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Abstract

In this work, we study the problem of mean-variance hedging with a random horizon

T ∧ τ , where T is a deterministic constant and τ is a jump time of the underlying asset

price process. We first formulate this problem as a stochastic control problem and

relate it to a system of BSDEs with jumps. We then provide a verification theorem

which gives the optimal strategy for the mean-variance hedging using the solution of

the previous system of BSDEs. Finally, we prove that this system of BSDEs admits a

solution via a decomposition approach coming from filtration enlargement theory.

Keywords: Mean-variance hedging, Backward SDE, random horizon, jump processes, pro-

gressive enlargement of filtration, decomposition in the reference filtration.

AMS subject classifications: 91B30, 60G57, 60H10, 93E20.

1 Introduction

In most of the financial markets, the simplifying assumption of completeness fails to be

true. In particular, investors cannot always hedge the financial products that they are

interested in. A possible approach is the mean-variance hedging one. It consists, for a

financial product of terminal income H at a fixed horizon time T and an initial capital

∗The research of the author benefited from the support of the French ANR research grant LIQUIRISK.
†The research of the author benefited from the support of the “Chaire Risque de Crédit”, Fédération

Bancaire Française.
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x, in finding a strategy π such that the portfolio V x,π of initial amount x and strategy π

realizes the minimum of the mean square error

E

[

∣

∣V
x,π
T −H

∣

∣

2
]

over all the possible investment strategies.

In this paper, we are concerned with the mean-variance hedging problem over a random

horizon. More precisely, we consider a random time τ and a contingent claim with a gain

of the form

H = Hb
1T<τ +Ha

τ 1T≥τ , (1.1)

where T < ∞ is a fixed deterministic terminal time and study the mean-variance hedging

problem over the horizon [0, T ∧ τ ] defined by

inf
π

E

[

∣

∣V
x,π
T∧τ −H

∣

∣

2
]

. (1.2)

Financial products with gains of the form (1.1) naturally appear on financial markets, see

e.g. Examples 2.1 and 2.2 presented in Subsection 2.3. Their valuations are therefore of an

important interest.

The mean-variance hedging problem with deterministic horizon T is one of the classical

problems from mathematical finance and has been considered by several authors via two

main approaches. One of them is based on martingale theory and projection arguments and

the other considers the problem as a quadratic stochastic control problem and describes

the solution using BSDE theory.

The bulk of the literature primarily focuses on the continuous case where both ap-

proaches are used (see e.g. Delbaen and Schachermayer [5], Gouriéroux et al. [9], Laurent

and Pham [24] and Schweizer [25] for the first approach, and Lim and Zhou [22] and Lim

[21] for the second one).

In the discontinuous case, the mean-variance hedging problem is considered by Arai

[1], Lim [23] and Jeanblanc et al [14]. In [1], the author uses the projection approach for

general semimartingale price process model whereas in [23] the problem is considered via

the stochastic control view for the case of diffusion price processes driven by Brownian

motion and Poisson process. The author provides under a so-called ”martingale condition”

the existence of solution to the associated BSDEs. In the recent paper [14], the authors

combine tools from both approaches, which allows them to work in a general semimartingale

model and to give a description of the optimal solution to the mean-variance hedging via

the BSDE theory. More precisely the authors prove that the value process of the mean-

variance hedging problem has a quadratic structure and that the coefficients appearing in

this quadratic expression are related to some BSDEs. Then, they provide an equivalence

between the existence of an optimal strategy and the existence of a solution to a BSDE

associated to the control problem. They also show in some specific examples, via the

control problem, existence of solutions for BSDEs of interest, but let the problem open in

the general case.

In this paper, we also use a stochastic control approach and describe the optimal solution

by a solution to a system of BSDEs.
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We consider a model of diffusion price process driven by a Brownian motion and a

random jump time τ for which we study the mean-variance hedging with horizon T ∧ τ

given by (1.2). We follow the progressive enlargement approach initiated by Jeulin [15],

Jeulin and Yor [16] and Jacod [12], which lead to consider an enlargement of the initial

information given by the Brownian motion to make τ a stopping time. We note that this

approach allows to work under wide assumptions, in particular, no a priori law is fixed for

the random time τ contrary to the Poisson case.

Following the quadratic form obtained in [14], we use a martingale optimality principle

to get an associated system of nonstandard BSDE. We then provide a verification theorem

(Theorem 3.2) which provides an explicit optimal investment strategy via the solution to

the associated system of BSDEs. Our contribution is twofold.

• We link the mean-variance hedging problem on a random horizon with a system of BSDE,

in a general progressive enlargement setup which avoids to suppose any a priori law for the

jump part. We show that, under wide assumptions, the mean-variance hedging problem

admits an optimal strategy described by the solution of the associated BSDE.

• We prove that the associated system of BSDEs, which is nonstandard, admits a solution.

The main difficulty here is that the obtained system of BSDEs is nonstandard since it is

driven by a Brownian motion and a jump martingale and has generators with quadratic

growth in the variable z and are undefined for some values of the variable y. To solve these

BSDE we follow a decomposition approach inspired by the result of Jeulin (see Proposition

2.1) which allows to consider BSDEs in the smallest filtration (see Theorem 4.3). Then

using BMO properties, we provide solutions to the decomposed BSDEs which lead to the

existence of a solution to the BSDE in the enlarged filtration.

We notice that, for the studied problem i.e. mean-variance hedging with horizon T ∧ τ ,

the interest of our approach is that it provides a solution to the associated BSDE, without

supposing any additional assumption specific to the studied BSDE as done in [23] where

the author introduces the ”martingale condition” to prove existence of a solution to the

BSDE or in [14] where the existence of a solution to the BSDE is given in specific cases.

The rest of the paper is organized as follow. In Section 2, we present the details of

the probabilistic model for the financial market, and set the mean-variance hedging on

random horizon. In Section 3, we show how the construct the associated BSDEs via the

martingale optimality principle. We then state the two main theorems. The first one

concerns the existence of a solution to the associated system of BSDEs and the second one

is a verification Theorem which gives an optimal strategy via the solution of the BSDEs.

Then, Section 4 is dedicated to the proof of the existence of solution to the associated

system of BSDEs. Finally, some technical results are relegated to the appendix.
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2 Preliminaries and market model

2.1 The probability space

Let (Ω,G,P) be a complete probability space. We assume that this space is equipped with

a one-dimensional standard Brownian motion W and we denote by F := (Ft)t≥0 the right

continuous complete filtration generated by W . We also consider on this space a random

time τ , which modelizes for example a default time in credit risk or a death time in actuarial

issues. The random time τ is not assumed to be an F-stopping time. We therefore use in

the sequel the standard approach of filtration enlargement by considering G the smallest

right continuous extension of F that turns τ into a G-stopping time (see e.g. [15, 16, 12]).

More precisely G := (Gt)t≥0 is defined by

Gt :=
⋂

ε>0

G̃t+ε ,

for all t ≥ 0, where G̃s := Fs ∨ σ(1τ≤u , u ∈ [0, s]), for all s ≥ 0.

We denote by P(F) (resp. P(G)) the σ-algebra of F (resp. G)-predictable subsets of

Ω×R+, i.e. the σ-algebra generated by the left-continuous F (resp. G)-adapted processes.

We now introduce a decomposition result for P(G)-measurable processes proved in [15].

Proposition 2.1. Any P(G)-measurable process X = (Xt)t≥0 is represented as

Xt = Xb
t1t≤τ +Xa

t (τ)1t>τ ,

for all t ≥ 0, where Xb is P(F)-measurable and Xa is P(F)⊗ B(R+)-measurable.

Remark 2.1. In the case where the studied process X depends on another parameter

x evolving in a Borelian subset X of Rp, and if X is P(G) ⊗ B(X ), then, decomposition

given by Proposition 2.1 is still true but where Xb is P(F) ⊗ B(X )-mesurable and Xa

is P(F) ⊗ B(R+) ⊗ B(X )-measurable. Indeed, it is obvious for the processes generating

P(G)⊗B(X ) of the form Xt(ω, x) = Lt(ω)R(x), (t, ω, x) ∈ R+ ×Ω×X , where L is P(G)-

measurable and R is B(X )-measurable. Then, the result is extended to any P(G)⊗B(X )-

measurable process by the monotone class theorem.

We then impose the following assumption, which is classical in the filtration enlargement

theory.

(H) The process W remains a G-Brownian motion.

We notice that under (H), the stochastic integral
∫ t

0 XsdWs is well defined for all P(G)-

measurable process X such that
∫ t

0 |Xs|
2ds < ∞.

