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Abstract

We present a quantum-like model of decision making in games of the Prisoner’s Dilemma type. By this model the
brain processes information by using representation of mental states in a complex Hilbert space. Driven by the master
equation the mental state of a player, say Alice, approaches an equilibrium point in the space of density matrices
(representing mental states). This equilibrium state determines Alice’s mixed (i.e., probabilistic) strategy. We use a
master equation which in quantum physics describes the process of decoherence as the result of interaction with envi-
ronment. Thus our model is a model of thinking through decoherence of the initially pure mental state. Decoherence
is induced by the interaction with memory and the external mental environment. We study (numerically) the dynam-
ics of quantum entropy of Alice’s mental state in the process of decision making. We also consider classical entropy
corresponding to Alice’s choices. We introduce a measure of Alice’s diffidence as the difference between classical and
quantum entropies of Alice’s mental state. We see that (at least in our model example) diffidence decreases (approach-
ing zero) in the process of decision making. Finally, we discuss the problem of neuronal realization of quantum-like
dynamics of in the brain; especially roles played by lateral prefrontal cortex or and orbitofrontal cortex.

Keywords: Decision making, dynamics of mental state, quantum-like model, interaction with memory, decoherence,
quantum master equation, neuronal paradigm

1. Introduction1

The idea that the mathematical formalism of quan-2

tum information theory can be used to describe infor-3

mation processes in the brain was elaborated in a se-4

ries of papers, see [1]–[14]. This approach is based on5

the fundamental conjecture that the real physical brain6

developed an ability to represent the probabilistic in-7

formation in complex linear space, by complex vec-8

tors (pure quantum-like mental states) or more gener-9

ally density operators (mixtures of pure quantum-like10

mental states.1 (This paper contains a brief appendix11

on mathematics of quantum mechanics which may be12

useful for biologists, see also book [11].)13

1In section 5 we discuss the problem of neuronal realization of
quantum-like dynamics of in the brain; especially roles played by lat-
eral prefrontal cortex or and orbitofrontal cortex. We use studies on
neuronal correlates observed in the process of decision making [15],

We know well that quantum information processing14

can be simulated on the classical computer. Therefore15

our model need not be based on physically quantum16

brain as, e.g., the models of Homeroff [19], [20] and17

Penrose [21], [22]. Since the brain has huge computa-18

[16]. Of course, these are very preliminary considerations on a pos-
sible neuronal realization of the quantum-like dynamics of decision
making. However, it is useful to initiate such a discussion as soon
as possible to attract attention of neuroscientists and psychologists to
the problem of neuronal realization of the quantum-like dynamics of
decision making. We also mention that quantum-like probabilistic ef-
fects can be found not only in functioning of advanced cognitive sys-
tems, but even in cell’s biology. For example, we can point to the well
known glucose effect on E. coli growth; destructive interference of
two factors: the presence of lactose and glucose in a E. coli cell [17].
It is also well known that a dental epitherial cell grows in a medium as
it is (no differentiation). A dental mesenchymal cell grows similarly.
However, this two contexts are incompatible, see [18] for statistical
data. Their unification induces quantum-like interference.

