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Does A Crouched Leg Posture Enhance Running

Stability and Robustness?

Yvonne Bluma,∗, Aleksandra Birn-Jefferyb, Monica A. Daleyb, Andre
Seyfartha

aLauflabor Locomotion Laboratory, University of Jena, Dornburger Str. 23, 07743 Jena,
Germany

bStructure and Motion Laboratory, Royal Veterinary College, Hawkshead Lane, Hatfield,
Hertfordshire, UK

Abstract

Humans and birds both walk and run bipedally on compliant legs. How-
ever, differences in leg architecture may result in species-specific leg control
strategies as indicated by the observed gait patterns. In this work, con-
trol strategies for stable running are derived based on a conceptual model
and compared with experimental data on running humans and pheasants
(Phasianus colchicus). From a model perspective, running with compliant
legs can be represented by the planar spring mass model and stabilized by
applying swing leg control. Here, linear adaptations of the swing leg param-
eters, leg angle, leg length and leg stiffness, are assumed. Experimentally ob-
served kinematic control parameters (leg rotation and leg length change) of
human and avian running are compared, and interpreted within the context
of this model, with specific focus on stability and robustness characteristics.
The results suggest differences in stability characteristics and applied con-
trol strategies of human and avian running, which may relate to differences
in leg posture (straight leg posture in humans, and crouched leg posture in
birds). It has been suggested that crouched leg postures may improve stabil-
ity. However, as the system of control strategies is overdetermined, our model
findings suggest that a crouched leg posture does not necessarily enhance
running stability. The model also predicts different leg stiffness adaptation
rates for human and avian running, and suggests that a crouched avian leg
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posture, which is capable of both leg shortening and lengthening, allows for
stable running without adjusting leg stiffness. In contrast, in straight-legged
human running, the preparation of the ground contact seems to be more crit-
ical, requiring leg stiffness adjustment to remain stable. Finally, analysis of a
simple robustness measure, the normalized maximum drop, suggests that the
crouched leg posture may provide greater robustness to changes in terrain
height.

Keywords: Spring mass model (SLIP), Leg parameter adaptation, Human
and avian locomotion

List of symbols, terms and definitions

Nomenclature
CoM center of mass
CoP center of pressure
GRF ground reaction force
GSM ground speed matching
TD touch down
TDc touch down of the contralateral leg
TO take off
TOc take off of the contralateral leg
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Dimensional variables
α

TD
angle of attack [deg]

α̇ changing rate of the leg angle [deg/T ]
BW body weight [N]
Δhmax maximum drop [m]
ΔL leg compression [m]
E system energy [J]
Fmax maximum leg force [BW]
g gravitational acceleration [m/s2]
γ angle of approach [deg]
k

Leg
leg stiffness [BW/L0 ]

k
TD

spring stiffness at TD [BW/L0 ]

k̇ changing rate of the leg stiffness [k
TD

/T ]
L0 resting leg length [m]

L̇ changing rate of the leg length [L0/T ]
m body mass [kg]
NMD normalized maximum drop [L0 ]
t
C

contact time [s]
t
F

flight time [s]
t
Fall

falling time from apex to TD [s]
T gait cycle [s]
vx horizontal component of the CoM velocity [m/s]
vy vertical component of the CoM velocity [m/s]
v

x,Ref
reference speed [m/s]

y
A

apex height [m]
y

i
, y

i+1
apex heights of two subsequent apices [m]

Non-dimensional variables

DF =
t
C

2 (t
C

+ t
F
)

duty factor

Fr =
v2

x

g L0

Froude number
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1. Introduction

The great majority of living terrestrial vertebrates are quadrupeds. How-
ever, bipedalism can be found within a few families of mammals, reptiles
and within all birds. Among mammals, various groups of primates (Schmitt,
2003), the macropods (Windsor and Dagg, 2010) and a few groups of het-
eromyd rodents (Djawdan, 1993) locomote bipedally. Within reptiles, some
families of lizards are also capable of bipedal locomotion (Aerts et al., 2003),
especially when running at high speeds (Irschick and Jayne, 1999). While
macropods, some smaller birds and heteromyd rodents move by hopping on
both legs simultaneously, primates, lizards and larger birds use striding gaits.
In this paper, we concentrate on bipedal running and compare two types of
leg architecture: The straight leg posture, represented by the human leg, and
the crouched leg posture, represented by the avian leg. Associated with these
differences in leg architecture, the movement strategies of these two species
differ fundamentally from each other. While humans are plantigrade, birds
are digitigrade, whereby their elongated tarsometatarsals keep their ankles
clearly off the ground during walking and running (Alexander, 2004). This
avian leg geometry in combination with the crouched leg posture allows for
leg lengthening before touching the ground and thereby coping with large
ground disturbances, as it was impressively demonstrated by experiments on
running guinea fowl (Numida meleagris) (Daley et al., 2006, 2007).

In general, legged locomotion can be described by spring-like leg behav-
ior (Alexander, 2002) and here, the leg function is represented by the planar
spring mass model, which is a well-established template to describe running
(Blickhan, 1989; McMahon and Cheng, 1990) and walking (Geyer et al.,
2006). For adequate leg parameter adjustments (angle of attack, leg stiffness
and leg length) and sufficient speeds (e.g. vx > 3 m/s for human-like dimen-
sions), the spring mass model shows self-stabilizing behavior (Seyfarth et al.,
2002). However, periodic running solutions that are unstable without con-
trol can also be stabilized. It has been shown that swing leg retraction is one
elegant approach to enhance stability in locomotion for both quadrupedal
galloping (Herr and McMahon, 2001) and bipedal running (Seyfarth et al.,
2003). This control strategy, namely the adaptation of the leg angle during
the swing phase, can be extended to all three leg parameters: leg angle, leg
length and leg stiffness (Blum et al., 2010).