In the sequel we denote by N the process 1τ≤. and we suppose

(Hτ) The process N admits an F-compensator of the form
∫ .∧τ
0 λtdt, i.e. N −

∫ .∧τ
0 λtdt is

a G-martingale, where λ is a bounded P(F)-measurable process.
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We then denote by M the G-martingale defined by

Mt := Nt −

∫ t∧τ

0
λsds ,

for all t ≥ 0. We also introduce the process λG which is defined by λG
t := (1−Nt)λt.

2.2 Financial model

We consider a financial market model on the time interval [0, T ] where 0 < T < ∞ is a

finite time horizon. We suppose that the financial market is composed by a riskless bond

with interest rate zero and a risky asset S. The price process (St)t≥0 of the risky asset is

modeled by the linear stochastic differential equation

St = S0 +

∫ t

0
Ss−(µsds + σsdWs + βsdMs) , ∀t ∈ [0, T ] , (2.1)

where µ, σ and β are P(G)-measurable processes. We impose the following assumptions

on the coefficients µ, σ and β.

(HS)

(i) The processes µ and σ are bounded: there exists a constant C > 0 such that

|µt|+ |σt| ≤ C , ∀t ∈ [0, T ] , P− a.s.

(ii) The process σ is uniformly invertible: there exists a constant C > 0 such that

|σt| ≥ C , ∀t ∈ [0, T ] , P− a.s.

(iii) There exists a constant C such that

−1 ≤ βt ≤ C , ∀t ∈ [0, T ] , P− a.s.

Under (HS), we know from e.g. Theorem 1 in [8] that the process S defined by (2.1) is

well defined.

2.3 Mean-variance hedging

We consider investment strategies which are P(G)-measurable processes π such that

∫ T∧τ

0
|πt|

2dt < +∞ , P− a.s.

This condition and (HS) ensure that the stochastic integral
∫ t

0
πr

S
r−

dSr is well defined for

such a strategy π and t ∈ [0, T ∧τ ]. The wealth process V x,π corresponding to a pair (x, π),

where x ∈ R is the initial amount, is defined by the stochastic differential equation

V
x,π
t := x+

∫ t

0

πr

Sr−
dSr , ∀ t ∈ [0, T ∧ τ ] .
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We denote by A the set of admissible strategies π such that

E

[

∫ T∧τ

0
|πt|

2dt
]

< ∞ .

For x ∈ R, the problem of mean-variance hedging consists in computing the quantity

inf
π∈A

E

[

∣

∣V
x,π
T∧τ −H

∣

∣

2
]

, (2.2)

where H is a bounded GT∧τ -measurable random variable of the form

H = Hb
1T<τ +Ha

τ 1T≥τ , (2.3)

where Hb is an FT -measurable random variable valued in R and Ha is a continuous F-

adapted process also valued in R and such that

∥

∥Hb
∥

∥

∞
< ∞, and

∥

∥

∥
sup

t∈[0,T ]

∣

∣Ha
t

∣

∣

∥

∥

∥

∞
< ∞ ,

where we recall that ‖.‖∞ is defined by

‖X‖∞ := inf
{

C ≥ 0 : P
(

|X| ≤ C
)

= 1
}

,

for any random variable X.

Since the problem we are interested in uses the values of the coefficients µ, σ and β

only on the interval [0, T ∧ τ ], we can assume by Proposition 2.1 that µ, σ and β are

P(F)-measurable and we shall do that in the sequel.

We end this section by two examples of financial product taking the form (2.3).

Example 2.1 (Insurance contract). Consider a seller of an insurance policy which protects

the buyer over the time horizon [0, T ] from some fixed loss L. Then if we denote by τ the

time at which the loss appears, the gain of the seller is of the form

H = p1T<τ + (p− L)1T≥τ ,

where p denotes the premium that the insurance policy holder pays at time 0.

Example 2.2 (Credit contract). Consider a bank which lends an amount A to a company

over the period [0, T ]. Suppose that the time horizon [0, T ] is divided on n subintervals

[k T
n
, (k+1)T

n
], k = 0, . . . , n−1, and that the interest rate of the loan over a time subinterval

is r. The company has then to pay (1+r)n

n
A to the bank at each time k T

n
, k = 1, . . . , n. If

we denote by τ the company default time, then the gain of the bank is given by

H = ((1 + r)n − 1)A1T<τ +Ha(τ)1T≥τ ,

where the function Ha is given by

Ha
t =

n−1
∑

k=1

(

k
(1 + r)n

n
− 1

)

A1
k T

n
<t≤(k+1)T

n

, t ∈ [0, T ] .
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3 Solution of the mean-variance problem by BSDEs

3.1 Martingale optimality principle

To find the optimal value of the problem (2.2), we follow the approach initiated by Hu et

al. [11] to solve the exponential utility maximization problem in the pure Brownian case.

More precisely, we look for a family of processes

{

(

Jπ
t

)

t∈[0,T ]
: π ∈ A

}

satisfying the following conditions

(i) Jπ
T∧τ =

∣

∣V
x,π
T∧τ −H

∣

∣

2
, for all π ∈ A.

(ii) Jπ1
0 = Jπ2

0 , for all π1, π2 ∈ A.

(iii)
(

Jπ
t

)

t∈[0,T ]
is a G-submartingale for all π ∈ A.

(iv) There exists some π∗ ∈ A such that
(

Jπ∗

t

)

t∈[0,T ]
is a G-martingale.

Under these conditions, we have

Jπ∗

0 = inf
π∈A

E

[

∣

∣V
x,π
T∧τ −H

∣

∣

2
]

.

Indeed, using (i), (iii) and Doob’s optional stopping theorem, we have

Jπ
0 ≤ E

[

Jπ
T∧τ

]

= E

[

∣

∣V
x,π
T∧τ −H

∣

∣

2
]

, (3.4)

for all π ∈ A. Then, using (i), (iv) and Doob’s optional stopping theorem, we have

Jπ∗

0 = E

[

∣

∣V
x,π∗

T∧τ −H
∣

∣

2
]

. (3.5)

Therefore, from (ii), (3.4) and (3.5), we get for any π ∈ A

E

[

∣

∣V
x,π∗

T∧τ −H
∣

∣

2
]

= Jπ∗

0 = Jπ
0 ≤ E

[

∣

∣V
x,π
T∧τ −H

∣

∣

2
]

.

We can see that

Jπ∗

0 = inf
π∈A

E

[

∣

∣V
x,π
T∧τ −H

∣

∣

2
]

.

3.2 Related BSDEs

We now construct a family {(Jπ
t )t∈[0,T ], π ∈ A} satisfying the previous conditions by using

BSDEs as in [11]. To this end, we define the following spaces.

– S∞
G is the subset of R-valued càd-làg G-adapted processes (Yt)t∈[0,T ] essentially bounded

‖Y ‖S∞ :=
∥

∥

∥
sup

t∈[0,T ]
|Yt|

∥

∥

∥

∞
< ∞ .
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– S∞,+
G is the subset of S∞

G of processes (Yt)t∈[0,T ] valued in (0,∞), such that

∥

∥

∥

1

Y

∥

∥

∥

S∞
< ∞ .

– L2
G is the subset of R-valued P(G)-measurable processes (Zt)t∈[0,T ] such that

‖Z‖L2 :=
(

E

[

∫ T

0
|Zt|

2dt
])

1
2

< ∞ .

– L2(λ) is the subset of R-valued P(G)-measurable processes (Ut)t∈[0,T ] such that

‖U‖L2(λ) :=
(

E

[

∫ T∧τ

0
λs|Us|

2ds
])

1
2

< ∞ .

To construct a family {(Jπ
t )t∈[0,T ], π ∈ A} satisfying the previous conditions, we set

Jπ
t = Yt

∣

∣V
x,π
t∧τ − Yt

∣

∣

2
+Υt , t ∈ [0, T ] ,

where1 (Y,Z,U) is solution in S∞,+
G × L2

G × L2(λ) to

Yt = 1 +

∫ T∧τ

t∧τ
f(s, Ys, Zs, Us)ds−

∫ T∧τ

t∧τ
ZsdWs −

∫ T∧τ

t∧τ
UsdMs , t ∈ [0, T ] , (3.6)

(Y,Z,U) is solution in S∞
G × L2

G × L2(λ) to

Yt = H +

∫ T∧τ

t∧τ
g(s,Ys,Zs,Us)ds−

∫ T∧τ

t∧τ
ZsdWs −

∫ T∧τ

t∧τ
UsdMs , t ∈ [0, T ] , (3.7)

and (Υ,Ξ,Θ) is solution in S∞
G × L2

G × L2(λ) to

Υt =

∫ T∧τ

t∧τ
h(s,Υs,Ξs,Θs)ds −

∫ T∧τ

t∧τ
ΞsdWs −

∫ T∧τ

t∧τ
ΘsdMs , t ∈ [0, T ] . (3.8)

In these terms, we are bounded to choose three functions f, g and h for which Jπ is a

submartingale for all π ∈ A, and there exists a π∗ ∈ A such that Jπ∗
is a martingale. In

order to calculate f, g and h, we write Jπ as the sum of a (local) martingale Mπ and an

(not strictly) increasing process Kπ that is constant for some π∗ ∈ A.

