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Androgens are essential for the development and regulation of male sexual characteristics [START_REF] Hayward | The prostate: development and physiology[END_REF]. The biological action of androgenic male sex steroid hormones in prostate tissue is mediated by the androgen receptor (AR). Androgens-activated AR is translocated to the nucleus where it binds to androgen response elements located within promoter regions of androgens target genes [START_REF] Carson-Jurica | Steroid receptor family: structure and functions[END_REF][START_REF] Mckenna | Combinatorial control of gene expression by nuclear receptors and coregulators[END_REF][START_REF] Chmelar | Androgen receptor coregulators and their involvement in the development and progression of prostate cancer[END_REF]). This process is well regulated at all stages including at pre-receptor levels which implies the regulation of enzymes that participate in the formation and degradation of 5-Dihydrotestosterone (DHT) [START_REF] Penning | Pre-receptor regulation of the androgen receptor[END_REF]. DHT is the most potent androgen and is responsible for the growth, development and maintenance of the normal secretory function of the prostate [START_REF] Andersson | Deletion of steroid 5 alpha-reductase 2 gene in male pseudohermaphroditism[END_REF]. In adult males testosterone from the Leydig cells of the testis is converted in the prostate into DHT. On the other hand, it has been described that 5α-androstan-3α,17β-diol (3α-Diol) can be converted into DHT with growth consequences for the prostate [START_REF] Horst | In vivo uptake and metabolism of 3-h-5alpha-androstane-3alpha,17beta-diol and of 3-h-5alpha-androstane-3beta,17beta-diol by human prostatic hypertrophy[END_REF]. Deregulation of the process of synthesis and degradation of DHT usually results in benign prostatic hyperplasia and/or prostate cancer (PC). PC is the second leading cause of cancer-related in men [START_REF] Jemal | Cancer statistics, 2009[END_REF]) and approximately 20% of men with this disease develop metastatic cancer requiring systemic therapy that target androgens production or action.

17β-Hydroxysteroid dehydrogenases (HSD17Bs) are the enzymes responsible for reduction or oxidation of sex hormones, fatty acids and bile acids in vivo [START_REF] Moeller | Integrated view on 17beta-hydroxysteroid dehydrogenases[END_REF]. All require NAD(P(H)) for their activity. Fourteen HSD17Bs have been identified to date and, with A c c e p t e d M a n u s c r i p t 4 the exception of HSD17B5, an aldo-keto reductase (AKR), all of them are short-chain dehydrogenases/reductases (SDRs) [START_REF] Day | Design and validation of specific inhibitors of 17betahydroxysteroid dehydrogenases for therapeutic application in breast and prostate cancer, and in endometriosis[END_REF]. Type 11 17β-Hydroxysteroid dehydrogenase (HSD17B11) has been shown to have dehydrogenase activity [START_REF] Li | Cloning and expression of a novel tissue specific 17betahydroxysteroid dehydrogenase[END_REF]. It converts 3α-Diol into androsterone, which suggests that this enzyme has a role in androgen metabolism [START_REF] Brereton | Pan1b (17betaHSD11)-enzymatic activity and distribution in the lung[END_REF]. HSD17B11, also known as short-chain dehydrogenase/reductase (SDR family) member 8 (DHRS8) and Pan1b, is nearly ubiquitously expressed being highly detected in lung, eyes, liver, pancreas, intestine, kidney, adrenal gland, heart, testis, ovary, placenta and sebaceous gland [START_REF] Brereton | Pan1b (17betaHSD11)-enzymatic activity and distribution in the lung[END_REF][START_REF] Chai | 17 beta-hydroxysteroid dehydrogenase type XI localizes to human steroidogenic cells[END_REF].

Importantly, a recent study demonstrates that HSD17B11 is abundantly expressed in human prostate cancer tissue but not in the normal prostate, suggesting that its expression could be connected with advanced prostate cancer [START_REF] Nakamura | 17beta-hydroxysteroid dehydrogenase type 11 (Pan1b) expression in human prostate cancer[END_REF]).

