), for all s > 0.

We denote by P(F) (resp. P(G)) the o-algebra of F (resp. G)-predictable subsets of
Q x R4, i.e. the o-algebra generated by the left-continuous F (resp. G)-adapted processes.

We now introduce a decomposition result for P(G)-measurable processes proved in [15].

Proposition 2.1. Any P(G)-measurable process X = (X¢)i>0 is represented as
Xt = Xf]ltg—r + Xf(T)]lt>T s
for all t > 0, where X° is P(F)-measurable and X is P(F) @ B(R.)-measurable.

Remark 2.1. In the case where the studied process X depends on another parameter
x evolving in a Borelian subset X of RP, and if X is P(G) ® B(X), then, decomposition
given by Proposition ] is still true but where X? is P(F) ® B(X)-mesurable and X®
is P(F) ® B(R;) ® B(X)-measurable. Indeed, it is obvious for the processes generating
P(G) ® B(X) of the form X;(w,z) = Li(w)R(x), (t,w,z) € Ry x Q x X, where L is P(G)-
measurable and R is B(X)-measurable. Then, the result is extended to any P(G) ® B(X)-
measurable process by the monotone class theorem.

We then impose the following assumption, which is classical in the filtration enlargement
theory.

(H) The process W remains a G-Brownian motion.

We notice that under (H), the stochastic integral fot XdWsy is well defined for all P(G)-
measurable process X such that fot | Xs|?ds < oo.

In the sequel we denote by /N the process 1,< and we suppose

(H7) The process N admits an F-compensator of the form fO'AT Aidt, ie. N — fO'AT Aedt is
a G-martingale, where A is a bounded P(IF)-measurable process.



We then denote by M the G-martingale defined by
tAT
Mt = Nt —/ )\sds,
0

for all + > 0. We also introduce the process A® which is defined by A := (1 — Ny)\;.

2.2 Financial model

We consider a financial market model on the time interval [0,7] where 0 < T' < oo is a
finite time horizon. We suppose that the financial market is composed by a riskless bond
with interest rate zero and a risky asset S. The price process (S)¢>o of the risky asset is
modeled by the linear stochastic differential equation

¢
S = S +/ Se-(pnsds + osdWs + BdMy) , Yt € [0,T], (2.1)
0

where p, o and § are P(G)-measurable processes. We impose the following assumptions
on the coefficients p, o and .

(HS)
(i) The processes p and o are bounded: there exists a constant C' > 0 such that

| + o] < C, Vtel0,T], P—as.

(ii) The process o is uniformly invertible: there exists a constant C' > 0 such that
loy] > C, vte[0,T], P—a.s.
(i) There exists a constant C' such that

-1 < B < C, vtelo,T], P-a.s.

Under (HS), we know from e.g. Theorem 1 in [§] that the process S defined by (21 is
well defined.

2.3 Mean-variance hedging

We consider investment strategies which are P(G)-measurable processes 7 such that

TNAT
/ |me2dt < oo, P—a.s.
0

This condition and (HS) ensure that the stochastic integral fg g—=dS;. is well defined for
such a strategy m and ¢ € [0, T A7]|. The wealth process V*™ corresponding to a pair (z, ),
where x € R is the initial amount, is defined by the stochastic differential equation

t7Tr

VoT o= x4+ [ =—dS,, Vtel0,TAT].
0 ST’*
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We denote by A the set of admissible strategies m such that

E[/OTAT]m\zdt] < .

For z € R, the problem of mean-variance hedging consists in computing the quantity
;giE[\Vﬁ;\’; - 1l’], (2.2)
where H is a bounded Gra--measurable random variable of the form
H = Hlpe, + Hrs, , (2.3)

where H? is an Fp-measurable random variable valued in R and H® is a continuous F-
adapted process also valued in R and such that

HHbHOO < oo, and H sup ‘Hﬁ < o0,
te[0,7 0
where we recall that ||.||« is defined by
IX]. = inf{Cz 0: P(X|<C) = 1} ,

for any random variable X.

Since the problem we are interested in uses the values of the coefficients u, o and 8
only on the interval [0,7 A 7], we can assume by Proposition 2] that p, o and g are
P(F)-measurable and we shall do that in the sequel.

We end this section by two examples of financial product taking the form (2.3]).

Example 2.1 (Insurance contract). Consider a seller of an insurance policy which protects
the buyer over the time horizon [0, 7] from some fixed loss L. Then if we denote by 7 the
time at which the loss appears, the gain of the seller is of the form

H = pﬂT<T + (p - L)HTZT ;
where p denotes the premium that the insurance policy holder pays at time 0.

Example 2.2 (Credit contract). Consider a bank which lends an amount A to a company
over the period [0,7]. Suppose that the time horizon [0,7] is divided on n subintervals
[k%, (k+ 1)%], k=0,...,n—1, and that the interest rate of the loan over a time subinterval
is r. The company has then to pay (41)" 4 to the bank at each time k%, k=1,...,n. If

n

we denote by 7 the company default time, then the gain of the bank is given by
H = ((1 + T‘)n — 1)A1T<7— + Ha(T)]lTZT ,

where the function H is given by

n—1
a (1+r)"
HE =y (k o — DALz oy, tE€[0,T].
k=1



3 Solution of the mean-variance problem by BSDEs

3.1 DMartingale optimality principle

To find the optimal value of the problem (2.2)), we follow the approach initiated by Hu et
al. [I1] to solve the exponential utility maximization problem in the pure Brownian case.
More precisely, we look for a family of processes

{(JZT)tE[O,T] Fme “4}

satisfying the following conditions

() JF,, = |VET — H|?, for all m € A.