Preprint submitted to Elsevier February 19, 2011



tional resources (a “neural computer” with 300 billions19

of processing units), the main reason for usage of the20

quantum representation of information may be not in-21

creasing the speed of computations. The main distin-22

guishing feature of the quantum information represen-23

tation is a possibility to operate with superpositions of24

states. We explore this feature of quantum information25

processing. From the very beginning we want to dis-26

tance frommodels of cognition based on quantum phys-27

ical carriers of information. It seems that it is impossi-28

ble to make these models consistent with the neuronal29

paradigm of cognition. We like to combine quantum30

information theory with the neuronal paradigm. A pos-31

sible physical realization of quantum-like processing of32

information by the brain operating with classical elec-33

tromagnetic fields was presented in [23].34

A few years ago J. Busemeyer et al. [2] noticed that35

quantum-like models of decision making can be used36

to explain disjunction effect in experiments of cognitive37

psychology. In particular, he reproduced statistical data38

from experiments of the Prisoner’s Dilemma (PD) type39

obtained by Shafir and Tversky [24], [25], see also [26].40

Busemeyer’s quantum-like model of decision making in41

PD is a psychological analog of the quantum model for42

the hydrogen atom. Of course, both models are over-43

simplified and to be applied to more complicated phe-44

nomena, they should be essentially modified. However,45

both express the main distinguishing features of corre-46

sponding theories (quantum physics and quantum-like47

cognitive psychology). Therefore in this paper we pro-48

ceed with PD. Following to tradition of quantum infor-49

mation theorywe call playersAlice and Bob, see section50

2 for details.51

Our aim is to describe the process of decision mak-52

ing in the brain; in particular, interaction with mem-53

ory. Quantum-like models of decision making were pre-54

sented in a series of papers [1]–[3], [6], [8]–[14].55

Dynamical models of decision making are of the main56

interest for us. We recall that, in a few papers [1], [2],57

[12], the process of decision making was described by58

Schrödinger’s evolution of the mental state. The lat-59

ter was assumed to be a pure state (mathematically it is60

represented by a normalized vector of complex Hilbert61

space). In this paper we shall explore in more detail the62

idea [14] that decisionmaking has to be represented by a63

more complicated dynamics which describes the evolu-64

tion of quantum (or more generally quantum-like state)65

interacting with an environment. Such dynamics plays66

an important role in quantum physics. Its fundamen-67

tal feature is transformation of pure states (described by68

complex vectors) into mixed states (described by den-69

sity matrices) – decoherence. In our cognitive model70

memory is an important part of the “mental environ-71

ment” which induces decoherence of a pure state, Al-72

ice’s state of mind before staring the process of decision73

making. In this paper we do not model the process of74

interaction with memory; as often in quantum informa-75

tion theory we represent memory (as well as the exter-76

nal mental environment) as a bath, in our case a “mental77

bath.” In a future paper we plan to model this process in78

more detail by using the apparatus of quantum Markov79

chains, cf. [6].80

In quantum physics interaction of a quantum sys-81

tem with a bath is described by a quantum version of82

the master equation. Quantum Markovian dynamics83

given by the Gorini-Kossakowski-Sudarshan-Lindblad84

(GKSL) equation, see e.g. [27] for detail, is the most85

popular approximation of quantum dynamics in the86

presence of interaction with a bath. We remind shortly87

the origin of the GKSL-dynamics. The starting point is88

that the state of a composite system, a quantum system s89

combined with a bath, is a pure quantum state, complex90

vectorΨ, which evolution is described by Schrödinger’s91

equation. This is an evolution in a Hilbert space of the92

huge dimension (since a bath has so many degrees of93

freedom). The existence of the Schrödinger dynam-94

ics in the huge Hilbert space has a merely theoretical95

value. Observers are interested in the dynamics of the96

state φs of the quantum system s. The next fundamental97

assumption in derivation of the GKSL-equation is the98

Markovness of the evolution, the absence of long term99

memory effects. It is assumed that interaction with the100

bath destroys such effects. Thus, the GKSL-evolution101

is Markovian evolution. Finally, we point to the condi-102

tion of the factorizability of the initial state of a com-103

posite system (a quantum system coupled with a bath),104

Ψ = φs ⊗ φbath, where ⊗ is the sign of the tensor prod-105

uct. Physically factorization is equivalent to the absence106

of correlations (at the beginning of evolution; later they107

are induced by the interaction term of Hamiltonian –108

the generator of evolution). One of distinguishing fea-109

tures of the evolution under the mentioned assumptions110

is the existence of one or a few equilibrium points. The111

state of the quantum system s stabilizes to one of such112

points in the process of evolution; a pure initial state, a113

complex vector ψs, is transformed into a mixed state, a114

density matrix ρs(t). In contrast to the GKSL-evolution,115

the Schrödinger evolution does not induce stabilization;116

any solution different from an eigenvector of Hamil-117

tonian will oscillate for ever. Another property of the118

Schrödinger dynamics is that it always transfers a pure119

state into a pure state, i.e., a vector into a vector. And120

we want to obtain mixed states, diagonalized in the ba-121

sis corresponding to the decision operator. The GKSL-122
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evolution gives such a possibility.123

In the process of decision making the brain selects a124

pure mental state describing possible decisions of the125

problem under consideration and drives this state – de-126

note it by φA (superposition of possible decisions of127

Alice in her game with Bob). The state of the mental128

environment is represented by another complex vector,129

say φB. In general, this is a huge mental state represent-130

ing all superpositions in memory and even permanent131

supply of superpositions created by the brain through132

its interaction with the environment. However, if Al-133

ice is concentrated on her strategy of play with Bob,134

we can restrict φB to Alice’s mental image of the pos-135

sible actions of Bob. In reality φB belongs to complex136

Hilbert space of a large dimension. Therefore the stan-137

dard assumption used in the derivation of the GKSL-138

equation is fulfilled. (In this paper, we consider a toy139

model in which φB is two dimensional, representing su-140

perposition of possible actions of Bob created in Alice’s141

brain. Thus formally one of the most important assump-142

tions of derivation of the GKSL-equation is not fulfilled.143

However, more detailed analysis shows that, in fact, in144

quantum physics the dimension of a bath is not crucial.145

The crucial property of a bath is that it is very stable146

to fluctuations in the quantum system s interacting with147

it. This assumption is fulfilled if Alice’s image of pos-148

sible actions of Bob is sufficiently stable with respect149

to fluctuations of the state of her possible actions.) The150

assumption of Markovness of the mental state evolution151

in decision making is natural. To proceed quickly to152

a decision, Alice must ignore the history of her reflec-153

tions on possible actions with respect to Bob.2 An input154

from (long-term) memory or mental environment de-155

stroys (working) memory of her reflections. (Working156

memory does not preserve a long chain of Alice’s reflec-157

tions.) Finally, we can assume that the initial composite158

state is factorized, i.e., correlations between Alice’s im-159

age of Bob and her possible actions are created in the160

process of decision making. Under these assumptions161

we can model the process of decision making by using162

the GKSL-equation.163

The mental state representing possible actions of Al-164

ice stabilizes to one of equilibrium points of the GKSL-165

dynamics. (In the mathematical model stabilization is166

achieved only in the limit t → ∞. However, in real-167

ity the brain cannot wait too long. We can assume the168

presence (in the brain) of a threshold ε which is used169

to terminate the process of stabilization of the mental170

2Such reflections are processed in her working memory. So, we
discuss Markovness of working memory. Of course, in our model
long-term memory is not ignored; it is a part of the mental bath.

state to a point of equilibrium, see also Remark 3.) A171

model equation considered in this paper has a single172

equilibrium point. Thus Alice elaborates the unique so-173

lution (which depends only on the mental environment,174

in particular, memory). However, in general the GKSL-175

equation can have a few different equilibrium points. In176

such a case depending on the initial state of mind Alice177

can obtain different solutions of the same problem. Such178

equations with a richer structure of equilibrium points179

will be studied in one of coming papers.180

2. Prisoner’s Dilemma181

In the paper of [14], we designed a quantum-182

like model for decision-making process in two-player183

games. This section explains briefly how a player in our184

model decides his own action, cf. also Busemeyer et al.185

[2].186

2.1. Pay-off Table of Two-player Game187

Let us consider a two-player game with two strate-188

gies. We name two players Alice (“A”) and Bob (“B”).189

Two strategies which A and B can choose are de-190

noted by “0” and “1”. The following table shows pay-191

offs assigned to possible four consequences of “0A0B”,192

“0A1B”, “1A0B” and “1A1B”. Here, a, b, c and d denote

A\B 0B 1B
0A (a\a) (b\c)
1A (c\b) (d\d)

193

the values of pay-offs.194

For example, a game of prisoner’s dilemma (PD) type
is characterized by the relation of

c > a > d > b.