HSD17B11 expression has been detected in human steroidogenic cells, including both Leydig and granulosa cells. Importantly, the HSD17B11 5'-flanking region contains several steroidogenic factor-1 binding sites, but their functionality is still to be demonstrated [START_REF] Chai | 17 beta-hydroxysteroid dehydrogenase type XI localizes to human steroidogenic cells[END_REF]. It has also been shown that peroxisome proliferator-activated receptor α (PPARα) regulates HSD17B11 expression in mouse intestine and liver [START_REF] Motojima | 17beta-hydroxysteroid dehydrogenase type 11 is a major peroxisome proliferator-activated receptor alpha-regulated gene in mouse intestine[END_REF]Yokoi et al. 2007). Although this suggests that HSD17B11 expression is directly regulated by PPARα and its ligand in mouse, promoter sequence up to -1800 bp did not respond to a PPARα ligand in reporter gene assays. Finally, we have described that HSD17B11 is upregulated by C/EBP and C/EBP in the hepatocarcinoma cell line HepG2 but this process was not mediated by the CCAAT boxes located within HSD17B11 proximal promoter [START_REF] Rotinen | Type 10 17beta-Hydroxysteroid Dehydrogenases expression is regulated by C/EBPbeta in HepG2 cells[END_REF]. 

Materials and methods

Nucleotide sequence analysis of the HSD17B11 5'-flanking region.

Putative transcription factor binding sites on the 5'-flanking region of the human HSD17B11 were identified using the MatInspector program found in the Genomatix Software package (Genomatix, Munich, Germany). Macaca mulatta, Pan troglodytes, Mus musculus, Rattus norvegicus, Equus caballus, Canis lupus familiars and Bos taurus HSD17B11 orthologs were searched for with the Gene2Promoter (Genomatix Software) program.

Generation of human HSD17B11 5´-flanking region/luciferase reporter constructs.

The 5'-flanking region of the human HSD17B11 gene was isolated by PCR using the oligonucleotides 5'-AAGGTGGGTGGAACAGGAGATCG-3' (-2016/-1994) and 5'- 

Site-directed mutagenesis.

To generate plasmids bearing mutated consensus-binding sequences for transcription factors, mutagenesis experiments were performed using the Quick Change Site-directed Mutagenesis Kit 1A. The mutated luciferase constructs containing the -107/+18 region were obtained by digestion of the pB11-344 mutated constructions with NheI and circularization of the largest fragments. All mutations were confirmed by sequencing.

Cell culture, transient transfection and luciferase assay.

LNCaP, PC-3, C4-2, HT-29 and HTB-54 cell lines were obtained from American Type Culture Collection (Manassas, VA). EJ138 cell line was obtained from European Collection of Cell Cultures (Porton Down, UK). LNCaP, C4-2, HTB-54 cells were grown in RPMI 1640 (Invitrogen) medium supplemented with 10% FBS and 100 units/mL of penicillin and 100 µg/mL of streptomycin. PC-3 cells were grown in DMEM-F12 (Invitrogen) supplemented with 10% FBS and 100 units/mL of penicillin and 100 µg/mL of streptomycin. HT-29 and EJ138 cells were grown in DMEM-GlutaMAX (Invitrogen) supplemented with 10% FBS and 100 units/mL of penicillin and 100 µg/mL of streptomycin. Transfections were performed as previously described [START_REF] Villar | Transcriptional regulation of the human type 8 17betahydroxysteroid dehydrogenase gene by C/EBPbeta[END_REF]. Briefly, cells were seeded in 24-well plates in antibiotic-free medium. The day after, cells were transfected with Lipofectamine LTX Reagent and PLUS Reagent following the Cell-type Specific Transfection Protocols supplied by Invitrogen. After 24 h, cells were harvested and luciferase activities were measured as previously described [START_REF] Rotinen | Type 10 17beta-Hydroxysteroid Dehydrogenases expression is regulated by C/EBPbeta in HepG2 cells[END_REF]. Luminescence was measured mixing 20 µL of cell lysate with the Dual-Luciferase Reporter Assay System (Promega) in a Berthold Lumat LB 9501 luminometer (Berthold Technologies, Oak Ridge, TN). Renilla luciferase activity was used to correct the transfection A c c e p t e d M a n u s c r i p t 8 efficiency. Protein concentration was determined by Bradford assay (Bio-Rad Laboratories, Inc., Hercules, CA) using BSA as a standard.

RT and real time quantitative PCR.