(ii) Jyt = Jj?, for all my,m € A.
(i) (J7), clor] 5 2 G-submartingale for all 7 € A.

(iv) There exists some 7* € A such that (JJ) is a G-martingale.

te[0,7
Under these conditions, we have

¥ . x,m 2

Jo= mtE|[ViT - H[].
Indeed, using (i), (iii) and Doob’s optional stopping theorem, we have
™ T T, T 2
< E[E] = E“VTAT ~ H] } , (3.4)
for all 7 € A. Then, using (i), (iv) and Doob’s optional stopping theorem, we have
* fEﬂT* 2
o= B[ -HP]. (3.5)

Therefore, from (ii), (34 and B3]), we get for any = € A

TAT

ellvir -8l = 5 = g < E[vin-af].

We can see that

*

5= i [l - a7

3.2 Related BSDEs

We now construct a family {(J7 )tE[O,T], m € A} satisfying the previous conditions by using
BSDEs as in [I1]. To this end, we define the following spaces.

— S is the subset of R-valued cad-lag G-adapted processes (Y;)yc[o, 7] essentially bounded

Vlgw = || sup il < o
te[0,T 00



— 82> is the subset of S of processes (Y1)tejo,r) valued in (0,00), such that

7. <
Y ligee
— L is the subset of R-valued P(G)-measurable processes (Z;);eo,r] such that

1

12l = (E[/OTythdt])? < 0.

— L2()\) is the subset of R-valued P(G)-measurable processes (Ut)iefo,7) such that

1

W = (B[ Adas]) < oo,

To construct a family {(J])ico,m, 7™ € A} satisfying the previous conditions, we set
T T 2
Jt = Y%‘V;f\ﬂ'_yt‘ +Tt7 tG[O,T],

wherd] (Y, Z,U) is solution in Sg=F x L2 x L2()) to

TAT TAT TAT
Y, = 1+/ f(s,YS,ZS,US)ds—/ Z,dW, — U,dM,, tel0,T], (3.6)
t

AT tAT tAT
(Y, Z,U) is solution in S x L& x L%*(\) to

TAT TAT

TAT
YV, = H+/ g(s,yS,ZS,Us)ds—/ ZdW, — UdM,, te[0,T], (3.7)
t

AT tAT tAT

and (T, ZE,0) is solution in S x L& x L*(A) to

TAT TNAT TAT
T, — / b(s, s, Zs, 04)ds —/ =dw,— [ oM., te0.1]. (38)
tAT tAT tAT

In these terms, we are bounded to choose three functions f, g and § for which J™ is a
submartingale for all 7 € A, and there exists a 7* € A such that J™ is a martingale. In
order to calculate f, g and b, we write J™ as the sum of a (local) martingale M™ and an
(not strictly) increasing process K™ that is constant for some 7* € A.
To alleviate the notation we write f(t) (resp. g(t), h(¢)) for §(¢, Yz, Z¢, Uy) (vesp. g(t, Vi, Z1,Uy),
h(t, Y, E¢,0y)) for t € [0,7T].
Define for each 7 € A the process X™ by

XTI = Vor =Y, telo,T].
From It6’s formula, we get

dJF = dMT + dKT (3.9)

! As commonly done for the integration w.r.t. jumps processes, the integral f; stands for f(a,b]'



where M™ and K™ are defined by
dMf = {2Xt71 (B — Us) (Y- + Up) + [miBe — UsP (Y- + Up) + | X[ PUL + @t}th

+ {mng(mat — Z) + ZXT? + Et}th ,

dK| = {YtPXZT(WtMt +9(1) + |mor — Ze°] — [XTP§(t) + 2X7 Zi(mior — Z1)
+ 207 XTUp(mi By — Up) + A7 B — Us*(Uy + Y7) — f)(t)}dt :
We then write dK™ in the following form
dK{ = Ki(m)dt,

where K is defined by

Kir) == An)?+ B +Cy, meR, tecl0,T],
with
A = |0t|2Yt + /\(tG|ﬁt|2(Ut +Y),
By = 2XT (Y, + 01 Zi + AU — 200Y1 2, — 207 Bl (Vi + Uy)
Cy = —fOIXT]>+2XT(Yio(t) — Z:2 — NP Udhy) + Yo Ze? + MU *(Ur + Yy) — b(t)

for all ¢ € [0,7]. In order to obtain a nondecreasing process K™ for any 7 € A and that
is constant for some 7* € A it is obvious that K; has to satisfy mingegr K;(7) = 0. Using
Y € S and (HS) (i), we then notice that A; > 0 for all ¢ € [0,7]. Indeed, we have

0 = MmeﬂzﬂﬂAﬂm+mrﬁwﬂ=ﬂﬂéﬂn+vgwﬁw,

which gives (Y; + Us)AG > 0 for s € [0,T]. Therefore, the minimum of K; over 7 € R is
given by

K, = minKt(ﬂ) = Ct— ‘Bt‘2 .
=t TeR 4A

We then obtain from the expressions of A, B and C' that

K, = W|XT|>+B:X+¢,
with
A = () — et + 01 Zy + AF BiU
o [2Y; + AZ|B 2 (U 4+ Yy)

B, = 2{ (1eYs + 0072 + A8 BUN (NG By (Y + Uyp) + 01Y; 2Z4)
| P+ AFIBP (U + Y7)

+9(t)Y: — 2,2 — /\;GUtut} ;

loY: 2 + )\?ﬁtut(Ut + sz
|0¢|2Y 4+ AF B2 (Ur + V)

¢ = —h(t) + |22V + XS (U, + YY) U2



For that the family (J7)rc4 satisfies the conditions (iii) and (iv) we choose f, g and b such
that

