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Introduction

The idea that the mathematical formalism of quantum information theory can be used to describe information processes in the brain was elaborated in a series of papers, see [START_REF] Khrennikov | Quantum-like brain: Interference of minds[END_REF]- [START_REF] Asano | Quantum-like model 763 for decision making process in two players game. A Non-764 Kolmogorovian model[END_REF]. This approach is based on the fundamental conjecture that the real physical brain developed an ability to represent the probabilistic information in complex linear space, by complex vectors (pure quantum-like mental states) or more generally density operators (mixtures of pure quantum-like mental states. 1 (This paper contains a brief appendix on mathematics of quantum mechanics which may be useful for biologists, see also book [START_REF] Khrennikov | Ubiquitous Quantum Structure: from Psychol-756 ogy to Finance[END_REF].) 1 In section 5 we discuss the problem of neuronal realization of quantum-like dynamics of in the brain; especially roles played by lateral prefrontal cortex or and orbitofrontal cortex. We use studies on neuronal correlates observed in the process of decision making [START_REF] Barraclough | Prefrontal cortex 766 and decision making in a mixed-strategy game[END_REF],

We know well that quantum information processing 14 can be simulated on the classical computer. Therefore 15 our model need not be based on physically quantum 16 brain as, e.g., the models of Homeroff [START_REF] Hameroff | Quantum coherence in microtubules. A neural ba-779 sis for emergent consciousness?[END_REF], [20] and [START_REF] Inada | Mechanism responsible for 772 glucose-lactose Diauxie in Escherichia Coli challenge to the 773 cAMP model[END_REF] Penrose [START_REF] Penrose | The Emperor's New Mind[END_REF], [START_REF] Penrose | Shadows of the Mind[END_REF]. Since the brain has huge computa-18 [START_REF] Lee | Functional specialization of the primate frontal cor-770 tex during decision making[END_REF]. Of course, these are very preliminary considerations on a possible neuronal realization of the quantum-like dynamics of decision making. However, it is useful to initiate such a discussion as soon as possible to attract attention of neuroscientists and psychologists to the problem of neuronal realization of the quantum-like dynamics of decision making. We also mention that quantum-like probabilistic effects can be found not only in functioning of advanced cognitive systems, but even in cell's biology. For example, we can point to the well known glucose effect on E. coli growth; destructive interference of two factors: the presence of lactose and glucose in a E. coli cell [START_REF] Inada | Mechanism responsible for 772 glucose-lactose Diauxie in Escherichia Coli challenge to the 773 cAMP model[END_REF]. It is also well known that a dental epitherial cell grows in a medium as it is (no differentiation). A dental mesenchymal cell grows similarly. However, this two contexts are incompatible, see [START_REF] Nakao | The development of a bio-776 engineered organ germ method[END_REF] for statistical data. Their unification induces quantum-like interference.

Preprint submitted to Elsevier February 19, 2011 ice's state of mind before staring the process of decision 73 making. In this paper we do not model the process of 74 interaction with memory; as often in quantum informa-75 tion theory we represent memory (as well as the exter-76 nal mental environment) as a bath, in our case a "mental 77 bath." In a future paper we plan to model this process in 78 more detail by using the apparatus of quantum Markov 79 chains, cf. [START_REF] Accardi | Quantum Markov model 740 for data from Shafir-Tversky experiments in cognitive psychol-741 ogy[END_REF].

80

In quantum physics interaction of a quantum sys- given by the Gorini-Kossakowski-Sudarshan-Lindblad 84 (GKSL) equation, see e.g. [START_REF] Ingarden | Information Dynamics and Open Systems: Classical and Quantum Approach[END_REF] for detail, is the most 85 popular approximation of quantum dynamics in the 86 presence of interaction with a bath. We remind shortly 87 the origin of the GKSL-dynamics. The starting point is 88 that the state of a composite system, a quantum system s 89 combined with a bath, is a pure quantum state, complex offs assigned to possible four consequences of "0 A 0 B ",

192 "0 A 1 B ", "1 A 0 B " and "1 A 1 B ". Here, a, b, c and d denote A\B 0 B 1 B 0 A (a\a) (b\c) 1 A (c\b) (d\d)
193 the values of pay-offs.

194

For example, a game of prisoner's dilemma (PD) type is characterized by the relation of

c > a > d > b.
For the player A, his pay-off will be a or c if the player 195 B chose "0" and b or d if the player B chose "1". In "quantum-like model" which is derived from basic concepts of quantum mechanics, but not an expansion of conventional game theory.