For the player A, his pay-off will be a or c if the player195

B chose “0” and b or d if the player B chose “1”. In196

the both cases, from the relations of c > a and d >197

b, he can obtain larger pay-offs if he choose 1. The198

situation is same for the player B. Conventional game199

theory concludes that in PD game a “rational” player,200

who wants to maximize his own payoff, always chooses201

“1”.202

However, the above discussion does not explain com-203

pletely the process of decision-making in real player’s204

mind. Actually, as seen in statistical data in some ex-205

periments on so called disjunction effect [24]–[26] real206

players frequently behave “irrationally”. Our model207

is an attempt to describe such real player’s behaviors208

by some mathematical formalism. Our model is a209
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“quantum-like model” which is derived from basic con-210

cepts of quantum mechanics, but not an expansion of211

conventional game theory.212

Remark 1. (Rationality) The conventional decision213

making theory is based on the notion of rationality214

which is closely related to the Savage sure thing prin-215

ciple (SSP) [29] (one of the basic principles of mod-216

ern economics) having a large impact to cognitive psy-217

chology and cognitive science, see [12], [11] for popu-218

lar presentations for biologists and psychologists. This219

principle matches well our intution. This is a gen-220

eral principle of consistency of our decisions. If, e.g.,221

Noboru plans to buy some shares under the condition222

that an event A happens and at the same time he plans223

to buy these shares even under the condition that A does224

not happen, then it seems natural for him to buy them225

even if there is no information whether A happened or226

not. This principle of consistency of decision making227

is related to the very foundation of classical probabil-228

ity theory, the formula of total probability, see [2], [12],229

[11], [9] for details. The formula of total probability230

is the basis of the Bayesian approach to decision mak-231

ing. Therefore violation of SPP (which is equivalent232

to violation of the formula of total probability) implies233

impossibility to use the Bayesian scheme of decision234

making. In game theory the approach developed by von235

Neumann and Morgenstern [30] is also closely related236

to SSP. In particular, the use of the mini-max principle237

and the Nasch equilibrium are characteristic for “ratio-238

nal players”, rational in the sense of SSP. We remark239

that SSP and the von Neumann-Morgenstern [30] ap-240

proach to game theory had been criticized from the first241

days of their creation. Many bright thinkers pointed242

to inadequacy of SSP-rationality to real brain’s func-243

tioning.3 However, a better mathematical model had244

not been created. In particular, we can point to a re-245

cent detailed analysis of SSP-rationality [31]. The au-246

thors of this paper rightly couple SSP-rationality with247

the Bayesian approach to decision making. They criti-248

cized the Bayesian scheme of decision making pointing249

to numerous experiments in cognitive science and psy-250

chology demonstrating inapplicability of this scheme.251

However, the conclusion of the authors of [31] – it is im-252

possible to create a general formal mathematical model253

of decision making – is not acceptable for us. We gen-254

eralize the conventional Bayesian scheme of decision255

making by operating with a priori probabilistic ampli-256

tudes, instead of Bayesian a priori probabilities. Thus,257

opposite to [31], we claim that, in spite of violations of258

3Thus the critique of SSP-rationality is not the main aim of our
paper.

SSP, the notion of rationality can be formalized.259

Remark 2. (Quantum games) Theory of quantum260

games is an important part of quantum information the-261

ory, see, e.g., [32], [33]. In such a game theory quan-262

tum carriers of information, e.g., photons, are used as263

a source of randomness. Quantum game theory is typi-264

cally coupled to quantum physics. In contrast, we con-265

sider games played by “classical” macroscopic players.266

We do not assume that any really quantum source of ran-267

domness is involved in a game.4 Therefore, opposite to268

the traditional quantum game theory, we do not assume269

that Alice and Bob e.g. share entangled photons. This270

is the basic interpretational difference between “physi-271

cal quantum game theory” and our quantum-like game272

theory. This difference in interpretations plays a cru-273

cial role in application of quantum mathematics to real274

games. Opposite to e.g. [33], we consider the real PD275

and not a quantum PD-game which is based on sharing276

of entangled quantum systems by “prisoners.” (Experts277

in “physical quantum game theory” typically stress its278

role in future world of quantum technologies.) Our279

quantum-like game approach has violation of the for-280

mula of total probability as the point of departure. So,281

we do not speculate what kind of gambling would be282

popular after invention of quantum computers and com-283

munication. Finally, we point to an interesting pub-284

lication of Cheon and Tsutsui [34] which may serve285

as a bridge between the traditional theory of quantum286

games and our quantum-like game theory. They rightly287

stressed the role of non-factorizability of probabilities288

in generation of nonclassical strategies. The condition289

of non-factorizability can be formulated without the us-290

age of the formalism of quantum mechanics. There291

is no need to couple this condition to entanglement of292

states of quantum carriers of information. Therefore the293

Cheon-Tsutsui approach can be considered as quantum-294

like. We now turn to the mathematical structures of295

quantum and quantum-like game theories. If one for-296

get about interpretation differences5, then quantum and297

quantum-like games are based on the same mathemat-298

ics – the mathematical formalism of quantum mechan-299

ics. The main problem of the “ordinary quantum game300

theory” is that it considers physical quantum systems as301

sources of randomness. Therefore all actions on these302

systems which are permitted by quantummechanics can303

be used in a quantum game. All possible unitary trans-304

4Although we do not reject completely physical quantum models
of brain’s functioning, e.g., based on entanglement in brain micro-
tubules, we proceed without coupling to such models.