Qltzo,%tzo and Q:t:(),

for all ¢ € [0,T]. This leads to the following choice for the drivers f, g and b

ey + ovz + A8 Byul?
f(t7y7 Z7u) - 2 (G 2 9
o2y + AP [Be]* (v + )
Y, + 01 Zy + A BUL) (01 Yez + AP By (U + Yi)u)
t7 727u = l ZZ+)\GUU_(Mt L b
8ty 2, u) A o 2Y: + AF (82 (Us + Vi) |
Y:Z + )\G/Btut(Ut + YZ)P
ty, z,u) = ZW+WU+Yu1ﬁ* L
{ f)( Yy ) ‘ t’ t t( t t)’ t‘ |0t|2n+/\§}|5t|2((]t+n)

We then notice that the obtained system of BSDEs is not fully coupled, which allows to
study each BSDE alone as soon as we start from BSDE (f, 1) and end with BSDE (h,O.
However the obtained generators are nonstandard since they involve the jump component
and they are not Lipschitz continuous. Moreover, these generators are not defined on the
whole space R x R x R. Therefore, we also have to deal with this additional issue.

Using a decomposition approach based on Proposition 2.1l we obtain the following result
whose proof is detailed in Section [l

Theorem 3.1. The BSDEs B.0), B1) and B8) admit solutions (Y, Z,U), (¥, Z,U) and
(T,Z,0) in S x L& x L*(\). Moreover Y € Sg7.

3.3 A verification Theorem

We now turn to the sufficient condition of optimality. As explained in Subsection Bl a
candidate to be an optimal strategy is a process 7" € A such that J™ is a martingale,
which implies that dK™ = 0. This leads to

T argmin Ky(r) ,

which gives the implicit equation in 7*

) Yy + o1z + )\FﬂtUt oYy Zp + )\Fﬂtut(y}f +Uy)

T = y o V:EJr* ‘
' % 00 2Yi- + AEBP(U +Y-)  |od?Ye + AE B P (U + Y-)

-

Integrating each side of this equality w.r.t. % leads to the following SDE
.

t G
N . WY, - + o, Zy + N2 6.U, dS,
Vo= Vel @
A A s el
/t oY, -2, + )\;(,}BTUT(YF + UT») ds,
) T Y, XEBP(0, Y, ) 5,

We first study the existence of a solution to SDE (B10).

(3.10)

tel0,TANT].

2The notation BSDE (f, H) holds for the BSDE with generator f and terminal condition H.
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Proposition 3.2. The SDE [BI0) admits a solution V* which satisfies

E| sup [V} < oo. (3.11)
te[0,TAT]

Proof. To alleviate the notation we rewrite (3I0) under the form

Vi =
{ d‘/;* = (Et‘/;*, — B)(Mtdt + O'tth + ﬁtht) s
where E and F' are defined by

Y +oZ + A BU;
04 |2Ys + AP B2 (U + Yy-)

Ey

poe MOUY £ U+ Y Ve A NBUD -+ 00 2rY + 02,
|04 [2Y: + AP 182 (Ur + Vi) ’

for all ¢ € [0, T]. We first notice that from (HS) (ii), Y € Sg~" and AY; = Uy, there exists
a constant C' > 0 such that

oY + AP BP (U +Y-) > €, P—as.

for all ¢t € [0,T]. Therefore, using (Y, Z,U), (¥, Z,U), (T,E,0) € S x L& x L*(\), we
get that £/ and F' are square integrable

E[/OT(\EtFHﬂP)dt} < 0.

Using 1t6’s formula, we obtain that the process V* defined by

Vi = Qe+ Ty), te[0,TAT), (3.12)

and Vi, = Lr<p[(14 EB)Ve — FoBr] + Lsp®p(z + ¥r)
where

®;, = exp (/t (ES(,uS A l]asEslz)als + /t JsEdeS) ,

0 2 0
and
LFy G 2 L F,
Uy = —/0 (}fs[#s - )‘s Bs — Es|ffs| }ds —/0 ‘EUSdWS )

for all t € [0, 7] is solution to (BI0Q).
We now prove that V* defined by (8.12) satisfies (3.11)).
Step 1: We prove that

E[W;Mﬂ < 0. (3.13)

11



Indeed, from the definition of Y and ) and It6’s formula, we have

TNAT
YrrelVine = Yoarl? = Yolo — Vo> + Mja, + / [‘Ztlzyt + A7 (U + V)|t |?
0

B lo Y 2 + Af’ﬁtut(Ut + Yt)|2}
04 |2Ys + AP B2 (U + Y7)

where M* is a locally square integrable martingale. Therefore, there exists an increasing
sequence of G-stopping times (v;);en such that v; — +o0 as i — oo and

TNATAv;
E[YT/\T/\I/i‘ViE/\T/\yi - yT/\T/\Vi‘2] - YE)‘Z' - y0‘2 + E/ [‘Ztlzy;, + )\?(Ut + th)’ut’z
0

B loYi 20 + /\;GﬁtUt(Ut + Yt)|2]
|00 [2Y; + AP |82 (U + V7)

Since Y € S(EO "* there exists a constant C' such that

T
E[Vir, ~ Yrronal’] < C(lo=00P +E [ [|202¥+ AP (Ui + Yolaf?]at)
0
This inequality implies that there exists a constant C' such that

E[“/er/tr/\ui - yT/\T/\I/i 2] < C.

From Fatou’s lemma, we get that

1 <c.