Remark 1. (Rationality) The conventional decision

making theory is based on the notion of rationality which is closely related to the Savage sure thing principle (SSP) [START_REF] Savage | The Foundations of Statistics[END_REF] (one of the basic principles of modern economics) having a large impact to cognitive psychology and cognitive science, see [START_REF] Pothos | A quantum probability explana-758 tion for violation of rational decision theory[END_REF], [START_REF] Khrennikov | Ubiquitous Quantum Structure: from Psychol-756 ogy to Finance[END_REF] for popular presentations for biologists and psychologists. This principle matches well our intution. This is a general principle of consistency of our decisions. If, e.g., Noboru plans to buy some shares under the condition that an event A happens and at the same time he plans to buy these shares even under the condition that A does not happen, then it seems natural for him to buy them even if there is no information whether A happened or not. This principle of consistency of decision making is related to the very foundation of classical probability theory, the formula of total probability, see [START_REF] Busemeyer | Quantum dy-725 namics of human decision making[END_REF], [START_REF] Pothos | A quantum probability explana-758 tion for violation of rational decision theory[END_REF], [START_REF] Khrennikov | Ubiquitous Quantum Structure: from Psychol-756 ogy to Finance[END_REF], [START_REF] Khrennikov | Quantum-like model of cognitive decision mak-752 ing and information processing[END_REF] for details. The formula of total probability is the basis of the Bayesian approach to decision making. Therefore violation of SPP (which is equivalent to violation of the formula of total probability) implies impossibility to use the Bayesian scheme of decision making. In game theory the approach developed by von Neumann and Morgenstern [START_REF] Neumann | Theory of Games and Economic Behavior[END_REF] is also closely related to SSP. In particular, the use of the mini-max principle and the Nasch equilibrium are characteristic for "rational players", rational in the sense of SSP. We remark that SSP and the von Neumann-Morgenstern [START_REF] Neumann | Theory of Games and Economic Behavior[END_REF] approach to game theory had been criticized from the first days of their creation. Many bright thinkers pointed to inadequacy of SSP-rationality to real brain's functioning. 3 However, a better mathematical model had not been created. In particular, we can point to a recent detailed analysis of SSP-rationality [START_REF] Gilboa | Is it always rational to satisfy Savage axioms?[END_REF]. The authors of this paper rightly couple SSP-rationality with the Bayesian approach to decision making. They criticized the Bayesian scheme of decision making pointing to numerous experiments in cognitive science and psychology demonstrating inapplicability of this scheme.

However, the conclusion of the authors of [START_REF] Gilboa | Is it always rational to satisfy Savage axioms?[END_REF] -it is impossible to create a general formal mathematical model of decision making -is not acceptable for us. We generalize the conventional Bayesian scheme of decision making by operating with a priori probabilistic amplitudes, instead of Bayesian a priori probabilities. Thus, opposite to [START_REF] Gilboa | Is it always rational to satisfy Savage axioms?[END_REF], we claim that, in spite of violations of Remark 2. (Quantum games) Theory of quantum 260 games is an important part of quantum information the-261 ory, see, e.g., [START_REF] Eisert | Quantum games and quantum strategies[END_REF], [START_REF] Cleve | Consequences and limits of nonlocal strategies[END_REF]. In such a game theory quan-262 tum carriers of information, e.g., photons, are used as 263 a source of randomness. Quantum game theory is typi-264 cally coupled to quantum physics. In contrast, we con-265 sider games played by "classical" macroscopic players.

266

We do not assume that any really quantum source of ran-267 domness is involved in a game. 4 Therefore, opposite to 4 Although we do not reject completely physical quantum models of brain's functioning, e.g., based on entanglement in brain microtubules, we proceed without coupling to such models. 5 I guess that for adherents of the conventional interpretation of quantum mechanics it would be impossible.

formations are in usage as game strategies. Roughly speaking in this framework it is possible to obtain everything. In contrast, quantum-like games under consideration are coupled to brain's functioning (at least to psychological functions). This stimulate dynamical approach to decision making, i.e., selection of strategies through quantum-like mental dynamics, see Busemeyer et al. [START_REF] Busemeyer | Quantum dy-725 namics of human decision making[END_REF], [START_REF] Pothos | A quantum probability explana-758 tion for violation of rational decision theory[END_REF], Khrennikov [START_REF] Khrennikov | Quantum-like brain: Interference of minds[END_REF], [START_REF] Khrennikov | Ubiquitous Quantum Structure: from Psychol-756 ogy to Finance[END_REF]. In [START_REF] Asano | Quantum-like model 763 for decision making process in two players game. A Non-764 Kolmogorovian model[END_REF] we made a new step: in the process of decision making the final state is determined not by a unitary evolution, but by a decoherence process described by the quantum master equation. This is an important extension of the mathematical formalism of quantum game theory. One of the main distinguishing features of the "quantum(-like) decoherence game theory" is non-invertibility of actions of players. Different initial states can produce the same output. This feature of our model matches well information processing by (macroscopic) biological systems.

