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135 avenue de Rangueil, 31077 Toulouse, France

SUMMARY

A new method is proposed to measure the finite element (FE) displacement field from a deformed
image in comparison to a reference one. In opposition to standard FE approaches, the unknown
displacement is sought as a sum of products of separated dimensions functions. The problems in each
dimension being uncoupled, the method involves only 1D meshes and 1D problems. An algorithm
that builds successive best rank-one approximations is proposed and integrated into the nonlinear
iterations of the correlation problem. Although the method can be applied to spaces of any dimension,
this paper focuses on 2D images. Many synthetic examples are provided to evaluate the performance
of the method. In addition, it is shown that, even with this separated representation, the introduction
of a regularization operator is convenient. The latter makes it possible to perform a pixel-wise measure
with huge computational savings.

key words: FE based DIC ; full field measurement ; model order reduction, PGD, separation of

variables

1. Introduction

Full field measurements by digital image correlation (DIC) are now widely used in
mechanical engineering and materials science [37]. It is especially attractive in special
experimental conditions (high temperature), with soft materials (like stone wool [9]), or with
complex heterogeneous microstructures (textile reinforced composite [18]), where conventional
measurement techniques can be tricky (or simply unfeasible). In such situations, optical full
field measurement seems to be the preferable (if not the only) way of measuring correct
deformations. Moreover, heterogeneous displacement and strain field measurements can be
used to identify complex constitutive relations [2, 26, 28].
Most frequently, DIC is based on the determination of the displacement of small regions of

interest independently [38, 37]. An alternative is to seek the displacement field in a global
manner by a Galerkin approach [4]. It is based on a weak formulation of the gray level
conservation equation [10]. It leads to the inversion of a system whose solution yields the

∗Correspondence to: Université de Toulouse ; INSA ; ICA ; 135 avenue de Rangueil, 31077 Toulouse, FR



2

displacement over the entire region of interest (ROI). The choice of the approximation subspace
in which one seeks the displacement can be varied. Interpolations based on the a priori

knowledge of the solution are sometimes directly integrated in the correlation algorithm (I-
DIC [33]). Thus the elastic crack tip asymptotic field has been successfully used to measure
relevant mechanical information such as stress intensity factors or crack tip position [33, 34]
in addition to the full displacement field. Among the possible choices of interpolation, an
especially attractive method is based on the Finite Element framework [4]. This versatile
method has been very effective for many applications in mechanics of materials and structures
[4, 29, 34, 16, 9, 27]. Moreover, many numerical tools associated with the finite element method,
initially devised for simulation, can be transposed to the measure. This is the case of the
extended finite element method (X-FEM) [19] used to represent a discontinuity that does
not conform to the mesh. Thus the method X-DIC [29, 30, 31] has greatly simplified the
measurement of non planar cracks growth [27].

With these global FE approaches, when the spatial resolution decreases, the number of
elements and consequently the number of degrees of freedom (DOF) required to measure the
displacement field within a given ROI, increases. For instance, when a pixel-wise mesh is
used, the associated computational cost becomes significant. It is even worse with a voxel-wise
mesh for digital volume correlation (DVC) [17]. The complexity is so high that the number
of elements is limited. The latter can, at best, reach few hundreds in the three dimensions,
provided that an enhanced implementation is performed [17]. In this paper, we propose a
method based on a tensor product approximation to overcome this barrier.

Initially developed for the simulation of evolution problems [13] the proper generalized
decomposition (PGD) consists in seeking an unknown field of many dimensions as the
finite sum of separated dimensions functions. The solution to an evolution problem is,
for instance, sought as the sum of products of space functions by time functions. Then,
a progressive construction of successive best rank-one approximations is performed with
or without possible updates [15, 24, 21]. In this example, the method involves only time
independent spatial problems along with scalar ordinary differential equations iteratively.
This has been applied in many other contexts. For instance, it has been successfully used
to solve mutlidimensional problems in which the solution depending on a large number of
dimensions could not be achieved with standard techniques because of the so-called Curse of

Dimensionality [1, 8] (a state of the art review can be found in [6]). The method has also been
applied to stochastic problems (Generalized Spectral Decomposition [20]) where stochastic
and deterministic dimensions are separated. Finally, the PGD was also used to separate the
different dimensions of the space. For example, a 3D plate problem (without plate hypothesis
on the kinematics) was solved with the cost of 2D + 1D resolutions [5].

Generally speaking, tensor product approximation is often associated with the Proper
Orthogonal Decomposition (POD) (also known as the Singular Value Decomposition (SVD),
Principal Component analysis (PCA), or Karhunen-Loeve Decomposition (KLD)). This tool
has been widely used to devise model order reduction techniques [12, 35, 11]. It consists in a
first learning phase (i.e. the snapshot) from which a POD is a posteriori computed. Then the
next problems are solved in projection on the resulting basis. But, in opposition to the POD,
the PGD does not assume any of the separated functions. They are directly computed by the
solver. PGD should then rather be considered as an a priori model (or dimension) reduction
technique.

In the present paper a PGD-based digital image correlation method is devised. The unknown
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displacement field is sought as a sum of product of unidimensional functions (for instance x, y
and z in 3D). At each iteration of the correlation problem, the solution is corrected by a new
best rank-one approximation. This new separated approximation requires the resolution of
1D problems in each dimension. As opposed to Q4-DIC (resp. C8-DVC), no surface (rep.
volumetric) mesh is needed. One problem of quadratic (2D) or cubic (3D) complexity is
replaced by several 1D problems that are smaller and of linear complexity. The linearized
problem at one iteration of the correlation problem is made nonlinear by the PGD. A dedicated
nonlinear solution strategy is therefore proposed. It requires a second stage of iterations.