E H V;/\T B yT/\T ‘2] < hm inf E H V;/\’T/\l/i - yT/\T/\I/i

17— 0

Finally, noting that ) is uniformly bounded, it follows that
E[[Vin "] < 2(C+E[yrar]) -

Therefore, we get ([B.13)).
Step 2: We prove that

E{ sup \Vt*ﬂ < 0.
te[0,TAT)

For that we remark that V5 is solution to the following linear BSDE

TNt L TNAT TNAT
Vine = Vias —/ 22 24ds —/ z2edWy — usdMs , t€[0,7T],
t

thr Os AT tAT
with
o g D V) ueYse +ouZe A BUL) + 01Yy- 2y 4+ AE By (Yi- + Uy)
t = t )
|0¢|2Yi- + AP |82 (Ur + Yy-)
w = B (Vie = Vi) (Yo + 0120 + A BiUL) + 01Y- Z¢ + AF Bilhy (V- + Uy)
t = Dt

04 |2Y;- + A |82 (U + Y- ) ’

12



for all ¢ € [0, T]. Therefore, using (3I3]), (HS), and classical arguments for BSDEs, we get
BI1I). O

As explained previously, we now consider the strategy 7* defined by

(Vie = Vi) (1Yo + 012y + AP BiUL) 4 01Y- 21 + AF Blhy (Y- + Uy)

" o P APIAR: + ¥r ) S
for all t € [0,T]. We first notice from the expression of 7* and V* that
Ve = v, (3.15)
for all ¢t € [0,7]. Using (3I1]) and (BI5]), we have
E[ sup VST 2| < . (3.16)

te[0,TAT]
We can now state our verification Theorem which is the main result of this section.

Theorem 3.2. The strategy ©* given by B14]) belongs to the set A and is optimal for the
mean-variance problem [2.2)). Thus we have

E|[vi - HP| = ggﬁE[VQ?’A’;—H\Q] = Yolz — Yol* + Yo,

where Y, Y and Y are solutions to ([3.0)-B.1)-(B.8]).
To prove this verification Theorem, we first need of the following lemma.
Lemma 3.1. For any m € A, the process M7, defined by (B10) is a G-local martingale.

Proof. Fix m € A. Then from the definition of V*™ (HS) and BDG-inequality, we have

E[ sup “/{?ﬂﬂ < 00, (3.17)
te[0,T

Define the sequence of G-stopping times (vp,)n>1 by

v, = inf{sZO : sup ‘V,f\ﬂ 2n},
rel0,s]

for all n > 1. First, notice that (v,),>1 is increasing and goes to infinity as n goes to

infinity from BI7). Then, since 7 € A, Y, Y € S and Z, Z,E € L%, we get

TAU AT 2
IE[/ ‘ZYtXZT(mo—t—Zt)+Zt|Xgr|2+Et dt} < o0,
0

for all n > 1. Moreover, since U,U,0 € L%()\), we get
TAULNT
B[ [ @XF +mby - th) (b — Ui + U +IXE LU+ 3] < oo,
0
for all n > 1. Therefore, we get that the stopped process M7, .., is a G-martingale. O
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Proof of Theorem As explained in Subsection Bl we check each of the points (i),
(i), (iii) and (iv).
(i) From the definition of Y, ) and T, we have
Tine = Yourl Vil —H| +Yonr = |[ViT - H|
for all m € A.
(ii) From the definition of the family (J™);c4, we have

J5 = YoV = W*+ Yo = Yolz —o|* + Yo,

for all m € A.
(iii) Fix 7 € A. Since Y, Y, T € Sg°, we have from the definition of J™ and BDG inequality
E[ sup |Jt7r|] < 400. (3.18)
te[0,T

Now, fix s,t € [0, T] such that s < ¢. Using the decomposition ([B.9]) and Lemma B.1] there
exists an increasing sequence of G-stopping times (v;);>1 such that v; — 400 as i — 400
and

BTG = T (3.19)

for all 4 > 1. Then, from (BI8]), we can apply the conditional dominated convergence
Theorem and we get by sending i to oo in (3.19)

E[TIG) = JT,
for all s,t € [0,7] with s <t.

(iv) We now check that 7* € A i.e. EfOTAT |7%|2ds < oo. Using the definition of 7* and

BI5) we have that V™ is solution to linear BSDE

Vx,ﬂ* B Vx,ﬂ* TAT Lhs TAT TAT
f = — Zzeds — 2sdWy — usdMs , t€[0,7T],
t t

TAT
At Os AT tAT
with

2z = oy and  w = By,

for all ¢ € [0, T]. Therefore, using (3.16]), (HS), and classical arguments for BSDEs, we get

TAT
E[/ |7T:|2d8:| < 00.
0

We now check that J™ is a G-martingale. Since K™ is constant, we obtain from
Lemma [B1] that J™ is a G-local martingale. Then, from the expression of J™ and since
Y, Y, T € §3°, there exists a constant C' such that

E[tes[%%} ) < o1+ E[tef)l,lz?w v R

Using ([B16)), we get that

E[ sup |Jt7r*|] < +oo0.
te[0,T]

Therefore, J™ is a true G-martingale and 7* is optimal. O
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4 A decomposition approach for solving BSDEs in the filtra-
tion G

We now prove Theorem [3] via a decomposition procedure. We first provide a general
result which gives existence of a solution to a BSDE in the enlarged filtration G as soon as
an associated BSDE in the filtration F admits a solution. Actually the associated BSDE is
defined by the terms appearing in the decomposition of the coefficients of the BSDE in G
given by Lemma 2. We therefore introduce the spaces of processes where solutions in F
classically lie.

— SF° is the subset of R-valued continuous F-adapted processes (Y;).c[o,7) essentially
bounded

IVlsw = || sup ml]| <
te[0,7]

- Sy " is the subset of Sg° of processes (Yi)teo,r) valued in (0, 00), such that

|7 s-

~ L is the subset of R-valued P(FF)-measurable processes (Z;)iejo.r] such that

2]l = (E[/OT|Zt|2dt])% < x.