To alleviate the notation we write f(t) (resp. g(t), h(t)) for f(t, Yt, Zt, Ut) (resp. g(t,Yt,Zt,Ut),

h(t,Υt,Ξt,Θt)) for t ∈ [0, T ].

Define for each π ∈ A the process Xπ by

Xπ
t := V

x,π
t∧τ − Yt , t ∈ [0, T ] .

From Itô’s formula, we get

dJπ
t = dMπ

t + dKπ
t , (3.9)

1As commonly done for the integration w.r.t. jumps processes, the integral
∫ b

a
stands for

∫
(a,b]

.
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where Mπ and Kπ are defined by

dMπ
t :=

{

2Xπ
t−(πtβt − Ut)(Yt− + Ut) + |πtβt − Ut|

2(Yt− + Ut) + |Xπ
t− |

2Ut +Θt

}

dMt

+
{

2YtX
π
t (πtσt −Zt) + Zt|X

π
t |

2 +Ξt

}

dWt ,

dKπ
t :=

{

Yt

[

2Xπ
t (πtµt + g(t)) + |πtσt −Zt|

2
]

− |Xπ
t |

2f(t) + 2Xπ
t Zt(πtσt −Zt)

+ 2λG
t X

π
t Ut(πtβt − Ut) + λG

t |πtβt − Ut|
2(Ut + Yt)− h(t)

}

dt .

We then write dKπ in the following form

dKπ
t = Kt(πt)dt ,

where K is defined by

Kt(π) := At|π|
2 +Btπ + Ct , π ∈ R , t ∈ [0, T ] ,

with

At := |σt|
2Yt + λG

t |βt|
2(Ut + Yt) ,

Bt := 2Xπ
t (µtYt + σtZt + λG

t βtUt)− 2σtYtZt − 2λG
t βtUt(Yt + Ut) ,

Ct := −f(t)|Xπ
t |

2 + 2Xπ
t (Ytg(t)− ZtZt − λG

t UtUt) + Yt|Zt|
2 + λG

t |Ut|
2(Ut + Yt)− h(t) ,

for all t ∈ [0, T ]. In order to obtain a nondecreasing process Kπ for any π ∈ A and that

is constant for some π∗ ∈ A it is obvious that Kt has to satisfy minπ∈RKt(π) = 0. Using

Y ∈ S∞,+
G and (HS) (ii), we then notice that At > 0 for all t ∈ [0, T ]. Indeed, we have

0 = E[[YT∧τ ]
−] = E

[

∫ T

0
[Ys− + Us]

−λG
s ds

]

= E

[

∫ T

0
[Ys + Us]

−λG
s ds

]

,

which gives (Ys + Us)λ
G
s ≥ 0 for s ∈ [0, T ]. Therefore, the minimum of Kt over π ∈ R is

given by

Kt := min
π∈R

Kt(π) = Ct −
|Bt|

2

4At

.

We then obtain from the expressions of A, B and C that

Kt = At|X
π
t |

2 +BtX
π
t + Ct ,

with

At := −f(t)−
|µtYt + σtZt + λG

t βtUt|
2

|σt|2Yt + λG
t |βt|

2(Ut + Yt)
,

Bt := 2
{(µtYt + σtZt + λG

t βtUt)(λ
G
t βtUt(Yt + Ut) + σtYtZt)

|σt|2Yt + λG
t |βt|

2(Ut + Yt)
+ g(t)Yt − ZtZt − λG

t UtUt

}

,

Ct := −h(t) + |Zt|
2Yt + λG

t (Ut + Yt)|Ut|
2−

|σtYtZt + λG
t βtUt(Ut + Yt)|

2

|σt|2Yt + λG
t |βt|

2(Ut + Yt)
.
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For that the family (Jπ)π∈A satisfies the conditions (iii) and (iv) we choose f, g and h such

that

At = 0 , Bt = 0 and Ct = 0 ,

for all t ∈ [0, T ]. This leads to the following choice for the drivers f, g and h



















































f(t, y, z, u) := −
|µty + σtz + λG

t βtu|
2

|σt|2y + λG
t |βt|

2(u+ y)
,

g(t, y, z, u) := 1
Yt

[

Ztz + λG
t Utu−

(µtYt + σtZt + λG
t βtUt)(σtYtz + λG

t βt(Ut + Yt)u)

|σt|2Yt + λG
t |βt|

2(Ut + Yt)

]

,

h(t, y, z, u) := |Zt|
2Yt + λG

t (Ut + Yt)|Ut|
2−

|σtYtZt + λG
t βtUt(Ut + Yt)|

2

|σt|2Yt + λG
t |βt|

2(Ut + Yt)
.

We then notice that the obtained system of BSDEs is not fully coupled, which allows to

study each BSDE alone as soon as we start from BSDE (f, 1) and end with BSDE (h, 0)2.

However the obtained generators are nonstandard since they involve the jump component

and they are not Lipschitz continuous. Moreover, these generators are not defined on the

whole space R× R×R. Therefore, we also have to deal with this additional issue.

Using a decomposition approach based on Proposition 2.1, we obtain the following result

whose proof is detailed in Section 4.

Theorem 3.1. The BSDEs (3.6), (3.7) and (3.8) admit solutions (Y,Z,U), (Y,Z,U) and

(Υ,Ξ,Θ) in S∞
G × L2

G × L2(λ). Moreover Y ∈ S∞,+
G .

3.3 A verification Theorem

We now turn to the sufficient condition of optimality. As explained in Subsection 3.1, a

candidate to be an optimal strategy is a process π∗ ∈ A such that Jπ∗
is a martingale,

which implies that dKπ∗
= 0. This leads to

π∗
t = argmin

π∈R
Kt(π) ,

which gives the implicit equation in π∗

π∗
t =

(

Yt− − V
x,π∗

t−

) µtYt− + σtZt + λG
t βtUt

|σt|2Yt− + λG
t |βt|

2(Ut + Yt−)
+

σtYt−Zt + λG
t βtUt(Yt− + Ut)

|σt|2Yt− + λG
t |βt|

2(Ut + Yt−)
.

Integrating each side of this equality w.r.t. dSt

S
t−

leads to the following SDE

V ∗
t = x+

∫ t

0

(

Yr− − V ∗
r−

) µrYr− + σrZr + λG
r βrUr

|σr|2Yr− + λG
r |βr|

2(Ur + Yr−)

dSr

Sr−
(3.10)

+

∫ t

0

σrYr−Zr + λG
r βrUr(Yr− + Ur)

|σr|2Yr− + λG
r |βr|

2(Ur + Yr−)

dSr

Sr−
, t ∈ [0, T ∧ τ ] .

We first study the existence of a solution to SDE (3.10).

2The notation BSDE (f,H) holds for the BSDE with generator f and terminal condition H .
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Proposition 3.2. The SDE (3.10) admits a solution V ∗ which satisfies

E

[

sup
t∈[0,T∧τ ]

|V ∗
t |

2
]

< ∞ . (3.11)

Proof. To alleviate the notation we rewrite (3.10) under the form

{

V ∗
0 = x ,

dV ∗
t = (EtV

∗
t−

− Ft)(µtdt+ σtdWt + βtdMt) ,

where E and F are defined by

Et := −
µtYt− + σtZt + λG

t βtUt

|σt|2Yt + λG
t |βt|

2(Ut + Yt−)
,

Ft := −
λG
t βtUt(Yt− + Ut) + µtYt−Yt− + λG

t βtUtYt− + σrZrYr− + σrZrYr−

|σt|2Yt + λG
t |βt|

2(Ut + Yt−)
,

for all t ∈ [0, T ]. We first notice that from (HS) (ii), Y ∈ S∞,+
G and ∆Yτ = Uτ , there exists

a constant C > 0 such that

|σt|
2Yt + λG

t |βt|
2(Ut + Yt−) ≥ C , P− a.s.

for all t ∈ [0, T ]. Therefore, using (Y,Z,U), (Y,Z,U), (Υ,Ξ,Θ) ∈ S∞
G × L2

G × L2(λ), we

get that E and F are square integrable

E

[

∫ T

0

(

|Et|
2 + |Ft|

2
)

dt
]

< ∞ .