(Unitarity is not present in the macroworld. Therefore any model based on application of the quantum formalism to macrosystems has to contain a mechanism of violation of linearity; decoherence is the most natural one.)

Complex Hilbert Space Representation of Player's Mind

We present a model for the decision-making process in two-players games. 6 We focus on player A's mind. In principle, the player A is not informed of which action the player B chooses. The player A will be conscious of two potentials of B's action simultaneously, and then he can not deny either of these potentials. In our model, this indeterminacy the player A holds is described by the following quantum superposition

|φ B = α |0 B + β |1 B ∈ C 2 .
(

) 1 
The values of α and β are related to degrees of consciousness to B's actions (so to say, these are complex probabilistic amplitudes of A's intentions that B may make decisions 0 or 1, respectively). We call this complex vector |φ B a prediction state vector. (In accordance with the formalism of quantum mechanics, we assume

|α| 2 + |β| 2 = 1.)
The player A who is getting to choose the action "0" will be conscious of two consequences of "0 A 0 B " and "0 A 1 B " with probability amplitudes of α and β. This situation is described with a vector from C 2 ⊗ C 2 given 6 At the first stage it repeats the model of Busemeyer at al [START_REF] Busemeyer | Quantum dy-725 namics of human decision making[END_REF]. However, we restrict consideration to factorized initial state. This factorization will provide a possibility to apply decoherence dynamics. by 348

Φ 0 A = α |0 A 0 B + β |0 A 1 B = |0 A ⊗ |φ B (2)
Similarly,

Φ 1 A = |1 A ⊗ |φ B , (3) 
is given for the situation such that A is getting to choose "1". By using these state vectors Φ 0 A and Φ 1 A , we define the following vector: 

|Ψ A = x Φ 0 A + y Φ 1 A ∈ C 2 ⊗ C 2 , (4) 

367

The most simple dynamics of the stabilization of 368 probabilities, the equations like chemical equilibration 369 can be used in cognitive modelling:

370 d dt P 0 A = -kP 0 A + kP 1 A , d dt P 1 A = kP 0 A -kP 1 A . (5) 
The parameter k( k) corresponds to the velocity of the 371 reaction from 0 A to 1 A (from 1 A to 0 A ), and in the equi-372 librium state, the probabilities P 0 A and P 1 A are given as

373 P E 0 A = k k + k , P E 1 A = k k + k . (6) 
The differential equations (5) are not described as a 374 quantum dynamics. In fact, they give only a part of the We shall complete the system (5) and obtain a quantum 378 dynamics; a system of differential equation for elements 379 of the density matrix of the mental state, [START_REF] Pothos | A quantum probability explana-758 tion for violation of rational decision theory[END_REF].

380

As we have seen from Eq. ( 5), player's tendency to 

390 0 A 0 B k 1 k1 1 A 0 B , 0 A 1 B k 2 k2 1 A 1 B , 0 A 1 B k 3 k3 1 A 0 B , 0 A 0 B k 4 k4 1 A 1 B . (7) 
These comparisons are represented like the conditions 391 of chemical equilibrium, each of which is specified by 392 the reaction velocities, k i and ki .

393

The velocities k and k should have the forms reflecting effects of the four comparisons and interferences between them. In order to define these velocities in the appropriative forms, we introduce complex numbers μ and μ, which determine k and k by

k = |μ| 2 , k = | μ| 2 ,
and define these μ and μ (see [START_REF] Asano | Quantum-like model 763 for decision making process in two players game. A Non-764 Kolmogorovian model[END_REF] for details) as

394 μ ≡ |α| 2 μ 1 + |β| 2 μ 2 + αβ * μ 3 + α * βμ 4 μ ≡ |α| 2 μ1 + |β| 2 μ2 + α * β μ3 + αβ * μ4 . (8) 
Here μ i=1,2,3,4 and μi=1,2,3,4 are complex numbers sat- 

395 isfying |μ i | 2 = k i | μi | 2 =
k 1 = 1, k 2 = 1, k 3 = 1, k 4 = 0, k1 = 0, k2 = 0, k3 = 0, k4 = 1. ( 9 
)
Such setting is simple, but not real. The real player's decision-making will depend on differences between pay-offs, not only magnitude relations. That is, the following setting will be more realistic

k 1 = f 1 (|a -c|), k 2 = f 2 (|b -d|), k 3 = f 3 (|b -c|), k 4 = 0; k1 = 0, k2 = 0, k3 = 0, k4 = f4 (|a -d|). ( 10 
)
The functions f i (x) are assumed to be monotone increas-433 ing functions.

434

Under the settings of k i and ki of ( 9) or ( 10), the prob-

435
ability P E 0A of Eq. ( 6) is non-zero as a result. Thus, our 436 model explains that the player A generally has poten-437 tial to make the "irrational" choice of 0 in the PD-game.

438

The reason for this result is that the parameter of k4 is 

444

In our model, the dynamics of probabilities corresponding to the mental state is specified by the differential equations Eq. ( 5):

d dt P 0 A = -kP 0 A + kP 1 A , d dt P 1 A = kP 0 A -kP 1 A .
Here, P 0 A = |x| 2 and P 1 A = |y| 2 . ( x and y ∈ C are coefficients of the mental state

|Ψ = x |0 A ⊗ |φ B + y |1 A ⊗ |φ B = x Φ 0 A + y Φ 1 A , where |φ B = α |0 B + β |1 B α, β ∈ C
is the prediction vector defined in Eq. ( 1). The parameters k and k are defined in [START_REF] Khrennikov | Quantum mechanics and viola-748 tions of the sure-thing principle: the use of probability interfer-749 ence and other concepts[END_REF].

In this section, we complete the dynamics Eq. ( 5 can be found in [START_REF] Asano | Quantum-like model 763 for decision making process in two players game. A Non-764 Kolmogorovian model[END_REF]. Here we present the final dynamical equation:

d dt ρ 00 (t) = -|μ 0 | 2 ρ 00 + |μ 1 | 2 ρ 11 , d dt ρ 01 (t) = - 1 2 ρ 01 + μ * 0 μ 1 ρ 10 , d dt ρ 10 (t) = - 1 2 ρ 10 + μ 0 μ * 1 ρ 01 , d dt ρ 11 (t) = |μ 0 | 2 ρ 00 -|μ 1 | 2 ρ 11 , (12) 
where

|μ 0 | 2 = |μ| 2 |μ| 2 + | μ| 2 , |μ 1 | 2 = | μ| 2 |μ| 2 + | μ| 2 .
It is clear that the equations for diagonal parts correspond to the equations (5) essentially. 7 7 We state again that the dynamics ( 12) is an oversimplified version of the GKSL-equation. In general, the equations for the diagonal terms contain the off-diagonal terms and vice versa. Surprisingly enough, already the equation ( 12) describes the process of decision making which is essentially different from the classical Markovian decision making. We shall see that the presence of the off-diagonal terms decreases the entropy of the mental state. In some way offdiagonal terms monitor the interaction with memory, the mental bath, in the process of decision making. In the quantum-like regime the brain uses less memory in the process of decision making, i.e., it performs a more optimal selection of information for decision making.

the unique equilibrium state ρ E ;

ρ E = |μ 0 | 2 0 0 |μ 1 | 2 , (13) 
see [START_REF] Asano | Quantum-like model 763 for decision making process in two players game. A Non-764 Kolmogorovian model[END_REF] for calculations.

465

The presence of nondiagonal terms in ρ(t) for finite t 466 does not play any role in the asymptotic limit t → ∞.

467

However, it modifies essentially the information struc-468 ture of the evolving mental state. We shall explain this 469 point in more detail. As usual in quantum information theory, we can consider von Neumann entropy, see, e.g., [START_REF] Ingarden | Information Dynamics and Open Systems: Classical and Quantum Approach[END_REF], of the quantum (mixed) state ρ(t) and study its dynamics, S (t) = -Trρ(t) ln ρ(t). This dynamics depends nontrivially on the initial state ρ(t 0 ) as well as amplitudes of velocities of fluctuations between various possibilities in Alice's brain. In our model Alice's initial state of mind is always pure, this is

|φ A = x 0 |0 A + y 0 |1 A , (14) 
|x 0 | 2 + |y 0 | 2 = 1. The state |Ψ A , see (4) 
, can be written as 

|Ψ A = |φ A ⊗ |φ B . (15) 
ρ(t 0 ) = |x 0 | 2 x 0 y * 0 x * 0 y 0 |y 0 | 2 , (16) 
We can always assume that x 0 is a real number, 0 ≤ x 0 ≤ 1, and

y 0 = 1 -x 2
0 e iθ A0 . We shall not play with all parameters involved in complex amplitudes μ 0 and μ 1 . We just select μ 0 as a real parameter and (So, phases are the same for all graphs, we play only with amplitudes.) These graphs show that behavior of quantum entropy depends essentially on parameters, i.e., the initial state of Alice's mind and velocities of fluctuations between various possibilities. We see that the first period of decision making is characterized by attraction of a large amount of new information (mainly from memory, but from the external environment as well); entropy increases very quickly.

μ 1 = 1 -μ 0 e iθ μ .
Then, when the processing of this information is more or less finished, entropy stabilizes (becoming a constant) by approaching the equilibrium point.

2). Entropy increases very quickly by approaching a local maximum, then it decreases and, finally, stabilizes. Typically, on the way to stabilization it has a local minimum and then it increases again.

In both cases, at the initial stage of decision making entropy increases as the result of interaction with "environment" (in particular, memory), then (for some clusters of parameters) it decreases and uncertainty is minimized, see S 2 , S 3 , but then (before the final step of decision making) it increases again. Sometimes this final increasing of entropy is negligibly small, see the graph of S 3 ; sometimes entropy increases visibly, see S 2 .

The dynamics of quantum entropy represents the dynamics of uncertainty in Alice's decision state, entropy of choices between strategies. However, it does not describe the dynamics of Alice's diffidence to make the decision at this point t. We are looking for a quantity which can be considered as a measure of Alice's diffi-513 dence.

514

First of all we introduce classical entropy corresponding to the diagonal terms in the density matrix ρ(t). This is entropy for Alice's choice between two possible decisions if she were ignoring the off-diagonal terms. The presence of these terms is a consequence the quantumlike representation of information in the brain. The complete mental state of Alice is a pure state (of a huge dimension); the density matrix of Alice's decision state is extracted from this state. The quantum-like dynamics of this density matrix induces not only dynamics of the diagonal terms, but even off-diagonal ones. We set S CL(t) = -(ρ 00 (t) ln ρ 00 (t) + ρ 11 (t) ln ρ 11 (t)), the corresponding graphs are represented on Figure 2. 

D(t) = S CL(t) -S (t).
It is positive and, as we see from the graphs on Figure with people. We speculate that it may be possible to 567 design PD-type games for simpler biological systems: 568 8 A similar problem was discussed in [START_REF] Pothos | A quantum probability explana-758 tion for violation of rational decision theory[END_REF]. animals? may be even insects? In the later case we have problem to perform a state rotation. 9 We have to de-584 velop a similar technology of mental state manipulation 585 in biology. At the moment it is too early to speculate 586 about a possibility of realization of this exciting project.

587

In biology the situation is more complicated than in 588 physics: there is no (or at least it is not yet known) cou-589 pling between the structure of space and mental states. decisions with mental environment. As was remarked in 600 [START_REF] Lee | Functional specialization of the primate frontal cor-770 tex during decision making[END_REF]: "An optimal action, namely an action that is most likely 601 to yield the most desirable outcome, often changes according 602 to the state of the animals environment. Therefore, if a sensory 603 stimulus informs the animal of a change in the state of its en-604 vironment, the animal needs to store such information until it 605 produces an appropriate action or until this information can be 606 combined with another stimulus to determine the new state of 607 the environment." In that paper it was pointed to the lat-608 9 We point to the tremendous development of quantum technologies of state manipulation during the last ten years. This development was stimulated by large interest to quantum computing and cryptography. At the very beginning of quantum mechanics there was a huge gap between theoretical consideration involving all possible quantum states and possibilities for experimental realization of these states. 10 The situation is more delicate. In quantum physics the polarization cannot be defined in the same way as in classical electrodynamics. If the polarization vector were well defined, it would serve as a hidden variable. As a consequence of Bell's theorem, the latter does not exist. (This viewpoint has not been commonly accepted, see e.g. [START_REF] Khrennikov | Ubiquitous Quantum Structure: from Psychol-756 ogy to Finance[END_REF]). In any event the operator of projection of polarization to any direction is well defined.

Consider now a statistical mixture (in the classical sense) of a few projection operators ρ i corresponding to pure states ψ i with weights p i ≥ 0, p i = 1, ρ = p 1 ρ 1 + ... + p n ρ n .

Each operator of this form satisfies conditions a)-c) and (equal to one), i.e., up to a permutation of eigenvectors:

ρ = 1 0 0 0 , ( 20 
)
where the blocks of zeros have the corresponding sizes.

>This model matches the neuronal paradigm of cognitive science.

>Classical electromagnetic signals provide the basis for quantum-like representation.

>Signals are induced by joint activity of neurons.

81

  tem with a bath is described by a quantum version of 82 the master equation. Quantum Markovian dynamics 83

  90vector Ψ, which evolution is described by Schrödinger's 91 equation. This is an evolution in a Hilbert space of the 92 huge dimension (since a bath has so many degrees of 93 freedom). The existence of the Schrödinger dynam-94 ics in the huge Hilbert space has a merely theoretical 95 value. Observers are interested in the dynamics of the 96 state φ s of the quantum system s. The next fundamental 97 assumption in derivation of the GKSL-equation is the 98 Markovness of the evolution, the absence of long term 99 memory effects. It is assumed that interaction with the 100 bath destroys such effects. Thus, the GKSL-evolution 101 is Markovian evolution. Finally, we point to the condi-102 tion of the factorizability of the initial state of a com-103 posite system (a quantum system coupled with a bath), 104 Ψ = φ s ⊗ φ bath , where ⊗ is the sign of the tensor prod-105 uct. Physically factorization is equivalent to the absence 106 of correlations (at the beginning of evolution; later they 107 are induced by the interaction term of Hamiltonian -108 the generator of evolution). One of distinguishing fea-109 tures of the evolution under the mentioned assumptions 110 is the existence of one or a few equilibrium points. The 111 state of the quantum system s stabilizes to one of such 112 points in the process of evolution; a pure initial state, a 113 complex vector ψ s , is transformed into a mixed state, a 114 density matrix ρ s (t). In contrast to the GKSL-evolution, 115 the Schrödinger evolution does not induce stabilization; 116 any solution different from an eigenvector of Hamil-117 tonian will oscillate for ever. Another property of the 118 Schrödinger dynamics is that it always transfers a pure 119 state into a pure state, i.e., a vector into a vector. And 120 we want to obtain mixed states, diagonalized in the ba-121 sis corresponding to the decision operator. The GKSL-122 2 evolution gives such a possibility.

196

  the both cases, from the relations of c > a and d > 197 b, he can obtain larger pay-offs if he choose 1. The 198 situation is same for the player B. Conventional game 199 theory concludes that in PD game a "rational" player, 200 who wants to maximize his own payoff, always chooses 201 "1". 202 However, the above discussion does not explain com-203 pletely the process of decision-making in real player's 204 mind. Actually, as seen in statistical data in some ex-205 periments on so called disjunction effect [24]-[26] real 206 players frequently behave "irrationally". Our model 207 is an attempt to describe such real player's behaviors 208 by some mathematical formalism. Our model is a 209

  268the traditional quantum game theory, we do not assume 269 that Alice and Bob e.g. share entangled photons. This 270 is the basic interpretational difference between "physi-271 cal quantum game theory" and our quantum-like game 272 theory. This difference in interpretations plays a cru-273 cial role in application of quantum mathematics to real 274 games. Opposite to e.g. [33], we consider the real PD 275 and not a quantum PD-game which is based on sharing 276 of entangled quantum systems by "prisoners." (Experts 277 in "physical quantum game theory" typically stress its 278 role in future world of quantum technologies.) Our 279 quantum-like game approach has violation of the for-280 mula of total probability as the point of departure. So, 281 we do not speculate what kind of gambling would be 282 popular after invention of quantum computers and com-283 munication. Finally, we point to an interesting pub-284 lication of Cheon and Tsutsui [34] which may serve 285 as a bridge between the traditional theory of quantum 286 games and our quantum-like game theory. They rightly 287 stressed the role of non-factorizability of probabilities 288 in generation of nonclassical strategies. The condition 289 of non-factorizability can be formulated without the us-290 age of the formalism of quantum mechanics. There 291 is no need to couple this condition to entanglement of 292 states of quantum carriers of information. Therefore the 293 Cheon-Tsutsui approach can be considered as quantum-294 like. We now turn to the mathematical structures of 295 quantum and quantum-like game theories. If one for-296 get about interpretation differences 5 , then quantum and 297 quantum-like games are based on the same mathemat-298 ics -the mathematical formalism of quantum mechan-299 ics. The main problem of the "ordinary quantum game 300 theory" is that it considers physical quantum systems as 301 sources of randomness. Therefore all actions on these 302 systems which are permitted by quantum mechanics can 303 be used in a quantum game. All possible unitary trans-304

359

  namics has an equilibrium solution. Such stabilization 360 of the mental state explains the following psychological 361 activity in the player's mind: The player has two psy-362 chological tendencies, the one to choose 0 and the one 363 to choose 1. Degrees of these two opposite tendencies 364 change in his mind, and they become stable with bal-365 ancing. (Fluctuations die and the definite probabilistic 366 picture of the situation is created in A's mind).

375

  complete system of quantum dynamical equations, the 376 dynamics of the diagonal terms of the density matrix.

  377

383 choose 1

 1 or 0 is proportional to the velocity k or k, and 384 these parameters determine the stability solution[START_REF] Accardi | Quantum Markov model 740 for data from Shafir-Tversky experiments in cognitive psychol-741 ogy[END_REF]. 385 The choice of k and k is a very important issue in our 386 model. We assume, their values are determined through 387 comparison of possible consequences, 0 A 0 B , 0 A 1 B , 1 A 0 B 388 and 1 A 1 B . The player in our model will consider the fol-389 lowing four kinds of comparisons:

  439 non-zero. The k4 represents the degree of tendency to 440 choose 0 which occurs from the comparison between 441 consequences of 0 A 0 B and 1 A 1 B . It should be noted that 442 such comparison is not considered in classical game the-443 ory.

  ) to a quantum dynamics of the density matrix ρ = |ψ ψ| , ρ = ρ 00 ρ 01 ρ 10 ρ 11 . (11) corresponding to the mental state |ψ = x |0 A + y |1 A describing the superposition of A's decisions. Details of derivation (based on discrete quantum Markov chains)

470 4 .

 4 Dynamics of Entropy in the Process of Decision471 Making 472

Figure 1

 1 Figure 1 contains graphs of quantum entropy S 1 (t), S 2 (t), S 3 (t) corresponding to three different choices of parameters: S 1 , solid line : x 0 = 0.33, μ 0 = 0.85, θ A0 = 0.1, θ μ = 0.2;

Figure 1 :

 1 Figure 1: Dynamics of quantum entropy

  515

Figure 2 :

 2 Figure 2: Dynamics of classical entropy

525 3 ,Remark 3 .D 1 D 2 D 3 0 15 DFigure 3 : 8 538 5 . 543 "

 3312315385543 Figure 3: Dynamics of diffidence

  569 a better chance to create samples which behave homo-570 geneously. This is an interesting problem addressed to 571 psychologists and cognitive scientists. 572 However, it is too early to concentrate studies on the 573 aforementioned problem. The following fundamental 574 problem is essentially more important. In conventional 575 quantum tomography we have to be able to measure lin-576 ear combinations of incompatible observables. For ex-577 ample, let p and q denote the momentum and position 578 operators, respectively. We also have to measure rota-579 tions of the type ẑθ = cos θ q+sin θ p, θ ∈ [0, 2π). In quan-580 tum physics such measurement can be reduced to rota-581 tion of the state. And nowadays the technology of quan-582 tum state manipulation is well developed, so there is no 583

590

  For example the polarization vector is still meaningful 591 in quantum physics10 . Therefore we can use the space-592 representation of classical physics to prepare quantum 593 systems in special states of polarization. 594 Another important question is about the neuronal ar-595 chitecture of quantum-like dynamics of decision mak-596 ing. By our model the dynamics described by the quan-597 tum master equation is realized on neuronal level. It de-598 scribes interaction of the mental state encoding possible 599

694

  vice versa. Denote the class of all operators with prop-695 erties a)-c) by the symbol D(H). This is the space of 696 states of quantum systems. Its elements (called density 697 operators) can be interpreted as statistical mixtures of 698 pure states. In general a density operator can be rep-699 resented in the form (19) in many ways. There is one 700 special expansion corresponding to eigenvectors of ρ. 701 The density operator corresponding to a pure state can 702 be characterized in the following way: in the basis of 703 eigenvectors, its matrix has only one nonzero element 704

  Such reflections are processed in her working memory. So, we discuss Markovness of working memory. Of course, in our model long-term memory is not ignored; it is a part of the mental bath.state to a point of equilibrium, see also Remark 3.) A