Finally since the BSDEs associated to our mean-variance problem have generators with
superlinear growth, we consider the additional space of BMO-martingales: BMO(P) is the
subset of (P, F)-martingales m such that

[SIE

[mllemo@y = sup E[(m)r — (m),|F)]? < oo,

veTr([0,T)

where Tg[0,T] is the set of F-stopping times on [0, 7]. This means local martingales of the
form m; = fot ZsdWy are BMO(P)-martingale if and only if

[ZllBmoy = sup H( [/ |Zt|2dt‘fyDé

veTr[0,T]

< 0.
)

In the sequel, we shall write Z € BMO(P) for [; Z,dW, € BMO(P).

4.1 A general existence theorem for BSDEs with random horizon

We provide here a general result on existence of a solution to a BSDE driven by W and
N with horizon T'A 7. We consider a generator function F': Q x [0,7] x Rx R xR — R,
which is P(G) ® B(R) ® B(R) ® B(R)-measurable, and a terminal condition { which is a
Grar-measurable random variable of the form

g = £b1T<T + chf]szr ) (420)
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where £° is an Fp-measurable bounded random variable and &% € Sp°. From Proposition
2.1l and Remark 211, we can write

F(t, 1<y = F°(t,)4<r, t>0, (4.21)

where F? is a P(F) ® B(R) ® B(R) @ B(R)-measurable map. We then introduce the following
BSDE

T T
v o= &+ / Fo(s, Y2, 22,62 = Y)ds — / Z0AWs, te[0,T].  (4.22)
t t

Theorem 4.3. Assume that BSDE [@22) admits a solution (Y°,Z%) € S x L2. Then
BSDE

TNt TNAT TNt
v, - g+/ F(s,YS,Zs,US)—/ zdw,— [ UGN, telo,T],(4.23)
t

AT tAT tAT
admits a solution (Y, Z,U) € S x L% x L*(\) given by
Y, = Yl + &,
Zy = ZMMier, (4.24)
U = (fg - Ytb)ﬂtgr 5
for all t € [0,T].
Proof. We proceed in three steps.
Step 1: We prove that for t € [0,7], (Y,Z,U) defined by (424]) satisfies the equation
(#23). We distinguish three cases.
Case 1: 7 > T.

From [@24)), we get Y; =Y, Z;, = Z} and U, = £} — Y} for all t € [0, T]. Then, using that
(Yt Z%) is a solution to ([E22), we have

T T
Y, = gb+/ Fb(s,Ys,Zs,Us)ds—/ zbaw, .
t t

Since the predictable processes Z and Z° are indistinguishable on {r > T}, we have from
Theorem 12.23 of [10], ftT ZsdWy = ftT Z%W, on {r > T}. Moreover since £ = £ and
;’Z\T UsdNs =0 on {7 > T} we get by using (4.21))

TNAT TNAT TNAT
Y, = 5+/ F(s,Ys,Zs,Us)ds—/ Zadw.— [ U.dN, .
t

AT tAT tAT

Case 2: 7 € (t,T].
From [@24)), we have Y; = Y,?. Since (Y?, Z%) is solution to [E22]), we have

T T
Y, = Y? +/ Fb(s, Y0, 28,4 —YP)ds —/ zbdw, .
t t
Still using (£.21)) and (£.24]), we get

v, = §$+/ F(s,YS,ZS,US)ds—/ Z2dW, — (&2 - YD) .
t t
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Since the predictable processes Z1 ., and Z°1 ., are indistinguishable on {7 >t} N {7 <
T}, we have from Theorem 12.23 of [10], ftT/\T ZdW,s = tT/\T Z%AW, on {r > t}n{r < T}.

Therefore, we get

Y, = §¢+/ F(s,YS,ZS,US)ds—/ ZodWys — (€2 = YD) .
t t

Finally, we easily check from the definition of U that ftT

we get using (4:20)

" UWN, = €2 — Y?. Therefore,

TAT TAT TAT
Y; = 5—1—/ F(S,YS,ZS,Us)ds—/ ZgdWs — UgdNy .
t

AT tAT tAT

Case 3: 7 <t.
Then, from [@24]), we have Y; = £¢. We therefore get on {7 < t} by using ([@.20)

TAT TAT TAT
Y, = §+/ F(s,YS,ZS,US)ds—/ Z.dW, — U.dN, .
t

AT tAT tAT

Step 2: We notice that Y is a cad-lag G-adapted process and U is P(G)-measurable since
Y? and £% are continuous and G-adapted. We also notice from its definition that the process
Z is P(G)-measurable, since Z° is P(F)-measurable.

Step 3: We now prove that the solution satisfies the integrability conditions. From the
definition of Y, we have

Vil < PPI+Ig . telo,T]. (4.25)
Since Y? € Sp° and €% € Sp°, there exist two constants Cq, Co > 0 such that

sup [YP| < C; and  sup [€ < Cy, P—a.s.
t€[0,T] t€[0,T7]

Therefore, we get from (£.25])

sup |V < C1+Cy, P—a.s.
te[0,T

and [|Y]|s~ < 4o0.
From the definition of the process Z, we have

T T
E[/O yzsy%zs} < E[/O \Z;’Fds} .
Since Z% € L2, we get
T 2
E[/O \Z,| ds} < 4oo.

Finally from the definition of U, we have

|Ut| é |Y;tb| + |£g| ) te [07T] .
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Since Y? € Sp°, €% € Sg° and A is bounded, we get

E[/OTM)\t\Ut]th] < 0.

0

Using this abstract result we prove the existence of solutions to each of the BSDEs (3.0,
B1) and [B.8) in the following subsections.

