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We consider a closed loop supply chain where demands can either be satisfied
from manufacturing new products or by buying back used products from cus-
tomers and upgrading their functionality by remanufacturing. A joint buy-back
pricing and manufacturing-remanufacturing decision model at the operations-
marketing interface model is presented that allows for dynamic parameters,
e.g., product life cycles and seasonal aspects. The model allows to identify
beneficial opportunities for buying back and storing used products for imme-
diate and future recovery. We present a new deterministic, dynamic, continuous
time optimization model, derive necessary and sufficient optimality conditions,
and develop a solution algorithm to find the cost minimizing manufacturing
and remanufacturing policies as well as buy back strategies for used prod-
ucts based on Pontryagin’s Maximum Principle. It is shown that an optimal
policy, in general, will include time intervals where returns are acquired as
to synchronize demand and remanufacturing, where returns are acquired and
stored for future remanufacturing, and intervals where demand is satisfied by
a mix of manufactured and remanufactured products. Furthermore, we discuss
several reactive and proactive acquisition and remanufacturing heuristics and
show under which conditions they are optimal. The findings are illustrated by
numerical examples.
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1. Introduction

In addition to manufacturing and distribution of new products, closed loop supply chains
include the processes that take place after the use of a product at the end of its use. The
incentives to move from forward to closed loop supply chains are legal ones, i.e. man-
ufacturers are assigned responsible for their products after their usage, and economic
ones, i.e. parts and materials of used products still have an economic value and can be
used, e.g., as service parts after some remanufacturing and upgrading processes. As a
consequence of the economic incentive, a second supply mode for parts and materials be-
comes available which increases the complexity of operations management. Strategic and
operational aspects of return network design, redistribution channel choice, collection,
quality and testing, disassembly, and reassembly have to be addressed and combined
with forward processes.

Various quantitative models have been developed to provide decision support for these
strategic and operational decisions, see Fleischmann et al. (1997), Fleischmann (2001),
and Dekker et al. (2004) for overviews. The majority of the approaches faces two limi-
tations. First, it is assumed that product returns/waste streams are passively accepted
whereas there are practical needs for a product acquisition management (Guide and van
Wassenhove 2001, Sasikumar and Kannan 2008) and there is empirical evidence that
firms do acquisition management (Guide and Jayaraman 2000). Second, the majority of
the models is static and therefore ignores life cycle aspects, seasonal aspects, trends, and
in general time dependencies of model parameters (Minner and Kleber 2001). Instead of
following a reactive strategy, to take back products at the end of their use, a proactive
strategy appears to be promising. Instruments for such a strategy are to advertise return
opportunities, i.e. create awareness for environmentally friendly products and firms, a
buy back of used products as it is done, e.g., for toner cartridges, and to adjust contract
design, e.g., for the lease of copiers.

A first model that addresses product acquisition management in a single period con-
text is analyzed by Guide et al. (2003). The authors consider product returns that can
be assigned to different quality classes. Within each class, customers are willing to return
their product if a certain buy back price is offered. Therefore, returns for each quality
class can be modeled by a return response function. The objective is to maximize the
profit given by the sales of remanufactured products (determined from a sales price re-
sponse function) minus the costs of acquiring respective returns and remanufacturing
them. Guide et al. (2003) determine optimal acquisition and selling prices under the
assumption of a perfect remanufacturing process. Bakal and Akcali (2006) drop this as-
sumption and study the effects of random yield in the remanufacturing process. Galbreth
and Blackburn (2006) allow for scrapping of products if the acquired products are too
costly to remanufacture and derive the optimal acquisition and sorting policy. Pricing
models for various degrees of reuse of recyclable components are presented in Vadde et
al. (2007). They consider a single and multiple types of product returns and compare
a proactive acquisition policy with a passive policy, where all returns are accepted. All
these contributions have in common that they focus on a single period and therefore
apply static models.

Dynamic models of pricing are used in the marketing literature to investigate diffusion
of innovations (e.g., whether to use a skimming or penetration strategy) and to incorpo-
rate cost declines due to accumulated volume of production and learning effects (Simon
1989, Rao 1993). Kalish (1983) uses an optimal control approach in order to determine
the optimal pricing policy for a monopolist, Dockner and Jørgensen (1988) analyze the

Page 2 of 22

http://mc.manuscriptcentral.com/tprs  Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

October 23, 2010 18:6 International Journal of Production Research IJPR

International Journal of Production Research 3

impact of advertising policies (see Feichtinger et al. (1994) for an overview) and Mesak
and Clark (1998) investigate both marketing mix instruments simultaneously. A slightly
different model with pricing and warranty period decisions is presented in Mesak (1996).
For a general overview on pricing theory and practice we refer to Noble and Gruca (1999).

The main difference to the existing literature is that our model allows for dynamic
demands and returns and recoverable items. Used products can be bought back un-
der beneficial circumstances and stored for later use. As a consequence, the combined
analysis of waste stream and product acquisition management is possible (Guide and
van Wassenhove 2001). In contrast to other dynamic pricing models in marketing, we
do not model spill over of marketing mix instruments, e.g. past pricing and customer
expectations, effects of advertising, and competitive reactions. The only dynamic carry
over that our model allows are inventories. This analysis is another contribution to the
field of joint production and marketing models (see Eliashberg and Steinberg 1993).

In a dynamic model with product returns and remanufacturing, a different type of cost
reductions appears. Returns of products and the opportunity to remanufacture them,
which, in general, is assumed to be cheaper than manufacturing a new unit, offers a
second supply mode (Minner 2003). However, this opportunity depends on the product’s
life cycle characteristics and the return behavior of the customers. In the following we
analyze a dynamic model of product acquisition and recovery. In contrast to Guide et
al. (2003) we assume that the demands cannot be influenced by pricing, i.e. the firm
is a price taker on the sales side and that there is only a single market, i.e. we do
not consider market segmentation effects between new and remanufactured products.
Further, we consider a single quality level for returns which can be influenced by buy
back offers according to a price/effort response function. Note that in the context of our
model, buy back has a different meaning than in supply chain coordination where buy
back (for new products not sold to customers) contracts are a mechanism to achieve
channel coordination (see e.g. Lariviere 1999).