Using Itô’s formula, we obtain that the process V ∗ defined by

V ∗
t := Φt(x+Ψt) , t ∈ [0, T ∧ τ) , (3.12)

and V ∗
T∧τ = 1τ≤T

[

(1 + Eτβτ )V
∗
τ− − Fτβτ

]

+ 1τ>TΦT (x+ΨT ) ,

where

Φt := exp
(

∫ t

0

(

Es(µs − λG
s βs)−

1

2
|σsEs|

2
)

ds+

∫ t

0
σsEsdWs

)

,

and

Ψt := −

∫ t

0

Fs

Φs

[

µs − λG
s βs − Es|σs|

2
]

ds−

∫ t

0

Fs

Φs

σsdWs ,

for all t ∈ [0, T ] is solution to (3.10).

We now prove that V ∗ defined by (3.12) satisfies (3.11).

Step 1: We prove that

E

[

|V ∗
T∧τ |

2
]

< ∞ . (3.13)

11



Indeed, from the definition of Y and Y and Itô’s formula, we have

YT∧τ |V
∗
T∧τ − YT∧τ |

2 = Y0|x−Y0|
2 +M∗

T∧τ +

∫ T∧τ

0

[

|Zt|
2Yt + λG

t (Ut + Yt)|Ut|
2

−
|σtYtZt + λG

t βtUt(Ut + Yt)|
2

|σt|2Yt + λG
t |βt|

2(Ut + Yt)

]

dt

where M∗ is a locally square integrable martingale. Therefore, there exists an increasing

sequence of G-stopping times (νi)i∈N such that νi → +∞ as i → ∞ and

E
[

YT∧τ∧νi |V
∗
T∧τ∧νi − YT∧τ∧νi |

2
]

= Y0|x− Y0|
2 + E

∫ T∧τ∧νi

0

[

|Zt|
2Yt + λG

t (Ut + Yt)|Ut|
2

−
|σtYtZt + λG

t βtUt(Ut + Yt)|
2

|σt|2Yt + λG
t |βt|

2(Ut + Yt)

]

dt .

Since Y ∈ S∞,+
G , there exists a constant C such that

E
[

|V ∗
T∧τ∧νi − YT∧τ∧νi |

2
]

≤ C
(

|x− Y0|
2 + E

∫ T

0

[

|Zt|
2Yt + λG

t (Ut + Yt)|Ut|
2
]

dt
)

.

This inequality implies that there exists a constant C such that

E
[
∣

∣V π∗

T∧τ∧νi − YT∧τ∧νi

∣

∣

2]
≤ C .

From Fatou’s lemma, we get that

E
[
∣

∣V ∗
T∧τ − YT∧τ

∣

∣

2]
≤ lim

i →
inf
∞

E
[
∣

∣V ∗
T∧τ∧νi − YT∧τ∧νi

∣

∣

2]
≤ C .

Finally, noting that Y is uniformly bounded, it follows that

E
[∣

∣V ∗
T∧τ

∣

∣

2]
≤ 2

(

C + E
[∣

∣YT∧τ

∣

∣

2])
.

Therefore, we get (3.13).

Step 2: We prove that

E

[

sup
t∈[0,T∧τ ]

|V ∗
t |

2
]

< ∞ .

For that we remark that V ∗
.∧τ is solution to the following linear BSDE

V ∗
t∧τ = V ∗

T∧τ −

∫ T∧τ

t∧τ

µs

σs
zsds−

∫ T∧τ

t∧τ
zsdWs −

∫ T∧τ

t∧τ
usdMs , t ∈ [0, T ] ,

with

zt := σt
(Yt− − V ∗

t−
)(µtYt− + σtZt + λG

t βtUt) + σtYt−Zt + λG
t βtUt(Yt− + Ut)

|σt|2Yt− + λG
t |βt|

2(Ut + Yt−)
,

ut := βt
(Yt− − V ∗

t−
)(µtYt− + σtZt + λG

t βtUt) + σtYt−Zt + λG
t βtUt(Yt− + Ut)

|σt|2Yt− + λG
t |βt|

2(Ut + Yt−)
,

12



for all t ∈ [0, T ]. Therefore, using (3.13), (HS), and classical arguments for BSDEs, we get

(3.11). �

As explained previously, we now consider the strategy π∗ defined by

π∗
t =

(Yt− − V ∗
t−
)(µtYt− + σtZt + λG

t βtUt) + σtYt−Zt + λG
t βtUt(Yt− + Ut)

|σt|2Yt− + λG
t |βt|

2(Ut + Yt−)
, (3.14)

for all t ∈ [0, T ]. We first notice from the expression of π∗ and V ∗ that

V
x,π∗

t = V ∗
t , (3.15)

for all t ∈ [0, T ]. Using (3.11) and (3.15), we have

E

[

sup
t∈[0,T∧τ ]

|V x,π∗

t |2
]

< ∞ . (3.16)

We can now state our verification Theorem which is the main result of this section.

Theorem 3.2. The strategy π∗ given by (3.14) belongs to the set A and is optimal for the

mean-variance problem (2.2). Thus we have

E

[

∣

∣V
x,π∗

T∧τ −H
∣

∣

2
]

= min
π∈A

E

[

∣

∣V
x,π
T∧τ −H

∣

∣

2
]

= Y0|x− Y0|
2 +Υ0 ,

where Y,Y and Υ are solutions to (3.6)-(3.7)-(3.8).

To prove this verification Theorem, we first need of the following lemma.

Lemma 3.1. For any π ∈ A, the process Mπ
.∧τ defined by (3.10) is a G-local martingale.

Proof. Fix π ∈ A. Then from the definition of V x,π, (HS) and BDG-inequality, we have

E

[

sup
t∈[0,T ]

∣

∣V
x,π
t∧τ

∣

∣

2
]

< ∞ . (3.17)

Define the sequence of G-stopping times (νn)n≥1 by

νn := inf
{

s ≥ 0 : sup
r∈[0,s]

∣

∣V
x,π
r∧τ

∣

∣ ≥ n
}

,

for all n ≥ 1. First, notice that (νn)n≥1 is increasing and goes to infinity as n goes to

infinity from (3.17). Then, since π ∈ A, Y,Y ∈ S∞
G and Z,Z,Ξ ∈ L2

G, we get

E

[

∫ τ∧νn∧T

0

∣

∣

∣
2YtX

π
t (πtσt −Zt) + Zt|X

π
t |

2 + Ξt

∣

∣

∣

2
dt
]

< ∞ ,

for all n ≥ 1. Moreover, since U,U ,Θ ∈ L2(λ), we get

E

[

∫ τ∧νn∧T

0

∣

∣

∣
(2Xπ

t− + πtβt − Ut)(πtβt − Ut)(Yt− + Ut) + |Xπ
t− |

2Ut +Θt

∣

∣

∣
λG
t dt

]

< ∞ ,

for all n ≥ 1. Therefore, we get that the stopped process Mπ
.∧τ∧νn is a G-martingale. �
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Proof of Theorem 3.2. As explained in Subsection 3.1, we check each of the points (i),

(ii), (iii) and (iv).

(i) From the definition of Y , Y and Υ, we have

Jπ
T∧τ = YT∧τ

∣

∣V
x,π
T∧τ −H

∣

∣

2
+ΥT∧τ =

∣

∣V
x,π
T∧τ −H

∣

∣

2
,

for all π ∈ A.

(ii) From the definition of the family (Jπ)π∈A, we have

Jπ
0 = Y0|V

x,π
0 − Y0|

2 +Υ0 = Y0|x− Y0|
2 +Υ0 ,

for all π ∈ A.

(iii) Fix π ∈ A. Since Y,Y,Υ ∈ S∞
G , we have from the definition of Jπ and BDG inequality

E

[

sup
t∈[0,T ]

|Jπ
t |
]

< +∞ . (3.18)

Now, fix s, t ∈ [0, T ] such that s ≤ t. Using the decomposition (3.9) and Lemma 3.1, there

exists an increasing sequence of G-stopping times (νi)i≥1 such that νi → +∞ as i → +∞

and

E

[

Jπ
t∧νi

∣

∣Gs

]

≥ Jπ
s∧νi , (3.19)

for all i ≥ 1. Then, from (3.18), we can apply the conditional dominated convergence

Theorem and we get by sending i to ∞ in (3.19)

E
[

Jπ
t

∣

∣Gs

]

≥ Jπ
s ,

for all s, t ∈ [0, T ] with s ≤ t.

(iv) We now check that π∗ ∈ A i.e. E
∫ T∧τ
0 |π∗

s |
2ds < ∞. Using the definition of π∗ and

(3.15) we have that V x,π∗
is solution to linear BSDE

V
x,π∗
t = V

x,π∗

T∧τ −

∫ T∧τ

t∧τ

µs

σs
zsds−

∫ T∧τ

t∧τ
zsdWs −

∫ T∧τ

t∧τ
usdMs , t ∈ [0, T ] ,

with

zt = σtπ
∗
t and ut = βtπ

∗
t ,

for all t ∈ [0, T ]. Therefore, using (3.16), (HS), and classical arguments for BSDEs, we get

E

[

∫ T∧τ

0
|π∗

s |
2ds

]

< ∞ .