This work investigates human and avian running by assuming such a
swing leg control strategy, namely the linear adaptation of the three leg
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parameters during late swing phase, in anticipation of the ground contact.
Previous work observed adaptation of the foot’s landing velocity to running
speed (De Wit et al., 2000), indicating a speed-dependent leg retraction and
leg length change in preparation for ground contact. The adaptation of the
leg stiffness during swing phase was suggested in a recent study on running on
uneven ground (Grimmer et al., 2008). Furthermore, experiments on running
birds have demonstrated that retraction and lengthening of the leg during
swing phase prevent the birds from falling (Daley et al., 2007).

Stability is the system’s ability to reduce a deviation in the center of
mass trajectory caused by a onetime perturbation. To evaluate the stabil-
ity of a running pattern, limit cycle stability analysis (Dingwell and Kang,
2007; McGeer, 1993) is used. The robustness, in terms of the maximum per-
turbation the system can cope with, can be determined by estimating the
size of the basin of attraction (Rummel et al., 2010). However, this anal-
ysis requires the assumptions that (i) the system is energy conserving and
(ii) returns to the same limit cycle trajectory after the perturbation. This
makes the analysis difficult to compare to experimental data on which those
assumption might be violated. As an alternative, the normalized maximum
drop (NMD) is calculated, which defines the maximum perturbation before
stance is missed completely (Daley and Usherwood, 2010). This boundary
condition measure is intuitive and easy to calculate, can be compared to ex-
perimental data, and makes no explicit assumptions about how the system
deals with the energy associated with the perturbation.

The purpose of this work is to evaluate the stability and robustness char-
acteristics of running with a straight versus a crouched leg posture, using
both experimental data and predictions of the spring mass model. Previous
experimental observations on human and avian running suggest that birds,
compared to humans, are able to negotiate much larger perturbations when
running on uneven terrain. Therefore, we hypothesize that the crouched leg
posture of the avian leg provide greater running stability and robustness than
the straight leg posture of humans.

2. Methods

2.1. Model

The simplest template to describe the dynamics of bouncing gaits like
human and avian running is the planar spring mass model (Blickhan, 1989;
McMahon and Cheng, 1990). In this model, the center of mass (CoM) is
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represented by a point mass m, which is supported by a linear spring repre-
senting the leg. Assuming that the system is energy conserving, the system
is fully described by three leg parameters at the instant of touch down (TD):
angle of attack α

TD
, leg stiffness k

TD
and resting length of the leg spring L0 .

The CoM undergoes alternating flight and stance phases, with the transition
from flight to stance occurring when the landing condition y = L0 sin α

TD

is fulfilled. Since the system is conservative and with the assumption that
the ground is even, the system’s state is fully described by the apex condi-
tion (y

A
, vx). The apex is the highest point of the CoM-trajectory with zero

vertical velocity. Therefore, the system energy

E =
1

2
mv2

x
+ mg y

A
(1)

is determined by the horizontal velocity vx and the apex height y
A
. To give

this energy a more intuitive meaning, we define the reference speed

v
x,Ref

=

√
2

(
E

m
− g L0

)
, (2)

assuming that the apex height y
A

equals the resting leg length L0 .
The spring mass model is capable of running with fixed landing condi-

tions: for adequate leg parameters and sufficiently high running speeds, the
system shows self-stabilizing behavior (Seyfarth et al., 2002). However, by
adjusting the leg parameters during swing phase (e.g. swing leg retraction
(Seyfarth et al., 2003)), it is possible to stabilize running patterns which
are unstable without control. Here we assume linear adaptations of the leg
parameters (Blum et al., 2010)

α(t) = α
A

+ α̇ (t − t
A
)

k(t) = k
A

+ k̇ (t − t
A
) (3)

L(t) = L
A

+ L̇ (t − t
A
),

beginning at the instant of apex t
A

and continuing during the second half of
the flight phase (figure 1). The apex conditions α

A
, k

A
and L

A
are calculated

such that, if the system is not disturbed, the landing conditions α
TD

, k
TD

and
L

TD
remain the same for every parameter adaptation rate α̇, k̇ and L̇.

To characterize the running patterns, we analyze the direction and the
magnitude of the foot landing velocity (Blum et al., 2010). Although the leg
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of the spring mass model is massless, this analysis approximates the size of
the impact a real leg would experience. With increasing landing velocity of
the foot, the landing impact would increase as well. The relative speed of
the foot point defines the ground speed matching (GSM)

GSM = 1 − v
Foot

v
CoM

, (4)

where v
Foot

is the speed of the foot point and v
CoM

the speed of the CoM at
TD. The foot’s landing direction defines the angle of approach

γ = tan−1

(
v

x,Foot

v
y,Foot

)
+ 180◦, (5)

which is the angle between the foot velocity vector v
Foot

and the ground
(figure 2).

2.2. Stability analysis
We estimate the stability of a running pattern based on the spring mass

model. The vertical movement of the CoM describes an oscillation, which
can be analyzed using a Poincaré map. We define the Poincaré section at
the instant of apex and therefore, the corresponding map y

i+1
(y

i
) is the apex-

return map of two subsequent apices y
i
and y

i+1
(figure 3). In this Poincaré

map, periodic running solutions (also known as limit cycle trajectories (Ding-
well and Kang, 2007; McGeer, 1993)) are identified by fixed points y∗, which
satisfy (i) the identity y

i
= y

i+1
, while (ii) maintaining positive horizontal

velocity v
x,i

= v
x,i+1

> 0. The stability of such a periodic running solution
is estimated by analyzing the slope s of the apex-return map y

i+1
(y

i
) in the

neighborhood of the fixed point y∗ (Geyer et al., 2005) (Appendix A). If the
absolute value of the derivative

s =
dy

i+1

dy
i

∣∣∣∣
y∗

(6)

is smaller than one (|s| < 1), the fixed point and therefore the corresponding
periodic running pattern is stable (Strogatz, 1994).