The paper is organized as follows. In Section 2 we present a static model for a single
period problem and linear response functions. This illustration, which is a special case
of the model analyzed in Guide et al. (2003), provides the basics of the effects that
will appear in the dynamic model. Then, we present the additional assumptions for the
dynamic model and give the optimal control optimization problem. In Section 3, we apply
Pontryagin’s Maximum Principle to state the necessary (and in our case also sufficient)
conditions for an optimal solution. Using these conditions, we further characterize the
optimal recovery and buy back policy. These results are exploited to develop an algorithm
that constructs an optimal policy for arbitrary demand functions and parameters of a
linear return response function. In Section 4 we discuss some simple heuristic policies
and show some illustrative examples in Section 5. Finally, in Section 6, we summarize
the main findings and discuss streams for further extensions of the framework.

2. A static demand and acquisition model

Consider a remanufacturer who is selling a single product over a single period. The
customer demand d > 0 for this product is deterministic. There are two options available
for satisfying demand, manufacturing of x units at a unit cost of cp and remanufacturing
u units at a unit cost of cu. We assume that all demands have to be satisfied which leads
to d = x+u. Due to legislation the remanufacturer is obliged to accept all offered returns.
If more than the required u units are returned, there is a disposal option where z units
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are salvaged at a unit cost cz. This cost rate might be negative if there exist revenues
from selling scrap. For example, the remanufacturer may sell the returns to a material
recycling company.

Demands to be satisfied using the remanufacturing option require returns. The re-
manufacturer is applying a proactive acquisition policy and offers a price incentive to
customers who return their used products. We assume that returns of used products can
be initiated according to a return response function r = f(p) ≥ 0, where p ≥ 0 is the
buy back price offered to customers that have the product in use. An alternative, more
general, interpretation is that p describes the level of effort put into product acquisition,
i.e. advertising or paid transportation for returning the used item. Similar to Bakal and
Akcali (2006) or Galbreth and Blackburn (2006), we assume a linear return response
function

f(p) = a + bp a, b ≥ 0 (1)

which is the most simple type of response function found in marketing and economics
literature. For other widely used and more general response functions we refer to Simon
(1989). The number of returns consists of a number of autonomous, effort/price indepen-
dent returns a and a parameter b that expresses the price sensitivity of customers. This
implies that there are always some customers willing to return their products (if a > 0)
and that the return quantity increases with increasing acquisition effort.

The remanufacturer determines in the optimal buy back price as well as in the optimal
quantities to remanufacture, produce or to dispose of in order to minimize cost. We can
formulate the problem as a constrained non-linear minimization problem.

min
x,u,z,p

cpx + cuu + czz + p(a + bp) (2)

s.t. x + u = d (3)

u + z = a + bp (4)

x, u, z, p ≥ 0. (5)

The first constraint (3) ensures that demand is satisfied while the second constraint (4)
reflects that all returns are either remanufactured or disposed of. Obviously, all decision
variables have to be non-negative. We can reduce the problem size using x = d− u and
z = a+bp−u. Then, the equivalent optimization problem with price and remanufacturing
quantity as decision variables is obtained.

min
p,u

cp(d− u) + (cu + p)u + (cz + p)(a + bp− u)

s.t. u ≤ d

u ≤ a + bp

p, u ≥ 0. (6)

The optimal solution of this problem is characterized in Theorem 2.1:

Theorem 2.1 : The optimal buy back and recovery strategy depends on the recovery
cost advantage cp − cu and the disposal cost cz. The optimal decisions p∗, x∗, u∗, z∗ are

• Region A: −cz ≤ (2d− a)/b, cp − cu ≥ (2d− a)/b, a < d
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p∗ = (d− a)/b, x∗ = 0, u∗ = d, z∗ = 0
• Region B: (2d− a)/b > cp − cu > a/b, cp + cz − cu ≥ 0, −cz ≤ (2d− a)/b, a < d

p∗ = b(cp−cu)−a
2b , x∗ = d− u∗, u∗ = a+b(cp−cu)

2 , z∗ = 0
• Region C: cp + cz − cu ≥ 0, cp − cu ≤ a

b , a < d
p∗ = 0, x∗ = d− a, u∗ = a, z∗ = 0

• Region D: cp + cz − cu ≥ 0, cp − cu ≥ (2d− a)/b, −cz ≥ (2d− a)/b
p∗ = −(a + bcz)/(2b), x∗ = 0, u∗ = d, z∗ = a + bp− d

• Region E: cp + cz − cu ≤ 0, −cz ≤ a/b
p∗ = 0, x∗ = d, u∗ = 0, z∗ = a

• Region F: cp + cz − cu ≤ 0, −cz > a/b

p∗ = −(a + bcz)/(2b), x∗ = d, u∗ = 0, z∗ = a−bcz

2
• Region G: a ≥ d, cp − cu ≥ −cz, −cz ≤ a

b
p∗ = 0, x∗ = 0, u∗ = d, z∗ = a− d

The proof of Theorem 2.1 is presented in Appendix A. For the case of practical interest
where d > a, Figure 1 illustrates these regions.

-
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Figure 1. Illustration of regions for d > a

In cases where remanufacturing (without considering acquisition) is generally prof-
itable, i.e. where the cost of disposing a return and manufacturing a new item is more
expensive than remanufacturing (cp +cz > cu), we have different policies being separated
by threshold values for the recovery cost advantage cp−cu. If the recovery cost advantage
is positive but low cp − cu ≤ a

b , it is optimal to remanufacture all autonomous returns
a, not to buy additional returns p = 0 and to manufacture the remaining demand d− a
(Case C). If the recovery cost advantage is sufficiently large cp − cu ≥ 2d−a

b , it becomes
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Figure 2. Illustration of regions for d ≤ a

optimal to buy back as many returns as being required to satisfy demand from recovery
products in full (Region A). If further the salvage value is positive and large enough
(−cz ≥ 2d−a

b ), further returns are acquired and beneficially salvaged (Region D). For
intermediate recovery cost advantages a

b < cp − cu < 2d−a
b , it is optimal to buy returns

only at a maximum price, to remanufacture all returns and to manufacture the remaining
demand.

The threshold values are defined as follows: cp− cu = a
b defines the recovery advantage

where the optimal price becomes zero and cp− cu = 2d−a
b determines the buy back price

such that returns equal demands. If autonomous returns a are larger or equal to the
demand (see Figure 2), we find that regions E and F remain. If cp + cz − cu ≥ 0 but
salvaging returns is not beneficial enough (−cz ≤ a

b ), it is optimal to remanufacture
for demand and to dispose the remaining autonomous returns (Region G) whereas if
−cz > a

b remanufacturing for demand and salvaging of excessive returns (Region D) is
optimal.