We now check that Jπ∗
is a G-martingale. Since Kπ∗

is constant, we obtain from

Lemma 3.1 that Jπ∗
is a G-local martingale. Then, from the expression of Jπ∗

and since

Y,Y,Υ ∈ S∞
G , there exists a constant C such that

E
[

sup
t∈[0,T ]

|Jπ∗

t |
]

≤ C
(

1 + E
[

sup
t∈[0,T∧τ ]

|V x,π∗

t |2
])

.

Using (3.16), we get that

E

[

sup
t∈[0,T ]

|Jπ∗

t |
]

< +∞ .

Therefore, Jπ∗
is a true G-martingale and π∗ is optimal. �
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4 A decomposition approach for solving BSDEs in the filtra-

tion G

We now prove Theorem 3.1 via a decomposition procedure. We first provide a general

result which gives existence of a solution to a BSDE in the enlarged filtration G as soon as

an associated BSDE in the filtration F admits a solution. Actually the associated BSDE is

defined by the terms appearing in the decomposition of the coefficients of the BSDE in G

given by Lemma 2.1. We therefore introduce the spaces of processes where solutions in F

classically lie.

– S∞
F is the subset of R-valued continuous F-adapted processes (Yt)t∈[0,T ] essentially

bounded

‖Y ‖S∞ :=
∥

∥

∥
sup

t∈[0,T ]
|Yt|

∥

∥

∥

∞
< ∞ .

– S∞,+
F is the subset of S∞

F of processes (Yt)t∈[0,T ] valued in (0,∞), such that

∥

∥

∥

1

Y

∥

∥

∥

S∞
< ∞ .

– L2
F is the subset of R-valued P(F)-measurable processes (Zt)t∈[0,T ] such that

‖Z‖L2 :=
(

E

[

∫ T

0
|Zt|

2dt
])

1
2

< ∞ .

Finally since the BSDEs associated to our mean-variance problem have generators with

superlinear growth, we consider the additional space of BMO-martingales: BMO(P) is the

subset of (P,F)-martingales m such that

‖m‖BMO(P) := sup
ν∈TF[0,T ]

E
[

〈m〉T − 〈m〉ν |Fν

]
1
2 < ∞ ,

where TF[0, T ] is the set of F-stopping times on [0, T ]. This means local martingales of the

form mt =
∫ t

0 ZsdWs are BMO(P)-martingale if and only if

‖Z‖BMO(P) := sup
ν∈TF[0,T ]

∥

∥

∥

(

E

[

∫ T

ν

|Zt|
2dt

∣

∣

∣
Fν

])
1
2
∥

∥

∥

∞

< ∞ .

In the sequel, we shall write Z ∈ BMO(P) for
∫ .

0 ZsdWs ∈ BMO(P).

4.1 A general existence theorem for BSDEs with random horizon

We provide here a general result on existence of a solution to a BSDE driven by W and

N with horizon T ∧ τ . We consider a generator function F : Ω× [0, T ] × R × R × R → R,

which is P(G) ⊗ B(R) ⊗ B(R) ⊗ B(R)-measurable, and a terminal condition ξ which is a

GT∧τ -measurable random variable of the form

ξ = ξb1T<τ + ξaτ1T≥τ , (4.20)
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where ξb is an FT -measurable bounded random variable and ξa ∈ S∞
F . From Proposition

2.1 and Remark 2.1, we can write

F (t, .)1t≤τ = F b(t, .)1t≤τ , t ≥ 0 , (4.21)

where F b is a P(F)⊗B(R)⊗B(R)⊗B(R)-measurable map. We then introduce the following

BSDE

Y b
t = ξb +

∫ T

t

F b(s, Y b
s , Z

b
s , ξ

a
s − Y b

s )ds−

∫ T

t

Zb
sdWs , t ∈ [0, T ] . (4.22)

Theorem 4.3. Assume that BSDE (4.22) admits a solution (Y b, Zb) ∈ S∞
F × L2

F. Then

BSDE

Yt = ξ +

∫ T∧τ

t∧τ
F (s, Ys, Zs, Us)−

∫ T∧τ

t∧τ
ZsdWs −

∫ T∧τ

t∧τ
UsdNs , t ∈ [0, T ] ,(4.23)

admits a solution (Y,Z,U) ∈ S∞
G × L2

G × L2(λ) given by

Yt = Y b
t 1t<τ + ξaτ1t≥τ ,

Zt = Zb
t1t≤τ , (4.24)

Ut =
(

ξat − Y b
t

)

1t≤τ ,

for all t ∈ [0, T ].

Proof. We proceed in three steps.

Step 1: We prove that for t ∈ [0, T ], (Y,Z,U) defined by (4.24) satisfies the equation

(4.23). We distinguish three cases.

Case 1: τ > T .

From (4.24), we get Yt = Y b
t , Zt = Zb

t and Ut = ξat − Y b
t for all t ∈ [0, T ]. Then, using that

(Y b, Zb) is a solution to (4.22), we have

Yt = ξb +

∫ T

t

F b(s, Ys, Zs, Us)ds −

∫ T

t

Zb
sdWs .

Since the predictable processes Z and Zb are indistinguishable on {τ > T}, we have from

Theorem 12.23 of [10],
∫ T

t
ZsdWs =

∫ T

t
Zb
sdWs on {τ > T}. Moreover since ξ = ξb and

∫ T∧τ
t∧τ UsdNs = 0 on {τ > T} we get by using (4.21)

Yt = ξ +

∫ T∧τ

t∧τ
F (s, Ys, Zs, Us)ds−

∫ T∧τ

t∧τ
ZsdWs −

∫ T∧τ

t∧τ
UsdNs .

Case 2: τ ∈ (t, T ].

From (4.24), we have Yt = Y b
t . Since (Y b, Zb) is solution to (4.22), we have

Yt = Y b
τ +

∫ τ

t

F b(s, Y b
s , Z

b
s , ξ

a
s − Y b

s )ds −

∫ τ

t

Zb
sdWs .

Still using (4.21) and (4.24), we get

Yt = ξaτ +

∫ τ

t

F (s, Ys, Zs, Us)ds−

∫ τ

t

Zb
sdWs − (ξaτ − Y b

τ ) .
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Since the predictable processes Z1.<τ and Zb
1.<τ are indistinguishable on {τ > t} ∩ {τ ≤

T}, we have from Theorem 12.23 of [10],
∫ T∧τ
t

ZsdWs =
∫ T∧τ
t

Zb
sdWs on {τ > t}∩{τ ≤ T}.

Therefore, we get

Yt = ξaτ +

∫ τ

t

F (s, Ys, Zs, Us)ds−

∫ τ

t

ZsdWs − (ξaτ − Y b
τ ) .

Finally, we easily check from the definition of U that
∫ T∧τ
t

UsdNs = ξaτ − Y b
τ . Therefore,

we get using (4.20)

Yt = ξ +

∫ T∧τ

t∧τ
F (s, Ys, Zs, Us)ds−

∫ T∧τ

t∧τ
ZsdWs −

∫ T∧τ

t∧τ
UsdNs .

Case 3: τ ≤ t.

Then, from (4.24), we have Yt = ξaτ . We therefore get on {τ ≤ t} by using (4.20)

Yt = ξ +

∫ T∧τ

t∧τ
F (s, Ys, Zs, Us)ds−

∫ T∧τ

t∧τ
ZsdWs −

∫ T∧τ

t∧τ
UsdNs .

Step 2: We notice that Y is a càd-làg G-adapted process and U is P(G)-measurable since

Y b and ξa are continuous and G-adapted. We also notice from its definition that the process

Z is P(G)-measurable, since Zb is P(F)-measurable.

Step 3: We now prove that the solution satisfies the integrability conditions. From the

definition of Y , we have

|Yt| ≤ |Y b
t |+ |ξat | , t ∈ [0, T ] . (4.25)

Since Y b ∈ S∞
F and ξa ∈ S∞

F , there exist two constants C1, C2 ≥ 0 such that

sup
t∈[0,T ]

|Y b
t | ≤ C1 and sup

t∈[0,T ]
|ξat | ≤ C2 , P− a.s.

Therefore, we get from (4.25)

sup
t∈[0,T ]

|Yt| ≤ C1 + C2 , P− a.s.

and ‖Y ‖S∞ < +∞.

From the definition of the process Z, we have

E

[

∫ T

0
|Zs|

2ds
]

≤ E

[

∫ T

0
|Zb

s |
2ds

]

.