With the method proposed herein, the number of elements in each direction has much
less impact on the computational cost. This method is therefore a good candidate to go
down in resolution, and, ultimately, up to the scale of the pixel. But the problem of digital
image correlation being ill-posed, a small number of pixel in each element can lead to a non-
convergence of the algorithm. To reach pixel-wise DIC a regularization is required [17]. In
this paper we focus on the feasibility of regularization in the context of the proposed PGD-
DIC. We only consider a simple frequency filter based on the Laplacian operator. With this
regularization, the PGD-DIC reaches pixel-wise digital image correlation with very appealing
computational costs.

In section 2, the main ideas of the family of Galerkin-type digital image correlation are
recalled, then an a posteriori study is proposed to illustrate the interest of separating the space
variables. Afterward, the PGD-DIC formulation is presented along with dedicated algorithms
for 2D problems. Many 2D synthetic test cases are presented in order to exemplify the
intrinsic performances of the proposed method. Finally a formulation of the aforementioned
regularization is described and an example of pixel-scale DIC is studied.

2. Digital image correlation and dimmensionnality

2.1. Basics of digital image correlation

In this section, we give a brief review of the main aspects of digital image correlation. The
reader may refer to Roux et al. [34] for more details.

Let us consider the two grayscale digital images before (Figure 1(a)) and after (Figure 1(b))
the deformation of a medium. Let f(x) be the image considered as a reference from which one
seeks the displacement vector field u(x) that best matches to the distorted image g(x)

f(x) = g(x+ u(x)) (1)

where x is the position discretized in pixels.

Remark 1. A sub-pixel displacement, or more generally a non-integer displacement results
in a change of the gray level in each pixel of the image. In order to be able to measure
such a displacement, one needs to introduce an interpolation scheme of the gray level. In the
litterature, several schemes have been used (see, for instance, [36, 4]). In the sequel, a basic
linear interpolation is used for the sake of simplicity.

Equation (1) is the gray level conservation assumption [10]. Since this problem is ill-posed,
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(a) reference image f(x)

x+ u(x)
s❞❝

t

✑✑✸u(x)

(b) deformed image g(x)

Figure 1. Example of 2 synthetic grayscale images. f (left) and g (right) correspond to the reference
and deformed state respectively. To produce g, the pixel intensities of the reference image f are
advected using a known displacement field u. A given gray level which is located at pixel x in image

f can be found in image g at the position x+ u(x).

it is written in a least square sense. Find u(x) minimizing the quadratic distance φ2:

φ2 =

∫

[f(x)− g(x+ u(x))]
2
dx (2)

This problem is nonlinear and is thus solved thanks to an iterative process. At the present
iteration, let us assume that an approximation of the displacement at the previous iteration
u0(x) is known. The unknown displacement field is sought in the form u(x) = u0 + δu(x),
where the displacement correction δu(x) is assumed to be small enough to allow for a first
order Taylor expansion:

g(x+ u(x)) ≈ g(x+ u0(x)) + δu(x)T∇g(x+ u0(x)) (3)

This approximation is inserted into the quadratic distance (2), in order to linearise the
formulation:

φ2 =

∫

[

(f − gu)− δuT
∇gu

]2
dx (4)

where gu(x) = g(x + u0(x)), (f − gu) being the correlation residual field. If the nonlinear
algorithm converges, then gu(x) is a good approximation of f(x). That is why one chooses
to approximate ∇gu by ∇f . Like this it can be computed once and for all before the first
iteration. By differentiating the modified quadratic distance φ with respect to δu, the linear
prediction of the correlation problem reads, find δu, such that:

∀δu⋆,

∫

(

δu⋆T
∇f
)

(

δuT
∇f
)

dx =

∫

(

δu⋆T
∇f
)

(f − gu) dx (5)

A priori, the space of the unknown displacement is of infinite dimension. It is restricted to an
approximate finite dimension subspace. Without loss of generality, the following interpolation
of the unknown field is chosen:

δu(x) =

N
∑

n=1

qnϕn(x) (6)
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The introduction of this interpolation (6) in Problem (5) leads to the resolution of the
following linear system at iteration n:

M qn = bn (7)

where q is the dof vector collecting the values qn, and where the operator M and right hand
side b of (7) read:

Mij =

∫

ϕi(x)
T
∇f∇fT

ϕj(x) dx

bn
i =

∫

ϕi(x)
T
∇f (f(x)− g(x+ un)) dx

So far the choice of interpolation functions ϕn(x) has not been specified. In the literature,
most frequently, these functions have a local support, and represent a set of piecewise constant
or linear functions. When one has a priori relevant mechanical information [33], one can use
a basis of global modes based on the physical knowledge that we have [34]. Another choice
for the interpolation consists in using the finite element framework for the interpolation of the
unknown displacement field [4]. For example, quadrilateral elements with 4 nodes (Q4 [4]) and
hexahedral 8 nodes (C8 [9]) were used for the analysis of 2D and 3D images. Non-regular grids
have also been used with triangular elements (T3), see for instance [16]. The finite element
method has been widely studied in the field of simulation over the past 20 years, a number
of developments are therefore translatable, more or less directly, to full field measurements.
Especially, X-FEM, capable to model a discontinuity that is not compatible with the mesh, has
been successfully applied to digital image correlation in the presence of 2D [31] or 3D cracks
[27]. To be fair, one must mention that between simulation and experiment is not a one-way
relationship. Thanks to this common language, tools originally used for the measurement, can
also be transposed to the simulation [32, 23].

Despite its versatility, the finite element method, unlike the local approaches, can lead to the
inversion of several large systems whose computational cost can be substantial. For instance,
if we consider a 2D image meshed with 1024 x 1024 elements, it corresponds to a nonlinear
problem of more than 2 millions of degrees of freedom. Understandably, the number of elements
used will be limited by the processing power of the computer, especially when trying to fetch
voxel-scale V-DVC [17]. In this paper, we propose a method that reduces dimensionality, in
order to push those limits.