4.2 Solution to BSDE (f,1)

According to the general existence Theorem [4.3] we consider for coefficients (f, 1) the BSDE
in F: find (Y?, Z%) € S x L2 such that

b b 2
p = (AT e
i = 1.
(4.26)
To solve this BSDE, we have to deal with two main issues. The first is that the generator
f has a superlinear growth. The second difficulty is that the generator value is not defined
for all the values that the process Y can take. In particular the generator may explode if

the process Y goes to zero. Taking in consideration these issues we get the following result.
Proposition 4.3. BSDE [@28) has a solution (Y?, Z%) in Sg°F x L& with Z® € BMO(P).
Proof. We first notice that BSDE (£.20]) can be can written under the form

2(pe — A\ef)
|oe|? o |4

A o |?
|0 ZP + N+ (M — \if\z‘ ‘ }dt + Z)dW,, te[0,T]
e R

(O'th + )\t/Bt)

Y 2 A 2
avp — {|Mt Bt P — t184] = MBU — Ay + A YE +

i = 1.

Since the variable Y appears in the denominator we can not directly solve this BSDE.
We then proceed in four steps. We first introduce a modified BSDE with a lower bounded
denominator to ensure that the generator is well defined. We then prove via a change of
probability and a comparison theorem that the solution of the modified BSDE satisfies the
initial BSDE.

Step 1: Introduction of the modified BSDE.
Let (Y€, Z%) be the solution in Sg° x L2 to the BSDE

- A A 2(pe — A
dyg = {7““ |Ut|;ﬁt| YS - f'ﬁﬂ e = MNB? = A+ NYE + 7(“t|at|2tﬁt) (0125 + M)
|UtZt€ + AeB + (MBr — Mﬁt‘

‘Ut‘ ‘ £
dt + Z:d t T
\WWWV@+&MP it + ZiaWs, te 0.1,

YE = 1,
(4.27)
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where € is a positive constant such that
T 2
—A
exp < — / <)\t + M)dt) > e, P—as. (4.28)
0 |o¢|
Such a constant exists from (HS). Since BSDE ([@.27) is a quadratic BSDE, there exists a
solution (Y, Z¢) in Sg° x L2 from [19].

Step 2: BMO property of the solution.
In this part we prove that Z° € BMO(P). Let k denote the lower bound of the uniformly
bounded process Y¢. Applying Ité’s formula to |Y® — k|?, we obtain
T T
E[/ ]Z;Fds‘]-",,] S L QE[/ (VE — k) F<(s, YE, Z§)ds‘]—",,] . (4.29)

for any stopping times v € Tr[0, T], with

e — Ml _ Al Bel? 2(pe — \efBr)

f(t.y,z) EAE o e = MBe® = M+ Ay + W(Utz + M)
2
lowz + MBr + (MBr — Mt)%’z

lou*(y V &) + Adl B ’
for all (t,y,z) € [0,T] x R x R. We can see that

fe(t7 Y, Z) 2 It + th + th 9 (430)

for all (¢,y,z) € [0,T] x R x R where the processes I, G and H are given by

A 2 - A
I - ’tltﬁ‘tl e = MeBel® = Mo + 2&@% ;
— MG 2
e |,ut fﬂt| T
||
H = o (it — Mf) ’
Ot

for all ¢t € [0,T]. We first notice that from (HS), the processes I, J and K are bounded.
Using ([£.29) and (£30), we get the following inequality

T T
E[/ Z5Pas| 7] < ]1—/<:]2—2E[/ (V2 = B)(I, + GYE + HZ)ds| F|

From the inequality 2ab < a® 4 b2 for a,b > 0, we get

T T
E| / Z5Pds|R)] < 1 k- 28] / (VE = B+ GuY)ds| 7

+ 2E[/T LY — K2ds fy] + %E[/T |Z§|2ds‘]-',,} .

Since I, G, H and Y¢ are uniformly bounded, we get
T
B [ 1ztaslz) < c.
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for some constant C' which does not depend on v. Therefore, Z¢ € BMO(P).

Step 3: Change of probability.
Define the process L° by

LE . 2(Mt_)\tﬂt) + ()\t’Bt o"ﬁr2 ()\tﬂt )) ’O’t‘2Z€
b ot lot|2(YE V e) + Al Be|? ’UtP(Ye\/E)‘i‘)\t‘BtP 7

for all t € [0,7]. Since Y* € Sg°, Z° € BMO(P), we get from (HS) that L € BMO(P).
Therefore, the process £([; LSdWs) is an F-martingale. Applying Girsanov Theorem we
get that the process W defined by

¢
Wt = W; —|—/ Lids R
0
for all ¢ € [0,7, is a Brownian motion under the probability Q defined by

T
Bl = 5(/0 LLaW,) .

We also notice that under Q, (Y, Z¢) is solution to

T 2 _ 2
Yf =1 +/ /\S|53| |:u8 - /\sﬁs|2 - |,us /\SBS| 2/\353( ASﬁS) + >\s
t

|05|4 | S|2

>\ A
CyE ‘/\sﬁs sﬁs - ‘0 12 ‘ _ /T
o |os[? (YEVE)JrA |85 t

ZEdW,, te[0,T]. (4.31)

Step 4: Comparison under the new probability measure Q.
We first notice that the generator f¢ of BSDE (@31]) admits the following lower bound

_ VAL o
fty.2) = t|5t4| e = MeBel® + A — Ay — 2/\tﬁtw
o] o]
t|Pt 2 2
e — MefBe)? |>‘t5t + (M — Mt))\|c|,tﬁ‘2| !
e T | B2 Lxiperto
e — e By
— _)\ _ ’
tY |0t|2

for all (¢,y,z) € [0,T] x R x R. We now study the following BSDE

T s_)\s 82 T T
Y, = 1+/ [—As—u}zsds—/ Z.dW,, tel0,T]. (4.32)
t t

‘05‘2

Since, this BSDE is linear, it has a unique solution given by

Y, = EQ[exp<—/tT(As+% )‘]—"t] telfo,1] .