2.3. Gait robustness
The robustness of a stable running solution is defined as the maximum

perturbation the system can cope with, and its upper bound can be approx-
imated by the normalized maximum drop (NMD)

NMD =
Δhmax

L0

, (7)
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which defines the maximum perturbation before stance is missed completely
(Daley and Usherwood, 2010). The extended NMD (hereinafter referred to
as NMD) indicates the maximum drop Δhmax relative to the leg length L0 ,
the runner could negotiate, assuming (i) the leg continues retracting with
constant leg retraction speed, (ii) the leg length continues lengthening or
shortening with constant changing rate, and (iii) Δhmax is reached when the
leg is vertically oriented (α = 90◦). Under these assumptions, Δhmax is
a function of the kinematic parameters angle of attack α

TD
, leg retraction

speed α̇ and leg length change L̇ (Appendix B).

2.4. Experiments

Experimental data on human running were collected by Lipfert (2010).
Seven human subjects (one female, six males, body mass m = 77 ± 9 kg,
leg length L0 = 1.02 ± 0.07 m) were running on an instrumented treadmill
at three different speeds, namely 2 m/s ( Fr = 0.42), 3 m/s ( Fr = 0.94) and
4 m/s ( Fr = 1.66) and a total of 2867 running gait cycles were analyzed.
The initial vertical position of the CoM, which corresponds to the leg’s rest
length L0 , was approximated by the vertical position of the greater trochanter
multiplied with a gender specific factor A (A = 1.05 for women and A =
1.10 for men) (Lipfert, 2010). CoM movements were calculated by twice
integrating the accelerations obtained from the ground reaction forces (GRF)
and the effective leg was defined as the distance between CoM and center
of pressure (CoP). The horizontal velocity vx of the CoM was determined at
the instant of apex. The contact time t

C
was measured from TD to take off

(TO), the flight time t
F

was calculated by subtracting contact time from step
time (half of the gait cycle T ). To determine the leg angle during flight, a
hybrid leg was defined between the foot point (located half way between heel
and toe) and the CoM, and the leg angle was measured with respect to the
horizontal, which increases with leg retraction. The time derivatives of the
experimentally observable leg parameters (α̇, α̈, L̇ and L̈) were estimated at
the instant before TD.

Avian running trials were conducted on a 0.6 × 4.5 m runway. Five
0.6 × 0.9 m force plates (model 9287B, Kistler, Winterthur, Switzerland)
were arranged in a row to record the GRF, and a camera system (Qualisys,
Gothenburg, Sweden), consisting of eight high speed infrared cameras, was
used to capture body kinematics. To approximate the CoM position and
the foot point, two markers were attached to the birds’ back (cranial and
caudal), one at digit III and one at the tarsometatarsophalangeal joint. Five
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male pheasants (Phasianus colchicus, body mass m = 1.2 ± 0.1 kg, stand-
ing hip height L0 = 0.21 ± 0.01 m) were encouraged to run from one end of
the runway to the other, and a total of 62 running steps at speeds between
Fr = 2.32 and Fr = 3.68 were analyzed. Since we could not control the
birds’ running speeds, we analyzed the speed in post-processing. The hori-
zontal velocity vx of the CoM was determined at the instant of apex and the
corresponding steps were divided into Froude number categories of Fr = 2,
3 and 4 (meaning, for instance, that Froude numbers within the interval
Fr = [1.5, 2.5) are assigned to category Fr = 2). The initial vertical position
of the CoM was defined by the average of the cranial and caudal marker
position, and the initial velocity condition was estimated corresponding to
Daley et al. (2006). CoM movements, contact time t

C
, flight time t

F
and time

derivatives of the leg parameters were estimated as mentioned above, with
the hybrid leg being defined between foot point (located half way between
digit III and tarsometatarsophalangeal joint) and CoM.

Human running data were measured on a treadmill, while avian data
were collected using an overground runway. The comparison of treadmill
and overground running can be somewhat problematic, as joint angle kine-
matics may differ slightly, even though the cause of these discrepancies is not
completely understood (Nelson et al., 1972; Nigg et al., 1995). Nonetheless,
as long as the speed of the treadmill belt is constant, and dynamics and
kinematics are not measured during belt acceleration, there exists no fun-
damental mechanical difference between treadmill and overground running
(Van Ingen Schenau, 1980). Therefore, for the purposes of our comparison
to the spring mass model, this difference between the two datasets is unlikely
to substantially alter the findings.

The stiffness of a leg spring, assuming a linear force-length relationship,
is defined as k

Leg
= Fmax

ΔL
, with Fmax being the maximum value of the GRF

and ΔL the maximum leg compression during stance. Assuming an elastic
leg function, the GRF can be approximated by a sine function (Alexander,
1989; Dalleau et al., 2004). With this, k

Leg
reduces to a function of body

mass m, resting leg length L0 , duty factor DF and angle of attack α
TD

(Blum
et al., 2009; Morin et al., 2005).