2.2. Motivating the use of separation of variables

This section aims to assess whether a variable separation technique may or may not be effective
on this type of problems. For that, let u(x) be a discrete displacement field correponding to
a certain measurement obtained by FE-based digital image correlation described above. Each
component of the vector field u is naturally a function of two variables x and y:

u =

(

u(x, y)
v(x, y)

)

Let us consider the component u alone (the same analysis can be made for v). This known
function of two variables u is now written as the smallest sum of products of separated functions
ai and bi:

u(x, y) =
∑

i

ai(x)bi(y)
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A priori, an infinite family of pairs (ai, bi) can satisfy this writing. One seeks the best
orthogonal basis, by adding the optimality condition: ∀n ∈ N , (ai, bi)1≤i≤n minimises the
form

J(a1, b1, ..., an, bn) =

∥

∥

∥

∥

∥

u(x, y)−

n
∑

i=1

ai(x)bi(y)

∥

∥

∥

∥

∥

2

(8)

under the orthogonality constraints:

∀i, j 6= i 〈ai, aj〉x ≡

∫

x

ai(x)aj(x) dx = 0 and 〈bi, bj〉y ≡

∫

y

bi(y)bj(y) dy = 0 (9)

where ‖ • ‖2 is the Frobenius norm defined by ‖ • ‖2 = 〈〈•, •〉x〉y.

Problem (8) can be reformulated as an unconstrained formulation. Find (ai, bi)1≤i≤n

minimizing

L(a1, b1, ..., an, bn) = J(a1, b1, ..., an, bn) +

n
∑

i=1

n
∑

j=1

j 6=i

(

λx
ij〈ai, aj〉x + λy

ij〈bi, bj〉y
)

The optimality conditions for maximizing the Lagrangian with respect to the lagrange
multipliers λx

ij and λy
ij yields the orthogonality of the basis (9). The optimality conditions

for minimizing the Lagrangian with respect to the basis vectors reads:

∂L

∂ai
= 0 → ai =

〈u, bi〉y
〈bi, bi〉y

(10)

∂L

∂bi
= 0 → bi =

〈u, ai〉x
〈ai, ai〉x

(11)

In order to have unicity of the decomposition, one should normalize one of the two
functions ai or bi. One can also introduce a series of scalars (ωi)1≤i≤n defined by ∀i, ω2

i =
〈ai, ai〉x〈bi, bi〉y, and then normalize both ai and bi. Then, subtituting equation (11) in (10)
yields the eigenvalue problem [14]:

T(ai) = 〈u, 〈u, ai〉x〉y = ω2
i ai (12)

which, in the discrete case, corresponds to computing the Proper Orthogonal Decomposition
(POD) of v(x, y) (also called the Singular Value Decomposition (SVD), Principal Component
analysis (PCA), or Karhunen-Loeve Decomposition (KLD)), ωi being the singular values. In
the discrete case, let U denote the matrix which collects the values of u, where Uij corresponds
to the value of u at the position (xi, yi). Then Problem (12) consists in computing the m
eigenvalues of the operator UTU. The error made by the truncation after the first lth products
is quantified by the distance J(a1, b1, ..., al, bl) which, in the discete case, can be shown [12] to
be equal to the sum of the truncated singular values:

J(a1, b1, ..., al, bl) =

m
∑

i=l+1

ω2
i
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And a normalized truncation error can therefore be defined as:

esvd(l) =

√

J(a1, b1, ..., al, bl)

‖u(x, y)‖2
=

√

√

√

√

√

√

√

√

√

m
∑

i=l+1

ω2
i

m
∑

i=1

ω2
i

(13)

In practice, and it will be shown in the examples, with the solution of a mechanical problem,
the magnitude of the singular value ωi decreases very rapidly. It means that, despite of being
truncated after very few terms, the algorithm provides a very good approximation of u.

It has just been shown that the solution of a correlation problem can admit, a posteriori, a
compact decomposition in a separated representation. The focus of this paper is to introduce, a
priori, this decomposition in the correlation formulation, in order to reduce the computational
burden associated with finite elements.

3. The PGD-DIC method

In this section, the formulation of the proposed PGD-DIC method is presented. Then dedicated
algorithms are proposed along with error indicators, in order to control the accuracy of the
solution. Sections 3.1 and 3.2 explain how to compute a new best rank one approximation in
the context of the linear prediction of a digital image correlation problem. Section 3.3 presents
the proposed resolution strategy that combines PGD and digital image correlation. In the
remaining sections, some examples are given.

3.1. Formulation

In the previous section, we saw that the solution to this problem could sometimes be
easily separated, especially when it corresponds to a mechanical displacement field. In this
paper, similarly to what is done for simulation [5], we propose to seek directly the unknown
displacement as a separated vector field:

u(x, y) =

(

u(x, y)
v(x, y)

)

=
m
∑

i=1

(

ux
i (x) · u

y
i (y)

vxi (x) · v
y
i (y)

)

(14)

where the quadruplet of functions (ux
i , u

y
i , v

x
i , v

y
i ) is unknown a priori. These unknown

functions are calculated iteratively by a progressive construction of successive rank one (m = 1)
best approximations. To calculate the m + 1 term of this sum, we consider the m first
quadruplets as known and fixed. Thus, at this iteration, the unknown displacement field is
decomposed as follows:

u(x, y) = u0(x, y) +

(

uα(x) · uγ(y)
vα(x) · vγ(y)

)

(15)

where u0 collects the fixed terms:

u0(x, y) =
n
∑

i=1

(

ux
i (x) · u

y
i (y)

vxi (x) · v
y
i (y)

)

(16)
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The best correction u−u0 of the displacement field minimizes the quadratic distance associated
with the gray level conservation equation (17). After linearization (3) and differentiation (5),
we obtain:

∫

u⋆ · ∇f2 u dx =

∫

u⋆ · ∇f (f − gu) dx (17)

for all test field assumed as:

u(x, y)⋆ =

(

u⋆
α(x) · uγ(y) + uα(x) · u

⋆
γ(y)

v⋆α(x) · vγ(y) + vα(x) · v
⋆
γ(y)

)

(18)

One can now insert the above separated expression of the unknown and test displacement
field in the weak formulation of the linearized correlation problem (5). The minimization with
respect to each of the four unknown functions (uα, uγ , vα, vγ) leads to a system of four coupled
equations:











































∫

x

u⋆
α ·A11(x) uα dx+

∫

x

u⋆
α ·A12(x) vα dx =

∫

x

u⋆
α ·B1(x) dx

∫

x

v⋆α ·A21(x) uα dx+

∫

x

v⋆α ·A22(x) vα dx =

∫

x

v⋆α ·B2(x) dx
∫

y

u⋆
γ · C11(y) uγ dy +

∫

y

u⋆
γ · C12(y) vγ dy =

∫

y

u⋆
γ ·D1(y) dy

∫

y

v⋆γ · C21(y) uγ dy +

∫

y

v⋆γ · C22(y) vγ dy =

∫

y

v⋆γ ·D2(y) dy

(19)

with

A11 =

∫

y

(

uγ
∂f

∂x

)2

dy A12 = A21 =

∫

y

uγvγ
∂f

∂x

∂f

∂y
dy A22 =

∫

y

(

vγ
∂f

∂y

)2

dy

C11 =

∫

x

(

uα
∂f

∂x

)2

dx C12 = C21 =

∫

x

uαvα
∂f

∂x

∂f

∂y
dx C22 =

∫

x

(

vα
∂f

∂y

)2

dx

B1 =

∫

y

uγ
∂f

∂x
(f − gu) dy B2 =

∫

y

vγ
∂f

∂y
(f − gu) dy

D1 =

∫

x

uα
∂f

∂x
(f − gu) dx D2 =

∫

x

vα
∂f

∂y
(f − gu) dx

This system is obviously highly nonlinear. In the next section, we propose a suitable
algorithm for its resolution.

3.2. Nonlinear solution algorithm

The formulation by separation of variables makes the linear prediction of the correlation
problem (3) become nonlinear. It might seem like a drawback, but we will see in the following
that it is actually an advantage because it turns one problem of quadratic complexity (and
even cubic in 3D), into, say, several problems, but of linear complexity, without sacrifying
accuracy. To solve this problem, we chose to combine the equations of system (19) by 2, as
follows:

∫

x

α
⋆ ·A(x) α dx =

∫

x

α
⋆ ·B(x) dx (20)

∫

y

γ
⋆ ·C(x) γ dy =

∫

y

γ
⋆ ·D(x) dy (21)
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with

α(x) =

[

uα(x)
vα(x)

]

α
⋆(x) =

[

u⋆
α(x)

v⋆α(x)

]

γ(y) =

[

uγ(y)
vγ(y)

]

γ
⋆(y) =

[

u⋆
γ(y)

v⋆γ(y)

]

and

A(x) =

[

A11(x) A12(x)
A21(x) A22(x)

]

B(x) =

[

B1(x)
B2(x)

]

C(y) =

[

C11(y) C12(y)
C21(y) C22(y)

]

D(y) =

[

D1(y)
D2(y)

]

Then, we apply an alternating directions fixed point algorithm to compute the couple of
vector functions (α,γ).

a) x dimension problem. First γ is supposed to be fixed, so that γ⋆ vanishes and system (19)
reduces to equation (20). This problem which only involves the dimension x can be solved
by an appropriate numerical method. For instance, one can use a finite element method
which, in this case, relies on a 1D mesh with linear two node bars (Bar2), associated
with Nx nodes. The unknown vector field α(x) is then sought under the following form:

α(x) =

(

∑Nx

j=1
ϕj(x)aj

∑Nx

j=1
ϕj(x)bj

)

= Nxqα (22)

where Nx denotes the matrix that collects all the values of the finite element shape
functions and qα the correponding DOF vector. The problem of equation (20) results in
the following linear system:

Aqα = B (23)

with

A =

∫

x

(Nx)TA(x)Nx dx B =

∫

x

(Nx)TB(x) dx

b) y dimension problem Then, in a second step, one fixes the above determined field α. This
reduces the system (19) to equation (21). This problem only involves dimension y. In
an analoguous way, its resolution with a 1D finite element approach yields the following
linear algebraic system:

Cqγ = D (24)

These two steps are repeated until convergence, ie, when both equations are satisfied
simultaneously. We will see in the examples, that, in practice, very few iterations are sufficient
to make the overall algorithm converge. To quantify the convergence of the fixed point
algorithm, the following criterion of stagnation is used:

e2 = ‖αk − αk−1‖
2 + ‖γk − γk−1‖

2 < εe (25)

where εe is a parameter of the method. This choice will be discussed later.
Remark 2. Let us introduce the two following mappings:

- Sn is the application which maps a y-dimension function λ into a x-dimension function
α = Sn(λ) defined by equation (20).
- Tn is the application which maps a x-dimension function α into a y-dimension function
λ = Tn(α) defined by equation (21).
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The pair (α, λ) is optimal in the sense of (4), and it verifies:
- α is a fixed point of Qn = Sn ◦ Tn, i.e. α = Qn(α)
- λ is a fixed point of Q⋆

n = Tn ◦ Sn, i.e. λ = Q⋆
n(λ)

The previous problems are interpreted as pseudo eigenvalue problems (see [14, 20, 21]), α
and λ being the dominant eigenfunctions of Qn and Q⋆

n respectively. The alternating direction
fixed point algorithm described above is seen as a power type method applied to Qn (or Q⋆

n).
But this problem has not all the properties of an eigenvalue problem. It is a non-classical
mathematical problem which needs for further mathematical investigations (see [20, 21]). In
practice, according to our numerical examples and according to the bibliography, this fixed
point algorithm is relatively insensitive to initialization, and it always converges in practice
with a random initialization, within very few iterations.