3. A dynamic demand and acquisition model

Seasonal and life cycle demand is common in Supply Chains. In order to represent these
dynamics over a finite planning horizon t ∈ [0, T ], we model demand during the selling
season as a continuous and differentiable function of time (d(t) ≥ 0, t ∈ [0, T ]). In order
to match supply with demand, the remanufacturing facility needs different quantities of
returns at different moments in time. Acquiring the right amount of returns is aggra-
vated by dynamic supply. However, during periods where there is not enough supply, the
remanufacturer can encourage customers to return their products by setting economic
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incentives. We assume a dynamic buy back price function p(t), and continuous and dif-
ferentiable functions a(t), b(t), resulting in a time dependent return response function
r(t) = a(t) + b(t)p(t).

If supply of returns exceeds demand, the remanufacturer has, besides the disposal op-
tion, the possibility to keep returned products in recoverables inventory which is subject
to out of pocket inventory holding cost rate h for recoverables y(t) ≥ 0. Opportunity
costs for capital investment are incorporated by discounting payments with a constant
discount rate of ρ.

In order to avoid trivial solutions, we make the following assumptions concerning the
cost structure.

(α1) Remanufacturing a unit is always cheaper than disposing of a return and manufac-
turing a new one (cp + cz− cu > 0). Otherwise the optimization can be decoupled
in a way that all demands are manufactured and all returns are disposed of (see
Regions E and F in the static analysis).

(α2) It is not advantageous to buy returns for disposal (−cz ≤ a(t)/b(t)).
(α3) The interest benefit from delaying disposal is smaller than the holding cost (ρcz <

h). Otherwise unnecessary units would never be disposed of but kept in inventory.

The state of the system to be controlled is recoverable inventory y(t). Initial and final
inventory levels are assumed to be zero, y(0) = y(T ) = 0. The manager has to decide
when to build up recoverables inventory and when to stop economic incentives for product
returns. Additionally, he has to determine the amounts to be remanufactured and to be
disposed of. The associated movement of the state in continuous time is

ẏ(t) = r(t)− u(t)− z(t) ∀t ∈ [0, T ] (7)

where ẏ(t) denotes the first derivative of the function y(t) with respect to time. The
objective is to minimize total discounted cost C over a finite planning horizon of length
T subject to satisfying all given demands.

C =
∫ T

0
e−ρt

(
cpx(t) + cuu(t) + czz(t) + p(t)r(t) + hy(t)

)
dt

Under the assumption that demand always has to be satisfied and cannot be backordered
we can replace x(t) = d(t)− u(t) and the remaining control variables at each instant of
time are the price p(t) for returns, the remanufacturing decision u(t), and the disposal
decision z(t). The resulting optimal control problem is

min
p,u,z

∫ T

0
e−ρt

(
(cu − cp)u(t) + czz(t) + p(t)(a(t) + b(t)p(t)) + hy(t)

)
dt

s.t.

0 ≤ u(t) ≤ d(t) t ∈ [0, T ]

ẏ(t) = a(t) + b(t)p(t)− u(t)− z(t) t ∈ [0, T ] (8)

y(0) = y(T ) = 0

y(t) ≥ 0, p(t) ≥ 0, u(t) ≥ 0, z(t) ≥ 0 t ∈ [0, T ].
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Table 1. Optimal pricing and recovery policy for state y(t) = 0

a(t)
2
− czb(t)

2
≤ d(t)

Condition d(t) < a(t)
2
− cz

b(t)
2

and d(t) > a(t)
2

+ b(t)
2

(cp − cu)

d(t) ≤ a(t)
2

+
b(t)(cp−cu)

2

Solution u∗(t) = d(t) u∗(t) = d(t) = r∗(t) u∗(t) = r∗(t)
x∗(t) = 0 x∗(t) = 0 x∗(t) = d(t)− u(t)

z∗(t) = r(t)− d(t) z∗(t) = 0 z∗(t) = 0

p∗(t) = 0 p∗(t) = d(t)−a(t)
b(t)

p∗(t) = max
{

0,
b(t)(cp−cu)−a(t)

2b(t)

}

λ∗(t) = −cz λ∗(t) = 2d(t)−a(t)
b(t)

λ∗(t) = cp − cu

3.1. Optimal acquisition and remanufacturing policy

In order to derive the optimal decisions we split the analysis into three parts. We first
present the situation where no returns are kept in inventory. Then we analyze the optimal
manufacturing and pricing decisions under positive inventories, and in the last step we
combine both situations and their transitions.

Theorem 3.1 : Given a state where the inventory level is equal to zero y(t) = 0 and
not leaving this state, the optimal decisions are given in Table 1.

Proof : See Appendix B. ¤

As in the static case, the optimal decisions depend on the disposal costs cz and the cost
difference between manufacturing and remanufacturing (cp−cu). Since inventory is empty
and it is never beneficial to buy returns for disposal (α1), it is only optimal to dispose
of items when autonomous returns are larger than demand and the company is already
getting more used products than needed (first column of Table 1). This case corresponds
to Region D and a > d in the static case. If the difference between manufacturing and
remanufacturing costs is relatively large, then complete synchronization of supply and
demand, as described in column 2 of Table 1, is optimal. This case corresponds to region
A in the static model. Manufacturing can be optimal in two different situations. First,
if the remanufacturing advantage is small (cp − cu ≤ a(t)/b(t)), then it is optimal to
set the price equal to zero and just to remanufacture autonomous returns (Region C
in the static model). On the other hand manufacturing may be required if not enough
returns can be bought at a maximum economical price. (Region B in the static model).
Taking a different perspective from the magnitude of demand, small demands d(t) are
satisfied from autonomous demands only (if possible), for intermediate demands, return
and demand can be synchronized by setting an appropriate buy-back price, whereas for
large demands, returns are remanufactured up to an economical level and the remaining
demands are manufactured.

Furthermore, λ∗(t) has an economic interpretation as the (marginal) value of an addi-
tional return at t. If returns are disposed, the value equals the salvage value/disposal cost
λ = −cz. In the synchronization case, λ = 2d(t)−a(t)

b(t) , i.e., the value follows the develop-
ment of the demand and buy-back conditions whereas in case manufacturing is required,
λ(t) = cp − cu and the value equals the recovery cost advantage.

Under the assumption of positive recoverables inventory and no transition to the zero
inventory state, only remanufacturing for demand is optimal.