5I guess that for adherents of the conventional interpretation of
quantum mechanics it would be impossible.
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formations are in usage as game strategies. Roughly305

speaking in this framework it is possible to obtain ev-306

erything. In contrast, quantum-like games under con-307

sideration are coupled to brain’s functioning (at least to308

psychological functions). This stimulate dynamical ap-309

proach to decision making, i.e., selection of strategies310

through quantum-like mental dynamics, see Busemeyer311

et al. [2], [12], Khrennikov [1], [11]. In [14] we made312

a new step: in the process of decision making the final313

state is determined not by a unitary evolution, but by a314

decoherence process described by the quantum master315

equation. This is an important extension of the mathe-316

matical formalism of quantum game theory. One of the317

main distinguishing features of the “quantum(-like) de-318

coherence game theory” is non-invertibility of actions319

of players. Different initial states can produce the same320

output. This feature of our model matches well infor-321

mation processing by (macroscopic) biological systems.322

(Unitarity is not present in the macroworld. Therefore323

any model based on application of the quantum formal-324

ism to macrosystems has to contain a mechanism of vio-325

lation of linearity; decoherence is the most natural one.)326

2.2. Complex Hilbert Space Representation of Player’s327

Mind328

We present a model for the decision-making process329

in two-players games.6 We focus on player A’s mind. In330

principle, the player A is not informed of which action331

the player B chooses. The player A will be conscious332

of two potentials of B’s action simultaneously, and then333

he can not deny either of these potentials. In our model,334

this indeterminacy the player A holds is described by335

the following quantum superposition336

|φB〉 = α |0B〉 + β |1B〉 ∈ C2. (1)

The values of α and β are related to degrees of con-337

sciousness to B’s actions (so to say, these are complex338

probabilistic amplitudes of A’s intentions that B may339

make decisions 0 or 1, respectively). We call this com-340

plex vector |φB〉 a prediction state vector. (In accordance341

with the formalism of quantum mechanics, we assume342

|α|2 + |β|2 = 1.)343

The player A who is getting to choose the action “0”344

will be conscious of two consequences of “0A0B” and345

“0A1B” with probability amplitudes of α and β. This346

situation is described with a vector from C2 ⊗ C2 given347

6At the first stage it repeats the model of Busemeyer at al [2]. How-
ever, we restrict consideration to factorized initial state. This factor-
ization will provide a possibility to apply decoherence dynamics.

by348 ∣∣∣Φ0A〉 = α |0A0B〉 + β |0A1B〉
= |0A〉 ⊗ |φB〉 (2)

Similarly, ∣∣∣Φ1A〉 = |1A〉 ⊗ |φB〉 , (3)

is given for the situation such that A is getting to choose
“1”. By using these state vectors

∣∣∣Φ0A〉 and ∣∣∣Φ1A〉, we
define the following vector:

|ΨA〉 = x
∣∣∣Φ0A〉 + y ∣∣∣Φ1A〉 ∈ C2 ⊗ C2, (4)

(|x|2+|y|2 = 1). This state vector describes A’s intensions349

to act. We call it a mental state vector (of A’s intensions350

to act).351

The player A’s brain in this mental state chooses his352

own action probabilistically. His decision is described353

as “quantum measurements” of projectors correspond-354

ing to the vectors
∣∣∣Φ0A〉 or ∣∣∣Φ1A〉 on the state |ΨA〉 . (Prob-355

abilities of “0” and “1” are given by P(0A) = P0A = |x|2356

and P(1A) = P1A = |y|2.)357

In our model, the decision-making process is de-358

scribed as a dynamics changing |x|2 and |y|2, and its dy-359

namics has an equilibrium solution. Such stabilization360

of the mental state explains the following psychological361

activity in the player’s mind: The player has two psy-362

chological tendencies, the one to choose 0 and the one363

to choose 1. Degrees of these two opposite tendencies364

change in his mind, and they become stable with bal-365

ancing. (Fluctuations die and the definite probabilistic366

picture of the situation is created in A’s mind).367

The most simple dynamics of the stabilization of368

probabilities, the equations like chemical equilibration369

can be used in cognitive modelling:370

d
dt
P0A = −kP0A + k̃P1A ,

d
dt
P1A = kP0A − k̃P1A . (5)

The parameter k(k̃) corresponds to the velocity of the371

reaction from 0A to 1A (from 1A to 0A), and in the equi-372

librium state, the probabilities P0A and P1A are given as373

PE0A =
k̃
k + k̃

, PE1A =
k
k + k̃

. (6)

The differential equations (5) are not described as a374

quantum dynamics. In fact, they give only a part of the375

complete system of quantum dynamical equations, the376

dynamics of the diagonal terms of the density matrix.377

We shall complete the system (5) and obtain a quantum378

dynamics; a system of differential equation for elements379

of the density matrix of the mental state, (12).380
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2.3. Amplitudes of Velocities of Random Transitions in381

Alice’s Mind382

As we have seen from Eq. (5), player’s tendency to383

choose 1 or 0 is proportional to the velocity k or k̃, and384

these parameters determine the stability solution (6).385

The choice of k and k̃ is a very important issue in our386

model. We assume, their values are determined through387

comparison of possible consequences, 0A0B, 0A1B, 1A0B388

and 1A1B. The player in our model will consider the fol-389

lowing four kinds of comparisons:390

0A0B
k1
�

k̃1
1A0B, 0A1B

k2
�

k̃2
1A1B,

0A1B
k3
�

k̃3
1A0B, 0A0B

k4
�

k̃4
1A1B. (7)