To estimate the stability of spring mass running, periodic solutions (sec-
tion 2.2) have to be found based on experimental data. Within the spring
mass model, a periodic solution is uniquely determined by four parameters
(Energy E, angle of attack α

TD
, leg stiffness k

TD
and leg length L0 (section

2.1)). However, the angle of attack α
TD

is the parameter that matches the
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least with the model. On the one hand, the CoP is shifted during stance due
to the roll-over characteristic of the foot (Bullimore and Burn, 2006), and on
the other hand, the human leg angles at TD and TO are asymmetric with
respect to the vertical axis (Cavagna, 2006). Both effects are not considered
in the simple spring mass model. Therefore, to estimate periodic solutions,
symmetric angles of attack α

TD,sym
were estimated based on the observed

flight time after apex (falling time t
fall

), assuming simulated contact phases,
which are symmetric with respect to the vertical axis (Blum et al., 2010).

2.5. Data analysis and simulation

Experimental data analysis and numerical calculations were implemented
in Matlab (version R2007b, The MathWorksTM , Natick, MA, USA), the
spring mass model in Matlab/Simulink. For numerical integration a built-in
variable timestep integrator (ode113) was used with an absolute and relative
error tolerance of 10−9.

3. Results

The comparison of human (table 1) and avian (table 2) leg parameters
reveals some fundamental differences in running strategies and applied con-
trol strategies (table 3 and figure 4). Compared to birds, humans touch the
ground with steeper angles of attack α

TD
, which decrease with increasing

running speed. By contrast, the avian angles of attack do not change signif-
icantly. While in human running the leg’s angular acceleration α̈ increases
with increasing running speed, the avian α̈ shows no significant trend. How-
ever, the most conspicuous difference is that humans shorten their legs before
TD (L̇ < 0), while birds lengthen them (L̇ > 0). With increasing running
speed the human leg shortening enhances slightly, whereas the avian leg
lengthening does not change significantly. While the avian leg length accel-
eration L̈ increases with increasing running speed, the human L̈ decreases.
Compared to birds, humans touch the ground with a flatter angle of approach
(γ > 150◦ for humans, γ < 150◦ for birds). Furthermore, with increasing run-
ning speed the human angle of approach γ gets flatter, whereas the avian γ
does not change significantly.

Despite all differences, there also exist some similar tendencies in leg
parameter adaptation for both humans and birds. For both, the angular
velocity α̇ increases with increasing running speed. Although, compared
to birds, humans run with stiffer legs, for both the leg stiffness k

TD
does
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not change significantly with speed. For low speeds the model predicts the
lowest stiffness adaptation rate k̇ for the mean value of the kinematic control
strategies (k̇ = −1.6k

TD
/T at Fr = 0.42 for humans, k̇ = −0.2k

TD
/T at

Fr = 2.36) and with increasing speed k̇ increases as well. However, humans
might exploit a much bigger range of stiffness adaptation rates than birds
(Δ Fr = 1.24 and Δk̇ = 3.2k

TD
/T for humans, Δ Fr = 1.27 and Δk̇ =

0.7k
TD

/T for birds). For both humans and birds the GSM increases and the
NMD decreases with increasing running speed.

Figure 5 shows the kinematic leg parameters, leg angle α(t) and leg length
L(t), for human (subfigures (a) and (b)) and avian (subfigures (c) and (d))
running mapped against each other. One orbit describes one stride cycle,
beginning and ending with the TD of the same leg. For the averaged tra-
jectories (indicated by the green, respectively red lines), the instants of TD
and TO of the ipsi- and the contralateral leg are displayed. As the graphs
contain no direct time information, it should be noted that the durations of
the stance phases of the ipsilateral and the contralateral leg (i.e. the elapsing
time between TD and TO, respectively TDc and TOc) within each graph are
similar, as we were investigating symmetric running. Humans touch and leave
the ground with a leg length that is comparable to the resting leg length L0

of the hybrid leg (section 2.4) (L
TD

= 1.01± 0.01L0 and L
TO

= 0.99± 0.06L0

for Fr = 0.42, L
TD

= 1.01 ± 0.01L0 and L
TO

= 1.00 ± 0.06L0 for Fr = 1.66).
Their phase plots are asymmetric (section 2.4: asymmetry of the human
stance phase), whereas the avian phase plots are more symmetrical with re-
spect to the leg angle in both phases stance and swing, and can be mirrored
at α = 90◦. Compared to the resting leg length L0 , which is defined as
the standing hip height, birds touch and leave the ground with more ex-
tended legs (L

TD
= 1.25 ± 0.04L0 and L

TO
= 1.18 ± 0.06L0 for Fr = 2.32,

L
TD

= 1.23 ± 0.05L0 and L
TO

= 1.18 ± 0.04L0 for Fr = 3.68). Even during
the entire stance phase, the avian leg does not compress below L0 .

In figure 6, control strategies (α̇, k̇ and L̇) leading to stable spring mass
running are shown for four different periodic solutions (subfigures (a) and (b)
for human, (c) and (d) for avian parameters) and compared with experimen-
tal data. The illustrated space is spanned by the kinematic control parame-
ters α̇ and L̇. Depending on these kinematic control parameters, the ground
speed matching (GSM) and the angle of approach γ are calculated, and se-
lected isolines of GSM and γ are mapped within the (α̇,L̇)-space. The gray
wedges indicate stable areas with |s| < 0.5 that correspond to the displayed
stiffness adaptation rates k̇. For humans, the distribution of (α̇,L̇)-pairs is
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elongated and oriented parallel to the γ = 180◦ line. With increasing speed
this distribution expands and shifts away from γ = 180◦. By contrast, the
avian distribution of (α̇,L̇)-pairs is circularly clustered and does not enlarge
with speed. Furthermore the avian (α̇,L̇)-cluster is largely covered by the
wedge-shaped area of predicted stability.