Theorem 3.2 : Given the inventory level is positive (y(t) > 0) and not leaving this
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state, the optimal decisions are:

u∗(t) = d(t), x∗(t) = 0, z∗(t) = 0

p∗(t) = max{0,
λ(t)
2

− a(t)
2b(t)

} with λ(t) = −h

ρ
+

(
λ(t0) +

h

ρ

)
eρ(t−t0) < cp − cu

Proof : See Appendix C. ¤

Intuitively, disposing of products simultaneously with building up inventories cannot be
optimal. Similarly, there is no need for more expensive manufacturing as long as there is
inventory of returns. Note that the optimal buy back price can be expressed as a function
of the adjoint variable λ(t) which is the shadow price (value) of an additional return at
time t. Note that time t0 denotes either the start or end of an interval with positive
inventory. Since there is a maximal buy-back price which is economically reasonable, we
have an upper bound for the number of returns to be acquired r∗(t) < a(t)+b(t)(cp−cu)

2 .
Besides the optimal decisions in one state we require the optimal moments in time

of transitions, especially when to start collecting returns for building up recoverables
inventory. Let ts denote the start of an optimal time interval with positive inventory and
te the end of such an interval.

Proposition 3.3: (Collection conditions) For optimal time intervals [ts, te] with pos-
itive inventories (y(t) > 0) the following conditions have to hold:

∫ te

ts

(d(s)− (a(s) + b(s)p∗(s))ds = 0 (9)

∫ t

ts

(d(s)− (a(s) + b(s)p∗(s))ds < 0 ts < t < te (10)

Over the entire interval, cumulative returns have to equal cumulative demands (such
that inventory depletes to zero at the end of the interval). For any time t within the
interval, inventory has to be positive, i.e. cumulative returns up to t have to exceed
cumulative demands up to t.

There are two main reasons for collecting returns to build up recoverables inventory.
First, (see Proposition 3.4) when customers are highly motivated to return used products
and there is excess of autonomous returns (a(t) > d(t)), the remanufacturer has to chose
between the two options of disposing of returned items or keeping products in stock for
later use. The optimal decision depends on the disposal cost parameter cz and the return
response function.

Proposition 3.4: (Excess autonomous returns) Let us consider time points θ with
d(θ) = a(θ), d(θ− ε1) < a(θ− ε1), and d(θ+ ε2) > a(θ+ ε2) for small values of ε1, ε2 > 0.
The optimal inventory at time θ has to satisfy the following condition:

y∗(θ)

{
> 0 if 2d(t)−a(t)

b(t) > −cz; t ∈ (θ − ε1, θ)

= 0 if 2d(t)−a(t)
b(t) ≤ −cz; t ∈ (θ − ε1, θ)

. (11)

Proof : See Appendix D. ¤

Note that the two cases of (11) correspond to the separation of Regions A and D in
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the static model. If salvaging of returns is beneficial, no inventories are built whereas if
synchronization of returns with demands has a larger value than disposal, than excessive
items are collected.

The second reason for building up inventories (see Proposition 3.5) is motivated by a
required price increase in order to acquire the demand quantity related to the costs for
buying in advance and storing the item. Instead of synchronizing demand and returns the
remanufacturing facility can acquire more returns and build up recoverable inventory.

Proposition 3.5: (Economic incentives) Let us assume that demand satisfies the fol-
lowing inequality

a(t)
2

− cz
b(t)
2

≤ d(t) <
a(t)
2

+
b(t)
2

(cp − cu). (12)

For all time points θ satisfying

b(θ)(2ḋ(θ)− ȧ(θ))− 2d(θ)ḃ(θ)− a(θ)ḃ(θ)
b2(θ)

> ρ
d(θ)− a(θ)

b(θ)
+ h (13)

and (12), the optimal inventory has to be positive y∗(θ) > 0.

Proof : See Appendix E. ¤

This situation occurs if demands and returns are synchronized, Region B in the static
model, second column in Table 1). If due to the dynamic of the parameters a(t), b(t),
or d(t) further synchronization is more expensive (expressed through the left-hand side
in (13) which is the slope of 2d(t)−a(t)

b(t) , than buying in advance and storing, expressed
through the right-hand side, becomes beneficial and results in positive inventory.

3.2. Algorithm

For the computation of the optimal price and recovery policy we have to determine the
optimal time intervals of zero and positive inventory, respectively the starting points
for building up inventories. In the following we sketch an algorithm for constructing the
optimal solution. We start with an initial solution as given in Table 1 which means, we
assume the three subcases for y(t) = 0 are the status quo. Transitions from having zero
recoverables inventory into collecting returns is required in order to satisfy the necessary
optimality conditions as stated in Proposition 3.4 and 3.5.

The construction of optimal time intervals [t∗s, t∗e] with positive recoverable inventory
due to excess autonomous returns starts with determining intervals [t(0)

s , t
(0)
e ] with d(t) <

a(t) ∀t ∈ (t(0)
s , t

(0)
e ), d(t(0)

s ) = a(t(0)
s ) and d(t(0)

e ) = a(t(0)
e ). Since the shadow price λ(t)

has to be continuous at the end of the interval, and based on Proposition 3.3 and 3.4,
the following procedure computes the optimal interval [t∗s, t∗e]:

STEP 1: Choose te > t
(0)
e and compute λ(te) as

λ(te) = min
{

cp − cu,
2d(te)− a(te)

b(te)

}
. (14)

STEP 2: Find a ts < te such that the integral conditions (9) and (10) are satisfied.
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STEP 3: Compute λ(ts) as

λ(ts) = −h

ρ
+

(
λ(te) +

h

ρ

)
eρ(ts−te) (15)

STEP 4: If ts ≤ t
(0)
s and λ(ts) = 2d(ts)−a(ts)

b(ts)
, then STOP.

If ts > t
(0)
s and λ(ts) = −cz, then STOP.

If ts > t
(0)
s and λ(ts) > −cz, we have to increase te. If λ(ts) < −cz, a smaller value of

te is required and the procedure continues with STEP 1 and the new value for te.

Similarly, we find the starting points of building up inventories due to economic in-
centives using Proposition 3.5 and applying an iterative procedure. We first determine
intervals [t1, t2] with

b(ti)(2ḋ(ti)− ȧ(ti))− 2d(ti)ḃ(ti)− a(ti)ḃ(ti)
b2(ti)

= ρ
d(ti)− a(ti)

b(ti)
+ h i = 1, 2 (16)

and (13) holds for all θ ∈ (t1, t2). Next we have to calculate [t3, t4] with

d(t3) =
a(t3)

2
− cz

b(t3)
2

and d(t4) =
a(t4)

2
+

b(t4)
2

(cp − cu). (17)

The following algorithm starts with the initial interval [t(0)
s , t

(0)
e ] = [t1, t2] ∩ [t3, t4] and

constructs intervals with positive recoverable inventories based on Proposition 3.3 and
utilizing the continuity of the shadow price λ(t) at the interval boundaries.