Since Zb ∈ L2
F, we get

E

[

∫ T

0
|Zs|

2ds
]

< +∞ .

Finally from the definition of U , we have

|Ut| ≤ |Y b
t |+ |ξat | , t ∈ [0, T ] .
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Since Y b ∈ S∞
F , ξa ∈ S∞

F and λ is bounded, we get

E

[

∫ T∧τ

0
λt|Ut|

2dt
]

< ∞ .

�

Using this abstract result we prove the existence of solutions to each of the BSDEs (3.6),

(3.7) and (3.8) in the following subsections.

4.2 Solution to BSDE (f, 1)

According to the general existence Theorem 4.3, we consider for coefficients (f, 1) the BSDE

in F: find (Y b, Zb) ∈ S∞
F × L2

F such that







dY b
t =

{ |(µt − λtβt)Y
b
t + σtZ

b
t + λtβt|

2

|σt|2Y
b
t + λt|βt|2

− λt + λtY
b
t

}

dt+ Zb
t dWt , t ∈ [0, T ] ,

Y b
T = 1 .

(4.26)

To solve this BSDE, we have to deal with two main issues. The first is that the generator

f has a superlinear growth. The second difficulty is that the generator value is not defined

for all the values that the process Y can take. In particular the generator may explode if

the process Y goes to zero. Taking in consideration these issues we get the following result.

Proposition 4.3. BSDE (4.26) has a solution (Y b, Zb) in S∞,+
F ×L2

F with Zb ∈ BMO(P).

Proof. We first notice that BSDE (4.26) can be can written under the form



























dY b
t =

{ |µt − λtβt|
2

|σt|2
Y b
t −

λt|βt|
2

|σt|4
|µt − λtβt|

2 − λt + λtY
b
t +

2(µt − λtβt)

|σt|2
(σtZ

b
t + λtβt)

+

∣

∣σtZ
b
t + λtβt + (λtβt − µt)

λt|βt|2

|σt|2

∣

∣

2

|σt|2Y b
t + λt|βt|2

}

dt+ Zb
t dWt , t ∈ [0, T ] ,

Y b
T = 1 .

Since the variable Y b appears in the denominator we can not directly solve this BSDE.

We then proceed in four steps. We first introduce a modified BSDE with a lower bounded

denominator to ensure that the generator is well defined. We then prove via a change of

probability and a comparison theorem that the solution of the modified BSDE satisfies the

initial BSDE.

Step 1: Introduction of the modified BSDE.

Let (Y ε, Zε) be the solution in S∞
F × L2

F to the BSDE



























dY ε
t =

{ |µt − λtβt|
2

|σt|2
Y ε
t −

λt|βt|
2

|σt|4
|µt − λtβt|

2 − λt + λtY
ε
t +

2(µt − λtβt)

|σt|2
(σtZ

ε
t + λtβt)

+

∣

∣σtZ
ε
t + λtβt + (λtβt − µt)

λt|βt|2

|σt|2

∣

∣

2

|σt|2(Y ε
t ∨ ε) + λt|βt|2

}

dt+ Zε
t dWt , t ∈ [0, T ] ,

Y ε
T = 1 ,

(4.27)
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where ε is a positive constant such that

exp
(

−

∫ T

0

(

λt +
|µt − λtβt|

2

|σt|2

)

dt
)

≥ ε , P− a.s. (4.28)

Such a constant exists from (HS). Since BSDE (4.27) is a quadratic BSDE, there exists a

solution (Y ε, Zε) in S∞
F × L2

F from [19].

Step 2: BMO property of the solution.

In this part we prove that Zε ∈ BMO(P). Let k denote the lower bound of the uniformly

bounded process Y ε. Applying Itô’s formula to |Y ε − k|2, we obtain

E
[

∫ T

ν

|Zε
s |

2ds
∣

∣

∣
Fν

]

= |1− k|2 − |Y ε
ν − k|2 − 2E

[

∫ T

ν

(Y ε
s − k)f ǫ(s, Y ε

s , Z
ε
s)ds

∣

∣

∣
Fν

]

, (4.29)

for any stopping times ν ∈ TF[0, T ], with

f ǫ(t, y, z) =
|µt − λtβt|

2

|σt|2
y −

λt|βt|
2

|σt|4
|µt − λtβt|

2 − λt + λty +
2(µt − λtβt)

|σt|2
(σtz + λtβt)

+
|σtz + λtβt + (λtβt − µt)

λt|βt|2

|σt|2
|2

|σt|2(y ∨ ε) + λt|βt|2
,

for all (t, y, z) ∈ [0, T ] × R× R. We can see that

f ǫ(t, y, z) ≥ It +Gty +Htz , (4.30)

for all (t, y, z) ∈ [0, T ] × R× R where the processes I, G and H are given by






























It := −
λt|βt|

2

|σt|4
|µt − λtβt|

2 − λt + 2λtβt
(µt − λtβt)

|σt|2
,

Gt :=
|µt − λtβt|

2

|σt|2
+ λt ,

Ht := 2
(µt − λtβt)

σt
,

for all t ∈ [0, T ]. We first notice that from (HS), the processes I, J and K are bounded.

Using (4.29) and (4.30), we get the following inequality

E

[

∫ T

ν

|Zε
s |

2ds
∣

∣

∣
Fν

]

≤ |1− k|2 − 2E
[

∫ T

ν

(Y ε
s − k)(Is +GsY

ε
s +HsZ

ε
s)ds

∣

∣

∣
Fν

]

.

From the inequality 2ab ≤ a2 + b2 for a, b ≥ 0, we get

E

[

∫ T

ν

|Zε
s |

2ds
∣

∣

∣
Fν

]

≤ |1− k|2 − 2E
[

∫ T

ν

(Y ε
s − k)(Is +GsY

ε
s )ds

∣

∣

∣
Fν

]

+ 2E
[

∫ T

ν

|Hs|
2|Y ε

s − k|2ds
∣

∣

∣
Fν

]

+
1

2
E
[

∫ T

ν

|Zε
s |

2ds
∣

∣

∣
Fν

]

.

Since I, G, H and Y ε are uniformly bounded, we get

E

[

∫ T

ν

|Zε
s |

2ds
∣

∣

∣
Fν

]

≤ C ,
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for some constant C which does not depend on ν. Therefore, Zε ∈ BMO(P).

Step 3: Change of probability.

Define the process Lε by

Lε
t := 2

(µt − λtβt)

σt
+ 2

σt
(

λtβt +
λt|βt|2

|σt|2
(λtβt − µt)

)

|σt|2(Y ε
t ∨ ε) + λt|βt|2

+
|σt|

2Zε
t

|σt|2(Y ε
t ∨ ε) + λt|βt|2

,

for all t ∈ [0, T ]. Since Y ε ∈ S∞
F , Zε ∈ BMO(P), we get from (HS) that Lε ∈ BMO(P).

Therefore, the process E(
∫ .

0 L
ǫ
sdWs) is an F-martingale. Applying Girsanov Theorem we

get that the process W̄ defined by

W̄t := Wt +

∫ t

0
Lε
sds ,

for all t ∈ [0, T ], is a Brownian motion under the probability Q defined by

dQ

dP

∣

∣

∣

FT

= E
(

∫ T

0
Lǫ
sdWs

)

.

We also notice that under Q, (Y ε, Zε) is solution to

Y ε
t = 1 +

∫ T

t

λs|βs|
2

|σs|4
|µs − λsβs|

2 −
|µs − λsβs|

2

|σs|2
Y ε
s − 2λsβs

(µs − λsβs)

|σs|2
+ λs

− λsY
ε
s −

∣

∣λsβs + (λsβs − µs)
λs|βs|2

|σs|2

∣

∣

2

|σs|2(Y ε
s ∨ ε) + λs|βs|2

ds−

∫ T

t

Zε
sdW̄s , t ∈ [0, T ] . (4.31)

Step 4: Comparison under the new probability measure Q.

We first notice that the generator f̄ ǫ of BSDE (4.31) admits the following lower bound

f̄ ǫ(t, y, z) ≥
λt|βt|

2

|σt|4
|µt − λtβt|

2 + λt − λty − 2λtβt
(µt − λtβt)

|σt|2

−
|µt − λtβt|

2

|σt|2
y −

∣

∣λtβt + (λtβt − µt)
λt|βt|2

|σt|2

∣

∣

2

λt|βt|2
1λtβt 6=0

= −λty −
|µt − λtβt|

2

|σt|2
y ,

for all (t, y, z) ∈ [0, T ] × R× R. We now study the following BSDE

Y t = 1 +

∫ T

t

[

− λs −
|µs − λsβs|

2

|σs|2

]

Y sds−

∫ T

t

ZsdW̄s , t ∈ [0, T ] . (4.32)

Since, this BSDE is linear, it has a unique solution given by

Y t := EQ

[

exp
(

−

∫ T

t

(

λs +
|µs + λsβs|

2

|σs|2
)

ds
)∣

∣

∣
Ft

]

, t ∈ [0, T ] .