Total RNA was isolated with the RNeasy Mini Kit (Qiagen, Valencia, CA). First-strand cDNA synthesis was performed using AffinityScript Multiple Temperature Reverse Transcriptase (Stratagene) according to manufacturer's protocol. Real-time quantitative PCR was performed using a Chromo-4 Real-Time PCR Detection System (MJ Research, Bio-Rad Laboratories) and Brilliant SYBR green Master Mix (Stratagene). Values were normalized to the expression levels of GAPDH and ACTB housekeeping genes. Primers used for detecting HSD17B11 mRNA were: sense strand 5'-TGCAATGACGAAGAATAACC-3' and antisense strand 5'-TTGTAAGGCAGCCAGTTC-3'. Primers used for detecting GAPDH were: sense strand 5'-GGAGTCCACTGGCGTCTTC -3' and antisense strand 5'-ATCTTGAGGCTGTTGTCATACTTC -3'. The primer set for human ACTB was purchased from SABiosciences, Qiagen (ACTB PPH00073E-200). Results from four independent experiments each performed in duplicate are expressed as fold change over controls. Statistical analyses were performed using Student's t-test and the differences were considered significant when p≤0.05.

Nuclear extraction, DNA affinity precipitation assays (DAPA) and western blot.

Nuclear extracts from LNCaP and PC-3 cells were obtained using NE-PER  Nuclear and Cytoplasmic Extraction Reagents (Thermo Scientific, IL, USA). 5'-biotin end-labeled sense and antisense oligonucleotides corresponding to the normal Sp1, C/EBP and their mutants (Table 1B) agarose for 1h at 4 ºC with rotation. The supernatant collected by centrifugation was incubated with 0.5 µg of normal or mutant biotin-labeled probe in binding buffer (20 mM HEPES pH 7.9, 50 mM NaCl, 1 mM DTT, 0.01% NP-40 and 5% Glycerol) overnight at 4 C with gentle rotation. DNA-protein complexes were washed five times with binding buffer. Pellet was resuspended in 40 µL of 2X protein sample buffer (Bio-Rad Laboratories) and then boiled for 10 min to dissociate complexes. Proteins were resolved by polyacrylamide gel electrophoresis, followed by western blot detection with C/EBPα (N-19) and Sp1 (PEP-2) antibodies obtained from Santa Cruz Biotechnology (Santa Cruz, CA). Methods for SDS-PAGE electrophoresis of cellular proteins, and transfer onto nitrocellulose membranes were done as previously described [START_REF] Alonso | New benzo(b)thiophenesulphonamide 1,1-dioxide derivatives induce a reactive oxygen species-mediated process of apoptosis in tumour cells[END_REF].

Chromatin immunoprecipitation (ChIP) assay.

ChIPs were performed using the ChIP-IT™ Chromatin Immunoprecipitation & Shearing Kit from Active Motif (Rixensart, Belgium) as previously described [START_REF] Rotinen | Estradiol induces type 8 17beta-hydroxysteroid dehydrogenase expression: crosstalk between estrogen receptor alpha and C/EBPbeta[END_REF]). Primers used for PCR are listed in Table 1C.

Statistics.

Statistical differences were examined using the SPSS 16.0 for Windows (Chicago, IL, USA).

Results are expressed as mean ± SEM for four independent experiments and analyzed by Student's t-test. 

Predictive nucleotide sequence analysis of the 5'-flanking region of HSD17B11.

HSD17B11 expression has been shown to be higher in PC relative to normal prostate cells [START_REF] Nakamura | 17beta-hydroxysteroid dehydrogenase type 11 (Pan1b) expression in human prostate cancer[END_REF]. To better understand the mechanisms that regulate HSD17B11 gene in PC, up to 2 Kb of the 5'-flanking region of the gene were cloned into a pGL3-Basic vector to form pB11-2016. Sequence analysis showed that it contains several binding sites for transcription factors (Fig. 1A). Transfection of constructs containing serial deletions of the 5'flanking region showed that this region has more activity in LNCaP than in C4-2 and PC-3 cells (Fig. 1B). Interestingly, construct containing the region -344 to +18 was the most active in all three cell lines. This sequence contains two putative C/EBP binding sites. It also contains putative transcription factor binding motifs for Sp1, KLFs and retinoic acid receptor (RXR) among others. Further deletion of this region showed no significant differences between -344 to -107, which indicates that the region from -107 to +18 is sufficient to maintain promoter activity of HSD17B11. This region contains putative binding sites for C/EBP, Sp1, NF-B and GATA.

Data also show that the promoter activity driven by the promoter region -344 to +18 and -107 to +18 are much more active in LNCaP than in C4-2 and PC-3 cells thus suggesting that there is a down regulating site in the region -2016 to -344 in LNCaP.