STEP 1: Choose te > t
(0)
e and compute λ(te) from (14).

STEP 2: Compute ts < te using (15) and

λ(ts) =
2d(ts)− a(ts)

b(ts)
. (18)

STEP 3: Evaluate the integral as given in (9).
STEP 4: If the value of the integral is equal to zero, then STOP. If it is positive, then
there is an excess of demands and te has to be decreased. Otherwise, if the value of the
integral is negative, there are too many returns and we have to increase te. Continue
the procedure with STEP 1 and the new value for te.

These procedures can easily be implemented because only integrals have to be com-
puted and equations have to be solved within a search and bisection scheme.

4. Heuristic strategies

Instead of deriving and implementing the optimal policy, alternative heuristic strategies
can be applied. The first two heuristics are using a reactive acquisition policy, while
heuristic three and four are based on a proactive acquisition policy. We derive conditions,
depending on the cost parameters cp, cu, and cz, and the return response function under
which these simple strategies provide us with the optimal solution. The propositions in
the following can easily be derived using Theorems 3.1 and 3.2.

Page 11 of 22

http://mc.manuscriptcentral.com/tprs  Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

October 23, 2010 18:6 International Journal of Production Research IJPR

12 S. Minner and G.P. Kiesmüller

No buy back of returns, zero inventory (AUTO1)
Under this strategy, we only collect and remanufacture a maximum of a(t) units.

The buy back price is always equal to zero (p(t) = 0). If d(t) < a(t), excess returns
are immediately disposed of, i.e. z(t) = max{0, a(t) − d(t)}, otherwise manufacturing
is used to obtain missing items to satisfy demand, i.e. x(t) = max{0, d(t) − a(t)}, and
u(t) = min{d(t), a(t)}.
Proposition 4.1: If d(t) > a(t) and cp− cu ≤ a(t)/b(t) for all t ∈ [0, T ], then heuristic
AUTO1 is optimal.

No buy back of returns, collect excess autonomous returns (AUTO2)
All returns are collected and no additional price incentives are offered by the reman-

ufacturer to increase the return quantities. Thus, the buy back price is always equal to
zero p(t) = 0. Excess returns (a(t) > d(t)) are kept in inventory and disposal does not
take place (z(t) = 0). Manufacturing and remanufacturing quantities depend on whether
there is recoverables inventory available or not.

y(t) = 0 : x(t) = max{0, d(t)− a(t)}, u(t) = min{d(t), a(t)}
y(t) > 0 : x(t) = 0, u(t) = d(t)

If there is positive recoverables inventory, no items are manufactured and demands are
met from remanufactured units only. In case of zero inventory, the minimum of demand
and returns is remanufactured and missing items are manufactured.

Proposition 4.2: If cp − cu ≤ a(t)/b(t) for all t ∈ [0, T ] and no excessive return has
to be stored longer than beneficial, then heuristic AUTO 2 is optimal.

Synchronization of returns and demands (SYN)
Consider a strategy aiming at a complete synchronization of supply of returns and

demand. The buy back price is therefore dynamically adapted such that as many returns
as needed are acquired p(t) = max{0, (d(t)− a(t))/b(t)}. Demand is completely satisfied
from remanufactured items x(t) = 0, u(t) = d(t). Additionally, no returned units are
kept on stock (y(t) = 0), and excessive returns are immediately disposed of z(t) =
max{0, a(t)− d(t)}.
Proposition 4.3: If a(t) ≤ d(t) for all t ∈ [0, T ] and the following two conditions hold
for all t ∈ [0, T ]

−cz ≤ (2d(t)− a(t))/b(t) ≤ cp − cu (19)

and
b(t)(2ḋ(t)− ȧ(t))− 2d(t)ḃ(t)− a(t)ḃ(t)

b2(t)
≤ ρ

d(t)− a(t)
b(t)

+ h, (20)

then heuristic SYN is optimal.

Optimal static policy (STA)
Another simple approach is to implement the optimal static decision for each instant

of time. Therefore, no inventories are required and the policy is given in Section 2.

Proposition 4.4: If i) (19) and (20) hold or if ii) (2d(t) − a(t))/b(t) ≥ cp −
cu for all t ∈ [0, T ], then heuristic STA is optimal.
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5. Numerical examples

We illustrate our results using the following seasonal demand pattern:

d(t) = 20 + 10 sin(t− π), t ∈ [0, 4π] (21)

Demand varies between 10 and 30 units, i.e. 10 ≤ d(t) ≤ 30. The discount rate is
ρ = 0.01, i.e. 1% continuous interest per unit of time which in our case is, e.g., a month.
For the out of pocket holding cost rate we have chosen h = 0.05.

Example 1: a = 0, b = 5, cp = 10, cu = 4 and cz = 0
Since there are no autonomous returns we only have to determine starting points for
building up inventories when buying returns in advance and storing them is less expensive
than manufacturing or increasing the buy-back price.

According to Theorem 2 we have to solve the following equation in order to compute
the intervals where manufacturing is required in case of no stockkeeping.

20 + 10 sin(t− π) = 15 (22)

the resulting intervals are [0,0.5236], [2.6180,6.8068], [8.9012,12.5664]. In order to identify
time points satisfying (13) we have to solve

4 cos(t− π) = 0.01
2(20 + 10 sin(t− π))

5
+ 0.05 (23)

resulting in [1.5933,4.6699], [7.8765,10.9531]. This leads to the following intervals where
synchronization of returns and demands does not satisfy the necessary optimality con-
ditions: [1.5933, 2.6180] and [7.8765, 8.9012]. At least during these intervals recoverables
inventory has to be positive. These initial intervals are enlarged according to the algo-
rithm described above such that the adjoint variable is a continuous function and the
collection conditions of Proposition 4 hold. In the optimal solution, inventory is held
during [0.6226, 3.6935] and [6.9058, 9.9760]. Therefore, the optimal pricing and recovery
policy is as follows:

i) During the time interval [0, 0.5236] buy used items at a constant rate r = 15 for
pmax = 3, remanufacture them and produce for the remaining demands.

ii) During the time interval [0.5236, 0.6226] buy as many returns as being required
to meet demand from remanufactured units.

iii) During the time interval [0.6226, 3.6935] build up a recoverable inventory and use
returns and, if necessary, items from the recoverable inventory to satisfy demands.

iv) During the time interval [3.6935, 2π] buy returns at a constant rate r = 15 for
pmax = 3 and manufacture for remaining demands.

v) In the interval [2π, 4π] the optimal policy is the same as in [0, 2π].

For a graphical illustration of the optimal recovery policy, see Figure 3 and for the
optimal price, Figure 4.