By the comparison Theorem for BSDEs (4.31) and (4.32) we have

Y ǫ
t ≥ Y t , t ∈ [0, T ] .

By (4.28), we have ε ≤ Y t for any t ∈ [0, T ]. Consequently, Y ε
t ≥ ε for any t ∈ [0, T ], and

(Y ε, Zε) is solution to (4.26). �

We now are able to prove that BSDE (f, 1) admits a solution.
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Proposition 4.4. The BSDE (3.6) admits a solution (Y,Z,U) ∈ S∞
G × L2

G × L2(λ) with

Y ∈ S∞,+
G .

Proof. From Theorem 4.3 and Proposition 4.3, we obtain that BSDE (3.6) admits a

solution (Y,Z,U) ∈ S∞
G × L2

G × L2(λ), with Y given by

Yt = Y b
t 1τ<t + 1τ≥t , t ∈ [0, T ] .

with Y b ∈ S∞,+
F from Proposition 4.3. Therefore Y ∈ S∞,+

G . �

4.3 Solution to BSDE (g, H)

We first notice that BSDE (g,H) can be rewritten under the form



















dYt =
{(µtYt + σtZt + λG

t βtUt)(σtYtZt + λG
t βt(Ut + Yt)Ut)

Yt(|σt|2Yt + λG
t |βt|

2(Ut + Yt))
−

Zt

Yt

Zt

−
λG
t Ut

Yt
Ut − λG

t Ut

}

dt+ ZtdWt + UtdHt , t ∈ [0, T ∧ τ ] ,

YT∧τ = H .

(4.33)

Since Yt1t<τ = Y b
t 1t<τ and Ut1t≤τ = (1−Y b

t )1t≤τ , we consider the associated decomposed

BSDE in F: find (Yb,Zb) ∈ S∞
F × L2

F such that























dYb
t =

{((µt − λtβt)Y
b
t + σtZ

b
t + λtβt)(σtY

b
t Z

b
t + λtβtH

a
t − λtβtY

b
t )

Y b
t (|σt|

2Y b
t + λt|βt|2)

−
Zb
t

Y b
t

Zb
t −

λt

Y b
t

Ha
t +

λt

Y b
t

Yb
t

}

dt+ Zb
t dWt , t ∈ [0, T ] ,

Yb
T = Hb .

(4.34)

We notice that this BSDE has a Lipschitz generator w.r.t. the unknown (Yb,Zb). However

the Lipschitz coefficient depends on Zb which is not necessarily bounded. Thus we cannot

apply the existing results and have to deal with this issue.

Proposition 4.5. BSDE (4.34) admits a solution (Yb,Zb) in S∞
F ×L2

F with Zb ∈ BMO(P).

Proof. We first define the equivalent probability Q to P defined by its Radon-Nikodym

density dQ
dP

∣

∣

FT
= E(

∫ T

0 ρtdWt) where ρ is given by

ρt :=
Zb
t

Y b
t

−
σt
(

(µt − λtβt)Y
b
t + σtZ

b
t + λtβt

)

|σt|2Y b
t + λt|βt|2

, t ∈ [0, T ] .

Since Zb ∈ BMO(P), Y b ∈ S∞,+
F and the coefficients µ, σ and β satisfy (HS), it implies

that ρ ∈ BMO(P). Therefore, W̄t := Wt −
∫ t

0 ρsds is a Q-Brownian motion. Hence, BSDE

(4.34) can be written

{

dYb
t = at(Y

b
t −Ha

t )dt+Zb
t dW̄t , t ∈ [0, T ] ,

Yb
T∧τ = Hb ,

(4.35)
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with

at :=
λt|σt|

2Y b
t − λtβt((µt − λtβt)Y

b
t + σtZ

b
t )

Y b
t (|σt|

2Y b
t + λt|βt|2)

, t ∈ [0, T ] .

By definition of a we can see that a ∈ BMO(P) since the coefficients µ, σ, β and λ are

bounded, Y b ∈ S∞,+
F and Zb ∈ BMO(P). Using BMO-stability Theorem (see Theorem

5.4), there exists a constant l′ ≥ 0 such that EQ[
∫ T

ν
|as|

2ds|Fν ] ≤ l′ for any ν ∈ TF[0, T ].

We now prove that the process Yb defined by

Yb
t := EQ

[ΓT

Γt

Hb +

∫ T

t

Γs

Γt

asH
a
s ds

∣

∣

∣
Ft

]

, t ∈ [0, T ] ,

with Γt := exp(−
∫ t

0 asds), is solution of this BSDE. We proceed in four steps.

Step 1. Integrability property of the process Γ.

We first prove that for any p ≥ 1 there exists a constant C > 0 such that the process Γ

satisfies for any t ∈ [0, T ]

EQ

[

sup
t≤s≤T

∣

∣

∣

Γs

Γt

∣

∣

∣

p∣
∣

∣
Ft

]

≤ C . (4.36)

Since EQ[
∫ T

ν
|as|

2ds|Fν ] ≤ l′ for any θ ∈ TF[0, T ], we get from Proposition 5.9 that there

exists a constant δ such that 0 < δ < 1
l′
and

EQ

[

exp
(

δ

∫ T

ν

|as|
2ds

)
∣

∣

∣
Fν

]

≤
1

1− δl′
.

We get for any 0 ≤ t ≤ s ≤ T

∣

∣

∣

Γs

Γt

∣

∣

∣

p

≤ exp
(

∫ s

t

(

δ|ar|
2 +

p2

4δ

)

dr
)

≤ exp
(p2

4δ
T
)

exp
(

δ

∫ T

0
|ar|

2dr
)

.

Consequently, we get

EQ

[

sup
t≤s≤T

∣

∣

∣

Γs

Γt

∣

∣

∣

p∣
∣

∣
Ft

]

≤ exp
(p2

4δ
T
) 1

1− δl′
.

Step 2. Uniform boundedness of Yb.

We now prove that Yb ∈ S∞
F . For that we remark that by definition of Yb we have the

following inequality

|Yb
t | ≤ ‖Hb‖∞EQ

[ΓT

Γt

∣

∣

∣
Ft

]

+ ‖Ha‖∞EQ

[

∫ T

t

|as|
2ds

∣

∣

∣
Ft

]

+ ‖Ha‖∞EQ

[

∫ T

t

∣

∣

∣

Γs

Γt

∣

∣

∣

2
ds
∣

∣

∣
Ft

]

.

Therefore, we get that Yb ∈ S∞
F .

Step 3. Dynamics of Yb.
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We now prove that Yb satisfies (4.35). For that we introduce the Q-martingalem defined

by

mt := ΓtY
b
t +

∫ t

0
ΓsasH

a
s ds , t ∈ [0, T ] .

We first notice that m is Q-square integrable. Indeed, from the definition of m, there exists

a constant C such that

EQ

[

|mt|
2
]

≤ C
(

EQ

[

∣

∣ΓtY
b
t

∣

∣

2
]

+ EQ

[

∫ t

0

∣

∣ΓsasH
a
s

∣

∣

2
ds
])

,

for all t ∈ [0, T ]. Since Yb ∈ S∞
F , Ha ∈ S∞

F and from Cauchy-Schwarz inequality there

exists a constant C such that

EQ

[

|mt|
2
]

≤ C
(

EQ

[

∣

∣Γt

∣

∣

2
]

+

√

EQ

[(

∫ t

0

∣

∣as
∣

∣

2
ds
)2]

√

EQ

[

sup
0≤s≤t

∣

∣Γs

∣

∣

4
] )

,

for all t ∈ [0, T ]. Since a ∈ BMO(P) we have from Theorem 5.4 a ∈ BMO(Q), and we get

from Proposition 5.9 and (4.36)

EQ

[

|mt|
2
]

< ∞ , t ∈ [0, T ] .

Therefore, there exists a predictable process Z̃ such that EQ[
∫ T

0 |Z̃s|
2ds] < ∞ and

ΓtY
b
t +

∫ t

0
ΓsasH

a
s ds = m0 +

∫ t

0
Z̃sdW̄s , t ∈ [0, T ] .

From Itô’s formula and the definition of Yb
T we have

Yb
t = Hb −

∫ T

t

as(Y
b
s −Ha

s )ds −

∫ T

t

Zb
t dW̄s , t ∈ [0, T ] . (4.37)

where the process Zb is defined by

Zb
t :=

Z̃t

Γt

, t ∈ [0, T ] .