Remark 3. The calculation of the above operators (left and right hand sides) requires the
integration over the x (resp. y) domain of the gradient of f . The latter is a function of two
variables x and y. In such a situation, what one usually does with PGD, is to perform a
truncated SVD of all the known unseparated quantities. Like this, any N -dimensional integral
can be turned into a sum of products of unidimensional integrals. The image gradient being
a vector field, it can be decomposed as a sum of products of separated functions as we do for
the displacement (which is also a vector field). But in our case, the images being textured,
themselves and their gradients are hardly separable. Namely, their decomposition involves so
many terms that it is more interesting to compute the unseparated integrals. For this reason,
and also because the SVD of the right-hand side should be calculated at each iteration, we
choose not to separate the known quantities.

3.3. The coupling strategy between DIC and PGD

In the previous sections we saw how to compute a new best approximation of rank one.
Therefore, it is necessary to define how to integrate the PGD in the nonlinear correlation
algorithm. Different approaches could be considered, here we decided to compute one single
rank-one approximation at each nonlinear update of gu. Namely, when an enrichement couple
(α,γ) is determined as described in Section 3.1 and 3.2, it is used to correct the displacement
approximation u0, and thus gu = g(x+u0(x)), and one can then proceed to the next iteration
of the correlation problem.

Initialization. The correlation problem is ill-posed. It is, therefore, necessary to pay attention
to the initialization to avoid local minima. In our case, the initialisation only consists in
the determination of the rigid body translations of the area of interest, because it is very
inexpensive and very easy to implement in this context. One might consider, and it will
probably be necessary for more complex cases, to use more effective techniques to initialize
the algorithm. Especially, one could revisit for the PGD, the multiscale initialization technique
proposed in [29].

Convergence Like any other digital image correlation method, two indicators are available
to quantify the convergence of the iterative algorithm. The first one (see [4, 17]) is based on
the metric that is minimized. It is, more or less, equivalent to compute a relative norm of the
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correlation residual (f − gu):

η2r =

∫

x

[f(x)− g(x+ u(x))]
2
dx

|max(f)−min(f)|

This measure has all the attributes of a real measure of the error, but it also measures noise
and also the approximation introduced by the finite element interpolation. Especially if the
field to be measured is not continuous, this error will never be zero (this property can be used
advantageously to detect discontinuities (see [30, 34, 27]). Therefore, this metric cannot be
used to measure precisely convergence. To do so, a stagnation indicator based on the relative
norm of the correction is be preferred [4, 16, 17]:

η2 =
‖δux‖

2

‖ux‖2
+
‖δuy‖

2

‖uy‖2
< εη

where εη is a parameter of the correlation algorithm discussed in the examples.
The PGD-DIC method is summarized in Figure 2:

1: Compute gradients of f .

2: Initialization step: u0

DIC problem (nonlinear iterations)

3: while η > εη do

Update residual (f − gu)

New best rank one approximation (fixed point)

Initialization: γ, k = 1

while e > εe AND k < kmax do

x-monodimensional problem, γ fixed: Aqα = B

Normalization: α = α‖α‖−1

y-monodimensional problem, α fixed: Cqγ = D

Fixed point stagnation indicator e (25)

k ←k+1

end while

Convergence indicator: η

Displacement update: u0 ← u0 +

(

uα(x) · uγ(y)
vα(x) · vγ(y)

)

15: end while

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

Figure 2. PGD-DIC method consists of a two stage nonlinear iteration algorithm which involves
unidimensional problems only. For each linear prediction of the correlation problem, a new best rank

one approximation is computed iteratively thanks to an alternating fixed point.

3.4. An artificial numerical example

We first analyse some synthetic cases to validate the approach and investigate different
properties. To do so, an artificial image (500×500-pixel) based on Perlin noise is built following
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the approach described in [22]. This texture is deformed by a field (shown in Figures 5(a) and
5(d)) obtained from a finite element simulation of a homogeneous linear elastic domain. This
2D square domain is clamped on the right hand side and subjected to a uniform stress on
the left hand side (the other external boundaries being traction-free). One can notice that
this given displacement field is not too simplistic, since its SVD shows that twenty modes are
required to accurately approximate it, for both u(x, y) and v(x, y) (see Fig. 3(a)). Then, a

(a) Normalized error esvd as a function of the SVD
truncation order of the prescribed displacement to
quantify the separability of the reference solution.

(b) unidimensional meshes (yellow
for x-dimension and black for y-
dimension) used to study a given ROI
(black dashed line)

Figure 3. A first synthetic example: Perlin noise is used for the texture of reference image f . Deformed
image g is the advection of f by the solution of a finite element linear elastic simulation.

centered region of interest (ROI) of 304×304-pixel is considered and endowed with a mesh.
Unlike a standard Q4-DIC approach, here only two one-dimensional meshes are required (Fig.
3(b)). In our case, 19 linear bar elements of 16 pixels long are used in each direction. The
quadrature of the shape functions is approximated by a sum over the pixels.