For the comparison of the optimal strategy with the heuristics mentioned in Section
4 we introduce the relevant costs Crel, since we cannot avoid satisfying demand at least
from remanufactured units. Subtracting the portion of the costs which cannot be influ-
enced leads to the following definition of the relevant costs Crel = C − cu

∫ T
0 d(s) ds.
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Figure 3. Optimal recovery policy

0 2 4 6 8 10 12 14
2.8

2.85

2.9

2.95

3

3.05

time

price

Figure 4. Optimal price policy

Table 2. Relevant costs heuristics

Optimal AUTO1 AUTO2 SYN STA

b = 2.5 1180.22 2172.86 1180.22

b = 5 908.17 1454.26 1454.26 1086.43 916.87

b = 10 487.93 543.21 543.21

In order to illustrate the impact of different return response function parameters, we
investigate different settings for b. The relevant costs are given in Table 2.

For b = 2.5 the static policy is optimal since cp − cu < (2d(t) − a(t))/b(t) for all t.
Returns are bought back with a constant rate of r = 7.5 units at a price of pmax = 3 and
the remaining demands are satisfied by production. In case of b = 10, it is never optimal
to produce. The synchronization infeasibility interval is [1.606, 4.657], the interval with
positive inventory becomes [0.133, 6.145].

These examples show the importance of the reaction parameter b on the minimal cost.
A higher return response to increasing prices or acquisition efforts significantly reduces
costs. Therefore, actions that influence this parameter, e.g. increasing visibility of buy
back offers via Internet/E-commerce, creating customer awareness of buy back activities,
paid return shipments will be promising.

Example 2: a = 15, b = 5, cp = 10, cu = 8, cz = 1, h = 1, ρ = 0.01
This example illustrates the case where intervals with excess autonomous returns become
relevant. For this specific setting of parameters we find that cp − cu ≤ a/b and therefore
p(t) = 0 for all t ∈ [0, T ], i.e. it is never optimal to engage in active acquisition efforts.
We obtain the following intervals where positive inventory is required due to economic
incentives (Proposition 3.5):

[1.8264, 2.2935] and [8.1096, 8.5767] (24)

Time intervals with less demand than autonomous returns are given by [0.5236,2.6180]
and [6.8068,8.9012]. Since these intervals include the intervals given in (24), we start with
the construction of intervals with positive inventory due to excess autonomous returns.
Since the cost for storing returns from t = 0.5236 offset the savings of cp + cz over cu
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the optimal solution starts keeping returns at ts = 0.8029. In the optimal solution the
inventory is running empty at te = 3.7883 and therefore, the inventory is positive also
for the intervals given in (24). The optimal policy is the following:

i) Remanufacture autonomous returns with rate a(t) and manufacture the remain-
ing demand in [0, 0.5236].

ii) Remanufacture for demand and dispose excess returns in [0.5236, 0.8029].
iii) Remanufacture for demand and collect excessive returns respectively take re-

quired recoverables from inventory in [0.8029, 3.7883].
iv) Remanufacture autonomous returns and manufacture remaining demand

[3.7883, 2π].
v) In the interval [2π, 4π] the optimal policy is the same as in [0, 2π].

In Figure 5, the optimal manufacturing, remanufacturing, and disposal policy is de-
picted. As a consequence of switching from manufacturing to disposal at t = 0.5236
and t = 6.8068 the adjoint variable has a downward jump from cp − cu to −cz, for an
illustration see Figure 6.

0 2 4 6 8 10 12 14
−5

0

5

10

15

20

25

30

time

production     
remanufacturing
disposal       

Figure 5. Optimal recovery policy
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1.5

2

2.5
adjoint variable

Figure 6. Optimal adjoint variable

In a second variant of Example 2 we show a similar case where used products
are purchased. Therefore, let b = 10. Synchronization is not optimal in the inter-
val [2.099, 4.164], and additional manufacturing under zero inventories is required for
[0, 0.253] and [2.889, 2π]. The application of our algorithm to this instance reveals that
in the interval [0, 0.253] returns are acquired and remanufactured at the maximum rate
of 17.5 and excessive demands are manufactured, returns and demands are synchro-
nized in [0.253, 0.524], demands are remanufactured and excessive returns disposed of
in [0.524, 0.847], positive recoverables inventory is optimal for [0.847, 3.833] where in
[0.847, 3.342] only autonomous returns are collected and additional returns are bought
by acquisition activities in [3.342, 3.833]. In [3.833, 2π], again returns are acquired and
remanufactured with a rate of 17.5 and excessive demands are manufactured. Thereafter,
the same policy is repeated. The performance of the policies is given in Table 3.

6. Summary and outlook

In this paper we have presented a dynamic optimisation approach to coordinate manu-
facturing and remanufacturing using both, inventory and pricing mechanisms to control
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Table 3. Relevant costs heuristics

Optimal AUTO1 AUTO2 SYN STA

b = 5 144.50 159.81 144.55 693.56 159.81

b = 10 140.85 159.81 144.55 353.52 155.01

the product return and recovery process. The general framework of optimal control al-
lows to obtain some analytical relationships between the optimal recovery and buy back
strategy. However, the overall optimal policy has to be determined numerically. Incen-
tives for storage of returns are either the collection of excessive autonomous returns or a
cost beneficial buy-back in expectation of less favorable buy-back conditions or increas-
ing demands. Additionally, our analysis enables us to show under which conditions some
simple heuristics are optimal. Using a passive return acquisition policy is in general not
close to optimality. This heuristic leads only to good results if the number of products
brought back autonomously is already quite large. Otherwise large improvements can be
achieved through a proactive return acquisition management.

There are several extensions to generalize the results. Concerning the return response
functions, more general functions rather than a linear relationship can be analyzed. Fur-
ther, carry over effects of past decisions, especially the market size, can be incorporated
by introducing a second stock variable (market size) which is influenced by sales and
take back and then, the response function depends on the market size and the price.
Another extension is to consider joint sales and return pricing where in addition, price
bundling effects with a joint price for a sale in case an item is returned can be analysed.
The presented approach can also be generalized with respect to the underlying market
structure. As a first extension one can think of two separate markets for new and re-
manufactured products that will have different sales prices and to analyse the associated
market segmentation effects. Further, the impact of having several players, e.g. original
equipment manufacturers and competing remanufacturing firms that both aim to acquire
used products is another stream for future research.
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Appendix A. Proof of Theorem 2.1

In order to solve the optimization problem (6) we have to minimize a non-linear
(quadratic), convex function subject to linear constraints. Using a Lagrange-approach
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we define the Lagrange-function

L(p, u, µ1, µ2) = (−cp + cu − cz)u + (cz + p)(a + bp) + µ1(u− d) + µ2(u− a− bp).