We now prove that Zb ∈ BMO(Q). Using (4.37), there exists a constant C such that

sup
ν∈TF[0,T ]

EQ

[

∫ T

ν

|Zb
s |

2ds
∣

∣

∣
Fν

]

≤ C
(

(‖Yb‖
2

S∞ + ‖Ha‖2S∞) sup
ν∈TF[0,T ]

EQ

[

∫ T

ν

|as|
2ds

∣

∣

∣
Fν

]

+‖Hb‖
2

S∞ + ‖Yb‖
2

S∞

)

.

Since Yb ∈ S∞
F , Ha ∈ S∞

F , Hb ∈ S∞
F and a ∈ BMO(Q), we get that Zb ∈ BMO(Q). Thus,

from Theorem 5.4, Zb ∈ BMO(P) and E[
∫ T

0 |Zb
t |
2dt] < ∞. To conclude we get from (4.37)

and the definition of W̄ that (Yb,Zb) is a solution to BSDE (4.34). �

We now prove the existence of a solution to BSDE (g,H).

Proposition 4.6. The BSDE (3.7) admits a solution (Y,Z,U) ∈ S∞
G × L2

G × L2(λ).

Proof. From Theorem 4.3 and Proposition 4.5, we obtain that BSDE (3.7) admits a

solution (Y,Z,U) ∈ S∞
G × L2

G × L2(λ). �
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4.4 Solution to BSDE (h, 0)

We recall that BSDE (h, 0) is

Υt =

∫ T∧τ

t∧τ

(

|Zt|
2Yt + λG

t (Ut + Yt)|Ut|
2−

|σtYtZt + λG
t βtUt(Ut + Yt)|

2

|σt|2Yt + λG
t |βt|

2(Ut + Yt)

)

ds

−

∫ T∧τ

t∧τ
ΞsdWs −

∫ T∧τ

t∧τ
ΘsdMs , t ∈ [0, T ] . (4.38)

Using the definitions of Y , U , Z and U , we therefore consider the associated decomposed

BSDE in F: find (Υb,Ξb) ∈ S∞
F × L2

F such that

Υb
t =

∫ T

t

(

|Zb
t |

2Y b
t + λt|H

a
t − Yb

t |
2−

|σtY
b
t Z

b
t + λtβt(H

a
t − Yb

t )|
2

|σt|2Y b
t + λt|βt|2

− λsΥs

)

ds

−

∫ T∧τ

t∧τ
Ξb
sdWs , t ∈ [0, T ] .

Proposition 4.7. The BSDE (4.39) admits a solution (Υb,Ξb) ∈ S∞
F × L2

F.

Proof. Denote by R the process defined by

Rt := |Zb
t |

2Y b
t + λt|H

a
t −Yb

t |
2−

|σtY
b
t Z

b
t + λtβt(H

a
t − Yb

t )|
2

|σt|2Y
b
t + λt|βt|2

,

for t ∈ [0, T ]. Define the process Υ̃b by

Υ̃b
t := E

[

∫ T

t

Rse
∫ s

0 λududs
∣

∣

∣
Ft

]

, t ∈ [0, T ] .

From (HS), λ is bounded, Y b ∈ S∞
F , Ha ∈ S∞

F , Yb ∈ S∞
F and Zb ∈ BMO(P), we get from

Proposition 5.9 that Υ̃b ∈ S∞
F and the process Υ̃b +

∫ .

0 Rse
∫ s

0 λududs is a square integrable

martingale. Hence there exists a process Ξ ∈ L2
F such that

Υ̃b
t =

∫ T

t

Rse
∫ s

0
λududs−

∫ T

t

ΞsdWs , t ∈ [0, T ] .

From Itô’s formula we get that the processes (Υb,Ξb) defined by

Υb
t = Υ̃b

te
−

∫ t

0 λsds and Ξb
t = Ξ̃b

te
−

∫ t

0 λsds

satisfy (4.39). Since Ξ̃ ∈ L2
F and λ is uniformly bounded we get that Ξ ∈ L2

F. Finally, since

Υ̃b ∈ S∞
F we get that Υb ∈ S∞

F . �

Finally, we prove the existence of a solutin to BSDE (h, 0).

Proposition 4.8. The BSDE (3.8) admits a solution (Υ,Ξ,Θ) ∈ S∞
G × L2

G × L2(λ).

Proof. From Theorem 4.3 and Proposition 4.7, we obtain that BSDE (3.8) admits a

solution (Y,Z,U) ∈ S∞
G × L2

G × L2(λ). �
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5 Appendix

Theorem 5.4. (BMO-Stability) Let M be a local martingale and N be a BMO(P)-martingale.

Let define the martingale measure Q ∼ P with the Radon-Nikodym density ZT on FT given

by ZT = E(N)T . If M is a BMO(P)-martinagle then M−〈M,N〉 is a BMO(Q)-martingale.

Proof. See Kazamaki [18] Theorem 3.3. �

Proposition 5.9. Let A be a continuous increasing F-adapted process and t ≥ 0 such that

there exists a constant C > 0 satisfying

E
[

At −As

∣

∣Fs

]

≤ C ,

for any s ∈ [0, t]. Then, we have for any s ∈ [0, t] and any p ≥ 1

E
[

|At −As|
p|Fs

]

≤ p!|C|p

and

E

[

exp
(

δ(At −As)
)
∣

∣Fs

]

≤
1

1− δC
,

for any δ ∈ (0, C).

Proof. Let A be a continuous increasing F-adapted process satisfying E[At − As|Fs] ≤ C

for any 0 ≤ s ≤ t. We first prove by iteration that E[|At −As|
p|Fs] ≤ p!|C|p for any p ≥ 1.

• For p = 1, we have by assumption E[At −As|Fs] ≤ C.

• Suppose that for some p ≥ 2, we have E[|At −As|
p−1|Fs] ≤ (p − 1)!|C|p−1. Since A is a

continuous increasing F-adapted process we have

|At −As|
p = p

∫ t

s

|At −Au|
p−1dAu ,

for any s ∈ [0, t]. Consequently we get

E
[

|At −As|
p
∣

∣Fs

]

= pE
[

∫ t

s

|At −Au|
p−1dAu

∣

∣

∣
Fs

]

= pE
[

∫ t

s

E

[

|At −Au|
p−1

∣

∣

∣
Fu

]

dAu

∣

∣

∣
Fs

]

≤ p!|C|p−1E[At −As|Fs]

≤ p!|C|p .

• Since the result holds true for p = 1 and for any p ≥ 2 as soon as it holds for p − 1, it

holds for p, we get

E
[

|At −As

∣

∣

p∣
∣Fs] ≤ p!|C|p ,

for any p ≥ 1.

From this last inequality, we get for any δ ∈ (0, 1
C
)

E

[

∑

p≥0

1

p!
|δ|p|At −As|

p
∣

∣

∣
Fs

]

≤
∑

p≥0

|δC|p =
1

1− δC
,

which is the expected result. �

25



References

[1] Arai T. (2005): “An extension of mean-variance hedging to the discontinuous case”,

Finance Stoch., 9, 129139.

[2] Barlow M.-T. (1978): “Study of a Filtration Expanded to Include an Honest Time”, Z.

Wahrscheinlichkeitstheorie verw. Gebiete, 44, 307-323.

[3] Bielecki T. and M. Rutkowski (2004): “Credit risk: modelling, valuation and hedging”,

Springer Finance.

[4] Bielecki T., Jeanblanc M. and M. Rutkowski (2004): “Stochastic Methods in Credit

Risk Modelling”, Lectures notes in Mathematics, Springer, 1856, 27-128.

[5] Delbaen F. and W. Schachermayer (1996): “The variance-optimal martingale measure

for continuous processes”, Bernoulli, 2, 81-105.

[6] Dellacherie C. and P.-A. Meyer (1975): “Probabilités et Potentiel - Chapitres I IV”,

Hermann, Paris.

[7] El Karoui N., Peng S. and M.-C. Quenez (1997): “Backward Stochastic Differential

Equations in Finance”, Mathematical Finance, 1-71.
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stabilité”, Séminaire de probabilité (Strasbourg), 13, 281-293.

[9] Gouriéroux C., Laurent J.-P. and H. Pham (1998): “Mean-variance Hedging and

numéraire”, Math. Finance, 8, 179-200.

[10] He S., Wang J. and J. Yan (1992): “Semimartingale theory and stochastic calculus”,

Science Press, CRC Press, New-York.

[11] Hu Y., Imkeller P. and M. Muller (2004): “Utility maximization in incomplete mar-

kets”, Annals of Applied Probability, 15, 1691-1712.

[12] Jacod J. (1987): “Grosissement initial, hypothèse H’ et théorème de Girsanov,
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