To explore if these motifs were important for HSD17B11 promoter activity, we performed sitedirected mutagenesis in the pB11-344 and pB11-107 constructs. As shown in Figure 2, mutation of the NF-κB motif reduced significantly the promoter activity of the constructs both in LNCaP and C4-2 cells, but not in PC-3 cells. Conversely, mutation of the GATA motif increased Moreover, simultaneous mutation of the Sp1 binding site and the CCAAT box at -71 reduced the promoter activity of the pB11-107mSp1/mCCAAT1 construct to less than 20%. These results clearly show the importance of these motifs for HSD17B11 promoter activity.

C/EBPα overexpression stimulates HSD17B11 expression in LNCaP and PC-3 cells.

Previously, we described that C/EBP or C/EBP expression induces HSD17B11 expression in the hepatocarcinoma cell line HepG2 [START_REF] Rotinen | Type 10 17beta-Hydroxysteroid Dehydrogenases expression is regulated by C/EBPbeta in HepG2 cells[END_REF]). To study if this is a general mechanism that occurs in all tissues, RT-qPCR was performed after C/EBPα or C/EBPβ transfection in PC cell lines (PC-3, LNCaP and C4-2) but also in colon carcinoma HT-29, lung carcinoma HTB-54 or bladder carcinoma EJ138 cell lines. Results showed that C/EBP increased HSD17B11 expression in each of the PC cell lines tested, while C/EBP only did it in PC-3 cells (Fig. 3A). However neither C/EBP nor C/EBP significantly modified HSD17B11 expression in HT-29, HTB-54 or EJ138 cell lines (Fig. 3B) thus confirming that HSD17B11 regulation is cell type specific.

C/EBPα or C/EBPβ induced HSD17B11 expression in HepG2 cells but this process was not mediated by the CCAAT boxes located within its proximal promoter region [START_REF] Rotinen | Type 10 17beta-Hydroxysteroid Dehydrogenases expression is regulated by C/EBPbeta in HepG2 cells[END_REF]). To determine if the HSD17B11 proximal promoter is mediating C/EBPα and/or C/EBPβ- 

C/EBPα interacts with HSD17B11 promoter.

To further explore if the CCAAT box located at -71 is involved in the C/EBP induced HSD17B11 upregulation, we performed DAPAs in which a biotynilated DNA probe containing HSD17B11 sequences from -91 to -67 (Table 1B) was incubated with nuclear extracts from LNCaP and PC-3 cells, followed by precipitation with a resin containing streptavidin. Then, DNA/protein complexes were analyzed by western blot (Fig. 3D). Results showed that C/EBP binds to HSD17B11 promoter. Importantly, this binding was prevented by a triple mutation within the sequence CCAAT demonstrating that this binding is specific. Finally, we studied if C/EBP is recruited to the HSD17B11 promoter in LNCaP and PC-3 cells by ChIP assay. As shown in Figure 3E, C/EBP was recruited to HSD17B11 promoter in both cell lines. These results confirm that C/EBP regulates HSD17B11 transcription in PC cells.

Sp1 regulates HSD17B11 expression.

A c c e p t e d M a n u s c r i p t 13 As mentioned before, point mutation of the Sp1 site located at -51 reduced promoter activity to 40% in LNCaP and PC-3 cells, and to 20% in C4-2 cells (Fig. 2) thus suggesting that Sp1 could be involved in the transcriptional regulation of the HSD17B11 gene at basal levels. To confirm this and to determine is Sp1 is involved in the transcriptional regulation of this gene in other tissues, HSD17B11 mRNA levels were determined after transfection with a Sp1 expression vector in PC cells (LNCaP, PC-3 and C4-2) and also in HT-29, HTB-54 and EJ138 cells. As shown in Figure 4A, Sp1 overexpression significantly induced HSD17B11 expression in PC cells increasing its levels by more than 50% in all three PC cells. However, Sp1 did not modified HSD17B11 expression in HT-29, HTB-54 or EJ138 cell lines (Fig. 4B) indicating that Sp1induced HSD17B11 expression is cell type specific. No increase was observed in ACTB control.

To confirm if the Sp1 binding site located within the promoter is involved in the Sp1-induced HSD17B11 expression we cotransfected PC cells with pB11-107 or pB11-107mSp1 and a Sp1 expression vector. Sp1-induced HSD17B11 luciferase activity was observed in all three PC cell lines. Interestingly, Sp1 induced promoter activity only in the wild type construct pB11-107 but failed to do it in the mutated construct pB11-107mSp1 (Fig. 4C) showing that the Sp1 binding site is required for this induction.