Due to the convexity of the objective function, the following Kuhn-Tucker conditions
are necessary and sufficient for an optimal solution.

∂L

∂p
= (a + 2bp + bcz)− bµ2 ≥ 0 (A1)

p · ∂L

∂p
(p, u, µ1, µ2) = 0 (A2)

∂L

∂u
= −cp − cz + cu + µ1 + µ2 ≥ 0 (A3)

u · ∂L

∂u
(p, u, µ1, µ2) = 0 (A4)

∂L

∂µ1
= u− d ≤ 0 (A5)

µ1(u− d) = 0 (A6)

∂L

∂µ2
= u− a− bp ≤ 0 (A7)

µ2(u− a− bp) = 0 (A8)

p, u, µ1, µ2 ≥ 0 (A9)

For the two decision variables u, p we identify the following cases:

• u = p = 0
µ1 = µ2 = 0 from (A6) and (A8), x = d, z = a. Further, cp + cz − cu ≤ 0, −cz ≤ a/b

from (A3) and (A1). This identifies region E.
• u = 0, p > 0

µ1 = µ2 = 0 from (A6) and (A8), x = d, p = −(a + bcz)/(2b), z = a−bcz

2 . Further,
cp + cz − cu ≤ 0, −cz > a/b from (A3) and due to p > 0. This identifies region F.

• 0 < u < min{d, a + bp}, p = 0
µ1 = µ2 = 0 from (A6) and (A8), cp + cz − cu = 0, −cz ≤ a/b from (A3) and (A1).

All u, x combinations have the same objective function value. Since this is a boundary
case, it can be regarded as a special case of region E with u = 0.

• 0 < u < min{d, a + bp}, p > 0
µ1 = µ2 = 0 from (A6) and (A8), p = −(a + bcz)/(2b) from (A2). Further, cp + cz −

cu = 0 from (A4) and −cz > a/b from p > 0. All u, x combinations have the same
objective function value. Since this is a boundary case, it can be regarded as a special
case of region F with u = 0.

• u = d, u < a + bp, p = 0
µ2 = 0 from (A7) and (A8), µ1 = cp + cz − cu from (A4) and −cz ≤ a/b from (A1).

This defines region G in the case of a > d (see Figure 2).
• u = d, u = a + bp, p = 0

µ2 ≤ (a+bcz)/b from (A1), i.e. −cz ≤ a/b, µ1 +µ2 ≥ cp +cz−cu from (A3). Further,
x = 0 and z = 0. This is a special case of region G if a = d holds.

• 0 < u < d, u = a + bp, p = 0

Page 18 of 22

http://mc.manuscriptcentral.com/tprs  Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

October 23, 2010 18:6 International Journal of Production Research IJPR

International Journal of Production Research 19

µ1 = 0 from (A5) and (A6), µ2 = cp + cz − cu from (A4). Further, cp − cu ≤ a
b from

inserting µ2 into (A1) and cp + cz − cu ≥ 0 from µ2 ≥ 0 which leads to −cz ≤ a/b.
This defines Region C.

• u = d, u = a + bp, p > 0
p = (d− a)/b. Then, µ2 = (2d− a + bcz)/b from (A2). µ2 ≥ 0 ⇔ −cz ≤ (2d− a)/b,

µ1 = cp + cz − cu − µ2 ≥ 0 ⇔ cp − cu ≥ (2d− a)/b. This defines Region A.
• u = d, u < a + bp, p > 0

µ2 = 0 from (A8), µ1 = cp + cz − cu ≥ 0 from (A4), p = −(a + bcz)/(2b) from (A1)
and (A2), x = 0, z = a + bp − d, −cz > a/b from p > 0 and −cz > (2d − a)/b from
u < a + bp. This defines Region D.

• 0 < u < d, u = a + bp, p > 0
µ1 = 0 from (A6), µ2 = cp + cz − cu from (A4), p = b(cp−cu)−a

2b from (A1) and (A2),
u = a+b(cp−cu)

2 . Further, (2d−a)/b > cp− cu > a/b from u < d and p > 0. This defines
Region B.

Appendix B. Proof of Theorem 3.1

Due to Pontryagin’s Maximum Principle (for details see Kamien and Schwartz 1991) the
solution of (8) is equivalent to the maximum of the corresponding current value static
Hamilton-function subject to the non-negativity constraints for each point in time where
the Hamilton-function is defined as

H(p(t), u(t), z(t), λ(t)) := (cp − cu)u(t)− czz(t)− p(t) · (a(t) + b(t)p(t))− hy(t)

+λ(t) · (a(t) + b(t)p(t)− u(t)− z(t)) (B1)

and λ(t) is the adjoint variable to the movement of the inventory state (7). Maximiz-
ing (B1) subject to the given non-negativity constraints can be done using a Lagrange
approach with the following Lagrange-function

L(p(t), u(t), z(t), λ(t), µ1(t), µ2(t), µ3(t), µ4(t), µ5(t)) := H(p(t), u(t), z(t), λ(t)

+ µ1(t)y(t) + µ2(t)p(t) + µ3(t)u(t) + µ4(t)z(t) + µ5(t)(d(t)− u(t)) (B2)

where µ1(t), µ2(t), µ3(t), µ4(t), and µ5(t) are the Lagrange multipliers associated with
the non-negativity of inventory, price, remanufacturing, disposal, and manufacturing. We
obtain the following necessary conditions, results, and equations:

(1) Maximization of the Hamilton-function (B1) reveals the optimal decisions:

• optimal remanufacturing decision

u∗(t) =





d(t) λ(t) < cp − cu

undet. λ(t) = cp − cu

0 λ(t) > cp − cu

(B3)
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• optimal disposal decision

z∗(t) =




∞ λ(t) < −cz

undet. λ(t) = −cz

0 λ(t) > −cz

(B4)

• optimal price

p∗(t) = argmax{H(p(t), u∗(t), z∗(t))} (B5)

(2) Maximization of the Lagrange-function (B2) leads to the following equations:

∂L

∂p
= 0 ⇔ (λ(t)− p(t))b(t)− (a(t) + b(t)p(t)) + µ2(t) = 0 (B6)

∂L

∂u
= 0 ⇔ cp − cu − λ(t) + µ3(t)− µ5(t) = 0 (B7)

∂L

∂z
= 0 ⇔ −cz − λ(t) + µ4(t) = 0 (B8)

(3) The adjoint variable has to satisfy the differential equation:

λ̇(t) = ρλ(t) + h− µ1(t) (B9)

(4) Complementary Slackness conditions have to hold:

µ1(t)y(t) = 0, µ1(t) ≥ 0, µ2(t)p(t) = 0, µ2(t) ≥ 0, µ3(t)u(t) = 0, µ3(t) ≥ 0

µ4(t)z(t) = 0, µ4(t) ≥ 0 µ5(t)(d(t)− u(t)) = 0, µ5(t) ≥ 0 (B10)

(5) The adjoint variable λ(t) is a piecewise continuous function which can have jumps
at certain points in time. Possible candidates are time points θ with a(θ) = d(θ)
and y(θ) = 0.