By the comparison Theorem for BSDEs (4.31]) and (€32 we have
Yte > Xtv t€[07T]‘

By ([@28), we have ¢ <Y, for any t € [0,7]. Consequently, Y7 > ¢ for any ¢ € [0,7], and
(Y, Z%) is solution to (E26]). O

We now are able to prove that BSDE (f, 1) admits a solution.
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Proposition 4.4. The BSDE @B8) admits a solution (Y,Z,U) € S x L& x L*(\) with
Vesgr.

Proof. From Theorem and Proposition 3] we obtain that BSDE (B.6) admits a
solution (Y, Z,U) € S x L& x L*(\), with Y given by

Y, = Yoo+ 1, te[0,T].

with Y? e S§°’+ from Proposition Therefore Y € Séo’+. O

4.3 Solution to BSDE (g, H)

We first notice that BSDE (g, H) can be rewritten under the form

4y, = { (Y + 002 + )\(t(;'ﬁtUt)(gtYth + )\(tGﬂt(Ut + Yy )Uy) B éZt
o, Yt(lgtl Yo+ A7 162U+ 12)) Yi (4.33)
e LT/ Z/{t}dt V2 AW, + UpdH, . te [0, T AT,
Yrar = H.

Since Yl = Ytb]lKT and Upli<, = (1 — Y;b)]ltgﬁ we consider the associated decomposed
BSDE in F: find (), 2%) € S x L such that

dyf _ {((Nt —)\tﬂt)ytb+Utth+)\tﬁt)(0ty;ebzf+)\tﬂtHf - )\tﬂtytb)
\ ¥b§|0t|23€b+>\tlﬂtl2) 30
_Zigb_ Atpa At b 4.34
Sz — gt +Ytbyt}dt+2tth, telo,1],
y% = HY.

We notice that this BSDE has a Lipschitz generator w.r.t. the unknown (), Z%). However
the Lipschitz coefficient depends on Z® which is not necessarily bounded. Thus we cannot
apply the existing results and have to deal with this issue.

Proposition 4.5. BSDE [@34)) admits a solution (Y, Z°) in Sg° x L2 with 2° € BMO(P).
Proof. We first define the equivalent probability Q to P defined by its Radon-Nikodym
density % ‘ Fp = E( fOT ptdWy) where p is given by

VA Ut((,ut — MB)YL + 0 Z) + /\tﬁt)
pto= o 57 5 , te€o0,T].
Yy |0¢[2Y + e[ B

Since Z® € BMO(P), Y? ¢ SE?O’JF and the coefficients p, o and [ satisfy (HS), it implies
that p € BMO(P). Therefore, W; := W; — fot psds is a Q-Brownian motion. Hence, BSDE
([@34) can be written

{ dYP = a(YP — Ho)dt + 2bdW,, te[0,T], (4.35)

b _ b
yT/\T - H’
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with

Aeloe| 2V — NeB((pe — MB)YE + 00 Z0)
V(|0 Y + Mel Bef?) ’

ag t e [O,T] .

By definition of a we can see that a € BMO(P) since the coefficients p, o, 5 and A are
bounded, Y® € S&;° " and Z° € BMO(P). Using BMO-stability Theorem (see Theorem
[£.7)), there exists a constant I’ > 0 such that EQ[fVT las|?ds| F,] < U for any v € Tr[0,T).
We now prove that the process J* defined by

r Tr,
W= EQ[F—THM/t F—taSHgds‘ft}, telo,1],

with 'y := exp(— fot asds), is solution of this BSDE. We proceed in four steps.

Step 1. Integrability property of the process T'.
We first prove that for any p > 1 there exists a constant C' > 0 such that the process I
satisfies for any ¢ € [0, 7]

EQLSEET‘%”(E} < C. (4.36)

Since EQ[fVT las|?ds|F,] < I’ for any 0 € Tr[0,T], we get from Proposition that there
exists a constant o such that 0 < § < ll, and

safon(s [(ra)lr] < g

We get for any 0 <t <s<T
Tgp s 9 p2
‘F—t < exp(/ (5|ar| —|—E)dr>

2T) exp <5 /T |ar|2dr> .
0

A

~

< exp<

SIS

Consequently, we get

r
EQ[ sup |—=

P 2 1
{17 < oo (1)
t<s<T 1 I't

46~ )1 —=6l"

Step 2. Uniform boundedness of )°.
We now prove that V? € Sp°. For that we remark that by definition of VP we have the
following inequality

D < LB 2] + 1] [ laoas| 7] + Nl [ [ Cas]].