Sp1 interacts with HSD17B11 promoter.

To further investigate if the Sp1 binding site is involved in HSD17B11 transcriptional regulation we performed DAPA experiments. With this purpose, a DNA probe containing either the HSD17B11 Sp1 binding site or its mutated form (Table 1B) was incubated with nuclear extracts of PC-3 and LNCaP cells. Figure 4D shows that Sp1 binds to HSD17B11 normal promoter A c c e p t e d M a n u s c r i p t 14 sequence in vitro and, more importantly, that mutation of this GC box prevented Sp1 binding.

Finally, Sp1 binding to HSD17B11 promoter in vivo was confirmed in a ChIP assay performed with an antibody against Sp1 (Fig. 4E). All together these results clearly demonstrate that Sp1 is involved in the transcriptional regulation of HSD17B11 in PC cells.

Discussion

Here, we describe that transcription of the human HSD17B11 gene is regulated by Sp1 and C/EBP in PC cells. Human HSD17B11 gene was cloned in an attempt to expand the 11βhydroxysteroid dehydrogenase (HSD11B) family isolating HSD11B1 homologous cDNAs [START_REF] Li | Cloning and expression of a novel tissue specific 17betahydroxysteroid dehydrogenase[END_REF]). These enzymes play pivotal roles in modulating tissue levels of glucocorticoids and are thus excellent mediators of paracrine and autocrine actions [START_REF] Chapman | The role and regulation of 11beta-hydroxysteroid dehydrogenase type 1 in the inflammatory response[END_REF]. Early experiments testing HSD17B11 enzymatic activity showed that this protein, which is 22.9% identical to HSD11B1 [START_REF] Brereton | Pan1b (17betaHSD11)-enzymatic activity and distribution in the lung[END_REF], has 17-hydroxysteroid dehydrogenase activity.

The highest amount of activity was seen with 3-Diol where  30% of the substrate was converted to androsterone [START_REF] Li | Cloning and expression of a novel tissue specific 17betahydroxysteroid dehydrogenase[END_REF][START_REF] Brereton | Pan1b (17betaHSD11)-enzymatic activity and distribution in the lung[END_REF].

Androgen metabolism is well regulated in prostate. Regulation of ligand access to the AR is one of the most important aspects of this process [START_REF] Penning | New frontiers in androgen biosynthesis and metabolism[END_REF]. In normal circumstances, prostate cells capture circulating testosterone produced in the Leydig cells and reduce it to DHT by 5reductase [START_REF] Russell | Steroid 5 alpha-reductase: two genes/two enzymes[END_REF]. DHT is responsible for the growth, development, and maintenance of the normal secretory function of the prostate. Upon DHT binding, the activated AR dissociates from its cytoplasmic chaperone complex and undergoes a conformational change A c c e p t e d M a n u s c r i p t 15 inducing nuclear translocation [START_REF] Marcelli | Quantifying effects of ligands on androgen receptor nuclear translocation, intranuclear dynamics, and solubility[END_REF], dimerization [START_REF] Centenera | The contribution of different androgen receptor domains to receptor dimerization and signaling[END_REF]) and binding to specific DNA sequences known as androgen response elements usually located upstream of the target gene sequence [START_REF] Claessens | Selective DNA binding by the androgen receptor as a mechanism for hormone-specific gene regulation[END_REF]). AR will then recruit different transcription factors including both, general transcription factors and coregulatory proteins [START_REF] Chmelar | Androgen receptor coregulators and their involvement in the development and progression of prostate cancer[END_REF]) which lead to the transcriptional regulation of AR-target genes. Although it is known that androgen metabolism is altered in PC the mechanisms remain unclear [START_REF] Penning | New frontiers in androgen biosynthesis and metabolism[END_REF]). 3-Diol is considered a weak androgen with no ability to transactivate AR due to its low affinity for the receptor. However, studies on rats, dogs, marsupials and humans have demonstrated that 3-Diol can be converted back into DHT to stimulate growth of prostate [START_REF] Horst | In vivo uptake and metabolism of 3-h-5alpha-androstane-3alpha,17beta-diol and of 3-h-5alpha-androstane-3beta,17beta-diol by human prostatic hypertrophy[END_REF][START_REF] Jacobi | Studies on the mechanism of 3 alpha-androstanediolinduced growth of the dog prostate[END_REF][START_REF] Shaw | Prostate formation in a marsupial is mediated by the testicular androgen 5 alpha-androstane-3 alpha,17 beta-diol[END_REF]Wilson et al. 2003). AKR1C2, an enzyme that converts DHT in 3α-Diol in human prostate, is overexpressed in epithelial cells from PC. Since AKR1C2 activity deprives AR from its ligand, it has been suggested that this enzyme might contribute to progression towards androgen independence in PC [START_REF] Rizner | Human type 3 3alpha-hydroxysteroid dehydrogenase (aldo-keto reductase 1C2) and androgen metabolism in prostate cells[END_REF]. Since HSD17B11 converts 3α-Diol into androsterone thus reducing its intracellular levels, it is possible that this enzyme also contributes to progression to androgen independence in PC. Interestingly, HSD17B11 expression has been shown to be upregulated in human PC cells [START_REF] Nakamura | 17beta-hydroxysteroid dehydrogenase type 11 (Pan1b) expression in human prostate cancer[END_REF]). Here we show that mutation of the binding sites for C/EBP and Sp1 decreases HSD17B11 promoter activity to less than 20% in PC cells (Fig. 2). Since C/EBP and Sp1 overexpression induced HSD17B11 expression in the all three PC cell lines tested (PC-3, LNCaP and C4-2 cells) but not in the colon carcinoma HT-29, lung carcinoma HTB-54 or bladder carcinoma EJ138 cell lines (Fig. 3A, 3B, 4A and 4B), our results clearly indicate that this 