Since the objective function is separable in the decision variables, linear in u and z,
and quadratic and convex in p, the necessary conditions are sufficient. Using (B6) the
optimal buy back price can be expressed as a function of the adjoint variable λ(t) which
is the shadow price (value of an additional return) at time t.

p∗(t) =

{
λ(t)
2 − a(t)

2b(t) if λ(t) > a(t)
b(t)

0 if λ(t) ≤ a(t)
b(t)

(B11)

The resulting optimal return quantity becomes

r∗(t) =

{
a(t)
2 + λ(t)b(t)

2 if λ(t) > a(t)
b(t)

a(t) if λ(t) ≤ a(t)
b(t)

. (B12)
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If y(t) = 0 for a time-interval with positive length, then ẏ(t) = 0 and r∗(t) = u∗(t) +
z∗(t) from (7) which implies 0 ≤ u∗(t) ≤ r∗(t) and 0 ≤ z∗(t) ≤ r∗(t). We have to
distinguish the following 4 subcases.

a) u∗(t) < min{d(t), r∗(t)}, z∗(t) > 0
Due to (B10) and (B8) we get λ(t) = −cz. On the other hand it follows from

(B3) that λ(t) ≥ cp − cu. This contradicts assumption (α1) and therefore this
cannot be optimal.

b) u∗(t) = r∗(t) < d(t), z∗(t) = 0.
Then, λ(t) = cp − cu from (B3) and the optimal return rate from (B12) is

r∗(t) =

{
a(t)
2 + (cp−cu)b(t)

2 if cp − cu > a(t)
b(t)

a(t) if cp − cu ≤ a(t)
b(t)

. (B13)

Since r∗(t) < d(t) this is only possible if d(t) > a(t)
2 + b(t)

2 (cp−cu). Since backorders
are not allowed we additionally have x∗(t) = d(t)− r∗(t).

c) u∗(t) = r∗(t) = d(t), z∗(t) = 0.
Then, λ(t) < cp − cu from (B3) and to ensure r∗(t) = d(t) we need

λ(t) =
2d(t)− a(t)

b(t)
. (B14)

Due to z∗(t) = 0 we get λ(t) > −cz. Therefore, this case is only possible if
a(t) < d(t) and d(t) ≥ a(t)

2 − cz
b(t)
2 and d(t) ≤ a(t)

2 + b(t)
2 (cp − cu). It is further

optimal not to manufacture (x∗(t) = 0).
d) u∗(t) = d(t), z∗(t) = r∗(t)− d(t), (r∗(t) > d(t)),

As a consequence of (B4), λ(t) = −cz and the returns are given by

r∗(t) =

{
a(t)
2 − cz

b(t)
2 if −cz > a(t)

b(t)

a(t) if −cz ≤ a(t)
b(t)

. (B15)

Due to assumption (α2) we have to exclude −cz > a(t)
b(t) and to ensure r∗(t) > d(t)

we require a(t) > d(t).

Appendix C. Proof of Theorem 3.2

In case of y(t) > 0 we get µ1(t) = 0 from (B10) and the solution of the differential
equation (B9) can be obtained as

λ(t) = −h

ρ
+

(
λ(t0) +

h

ρ

)
eρ(t−t0) (C1)

where t0 denotes the starting or ending point of an interval with y(t) > 0. Due to our
assumption h > ρcz and using λ(t) ≥ −cz we find

λ̇(t) = (ρλ(t0) + h)eρ(t−t0) > 0. (C2)
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Assume u(t) < d(t). This requires λ(t) ≥ cp − cu which is not possible for an interval
with positive length because λ̇(t) > 0 and λ(t) > cp − cu requires u(t) = 0 which would
imply that recoverables inventory will never be depleted to zero which is required as the
final inventory level.

Assume z(t) > 0. Then, µ4(t) = 0, λ(t) = −cz from (B4), and λ̇(t) = 0 which con-
tradicts (C2). Summarizing, in an interval with y(t) > 0, we have u∗(t) = d(t) and
z∗(t) = x∗(t) = 0.

From λ(t) < cp − cu it follows that there exists an upper limit for the optimal return
rate,

r∗(t) <
a(t) + b(t)(cp − cu)

2
. (C3)

The lower limit is a(t). Depending on the value of λ(t), i.e. whether λ(t) ≤ a(t)/b(t) or
λ(t) > a(t)/b(t), the buy back price is either zero or positive.

Appendix D. Proof of Proposition 3.4

Under the assumption of y(t) = 0 for all t ∈ [θ − ε1, θ + ε2] and −cz < 2d(θ)−a(θ)
b(θ) we get

λ(t) = 2d(t)−a(t)
b(t) > −cz for all t ∈ [θ, θ + ε2] and λ(t) = −cz for all t ∈ [θ − ε1, θ[. This is

equivalent with an upward jump of the adjoint variable, which is not allowed due to the
optimality conditions. Therefore, collection of returns has to start before θ which means
y(t) > 0 for all t ∈ [θ− ε1, θ + ε2]. Otherwise, if 2d(t)−a(t)

b(t) ≤ −cz for all t ∈ [θ, θ + ε2] there
is no need to build up inventories.

Appendix E. Proof of Proposition 3.5

Under the assumption of

a(t)
2

− cz
b(t)
2

≤ d(t) <
a(t)
2

+
b(t)
2

(cp − cu).

and y(t) = 0 we have λ(t) = 2d(t)−a(t)
b(t) and λ̇(t) = b(t)(2ḋ(t)−ȧ(t))−2d(t)ḃ(t)−a(t)ḃ(t)

b2(t) . Since

µ1(t) ≥ 0 we know from (B9) that λ̇(t) ≤ ρλ(t) + h. Therefore, it is clear that y(t) = 0
cannot appear in an optimal solution if

λ̇(t) > ρλ(t) + h (E1)

such that for all time points satisfying (13) a positive inventory is required.
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