Therefore, we get that Y € Sp°.
Step 3. Dynamics of V.
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We now prove that )? satisfies (Z35). For that we introduce the Q-martingale m defined
by

t
my = rtyf+/rsangds, te 0,717 .
0

We first notice that m is Q-square integrable. Indeed, from the definition of m, there exists
a constant C' such that

E@[Imtlﬂ < C(%[\Ftyf\z] +E@[/Ot \FsasHﬁQdSD :

for all t € [0,T]. Since Y* € Sp°, H* € S§° and from Cauchy-Schwarz inequality there
exists a constant C' such that

Eo[lmil?] < C(Eq|ITuf’] +\/EQ[</Ot\as|2ds>2} \/EQ[OsiEt!Fsﬂ ),

for all ¢ € [0,7T]. Since a € BMO(P) we have from Theorem [5.4l a € BMO(Q), and we get
from Proposition 5.9 and (Z.36])

E@[ymﬂ < 0o, telo,T].
Therefore, there exists a predictable process Z such that Eq] fOT |Z,|2ds] < 0o and
t t B
Ftytb +/ FsangdS = my +/ ZSdWs , te [O,T] .
0 0

From It0’s formula and the definition of y{; we have

T T
W = HY- / as (V0 — HY)ds — / ZdW,, tel0,T]. (4.37)
t t
where the process Zb is defined by
Z
zb = 2L te0,T]
I

We now prove that Z° € BMO(Q). Using (37, there exists a constant C such that
T b2 2 e
s Bol [ |2Pas| 7] < (U0 + I1H30) sup Bof [ lafas|]
veTr[0,T] v veTr[0,T) v
b2 b2
FIH N + 1705 ) -
Since Y € Sp°, H* € S§g°, Hb Sp° and a € BMO(Q), we get that 2b € BMO(Q). Thus,

from Theorem 5.4, Z° € BMO(P) and E] fOT |ZP|2dt] < co. To conclude we get from (E37)
and the definition of W that (J?, Z%) is a solution to BSDE (&34). O

We now prove the existence of a solution to BSDE (g, H).

Proposition 4.6. The BSDE B1) admits a solution (Y, Z,U) € S x L& x L*(\).
Proof. From Theorem and Proposition L5 we obtain that BSDE ([B.7) admits a
solution (Y, Z,U) € S x L& x L*(\). O
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4.4 Solution to BSDE (h,0)
We recall that BSDE (h,0) is

lo Y 2 + Af’ﬁtut(Ut + Yt)|2>

TNAT
T, = Z 7Y, + 28U, + V) U |P—
/ /t <\ 7Y+ A7 (U + V) Uy 12V, S B (Ts £ 1)

AT

T AT TNAT
- / =aw,— [ e.am,, te0,T]. (4.38)
t

AT tAT
Using the definitions of Y, U, Z and U, we therefore consider the associated decomposed

BSDE in F: find (Y% =) € S° x L2 such that

2 |oYPZP + MBi(HE = W)
|02V + Ne| B2

T
T — /t (12222 + M1 — V) ST ds

TAT
—/ Zhaw,,  telo,T].
t

AT
Proposition 4.7. The BSDE [@39)) admits a solution (Y° =) € S3° x L2.
Proof. Denote by R the process defined by

2 o YR ZP 4+ N Be(HE — VP)|?
|0¢[2Y,2 + | Be|? 7

R = ZDEY) 4 MIH - YY)
for t € [0, 7). Define the process T® by
T = E[/ Ryelo A“d“ds‘]-"t] . te[0,T].
t

From (HS), X is bounded, Y € Sp°, H* € Sg°, W e Sp° and Zb € BMO(P), we get from
Proposition that T € Sp° and the process T + fo Rsefos Audi s is a square integrable
martingale. Hence there exists a process = & L]2F such that

~ T S T
T / Ryels Mudugs / SdW,, te[0,T].
t t

From Itd’s formula we get that the processes (Y7, Z%) defined by
~ t ~ t
1Y = Them Jorsds and 22 = =le” Jo Asds

satisfy (@39). Since = € L% and X is uniformly bounded we get that = € L2. Finally, since
T e Sp° we get that Tl € Sp°. g

Finally, we prove the existence of a solutin to BSDE (b, 0).
Proposition 4.8. The BSDE B38) admits a solution (Y,Z,0) € S x L& x L*(\).

Proof. From Theorem and Proposition 7] we obtain that BSDE (B.8) admits a
solution (Y, Z,U) € S x L& x L*(\). O
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5 Appendix

Theorem 5.4. (BMO-Stability) Let M be a local martingale and N be a BMO(P)-martingale.
Let define the martingale measure Q ~ P with the Radon-Nikodym density Zp on Fp given
by Zp = E(N)p. If M is a BMO(PP)-martinagle then M — (M, N) is a BMO(Q)-martingale.

Proof. See Kazamaki [18] Theorem 3.3. O

Proposition 5.9. Let A be a continuous increasing F-adapted process and t > 0 such that
there exists a constant C > 0 satisfying

E[At_As|]:s] < Oa
for any s € [0,t]. Then, we have for any s € [0,t] and any p > 1
E[|A; — A["|F] < pliC|?

and
1

<
- 1-6C7

E[exp (6(A; — Ay)) |f5}

for any 6 € (0,C).

Proof. Let A be a continuous increasing F-adapted process satisfying E[A; — A|Fs] < C
for any 0 < s < t. We first prove by iteration that E[|A; — A4|"|Fs] < p!|CP for any p > 1.

e For p = 1, we have by assumption E[4; — A4|F,] < C.

e Suppose that for some p > 2, we have E[|A; — AP~ F,] < (p— 1)!|C|P~1. Since A is a
continuous increasing F-adapted process we have

t
4, — AP = p/ 4, — Ay P"LdA, |

for any s € [0,¢]. Consequently we get

t
B[4~ API7] = pB[ [ 14— Adrld,|7]

t
pE[/ E[\At AP
pl|CIPIE[A; — Ayl F
pl|CP .

J-"u] dA,

7|

IA A

e Since the result holds true for p = 1 and for any p > 2 as soon as it holds for p — 1, it
holds for p, we get

E[|4; — As[P|Fs) < pl|CIP,
for any p > 1.

From this last inequality, we get for any § € (0, %)

B[S LoPla - AP|E] < Slor =

p=>0 P p>0

which is the expected result. O
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