  (17-beta) dehydrogenase (HSD17B11) catalyzes the conversion of 5androstan-3,17-diol into androsterone suggesting that it may play an important role in androgen metabolism. We previously described that overexpression of C/EBPα or C/EBPβ induced HSD17B11 expression in HepG2 cells but this process was not mediated by the CCAAT boxes located within its proximal promoter region. Here, we study HSD17B11 transcriptional regulation in prostate cancer (PC) cells. Transfection experiments showed that the region -107/+18 is sufficient for promoter activity in PC cells. Mutagenesis analysis indicated that Sp1 and C/EBP binding sites found in this region are essential for promoter activity. Additional experiments demonstrated that ectopic expression of Sp1 and C/EBP upregulated HSD17B11 expression only in PC cell lines. Through DAPA and ChIP assays, specific recruitment of Sp1 and C/EBP to the HSD17B11 promoter was detected. These results show that HSD17B11 transcription in PC cells is regulated by Sp1 and C/EBP.

  gain a better understanding of the mechanisms governing the transcriptional regulation of the HSD17B11 gene and its regulation in prostate cancer, we have cloned and analyzed the 5'-flanking region of the human HSD17B11 gene between -2016 and +18. Serial deletion of the 5'-flanking region of the HSD17B11 gene identified the region -107/+18 as the minimal promoter. This region included consensus binding sites for C/EBP, Sp1, GATA and NF-κB transcription factors. Mutagenesis analysis showed that the C/EBP and Sp1 sites were essential for promoter activity. Additional experiments indicated that C/EBPα and Sp1 upregulate, bind and are recruited to the promoter of HSD17B11 gene. Taken together these results indicate that C/EBP and Sp1 are involved in the transcriptional regulation of the human HSD17B11 gene in cultured prostate cancer cells.

  (+18/-5). PCR products were cloned into a pGEM-T Easy plasmid from Promega (Madison, WI). The -2016/+18 bp insert obtained digesting this construct with EcoICRI and NcoI was subcloned into the SmaI and NcoI sites of the pGL3-Basic vector (Promega) to generate the construct pB11-2016. Construct pB11-344 was obtained from pB11-2016 via PCR with the primers 5'-GTGATAAGCAACCTTCAACTATGA-3' and 5'-CTTTATGTTTTTGGCGTCTTCCA-3' and cloning of the PCR product after digestion with NcoI into the SmaI and NcoI sites of the pGL3-Basic vector. Construct pB11-107 was generated by digestion of pB11-2016 with NheI and circularization of the largest fragment. Constructs pB11-1603 and pB11-1242 were generated from the -2016/+18 pGEM-T Easy, digesting with NcoI and either with DraI or HincII, respectively, and subcloning the resulting fragments into the NcoI and SmaI sites of the pGL3-Basic vector. The same procedure was used to generate pB11-696, pB11-537 and pB11-150, digesting instead with NcoI and either BamHI, XhoI or HindIII and subcloning the resulting fragments into the NcoI and BglII/XhoI/HindIII sites of pGL3-Basic vector. For restriction and ligation Promega and Takara Bio Inc. (Otsu, Shiga, Japan) enzymes were used according to manufacturer's instructions. All constructs were confirmed by sequencing. The C/EBPα and C/EBPβ expression vectors were a gift from Dr. Steven L. McKnight (UT Southwestern Medical Center, Dallas, TX). To generate the Sp1 expression vector, Sp1 mRNA was amplified by RT-PCR and cloned into pcDNA3.1 (Invitrogen, Carlsbad, CA).