These comparisons are represented like the conditions391

of chemical equilibrium, each of which is specified by392

the reaction velocities, ki and k̃i.393

The velocities k and k̃ should have the forms reflect-
ing effects of the four comparisons and interferences be-
tween them. In order to define these velocities in the
appropriative forms, we introduce complex numbers μ
and μ̃, which determine k and k̃ by

k = |μ|2, k̃ = |μ̃|2,

and define these μ and μ̃ (see [14] for details) as394

μ ≡ |α|2μ1 + |β|
2μ2 + αβ

∗μ3 + α
∗βμ4

μ̃ ≡ |α|2μ̃1 + |β|
2μ̃2 + α

∗βμ̃3 + αβ
∗μ̃4. (8)

Here μi=1,2,3,4 and μ̃i=1,2,3,4 are complex numbers sat-395

isfying |μi|2 = ki |μ̃i|2 = k̃i for given ki and k̃i. We point396

out that already here we introduced complex amplitudes.397

These are amplitudes of velocities of fluctuations (in398

Alice’s brain) between various possibilities. Thus, al-399

though the system of equations (5) looks as purely clas-400

sical dynamics, the quantum-like structure of decision401

making is already incorporated in it, through these com-402

plex amplitudes. The system of equations (5) depends403

on the prediction state, i.e., the state of possible Bob’s404

actions which was created in Alice’s brain. This is an405

example of so called adaptive dynamics [28]. In prin-406

ciple, adaptive dynamics in combination with complex407

amplitudes of velocities is sufficient to reproduce sta-408

tistical data obtained in experiments on the disjunction409

effect [24], [25], [26]. As was mentioned, this dynamics410

can be represented as a quantum-like dynamics of den-411

sity operator, (12). The use of the quantum-like form412

for dynamical equations simplifies essentially the for-413

malism and provides a possibility to use standard math-414

ematical methods of quantum mechanics and quantum415

information theory. However, this is not the main reason416

to apply the quantum-like representation of dynamical417

equations. The main reason is that we proceed under418

the basic assumption that the brain (as a macroscopic419

neuronal system) really uses the vector representation420

of probabilities.421

2.4. Quantum-like Model of Irrational Behavior422

The parameters (ki, k̃i) introduced in the previous sub-423

section specify the player’s four kinds of comparisons,424

see Eq. (7). It is natural that these comparisons depend425

on a given game, namely its pay-off table like (a, b, c

A\B 0B 1B
0A (a\a) (b\c)
1A (c\b) (d\d)

426

and d in the above table mean values of pay-offs.) The427

most simple relation of pay-offs and parameters (ki, k̃i)428

can be obtained via depending on magnitude relation429

between values of pay-off. In the case of PD-type game,430

the relation of pay-offs is c > a > d > b, and then, ki431

and k̃i are given as432

k1 = 1, k2 = 1, k3 = 1, k4 = 0,
k̃1 = 0, k̃2 = 0, k̃3 = 0, k̃4 = 1. (9)

Such setting is simple, but not real. The real player’s
decision-making will depend on differences between
pay-offs, not only magnitude relations. That is, the fol-
lowing setting will be more realistic

k1 = f1(|a− c|), k2 = f2(|b− d|), k3 = f3(|b− c|), k4 = 0;

k̃1 = 0, k̃2 = 0, k̃3 = 0, k̃4 = f̃4(|a − d|). (10)

The functions fi(x) are assumed to bemonotone increas-433

ing functions.434

Under the settings of ki and k̃i of (9) or (10), the prob-435

ability PE0A of Eq. (6) is non-zero as a result. Thus, our436

model explains that the player A generally has poten-437

tial to make the “irrational” choice of 0 in the PD-game.438

The reason for this result is that the parameter of k̃4 is439

non-zero. The k̃4 represents the degree of tendency to440

choose 0 which occurs from the comparison between441

consequences of 0A0B and 1A1B. It should be noted that442

such comparison is not considered in classical game the-443

ory.444
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3. Dynamics of Alice’s Mental State, Density Matrix445

In our model, the dynamics of probabilities corre-446

sponding to the mental state is specified by the differ-447

ential equations Eq. (5):448

d
dt
P0A = −kP0A + k̃P1A ,

d
dt
P1A = kP0A − k̃P1A .

Here, P0A = |x|2 and P1A = |y|2. ( x and y ∈ C449

are coefficients of the mental state |Ψ〉 = x |0A〉 ⊗450

|φB〉 + y |1A〉 ⊗ |φB〉 = x
∣∣∣Φ0A〉 + y ∣∣∣Φ1A〉, where |φB〉 =451

α |0B〉 + β |1B〉 α, β ∈ C is the prediction vector defined452

in Eq. (1). The parameters k and k̃ are defined in (8).453

In this section, we complete the dynamics Eq. (5) to454

a quantum dynamics of the density matrix ρ = |ψ〉 〈ψ| ,455

ρ =

(
ρ00 ρ01
ρ10 ρ11

)
. (11)

corresponding to the mental state |ψ〉 = x |0A〉 + y |1A〉456

describing the superposition of A’s decisions. Details of457

derivation (based on discrete quantum Markov chains)458

can be found in [14]. Here we present the final dynami-459

cal equation:460

d
dt
ρ00(t) = −|μ0|2ρ00 + |μ1|2ρ11,

d
dt
ρ01(t) = −

1
2
ρ01 + μ

∗
0μ1ρ10,

d
dt
ρ10(t) = −

1
2
ρ10 + μ0μ

∗
1ρ01,

d
dt
ρ11(t) = |μ0|2ρ00 − |μ1|2ρ11, (12)

where

|μ0|
2
=

|μ|2

|μ|2 + |μ̃|2
, |μ1|

2
=

|μ̃|2

|μ|2 + |μ̃|2
.