Figure 7 shows the grand means of the normalized maximum drop (NMD)
as a function of angle of attack α

TD
(subfigure (a)), leg rotation α̇ (subfigure

(b)) and leg length change L̇ (subfigure (c)) for different speeds. Compared
to humans (green dots), birds (red triangles) run with flatter angles of at-
tack and higher retraction speeds. Additionally, birds lengthen their legs
before touching the ground, while humans shorten them. This combination
of strategies results in a higher avian NMD, compared to the human NMD.

4. Discussion

This study investigated differences in leg kinematics and implied swing leg
control strategies between human and avian bipedal running. The analysis of
these swing leg control strategies using a simple spring mass model allowed
the comparison of stability and robustness characteristics for human-like and
bird-like running. Model based findings were compared with experimental
data from humans and pheasants, exemplifying straight-legged versus bent-
legged running postures. Stability, which is the system’s ability to reduce
a deviation in the CoM trajectory caused by a onetime perturbation, was
estimated using limit cycle stability analysis (section 2.2). To evaluate the
robustness, which is determined by the maximum perturbation the system
can cope with, a new intuitive and easily accessible parameter, the NMD
(section 2.3), was applied.

The bent posture of the bird-like leg provides an important advantage
for swing leg control strategies in running. It possesses an increased ability
for leg parameter adaptation, as it can be both lengthened and shortened in
preparation for the TD. However, running with bent legs is also expected to
reduce leg stiffness, require increased muscle forces to support body weight,
and result in increased energy consumption (McMahon et al., 1987). As tis-
sue strengths and specific muscle forces (force/area) are similar in animals of
different size, the inevitable size-dependent adaptations relate to changes in
skeletal form and muscle mechanics (Pearson and Misiaszek, 2001; Biewener,
1990). Therefore, due to limits to muscle and bone strength in large ani-
mals, only smaller and more lightweight animals run with crouched postures,
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whereas larger species run more straight (Biewener, 1989). Taking birds as
an example: small birds like the painted quail (Excalfactoria, m ≈ 0.05 kg,
L0 ≈ 0.05 m) walk and run very crouched, while tall birds such as the rhea
(Rhea, m ≈ 20 kg, L0 ≈ 0.8 m) have a rather straight leg posture (Gatesy
and Biewener, 1991). In the following sections we want to further elucidate
the advantages and disadvantages of crouched locomotion.

4.1. Swing phase

Leg kinematics of human and avian running differ significantly from each
other and two distinct running strategies are observed (figure 5). Due to the
straight posture of the human leg, most of the gait cycle the leg length is
below L = L0 (figure 5 (a) and (b)). As mentioned above, the contact phase
of human running is slightly asymmetric, as the leg angle at TD is steeper
than at TO. There also exists an asymmetry within the leg length (Cavagna,
2006). In heel-toe-running, the CoP moves during stance from heel to toe
(Bullimore and Burn, 2006), and the lift of the heel causes a lengthening
of the leg (Maykranz et al., 2009). However, to demonstrate leg kinematics
during both phases stance and swing, we defined a hybrid leg between the
CoM and the foot point, which neglects the effect of leg lengthening due to
the influence of the foot.

The asymmetric shape of the human phase plots and the accentuated
turning point, at which leg retraction is initiated (shortly before TD), suggest
that the preparation of the ground contact is crucial. This could be due to the
fact that, as humans touch the ground with a very extended leg posture, they
have to retract and bend their legs shortly before TD to reduce the landing
impacts and prevent their knees from damage. In contrast, the smooth and
symmetric phase plots of avian running (figure 5 (c) and (d)) appear as the
movements of a clock-driven pendulum.

4.2. Landing strategy

Ground speed matching (GSM) and the angle of approach γ indicate
the magnitude and the direction of the foot’s landing velocity vector and
qualitatively estimate the impact a real leg would experience (section 2.1).
Touching the ground with 100% GSM stands for a smooth and absolutely
impact-free landing, while 0% GSM means that the foot moves with the same
speed as the CoM. GSM < 0 indicates that the foot is actively pushed
towards the ground and the resulting impact is enforced. γ = 90◦ means
that the foot approaches the ground perpendicular (i.e. the foot’s velocity
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vector has only a vertical component). Accordingly, γ = 180◦ means that
the foot approaches parallel to the ground (i.e. the foot’s velocity vector has
only a horizontal component).

As the human kinematic control parameters (α̇,L̇) are distributed parallel
and near to γ = 180◦ (figure 6(a) and (b)), this suggests that humans avoid
vertical impacts. They shorten their legs before TD (which is in accordance
to the findings of Seyfarth et al. (2003)), and thus smooth their landing. In
contrast, the avian (α̇,L̇)-pairs are circularly clustered and more distributed
(figure 6(c) and (d)). As birds lengthen their legs (which is in accordance
to the findings of Daley et al. (2007)), they do not reduce the TD-impact so
much and their feet hit the ground with almost the same speed as the CoM.
However, with increasing running speed, both humans and birds reduce their
landing-impacts by increasing the GSM (figure 4).

4.3. Stability

Within the kinematic control space (α̇,L̇), figure 6 shows model predicted
stable areas, which satisfy |s| < 0.5 (gray wedges), in comparison with exper-
imental data (green dots and red triangles). When the stiffness adaptation
rate k̇ gets smaller, the stable area (gray wedge) shifts to the left within the
kinematic parameter space, while when k̇ gets larger, the wedge shifts to the
right (exemplarily displayed in subfigure(b)).