3.4.1. Resolution analysis A DIC analysis usually consists in a non trivial compromise
between accuracy (or uncertainties) and spatial resolution (or element size): the higher the
resolution is, the larger the displacement uncertainties are (less information). To help make
this choice, an a priori performance analysis can be carried out. In this section, such an
analysis is performed with the artificial texture f (Figure 3(b)) that we used for this syntetic
example. Following [4], a series of images gi are generated by rigid body translations of f in the
x-direction. The magnitude up

i of the prescribed displacement takes p = 10 values ranging from
0 to 1 pixel. This step requires also to interpolate the gray level. In order to be more objective,
we used a interpolation scheme different from to one used for the measure. A scheme based
on a shift in the Fourier space was used to generate the translated images. Then the proposed
method is run on the pairs of images (f, gi). The quality of the measured displacement um

i is
assessed by two indicators. The mean displacement error 〈δu〉 and the standard displacement
uncertainty 〈σu〉 averaged over up

i and defined by:

〈δu〉 =
1

p

∑

i

|〈um
i 〉 − up

i | 〈σu〉 =
1

p

∑

i

〈(um
i − 〈u

m
i 〉)

2〉1/2
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These indicators are shown in Figures 4(a) and 4(b) as a function of the element size for
the proposed PGD-DIC method. The latter is compared to Q4-DIC with an equivalent mesh,
images and interpolation scheme.

(a) Standard displacement uncertainty 〈σu〉 as a
function of the element size h in Q4-DIC (◦) and PGD-
DIC(+). The dashed line is a power-law fit Ahα with
α = −1.70

(b) Mean displacement error 〈δu〉 as a function of the
element size h in Q4-DIC (◦) and PGD-DIC(+). The
dashed line is a power-law fit Ahα with α = −1.49

Figure 4. a piori performance analysis.

One can observe that the proposed method has almost the same performances as Q4-DIC
regarding standard uncertainty and mean error. This result is not surprising since displacement
interpolations are very similar, even if the solver differs between these two methods. Indeed,
in practice, the PGD solution is, after convergence, very close to the equivalent FE solution
[1, 5].

3.4.2. Measurement The displacement field, obtained after 12 iterations of the PGD-DIC
method, is presented in Figures 6(right). More precisely, there is a very good matching between
the measured 5(b) and 5(e) and the prescribed reference field 5(a) and 5(d). The relative error
between the two is very small 5(c) et 5(f). This is confirmed by the observation of the correlation
residual (Fig. 6).

We now analyze some properties of the algorithm. Figure 7 shows the evolution of the
criterion of stagnation e (25) during the iterations of the fixed point for each of the 12 modes
required for the construction of the solution described above.

The 4 highest convergence rates correspond to the first 4 modes. Further, we can notice that
the fixed point may converge more or less slowly. This may be due to the presence of modes
close to each other, which are difficult for the fixed point algorithm to identify separately. As
mentioned above, we choose, as was proposed in refs [15, 21], to stop the fixed point algorithm
after a few iterations (in practice less than 10). We assume that a few iterations are enough
to improve the iterate and make the problem of correlation converge. To study the influence
of this choice on Algorithm 1, we compare two stopping criteria for the fixed point algorithm.
Each time, the precision is set at εe = 1e−8, but the algorithm is, in one case, systematically
stopped after kmax = 6 iterations (denoted S1), and, in the other case, the number of maximum
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(a) prescribed displ. u(x, y) (px) (b) measured displ. u(x, y) (px) (c) absolute raw diff. u(x, y) (px)

(d) prescribed displ. v(x, y) (px) (e) measured displ. v(x, y) (px) (f) absolute raw diff. v(x, y) (px)

Figure 5. Accuracy of the solution obtained with PGD-DIC.

Figure 6. Characterization of the solution obtained with PGD-DIC: (left) the correlation residual map
in percentage of the dynamic range after convergence, (right) the deformed solution field (amplification

factor 15).

iterations is set at kmax = 200 (denoted S2) so that precision criterion εe = 1e−8 is paramount.
The results are shown in Figure 8. In Figure 8(a), the indicator η is plotted over the iterations
of the correlation problem for both above settings. One can notice that the curves are almost
identical. This means that the precision of the fixed point has almost no incidence in the
convergence rate of PGD-DIC. However, when one observes (Fig. 8(b)) the number of one-
dimensional problems required to be solved with both parameterizations, we note that this
number, and therefore the computational cost, is divided by nearly 20, for a given accuracy.
Moreover, like this, the method has a constant computation time per iterations, which can be
comfortable for the user. For this example, the PGD-DIC converges very quickly (Fig. 8(a)),
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Figure 7. Evolution of the stagnation criterion e (25) of the fixed point algorithm as a function of the
sub-iteration number k for the first 12 nonlinear updates of the correlation problem.

(a) Convergence of the residual ηr (blue mixed line)
and relative norm of the correction η with stopping
criteria S2 (black dashed line) and S1 (red line)

(b) Number of monodimensional problems solved
at each nonlinear iteration with the two different
stopping parameters: S2 in black and S1 in red

Figure 8. Influence of stopping criteria, S1 (kmax = 6) or S2 (kmax = 200), on behavior of the
correlation algorithm.

since the error η is lower than 10−3 after only 12 iterations. In Figure 8(a), the evolution of the
norm of the residual is also displayed (in blue) over the iterations. One can notice a classical
horizontal asymptote, reflecting the fact that this metric takes into account the discretization
(FE) errors, the noise and also the quality of the pattern.

For information, the first 4 one-dimensional modes Fig. 9 and their reconstructed graphical
representation Fig. 10 are given for this problem.

3.5. A more complex artificial example

The number of terms in the decomposition depends on the unknown displacement. Since only
one rank-one approximation is added at each iteration, the overall number of iterations needed
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(a) uα(x) (b) vα(x) (c) uγ(y) (d) vγ(y)

Figure 9. first 4 unidimensional modes (1) blue, (2) green, (3) red and (4) cyan.

(a) 1st mode (b) 2nd mode (c) 3rd mode (d) 4th mode

Figure 10. Graphical representation of the first 4 corrections after normalization. They are
reconstructed from the identified unidimensional modes of Figure 9

to converge may also depend on the separability of the unknown field. A field which exhibits a
diagonal discontinuity is typically hardly separable. This example is presented to evaluate the
robustness of the proposed algorithm to measure such a displacement field. Let us consider
another synthetic 500x500-pixel pattern deformed this time by an analytical mode I opening
inclined crack of the linear elastic fracture mechanics:

uprescribed =

√

(r)

2

(

(κ− 0.5) (2cos(θ/2)− cos(3θ/2))
(κ+ 0.5) (2sin(θ/2) + sin(3θ/2))

)

where r and θ are the local coordinates centered at the crack tip and κ a material parameter.
There are more appropriate and very efficient tools for digital image correlation in the presence
of cracks [33, 34, 31, 27], and this field goes far beyond the scope of this work. But this example
is nevertheless interesting because it presents an inclined discontinuity. Thus, the SVD of the
solution reveals a set of slowly decreasing singular values, as show Figure 11.
This problem is solved with PGD-DIC with the same parameter/mesh/resolution as the

previous example. It takes 81 iterations for PGD-DIC to reach an error η below 10−3. The
problem is also solved with a more standard Q4-DIC within 25 iterations for the same precision.
The prescribed and measured fields are reported in Figure 12. The PGD-DIC requires more
iterations than the standard Q4-DIC. This is due to the fact that we choose to add only one
rank-one approximation by iterations, and, in this case, a large number of first order corrections
are needed to correctly represent the solution. In this special case, the separation of variables
artificially slacken the convergence rate of the correlation problem. This comparison of the
number of iterations is not fair since one iteration of PGD-DIC is much cheaper than that of
Q4-DIC. The proposed algorithm remains stable and the measured displacement field is very
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Figure 11. SVD of the prescribed displacement corresponding to an inclined crack in mode I

(a) u measured with Q4-DIC (b) prescribed displ. u (c) u measured with PGD-DIC

(d) v measured with Q4-DIC (e) prescribed displ. v (f) v measured with PGD-DIC

Figure 12. prescribed and measured displacement of the opening inclined crack in mode I.

close to the one measured with Q4-DIC. Even in this disadvantageous case, the efficiency and
accuracy are very satisfactory.
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3.6. Analysis of a realistic example

To validate the approach on a real test case, we study the example of the biaxial test on a
carbon/carbon composite carried out with the multiaxial machine ASTREE. This example
has already been studied in [25] and more recently in [26] to identify a damage law. The
displacement is measured within a ROI of 850×780 pixels. Elements of 24 pixels width are
used in each direction. The reference image and the meshes are presented Figure 13(a). The
stopping criterion is set to η = 10−3 for this example. The problem is solved with the proposed

(a) Reference image and
mesh

(b) Displacement magnitude on the
deformed domain (ampl. 42)

(c) Correlation residual

Figure 13. Application of the PGD-DIC to a real experiment: cruciform specimen made of C/C
composite subjected to inplane biaxial loading. The B/W painted speckle pattern (a). The measured

displacement field (b) and the correlation residual map in percentage of the dynamic (c)

PGD-DIC. The displacement magnitude is plotted on the deformed domain in Figure 13(b)
and the associated correlation residual is given figure 13(c). The solutions obtained using PGD
is reconstructed and compared to a reference solution (Fig. 14). The latter is obtained by a
standard Q4-DIC method on the same ROI with the same number of pixels by element side.
The accuracy is quantified by the following measure of the distance between PGD and Q4

(a) v measured with PGD-DIC (px) (b) v measured with Q4-DIC (px) (c) absolute raw difference (px)

Figure 14. Comparison of the y component of the displacement measured with PGD-DIC and Q4-DIC.
The same accuracy is obtained with ux
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solutions:

d(upgd, uq4) =

npix
∑

i=1

(

upgd
i − uq4

i

)2

npix
∑

i=1

uq4
i

2

= 0.09% and d(vpgd, vq4) = 0.12%

where npix is the number of pixel within the ROI. Up to our numerical tests, and as it is the
case here, the error due to the PGD approximation is in the same order of magnitude than
the stopping criterion η. However this error is much lower than the errors due to noise and
interpolation which is equal to ηr = 5.70% for both Q4-DIC and PGD-DIC.

4. Pixel-scale digital image correlation

The advantage of a formulation by separation of variables lies in the fact that the considered
number of finite elements and therefore the size of the ROI, is much less restricted. It may
therefore be tempting to go down in resolution to the pixel level, without being confronted
with huge computational costs.

Remark 4. As the image gray level is interpolated, the spatial interpolation of the
displacement is a priori not dependent from the original pixelization of the image. To capture
the high gradients in the displacement field, a fine mesh is required. Nevertheless, in this case,
the gradient of the displacement is filtered by the image acquisition (pixelization). The cutoff
frequency of this filter is linked to the size of the pixel. Therefore there is a priori no need to
consider elements smaller than one pixel. As a consequence, the smaller elements which can
be reasonnably used are at the scale of the pixel.

As mentioned in the introduction, the problem of correlation being ill-posed, it requires
an additional regularization to go down to this scale (see for instance [31, 16, 17]). In this
section, we show that taking into account a regularization is very easy to implement in the
PGD-DIC method. Here, a simple (but non-physical) frequency filter is used. A regularization
with greater physical sense (like [7, 17, 31]) should much more reduce uncertainty.