It is clear that the equations for diagonal parts corre-461

spond to the equations (5) essentially.7462

7We state again that the dynamics (12) is an oversimplified ver-
sion of the GKSL-equation. In general, the equations for the diago-
nal terms contain the off-diagonal terms and vice versa. Surprisingly
enough, already the equation (12) describes the process of decision
making which is essentially different from the classical Markovian
decision making. We shall see that the presence of the off-diagonal
terms decreases the entropy of the mental state. In some way off-
diagonal terms monitor the interaction with memory, the mental bath,
in the process of decision making. In the quantum-like regime the
brain uses less memory in the process of decision making, i.e., it per-
forms a more optimal selection of information for decision making.

In this dynamics, any initial state of ρ(0) approaches463

the unique equilibrium state ρE ;464

ρE =

(
|μ0|

2 0
0 |μ1|

2

)
, (13)

see [14] for calculations.465

The presence of nondiagonal terms in ρ(t) for finite t466

does not play any role in the asymptotic limit t → ∞.467

However, it modifies essentially the information struc-468

ture of the evolving mental state. We shall explain this469

point in more detail.470

4. Dynamics of Entropy in the Process of Decision471

Making472

As usual in quantum information theory, we can con-
sider von Neumann entropy, see, e.g., [27], of the quan-
tum (mixed) state ρ(t) and study its dynamics, S (t) =
−Trρ(t) ln ρ(t). This dynamics depends nontrivially on
the initial state ρ(t0) as well as amplitudes of velocities
of fluctuations between various possibilities in Alice’s
brain. In our model Alice’s initial state of mind is al-
ways pure, this is

|φA〉 = x0 |0A〉 + y0 |1A〉 , (14)

|x0|2 + |y0|2 = 1. The state |ΨA〉 , see (4), can be written
as

|ΨA〉 = |φA〉 ⊗ |φB〉 . (15)

(We state again that the predictions state |φB〉 provid-473

ing the quantum-like representation of Alice’s image of474

possible Bob’s actions has been already used to deter-475

mine dynamics of ρ(t), see (8).) The density matrix ρ(t0)476

corresponding to the pure state |φA〉 has the form477

ρ(t0) =
(
|x0|2 x0y∗0
x∗0y0 |y0|2

)
, (16)

We can always assume that x0 is a real number, 0 ≤
x0 ≤ 1, and

y0 =
√
1 − x20 e

iθA0 .

We shall not play with all parameters involved in com-
plex amplitudes μ0 and μ1. We just select μ0 as a real
parameter and

μ1 =
√
1 − μ0eiθμ .

Figure 1 contains graphs of quantum entropy
S 1(t), S 2(t), S 3(t) corresponding to three different
choices of parameters:

S 1, solid line : x0 = 0.33, μ0 = 0.85, θA0 = 0.1, θμ = 0.2;
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S 2, dashed : x0 = 0.315, μ0 = 0.625, θA0 = 0.1, θμ = 0.2;

S 3, dotted : x0 = 0.99, μ0 = 0.925, θA0 = 0.1, θμ = 0.2.

(So, phases are the same for all graphs, we play only478

with amplitudes.) These graphs show that behavior479

of quantum entropy depends essentially on parameters,480

i.e., the initial state of Alice’s mind and velocities of481

fluctuations between various possibilities.

S1

S2

S3

0 2 4 6 8 10
t0.2

0.3

0.4

0.5

0.6

0.7
S

Figure 1: Dynamics of quantum entropy

482

There are two main forms of graphs:483

1). Entropy monotonically increases by stabilizing to484

a constant value; the first stage of the process of deci-485

sion making is characterized by very quick increasing486

of entropy, then entropy increases very slowly; for large487

t, it varies negligibly, see the graph of S 1.488

We see that the first period of decision making is489

characterized by attraction of a large amount of new in-490

formation (mainly from memory, but from the external491

environment as well); entropy increases very quickly.492

Then, when the processing of this information is more493

or less finished, entropy stabilizes (becoming a con-494

stant) by approaching the equilibrium point.495

2). Entropy increases very quickly by approaching496

a local maximum, then it decreases and, finally, stabi-497

lizes. Typically, on the way to stabilization it has a local498

minimum and then it increases again.499

In both cases, at the initial stage of decision making500

entropy increases as the result of interaction with “envi-501

ronment” (in particular, memory), then (for some clus-502

ters of parameters) it decreases and uncertainty is mini-503

mized, see S 2, S 3, but then (before the final step of de-504

cision making) it increases again. Sometimes this final505

increasing of entropy is negligibly small, see the graph506

of S 3; sometimes entropy increases visibly, see S 2.507

The dynamics of quantum entropy represents the dy-508

namics of uncertainty in Alice’s decision state, entropy509

of choices between strategies. However, it does not de-510

scribe the dynamics of Alice’s diffidence to make the511

decision at this point t. We are looking for a quantity512

which can be considered as a measure of Alice’s diffi-513

dence.514

First of all we introduce classical entropy correspond-
ing to the diagonal terms in the density matrix ρ(t). This
is entropy for Alice’s choice between two possible de-
cisions if she were ignoring the off-diagonal terms. The
presence of these terms is a consequence the quantum-
like representation of information in the brain. The
complete mental state of Alice is a pure state (of a huge
dimension); the density matrix of Alice’s decision state
is extracted from this state. The quantum-like dynamics
of this density matrix induces not only dynamics of the
diagonal terms, but even off-diagonal ones. We set

SCL(t) = −(ρ00(t) ln ρ00(t) + ρ11(t) ln ρ11(t)),

the corresponding graphs are represented on Figure 2.515

SCL1

SCL2

SCL3

0 2 4 6 8 10 12 14
t0.2

0.3

0.4

0.5

0.6

0.7
SCL

Figure 2: Dynamics of classical entropy

We see that shapes of the graphs for classical entropy516

are similar to shapes of corresponding graphs for quan-517

tum entropy. However (!), quantum entropy is always518

less than classical entropy. Thus the quantum-like pro-519

cessing of information induces less uncertainty. In some520

way, the quantum-like representation in e.g. memory521

provides a possibility to use a smaller database to make522

a decision. We can speculate that these off-diagonal523

terms are responsible for Alice’s diffidence.524

Let us introduce the diffidence-quantity

D(t) = SCL(t) − S (t).