  La Jolla, CA). The chimeric luciferase construct containing the -344/+18 region of the HSD17B11 promoter was used as a template. Oligonucleotides used were designed with the web based Quickchange Primer Design Program (http://www.stratagene.com/qcprimerdesign) and are listed in Table

  A c c e p t e d M a n u s c r i p t 9 of the HSD17B11 5'-flanking region were annealed and purified by DNA extraction. Nuclear extracts (500 µg) from LNCaP or PC-3 cells were pre-incubated with 20 µL of streptavidin-

  activity of the constructs only in PC-3 cells. Mutation of the CCAAT box located at -267 had no effect on pB11-344. However mutation of CCAAT box located at -71 reduced the activity of pB11-344 and pB11-107 to 60 and 40% respectively in LNCaP and PC-3 cells, and to less than 20% in C4-2 cells. Likewise, mutation of the Sp1 located at -51 reduced to 40% the activity of pB11-344 and pB11-107 in LNCaP and PC-3 cells, and to 20% in C4-2 cells.

  in C4-2, LNCaP and PC-3 PC cells, next we performed cotransfection experiments with pB11-107 and C/EBPα or C/EBPβ expression vectors. As shown in Figure 3C, overexpression of C/EBPα stimulated the luciferase activity of normal pB11-107 by 2.65-, 1.7-and 1.5-fold in C4-2, LNCaP and PC-3 cells respectively, but failed to induce the luciferase activity of the mutated construct pB11-107mCCAAT1. However, overexpression of C/EBPβ did not induce significantly HSD17B11 promoter activity in these cell lines. Taken together, these results indicate that C/EBP induces HSD17B11 transcription through its proximal promoter in PC cells.

Figure 1 .

 1 FIGURE LEGENDS

Figure 2 .

 2 Figure 2. The CCAAT box located at -71 and the Sp1 binding motif located at -51 are

  Figure 3. C/EBP upregulates HSD17B11 transcription in PC cells through the CCAAT

Figure 4 .

 4 Figure 4. Sp1 transactivates HSD17B11 in PC cells. A) PC-3, LNCaP and C4-2 cells were

Figure 5 .

 5 Figure 5. Sequence alignment of HSD17B11 orthologs. Sequence alignment of the 5'-flanking

Figure

  Figure

Figure

  Figure

Figure

  Figure

Figure

  Figure

Acknowledgements

M. R. and J.C were recipients of a fellowship from the Departamento de Educación, Gobierno de Navarra.

A c c e p t e d M a n u s c r i p t 16 regulation is cell type specific. We also show that mutation of the overlapping GATA and NF- binding sites affects HSD17B11 promoter activity in a cell type specific manner (Fig. 2).

Additional work is required to unravel the role of these motifs in HSD17B11 transcription.

Interestingly, sequence alignment of the 5'-flanking region of the HSD17B11 of human (hsa), Macaca mulatta (mcc), Pan troglodytes (ptr), Mus musculus (mmu), Rattus norvegicus (rno), Equus caballus (ecb), Canis lupus familiares (cfa) and Bos taurus (bta) showed that all these elements are almost identical among these species (Fig. 5). Moreover, the sequence from -145 to +18 of the human HSD17B11 gene seems to be almost identical to the compared orthologs, which indicates that HSD17B11 could be regulated in the same way in all species.

In conclusion, here we show that the basal level of expression of the human HSD17B11 gene is regulated by Sp1 and C/EBP in cultured PC cells. This regulation requires binding and recruitment of these transcription factors to HSD17B11 5'-flanking sequence. Since HSD17B11 is overexpressed in PC these results provide a new insight that will help to understand the mechanisms that deregulate the expression of this gene in PC.