4.1. Regularization

The purpose of this part is to show the feasibility of a one element by pixel approach which
is the objective. We therefore choose to regularize the formulation with a frequency-type filter
[31, 16, 17]. Specifically, a Tikhonov regularization is used. It corresponds to the addition of
the following term in the formulation:

∆u = 0 (26)

The associated variationnal formulation reads:
∫

x

u⋆∆u dx = −

∫

x

∂u

∂x

⋆ ∂u

∂x
+

∂u

∂y

⋆ ∂u

∂y
dx (27)
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since a flux-free condition is imposed on the boundaries. Given a separated displacement field
u, it is very easy to compute the different terms of the regularization as follows:

∂u(x, y)

∂x
=







∂uα(x)

∂x
· uγ(y)

∂vα(x)

∂x
· vγ(y)






(28)

and thus for the x-dimension problem, the regularization term writes:

∫

x

∂u

∂x

⋆ ∂u

∂x
+

∂u

∂y

⋆ ∂u

∂y
dx =









∫

x

∂u⋆
α

∂x

∂uα

∂x
dx ·

∫

y

u2
γ dy

∫

x

∂v⋆α
∂x

∂vα
∂x

dx ·

∫

y

v2γ dy









+









∫

x

u⋆
αuα dx ·

∫

y

∂uγ

∂y

2

dy

∫

x

v⋆αvα dx ·

∫

y

∂vγ
∂y

2

dy









This regularization term is associated with a penalization parameter whose value can be linked
to the filter cutoff frequency (see for instance [31, 16]). Such a regularization is applied to the
example of section 3.6 with the same mesh (it is actually not a pixel wise mesh) and ROI, to
show the effect of regularization. It is illustrated in Figure 15. The study of this parameter (see
for instance [7, 17, 31]) is beyond the scope of this paper, whose purpose is to demonstrate
the feasibility of such a regularization in the context of separation of variables.

Figure 15. Effect of the regularization for different penalization values (from left to right: 0, 104, 106

and 108) on the x-displacement (u) of the realistic example of section 3.6

4.2. A numerical example

In this section, we construct a 1024×1024-pixel artificial image deformed by the simulation-
based displacement used for Figure 6(right). The ROI is made of a 710×710-pixel region
endowed with two one-dimensional meshes of linear 2-node elements with a size of one single
pixel (see Figure 16(a)). With a standard Q4-DIC, such a mesh would lead to the resolution of a
nonlinear problem of more than 1 million DOF. The PGD-DIC was used to solve this problem
in less than 3 minutes on a general purpose mono-processor laptop. The error indicator η
reached 10−3 within 9 iterations. The correlation residual ηr was equal to 0.59%. The relative
error on the displacement compared to the prescribed reference field is plotted in Figure
16(b) and 16(c). The absolute raw differences 16(b) and 16(c) presents some fringes which
correspond to gray level interpolation errors. Indeed, the dark areas (low error) correspond
to a displacement amplitude which is an integer number of pixels and for which interpolation
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(a) zoom on a part of the mesh (b) ux absolute raw diff. (px) (c) uy absolute raw diff. (px)

Figure 16. Mesh used and accuracy obtained with the pixel-wise PGD-DIC

is exact. These fringes are particularly visible here since the pair of images are synthetic—
interpolation uncertainty being dominating in this case.

The proposed method can be easily associated with a regularization operator, in order to
tackle pixel-wise resolution. It is a fast and efficient tool, which builds the same solution as Q4-
DIC (up to the separated approximation). It is especially suitable for very small resolutions,
when the computational cost associated with a classical FE approach becomes prohibitive.
The computational cost required to solve the nonlinear correlation problem with one-pixel by
element is plotted Figure 17 as a function of the size of the ROI. Even if one has to perform
sub-iterations to solve the linearized correlation problem, the computational cost of PGD is
much lower than that of a classical finite element approach. For this example, the speed-up
is especially impressive (more that one order of magnitude) when large number of elements
are used in each direction. As usual with the PGD, no quantitative conclusions (speed up or

Figure 17. CPU Time taken by Q4-DIC and PGD-DIC to solve the problem as a function of the
number of pixels in each direction, normalized by the time taken by Q4-DIC for a 10×10 pixel ROI.

complexity) can be declared, since the savings strongly depends on the “separablility” of the
unknown displacement field.

20; :–



22

5. Conclusion

In this article, we propose a new digital image correlation (DIC) technique based on the proper
generalized decomposition (PGD). The method preserves the advantages of standard “finite-
element” DIC approaches (modularity, continuity, common language with the simulation,
etc. . . ) while trying to avoid their main drawback, i.e. the computational cost. Indeed,
whatever the dimension of the problem (2D or 3D), the complexity of the proposed PGD-
DIC is linear. With such a property, if the interest is clear in 2D, it will be even more obvious
in the case of digital volume correlation (DVC).

The work presented herein is only a first step and many prospects arise. Among them, a
multilevel technique, as developed in [29], is to be developed to give the method the robustness
needed to address more realistic problems. The extension to DVC should be straightforward.
It is expected to reduce drastically the computational costs associated with, for example, the
correlation of tomographic images [9], which can be prohibitive if the expected resolution is
small in comparison to the size of the region of interest [17]. Furthermore, a more physical
regularization should be used to filter the measure and decrease the noise sensitivity. For
instance, an adaptation of the equilibrium gap method [7, 17, 31] in the context of the PGD,
should provide even more accurate measurements.

Finally, the separation of variables is naturally not restricted to space variables. Indeed, a
similar method and similar algorithms should be used to separate time and space in the case
of time dependent correlation problems [3].
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34. S. Roux, J. Réthoré, and F. Hild. Digital image correlation and fracture: an advanced technique for
estimating stress intensity factors of 2D and 3D cracks. J. Phys. D: Appl. Phys., 42(214004), 2009.

35. D. Ryckelynck. A priori hyperreduction method: an adaptive approach. Journal of Computational
Physics, 202:346–366, 2005.

36. H.W. Schreier, J.R. Braasch, and M.A. Sutton. Systematic errors in digital image correlation caused by
intensity interpolation. Optical Engineering, 39(11):2915–2921, 2000.

37. M.A. Sutton, J.-J. Orteu, and H. Schreier. Image correlation for shape, motion and deformation
measurements: Basic Concepts, Theory and Applications. Springer, New York, NY (USA), 2009.

38. M.A. Sutton, W.J. Wolters, W.H. Peters, W.F. Ranson, and S.R. McNeill. Determination of displacements
using an improved digital correlation method. Image and Vision Computing, 1(3):133–139, 1983.

20; :–