It is positive and, as we see from the graphs on Figure525

3, diffidence decreases and it approaches zero when Al-526

ice’s decision state approaches the point of equilibrium.527

Remark 3. As it was rightly pointed by a referee of528

this paper, “if a decision is made when the difference529

reaches a threshold, then the decision time is determin-530

istic. This does not explain why is there a distribution531

of decision times across from the same person.” We can532

speculate that the diffidence threshold εDF is not rigidly533

determined by brain’s architecture of a concrete person,534

8
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Figure 3: Dynamics of diffidence

but it can fluctuate depending on context. It is natural535

to assume that εDF has the Gaussian distribution. In this536

model decision times are random, since the difference537

threshold is random.8538

5. On experimental verification of dynamics of men-539

tal quantum-like state; coupling to the brain ar-540

chitecture541

One of the referees of this paper asked a important542

question:543

“How to measure or observe the dynamics of quan-544

tum entropy and difference during decision making in545

PD, in neurobiological, behavioral or psychological ex-546

periments?”547

In principle, the formalism of quantum information548

theory provides a possibility to reconstruct a density549

matrix on the basis of statistical data obtained through550

a series of measurements of a family of incompatible551

observables – quantum tomography. Since observations552

are incompatible, we are not able to perform them on553

the same biological system: human person, animal, nor554

even insect. Therefore the state reconstruction (at each555

instance of time) will demand a large statistical ensem-556

ble of biological systems participating in experiments.557

In theory the family of incompatible observables depend558

on continuous parameters; in reality we discretize these559

parameters. However, to obtain a good approximation,560

the discretization has to be sufficiently fine. Thus even561

for one instance of time the experiment demands a huge562

group of participants. Moreover, members of such a563

group should behave homogeneously. It is not clear564

whether it would be possible to perform experiments on565

monitoring of mental state dynamics in PD experiments566

with people. We speculate that it may be possible to567

design PD-type games for simpler biological systems:568

8A similar problem was discussed in [12].

animals? may be even insects? In the later case we have569

a better chance to create samples which behave homo-570

geneously. This is an interesting problem addressed to571

psychologists and cognitive scientists.572

However, it is too early to concentrate studies on the573

aforementioned problem. The following fundamental574

problem is essentially more important. In conventional575

quantum tomographywe have to be able to measure lin-576

ear combinations of incompatible observables. For ex-577

ample, let p̂ and q̂ denote the momentum and position578

operators, respectively. We also have to measure rota-579

tions of the type ẑθ = cos θq̂+sin θ p̂, θ ∈ [0, 2π). In quan-580

tum physics such measurement can be reduced to rota-581

tion of the state. And nowadays the technology of quan-582

tum state manipulation is well developed, so there is no583

problem to perform a state rotation.9 We have to de-584

velop a similar technology of mental state manipulation585

in biology. At the moment it is too early to speculate586

about a possibility of realization of this exciting project.587

In biology the situation is more complicated than in588

physics: there is no (or at least it is not yet known) cou-589

pling between the structure of space and mental states.590

For example the polarization vector is still meaningful591

in quantum physics10. Therefore we can use the space-592

representation of classical physics to prepare quantum593

systems in special states of polarization.594

Another important question is about the neuronal ar-595

chitecture of quantum-like dynamics of decision mak-596

ing. By our model the dynamics described by the quan-597

tum master equation is realized on neuronal level. It de-598

scribes interaction of the mental state encoding possible599

decisions with mental environment. As was remarked in600

[16]: “An optimal action, namely an action that is most likely601

to yield the most desirable outcome, often changes according602

to the state of the animals environment. Therefore, if a sensory603

stimulus informs the animal of a change in the state of its en-604

vironment, the animal needs to store such information until it605

produces an appropriate action or until this information can be606

combined with another stimulus to determine the new state of607

the environment.” In that paper it was pointed to the lat-608

9We point to the tremendous development of quantum technolo-
gies of state manipulation during the last ten years. This development
was stimulated by large interest to quantum computing and cryptog-
raphy. At the very beginning of quantum mechanics there was a huge
gap between theoretical consideration involving all possible quantum
states and possibilities for experimental realization of these states.
10The situation is more delicate. In quantum physics the polariza-

tion cannot be defined in the same way as in classical electrodynamics.
If the polarization vector were well defined, it would serve as a hidden
variable. As a consequence of Bell’s theorem, the latter does not exist.
(This viewpoint has not been commonly accepted, see e.g. [11]). In
any event the operator of projection of polarization to any direction is
well defined.
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eral prefrontal cortex as responsible for the state repre-609