As humans run with rather straight leg posture, their leg architecture
does not allow for larger leg extension. Leg retraction, which is a potential
strategy to stabilize running patterns (Seyfarth et al., 2003), is also limited,
as leg retraction speed is restricted due to physiological limitations. Doke
et al. (2005) showed that the force and work, required to swing the leg back
and forth, sharply increase with the frequency of the movement, which might
explain the fourfold increase in metabolic cost they observed. Therefore,
to achieve running stability, humans might take advantage of the control
strategies’ redundancy and adapt their leg stiffness in anticipation of the
ground contact (figure 6 (a) and (b)). For low speeds (figure 6 (a)), the
distribution of experimental (α̇,L̇)-points is mostly covered by the predicted
stable area that corresponds to one stiffness adaptation rate, namely leg
softening (k̇ = −1.6k

TD
/T ). This quality changes with increasing running

speed. Whereas for low speeds, the predicted stiffness adaptation rate k̇
remains almost constant, for higher speeds the model suggest a variation of k̇
to explore the entire kinematic control area (figure 6 (b), k̇ = [0, 10.8]k

TD
/T ).

With increasing running speed the predicted control strategy changes from
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leg softening to leg stiffening (table 1). In contrast, for birds a constant k̇
seems to be sufficient for properly selected kinematics control strategies (α̇,L̇)
(figure 6 (c) and (d)).

Previous studies on human running and hopping have shown that leg
stiffness is not a constant parameter, but that it is adjusted when the prop-
erties of the surface change (Ferris et al., 1998; Moritz and Farley, 2006).
Although the leg stiffness of humans and animals during level running does
not even change much with speed (Farley et al., 1993), which is consistent
to our findings (table 1 and 2, figure 4), our results predict that human leg
stiffness is adjusted in anticipation of ground contact with a speed-dependent
changing rate k̇ (figure 4, table 3). However, this behavior would only be
revealed experimentally through perturbations of the terrain height, and our
findings might explain the results of recent studies: Grimmer et al. (2008)
found that with increasing step height Δh the estimated leg stiffness of a
human runner decreases (k

Leg
= 32.5 BW/L0 for Δh = 0, k

Leg
= 23.7 BW/L0

for Δh = 15 cm, vx > 3.5 m/s). As an increase in step height results in a de-
crease in the flight time, this suggests that the human leg is stiffened during
late flight phase This characteristic, namely leg stiffening in anticipation of
ground contact for higher running speeds, corresponds to the results of our
work (table 1). In contrast, Daley et al. (2007) could not find significant dif-
ferences in avian leg stiffness when the birds (guinea fowl, Numida meleagris)
ran over an unexpected perturbation (8.5 cm drop). This corresponds to our
model prediction, suggesting that pheasants do not use a distinct stiffness
adaptation as their predominant control strategy.

4.4. Robustness

The robustness of the simulated running solutions, in terms of the maxi-
mum drop height the system can cope with, was approximated by the NMD
(figure 7), which is a function of the angle of attack α

TD
, the leg rotation

speed α̇ and the leg length change L̇ (Appendix B). Compared to birds, the
human combinations of steeper α

TD
, lower α̇ and leg shortening (L̇ < 0) result

in lower NMD values, whereas the influence of L̇ predominates. Accordingly,
the avian combinations of flatter α

TD
, higher α̇ and leg lengthening (L̇ < 0)

result in higher NMDs. However, compared to humans, birds retract their
legs with much lower angular acceleration α̈ (figure 4), and the actual drop
height they can overcome might be even larger.

As Daley et al. (2006) showed by their drop down experiments, guinea
fowls, (Numida meleagris) can easily negotiate drops of 8.5 cm, which corre-
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sponds to 40% of their standing hip height L0. If we transfer this into human
scaling, this would mean to run over a drop of approximately 40 cm, which is
hardly feasible. So far, we could only find literature concerning human run-
ning on uneven terrain with downward steps of 10 cm (Müller and Blickhan,
2010) and upward steps of 15 cm (Grimmer et al., 2008). Further pertur-
bation studies are required to explicitly test these predictions for differing
robustness of human versus avian locomotion.

5. Conclusion

This paper compared swing and landing behavior of avian and human
running. Based on experimental data and spring mass simulations, predic-
tions about stability, robustness and stiffness adaptation during swing phase
were made.

• Birds lengthen their legs before TD (L̇ > 0), whereas humans shorten
them (L̇ < 0).

• While model predictions suggest that birds might be able to stabilize
their running pattern by using one constant stiffness adaptation rate
k̇, humans may have to adjust k̇ on a larger scale to exploit the exper-
imentally observed kinematic control space. With increasing running
speed, the range of the predicted human k̇ increases as well.

• Compared to humans, birds are more robust in terms of the normalized
maximum drop NMD. Additionally, because birds retract their legs
with much lower angular acceleration α̈, the actual drop height they
can overcome could be even larger.

We have shown that the applied control strategies are redundant in sta-
bilizing the spring mass model. Therefore, a crouched leg posture does not
necessarily enhance running stability. Nonetheless a crouched leg offers more
adaptation possibilities, as it is capable of both leg lengthening and shorten-
ing. The question of whether a crouched leg posture enhances robustness can
not be answered satisfactorily by solely taking the NMD as a basis, because
this measure only estimates the upper bound for a drop perturbation, and
ignores other limitations (e.g. size of the basin of attraction, peak force).
Additionally, further investigation is required to extend the NMD concept
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by taking angular acceleration α̈ and leg length acceleration L̈ into account.