	Alice in her game with Bob). The state of the mental environment is represented by another complex vector, say φ B . In general, this is a huge mental state represent-ing all superpositions in memory and even permanent supply of superpositions created by the brain through its interaction with the environment. However, if Al-ice is concentrated on her strategy of play with Bob, we can restrict φ B to Alice's mental image of the pos-sible actions of Bob. In reality φ B belongs to complex Hilbert space of a large dimension. Therefore the stan-dard assumption used in the derivation of the GKSL-equation is fulfilled. (In this paper, we consider a toy model in which φ sible actions of Bob is sufficiently stable with respect to fluctuations of the state of her possible actions.) The assumption of Markovness of the mental state evolution in decision making is natural. To proceed quickly to a decision, Alice must ignore the history of her reflec-tions on possible actions with respect to Bob. 2 An input from (long-term) memory or mental environment de-stroys (working) memory of her reflections. (Working memory does not preserve a long chain of Alice's reflec-tions.) Finally, we can assume that the initial composite state is factorized, i.e., correlations between Alice's im-age of Bob and her possible actions are created in the process of decision making. Under these assumptions we can model the process of decision making by using the GKSL-equation. The mental state representing possible actions of Al-ice stabilizes to one of equilibrium points of the GKSL-dynamics. (In the mathematical model stabilization is achieved only in the limit t → ∞. However, in real-ity the brain cannot wait too long. We can assume the presence (in the brain) of a threshold which is used to terminate the process of stabilization of the mental 2 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191	model equation considered in this paper has a single equilibrium point. Thus Alice elaborates the unique so-lution (which depends only on the mental environment, in particular, memory). However, in general the GKSL-equation can have a few different equilibrium points. In such a case depending on the initial state of mind Alice can obtain different solutions of the same problem. Such equations with a richer structure of equilibrium points will be studied in one of coming papers. 2. Prisoner's Dilemma In the paper of [14], we designed a quantum-like model for decision-making process in two-player games. This section explains briefly how a player in our model decides his own action, cf. also Busemeyer et al. [2]. 2.1. Pay-off Table of Two-player Game Let us consider a two-player game with two strate-gies. We name two players Alice ("A") and Bob ("B"). Two strategies which A and B can choose are de-noted by "0" and "1". The following table shows pay-

In the process of decision making the brain selects a pure mental state describing possible decisions of the problem under consideration and drives this state -denote it by φ A (superposition of possible decisions of B is two dimensional, representing superposition of possible actions of Bob created in Alice's brain. Thus formally one of the most important assumptions of derivation of the GKSL-equation is not fulfilled. However, more detailed analysis shows that, in fact, in quantum physics the dimension of a bath is not crucial.

The crucial property of a bath is that it is very stable to fluctuations in the quantum system s interacting with it. This assumption is fulfilled if Alice's image of pos-

  (|x| 2 +|y| 2 = 1). This state vector describes A's intensions

	349	
	350	to act. We call it a mental state vector (of A's intensions
	351	to act).
	352	The player A's brain in this mental state chooses his
	353	own action probabilistically. His decision is described
		as "quantum measurements" of projectors correspond-

354

ing to the vectors Φ 0 A or Φ 1 A on the state |Ψ A . (Prob-355 abilities of "0" and "1" are given by P(

0

A ) = P 0 A = |x| 2 356 and P(1 A ) = P 1 A = |y| 2 .) 357

In our model, the decision-making process is de-358 scribed as a dynamics changing |x| 2 and |y| 2 , and its dy-

Thus the critique of SSP-rationality is not the main aim of our paper.

that the linear operator of the quantum master equation, 611 see appendix, is stored in this domain of brain. (In the 612 real situation this operator is time dependent.)

613

In [START_REF] Barraclough | Prefrontal cortex 766 and decision making in a mixed-strategy game[END_REF], [START_REF] Lee | Functional specialization of the primate frontal cor-770 tex during decision making[END_REF] it was also remarked that lesions which The basic mathematical structure of quantum me-648 chanics is a complex Hilbert space: a linear space over 649 complex numbers H (i.e., it is possible to form linear 650 11 Thus, mind is always probabilistic, but it has different representations in consciousness and unconsciousness. The process of interaction of the decision-state with memory can be described by the same model as decoherence of a pure state of a quantum system interacting with an environment, a bath; memory is a kind of mental bath for decision states. 

691

The Schrödinger dynamics for pure states (vectors) can be rewritten as dynamics for corresponding operators:

However, this takes place only in the basis of eigenvec-707 tors, cf. [START_REF] Lee | Functional specialization of the primate frontal cor-770 tex during decision making[END_REF].

708

Dynamics of a quantum state is described by the equation [START_REF] Nakao | The development of a bio-776 engineered organ germ method[END_REF], von Neumann equation. This dynamical model can be used only in the absence of interaction of a quantum system with an environment, a bath. If such interaction is essential (so a system cannot be considered as isolated), von Neumann dynamics [START_REF] Nakao | The development of a bio-776 engineered organ germ method[END_REF] has to be modified and additional terms have to be included in it. The basic postulate of quantum theory is that the state dynamics is linear. Therefore modified dynamics has the form

where L is a linear operator. This operator has to be 709 chosen in such a way that starting with ρ 0 ∈ D(H), we