sentation of the mental environment. We may speculate610

that the linear operator of the quantum master equation,611

see appendix, is stored in this domain of brain. (In the612

real situation this operator is time dependent.)613

In [15], [16] it was also remarked that lesions which614

encompass the orbitofrontal cortex in human patients as615

well as psychiatric conditions as substance abuse and616

frontotemporal dementia may crucially change the abil-617

ity to represent the statistical interdependence between618

the values of alternative options [16]. Knowledge of619

such interdependence might allow the decision makers620

to switch to a better choice immediately, as soon as621

they experience the reduction of values from a partic-622

ular choice. We may speculate that the quantum-like623

representation of the mental state (by a density matrix)624

is performed in the orbitofrontal cortex. The density625

matrix describes correlations between alternative op-626

tions; it seems that lesions in the orbitofrontal cortex627

and aforementioned psychiatric conditions destroy (at628

least partially) the density matrix.629

Conclusive remarks. We elaborated a quantum-like630

model of decision making based on interaction between631

the decision-state, i.e., the state carrying probabilities632

for possible choices, and the state of memory (or more633

general mental environment). We can speculate that634

decoherence may be a key element of transition from635

quantumunconsciousness (in which mind is represented636

by vector superpositions) to classical consciousness (in637

which the mind is represented by classical probabilistic638

mixtures).11639

6. Appendix: Mathematical formalism of quantum640

mechanics641

The mathematical formalism of quantum mechanics642

describes states of systems and observables, see book643

[11] for a simple representation of quantum mathemat-644

ics for biologists and psychologists. (The quantum-645

like approach is based on the observation that “quantum646

mathematics” can be applied outside quantum physics.)647

The basic mathematical structure of quantum me-648

chanics is a complex Hilbert space: a linear space over649

complex numbers H (i.e., it is possible to form linear650

11Thus, mind is always probabilistic, but it has different representa-
tions in consciousness and unconsciousness. The process of interac-
tion of the decision-state with memory can be described by the same
model as decoherence of a pure state of a quantum system interact-
ing with an environment, a bath; memory is a kind of mental bath for
decision states.

combinations of vectors with complex coefficients) en-651

dowed with a Hermitian bilinear form mapping a pair652

of vectors ψ1, ψ2 ∈ H into a complex number denoted653

〈ψ1|ψ2〉 (we use Dirac’s notation which is typical for654

quantum information theory). We shall be interested655

in complex vectors normalized by one, i.e., ψ ∈ H656

such that ‖ψ‖2 = 〈ψ|ψ〉 = 1. Such vectors encode so657

called pure states of quantum systems. Normalization658

by one is crucial for the probabilistic interpretation of659

pure states. Observables (e.g., the energy-observable or660

the position observable) are encoded by self-adjoint op-661

erators.662

The theory is especially simple in the finite dimen-663

sional case (which is typically considered in quantum664

information theory). Here H = Cn is the Cartesian665

product of n-copies of the set of complex numbers C.666

Hence, a pure state φ = (z1, ..., zn), where ‖ψ‖2 =667

|z1|2 + ... + |zn|2 = 1. Observables are given (in an or-668

thonormal basis) by Hermitian matrices A = (ai j); here669

āi j = a ji. In the Dirac notation the matrix elements are670

written as 〈φ1|A|φ2〉. Coordinates of a state vector are671

interpreted as probabilities (Born’s interpretation of a672

pure quantum states [11]). One can say that the quan-673

tum formalism provides a geometric representation of674

probabilities which is based on the Euclidean distance.675

Dynamics of a pure state is described by the
Schrödinger equation

i
dψ
dt
(t) = Hψ(t), ψ(0) = ψ0, (17)

where the operator H is the generator of evolution676

(Hamiltonian, the operator of energy). We remark that677

Schrödinger dynamics is deterministic. By fixing the678

initial state we can find the state of a quantum system679

at any instance of time. The fundamental problem of680

quantum foundations is that this state does not deter-681

mine values of observables. Measurements induce ran-682

domness.683

We remark that each pure state ψ determines a self-684

adjoint operator, the projector onto this state; ρ ≡ |ψ〉〈ψ|685

(the last symbol is simply the Dirac notation): ρφ =686

〈φ|ψ〉ψ.We recall the basic properties of ρψ :687

a) it is positively defined, i.e., 〈φ|ρ|φ〉 ≥ 0 for any φ;688

b) it is Hermitian;689

c) its trace (the sum of diagonal elements) equals to690

one.691

The Schrödinger dynamics for pure states (vectors)
can be rewritten as dynamics for corresponding opera-
tors:

i
dρ
dt
(t) = [H , ρ(t)], ρ(0) = ρ0, (18)
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where [H , ρ] = Hρ − ρH is the commutator of opera-692

tors.693

Consider now a statistical mixture (in the classical
sense) of a few projection operators ρi corresponding
to pure states ψi with weights pi ≥ 0,

∑
pi = 1,

ρ = p1ρ1 + ... + pnρn. (19)

Each operator of this form satisfies conditions a)–c) and694

vice versa. Denote the class of all operators with prop-695

erties a)–c) by the symbol D(H). This is the space of696

states of quantum systems. Its elements (called density697

operators) can be interpreted as statistical mixtures of698

pure states. In general a density operator can be rep-699

resented in the form (19) in many ways. There is one700

special expansion corresponding to eigenvectors of ρ.701

The density operator corresponding to a pure state can702

be characterized in the following way: in the basis of703

eigenvectors, its matrix has only one nonzero element704

(equal to one), i.e., up to a permutation of eigenvectors:705

ρ =

(
1 0
0 0

)
, (20)

where the blocks of zeros have the corresponding sizes.706

However, this takes place only in the basis of eigenvec-707

tors, cf. (16).708

Dynamics of a quantum state is described by the
equation (18), von Neumann equation. This dynamical
model can be used only in the absence of interaction of
a quantum system with an environment, a bath. If such
interaction is essential (so a system cannot be consid-
ered as isolated), von Neumann dynamics (18) has to be
modified and additional terms have to be included in it.
The basic postulate of quantum theory is that the state
dynamics is linear. Therefore modified dynamics has
the form

i
dρ
dt
(t) = [H , ρ(t)] + L(ρ), ρ(0) = ρ0, (21)

where L is a linear operator. This operator has to be709

chosen in such a way that starting with ρ0 ∈ D(H), we710

shall obtain a trajectory t → ρ(t) in D(H). The corre-711

sponding conditions on linear systems were formulated712

by Gorini, Kossakowski, Sudarshan, and Lindblad, see,713

e.g., [27] for details.714
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>A novel model of quantum-like processing of mental information is presented. 
 
 
>This  model matches the neuronal paradigm of cognitive science. 
 
 
>Classical electromagnetic signals provide the basis for quantum-like representation. 
 
 
>Signals are induced by joint activity of neurons. 
 