Further perturbation experiments on humans and animals in comparable
conditions will be required to test many of the predictions resulting from our
analysis here.
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Appendix A - General description of limit cycle stability analysis

The system’s state at the instant of apex is described by the state vector

S
i
= (y

A,i
, v

x,i
), (8)

with the index i enumerating the individual steps, y
A,i

being the apex height
and v

x,i
the corresponding horizontal velocity. The Poincaré map is defined

by

S
i+1

= F(S
i
) (9)

and a limit cycle trajectory corresponds to fixed points in each Poincaré map

S∗ = F(S∗). (10)

To analyze the stability of the system in the neighborhood of the fixed point,
the Poincaré map is linearized[

S
i+1

− S∗] ≈ J(S∗) [S
i
− S∗] (11)

and the eigenvalues λ
i

of the Jacobian matrix J(S∗) are evaluated. If the
magnitude of all complex-valued eigenvalues is smaller than one ‖λ

i
‖ < 1, the

limit cycle is stable (Dingwell and Kang, 2007; Guckenheimer and Holmes,
1983).

Assuming the system to be energy conserving, the apex height y
A

and the
horizontal velocity vx are coupled by the energy E = 1

2
mv2

x
+ mg y

A
. With

this, the state vector can be reduced to

S
i
= y

A,i
(12)

and the Poincaré map (equation 9) becomes a one dimensional apex-return
map

y
i+1

= F(y
i
). (13)

In this case, the Jacobian matrix J(S∗) = J(y∗) of the linearized Poincaré
map

[
y

i+1
− y∗] ≈ J(y∗) [y

i
− y∗] reduces to the one dimensional derivative

J(y∗) =
dy

i+1

dy
i

∣∣∣∣
y∗

, (14)

which actually is the slope of the apex-return map (figure 3) in the neigh-
borhood of the fixed point y∗.
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Appendix B - Calculation of the normalized maximum drop (NMD)

The normalized maximum drop (NMD) (Daley and Usherwood, 2010) is a
simple kinematic measure of the runner’s ability to negotiate uneven terrain,
which indicates the maximum drop Δhmax relative to the leg length L0 , the
runner could overcome until the leg is vertically oriented (α = 90◦):

NMD =
Δhmax

L0

. (15)

Here, the concept of the NMD is extended by allowing not only for constant
leg retraction α̇, but also for constant leg length change L̇ (figure 8).

Assuming the vertical position of the foot at the instant of nominal TD
equals zero (y

Foot,TD
= 0), the landing height of the CoM is

y
TD

= L
TD

sin α
TD

. (16)

Considering that the vertical component of the CoM velocity at apex equals
zero (ẏ

A
= 0), the vertical CoM speed at the instant of nominal TD results

in

ẏ
TD

= −g t
Fall

. (17)

The time Δt from the nominal TD until vertical leg orientation is reached
is given by the remaining leg angle divided by leg retraction speed,

Δt =
90◦ − α

TD

α̇
. (18)

With this (equations 16 - 18), the CoM height of the maximum drop
results in

y
Drop

= y
TD

+ ẏ
TD

Δt − g

2
(Δt)2, (19)

and the corresponding vertical position of the foot and therefore the maxi-
mum drop yields

Δhmax = y
Drop

−
(
L

TD
+ L̇ Δt

)
. (20)
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Table Legends

Table 1

Human running
Grand means and standard deviations of experimentally derived (upper sec-
tion) and model based parameters (lower section) are listed for 7 subjects
(1 female, 6 males, age 24 ± 1 yrs, body mass m = 77 ± 9 kg, leg length
L0 = 1.02 ± 0.07 m) at three different speeds.

Table 2

Avian running
Grand means and standard deviations of experimentally derived (upper sec-
tion) and model based parameters (lower section) are listed for 5 adult male
pheasants (Phasianus colchicus, body mass m = 1.2 ± 0.1 kg, leg length
L0 = 0.21 ± 0.01 m) at three different speeds.

Table 3

Regression analysis with respect to the Froude number
Statistics (slope, R2, p-value) of the linear regression displayed in figure 4 are
listed for humans and pheasants. Significant relationships (p-value ≤ 0.05)
are indicated by an asterisk.
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Tables

Table 1:

Fr

0.42 ± 0.03 0.94 ± 0.06 1.66 ± 0.11

ex
pe

ri
m

en
ta

lly
de

ri
ve

d

vx [m/s] 2.06 ± 0.01 3.07 ± 0.01 4.07 ± 0.01

T [s] 0.78 ± 0.02 0.75 ± 0.02 0.70 ± 0.03

αTD,exp [deg] 78.1 ± 1.0 73.8 ± 1.4 70.7 ± 1.9

α̇ [deg/T ] 35.6 ± 9.5 57.3 ± 13.2 82.2 ± 19.7

α̈ [deg/T 2] 1750 ± 160 2178 ± 139 2335 ± 186

L̇ [L0/T ] −0.14 ± 0.06 −0.22 ± 0.07 −0.28 ± 0.08

L̈ [L0/T 2] −7.4 ± 1.6 −11.6 ± 3.0 −13.4 ± 3.6

kTD [BW/L0 ] 21.5 ± 2.2 21.0 ± 3.4 21.3 ± 4.5

GSM [%] 34 ± 6 39 ± 7 43 ± 8

γ [deg] 160 ± 7 157 ± 6 152 ± 9

m
od

el
ba

se
d

αTD,sym [deg] 74.0 ± 1.4 70.1 ± 1.6 67.3 ± 2.0

k̇ [kTD/T ] −1.6 ± 1.2 2.5 ± 1.3 5.4 ± 1.7

NMD [L0 ] 0.48 ± 0.18 0.35 ± 0.12 0.25 ± 0.07
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Table 2:

Fr

2.32 ± 0.39 3.06 ± 0.19 3.68 ± 0.16
ex

pe
ri

m
en

ta
lly

de
ri

ve
d

vx [m/s] 2.22 ± 0.17 2.54 ± 0.08 2.77 ± 0.10

T [s] 0.35 ± 0.02 0.33 ± 0.02 0.31 ± 0.03

αTD,exp [deg] 57.0 ± 4.3 57.6 ± 3.7 57.0 ± 1.6

α̇ [deg/T ] 93.9 ± 14.4 113.2 ± 20.0 132.4 ± 4.3

α̈ [deg/T 2] 1064 ± 223 971 ± 136 773 ± 222

L̇ [L0/T ] 0.95 ± 0.85 0.75 ± 0.64 0.49 ± 0.50

L̈ [L0/T 2] −34.3 ± 6.3 −30.1 ± 3.8 −22.5 ± 2.6

kTD [BW/L0 ] 8.8 ± 1.7 9.8 ± 1.8 10.1 ± 1.2

GSM [%] 2 ± 19 8 ± 13 16 ± 10

γ [deg] 145 ± 9 143 ± 7 140 ± 2

m
od

el
ba

se
d

αTD,sym [deg] 52.5 ± 5.1 51.9 ± 4.2 51.5 ± 2.8

k̇ [kTD/T ] 0.3 ± 3.3 1.1 ± 2.3 2.6 ± 1.7

NMD [L0 ] 0.99 ± 0.34 0.76 ± 0.30 0.55 ± 0.11
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Table 3:

Humans Pheasants

slope R2 p-value slope R2 p-value
ex

pe
ri

m
en

ta
l

αTD [deg] −6.0 0.84 < 0.001 ∗ −0.7 0.02 0.700

α̇ [deg/T ] 39.4 0.74 < 0.001 ∗ 25.0 0.48 0.018 ∗

α̈ [deg/T 2] 434.9 0.59 < 0.001 ∗ −127.9 0.13 0.271

L̇ [L0/T ] −0.1 0.45 0.001 ∗ −0.6 0.27 0.100

L̈ [L0/T 2] −4.5 0.40 0.002 ∗ 8.2 0.60 0.005 ∗

kTD [BW/L0 ] −0.6 0.01 0.599 0.7 0.06 0.479

GSM [%] 7.6 0.28 0.014 ∗ 15.4 0.42 0.030 ∗

γ [deg] −6.4 0.20 0.045 ∗ −1.7 0.02 0.646

m
od

el k̇ [kTD/T ] 5.7 0.84 < 0.001 ∗ 2.9 0.45 0.023 ∗

NMD [L0 ] −0.2 0.38 0.003 ∗ −0.3 0.39 0.041 ∗
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Figure Legends

Figure 1

Spring mass running
One step in spring mass running is defined by two subsequent apices. A
point mass m (representing the body mass) is supported by a translational
spring with rest length L0 , stiffness k

TD
and angle of attack α

TD
. Swing

leg control strategies are: a) leg rotation α̇, b) leg length change L̇ and c)
stiffness adaptation of the leg spring k̇.

Figure 2

Landing strategy
The adaptation rates α̇ and L̇ of the kinematic parameters leg angle and leg
length affect the magnitude v

Foot
and the direction (indicated by the angle of

approach γ) of the foot’s landing velocity vector v
Foot

.

Figure 3

Apex-return map
In the return map y

i+1
(y

i
), intersections with the diagonal y

i
= y

i+1
denote

fixed points y∗. In this example, the lower fixed point is stable (s = −0.04),
the upper one unstable (s = 1.60).

Figure 4

Leg parameters
Mean values of experimentally derived and model based parameters for hu-
man (green dots) and avian (red triangles) running are plotted over speed
(indicated as Froude number).

Figure 5

Phase plots
Experimentally observed kinematic leg parameters, leg angle α and leg length
L, for human (subfigure (a) and (b)) and avian (subfigure (c) and (d)) run-
ning cycles are plotted against each other. The grand means of the trajec-
tories are highlighted in green (human) and red (avian), respectively. The
markers indicate touch down (TD), take off (TO) and TD and TO of the
contralateral leg (TDc and TOc).
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Figure 6

Running stability
Swing leg control, stability and foot landing strategy are shown for selected
periodic solutions of spring mass running. Stable areas (|s| < 0.5) of the
spring mass model, corresponding to selected stiffness adaptation rates k̇,
are indicated by the gray wedges. The relative foot point velocity (100%
and 0% GSM are illustrated in blue) and the foot point’s angle of approach
γ (black lines) describe the foot landing strategy. The experimentally ob-
served individual swing leg characteristics for human (green dots) and avian
(red triangles) running at different speeds are shown, with the stable area
matching the mean swing leg characteristics (black circle), assuming super-
stable behavior (s = 0.5). (α̇ < 0: leg protraction, α̇ > 0: leg retraction,
L̇ < 0: leg shortening, L̇ > 0: leg lengthening, k̇ < 0: leg softening, k̇ > 0:
leg stiffening)

Figure 7

Normalized maximum drop (NMD)
The NMD’s grand mean for human (green dots) and avian (red triangles)
running is illustrated as a function of a) the angle of attack α

TD
, (b) the leg

rotation speed α̇ and c) the leg length change L̇. The speeds correspond to
the values listed in table 1 and 2.
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Highlights�

� We�compared�swing�and�landing�behavior�of�avian�and�human�running�

� Based�on�experimental�data�and�spring�mass�simulations,�predictions�about�stability,�
robustness�and�stiffness�adaptation�during�swing�phase�were�made�

� The�model�suggests�that�birds�might�be�able�to�stabilize�running�by�applying�one�constant�
stiffness�adaptation�rate�

� Humans�may�have�to�adjust�their�leg�stiffness�on�a�larger�scale�

� Compared�to�humans,�birds�are�more�robust�in�terms�of�the�maximum�drop�they�can�cope�
with�




