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(PKPD) Behaviour of Monoclonal Antibodies: Predicting in vivo

Potency
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aDepartment of Mathematics, University of Surrey, Guildford GU2 7XH, UK
bPfizer, PDM, Clinical Pharmacology and Pharmacometrics, Sandwich CT13 9NJ, UK

cKnowledge Transfer Centre, University of Reading, Reading RG6 6AH, UK

Abstract

We consider the relationship between the target affinity of a monoclonal antibody and its in vivo
potency. The dynamics of the system is described mathematically by a target-mediated drug
disposition model. As a measure of potency, we consider the minimum level of the free receptor
following a single bolus injection of the ligand into the plasma compartment. From the differential
equations, we derive two expressions for this minimum level in terms of the parameters of the
problem, one of which is valid over the full range of values of the equilibrium dissociation constant
KD and the other which is valid only for a large drug dose or for a small value of KD . Both
of these formulae show that the potency achieved by increasing the association constant kon can
be very different from the potency achieved by decreasing the dissociation constant koff . In
particular, there is a saturation effect when decreasing koff where the increase in potency that
can be achieved is limited, whereas there is no such effect when increasing kon . Thus, for certain
monoclonal antibodies, an increase in potency may be better achieved by increasing kon than by
decreasing koff .

Keywords: Pharmacology, efficacy, affinity, target-mediated drug disposition, IgE.

1. Introduction

Since their introduction as clinical agents in the 1980s, monoclonal antibodies (mAbs) have
become one of the fastest growing classes of therapeutic modalities with 24 mAbs currently on the
market in the US [1] and more than 200 in clinical trials. The increasing interest in biologicals
in general, and mAbs in particular, is partly due to their high success rate during preclinical and
clinical development [1]. It has been suggested that an important element that has contributed to
this success is the fact that, compared to small molecules, the pharmacokinetic-pharmacodynamic
(PKPD) properties of mAbs are more amenable to quantitative, mechanistic modelling and sim-
ulation (M&S)-based translation approaches across preclinical and clinical research [2, 3, 4, 5]. A
specific example of this is the implementation of the principles of target-mediated drug disposition
(TMDD) into quantitative pharmacological models to describe and predict PKPD behaviour of
mAbs. Levy [6] introduced the term TMDD to describe the observations that for certain potent
and selective drugs the fraction (relative to the dose) bound to the pharmacological target may
be so high that it influences their disposition, i.e. PK and PD become interdependent. Mager and
Jusko [7] were the first to propose a general PK model for drugs exhibiting TMDD, which has
provided the basis for extensive further studies and development (see for example [5, 8, 9, 10, 13]).
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Figure 1: The TMDD reaction mechanism

Experimental confirmation of TMDD model predictions was provided in a recent elegant study by
Abraham et al. [14], who showed marked differences in interferon (INF)-β PK in wild-type and
type-1 INF α/β receptor knockout mice.

Although originally proposed to describe the effects of extensive drug-target binding in tis-
sues, TMDD has received most interest as a saturable clearance mechanism (due to, for example,
receptor-mediated endocytosis; see [15]) for biologics, specifically mAbs. One specific example of
the impact of mechanism-based PKPD models based on TMDD principles in drug discovery and
development comes from the area of anti-IgE mAbs. The first generation molecule, omalizumab
(Xolair R© [16]) is used for the treatment of allergic asthma and there has been an interest to
develop more potent, second-generation mAbs with improved clinical efficacy profile [2, 4]. Specif-
ically, TMDD models have been used to explore the impact of mAb affinity for IgE in relation to in
vivo potency (the dose required for a given clinical effect). Through a sensitivity analysis, Agoram
et al. [2] predicted that a ten-fold increase in mAb affinity for IgE would result in an approxi-
mately two-fold reduction in dose compared to omalizumab but that further increases in affinity
were not predicted to result in additional potency improvements. In contrast, simulations did
suggest that increased on-rate of mAb binding to IgE could have additional impact on the in vivo
potency [2]. However no formal analysis was presented to underwrite this hypothesis. Similarly,
Sarkar et al. [17] demonstrated the use of mechanistic models for the design of optimal biologic
therapeutics such as GCSF. Therefore, some examples exist in the literature on the exploration
of the affinity-potency relationships using detailed mathematical models of cellular processes, but
these analyses are heuristic in nature. A systematic analysis of how mechanistic TMDD models
can be employed in potency estimation of candidates is not yet available. Inspired by the before-
mentioned case studies and recent examples of how a rigorous mathematical analysis can aid our
understanding of complex pharmacological systems and provide tools to predict essential PKPD
properties of mAbs [18, 10, 15] we explore the behaviour of a TMDD model with respect to the
relationship between the target affinity of the mAb and its in vivo potency.

Section 1 gives the background for this study and Section 2 describes the model development
from the reaction mechanism. The mathematical analysis of the resulting kinetic rate equations is
depicted in this section for easy manipulation and understanding of the model. In Sections 3 and 4,
the results and discussion of the model dynamics are presented and mathematical expressions to
approximate the potency of the drug are derived. Section 5 gives a further analysis and validation
of the relationships derived in the previous sections. Finally, the conclusions and recommendations
arising from these studies are given in Section 6.
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2. Model Equations

In this study, a one-compartment model based on the original work of Levy [6] will be employed
in which the ligand L (drug) binds reversibly with the receptor R to form a receptor-ligand
complex P as shown in the scheme in Fig. 1. The TMDD model assumes a mechanism-based
reaction to explain the drug-receptor interaction. The parameters of the model are the binding
rate constants kon and koff , the receptor turnover and elimination rates kin and kout , and the
elimination rates of the ligand and complex ke(L) and ke(P) . The system is assumed to be initially
at steady state, into which a single bolus infusion L0 of the ligand into the central (plasma)
compartment is made (represented in Fig. 1 by ‘In’).

From the mechanism of the TMDD reaction shown in Fig. 1 the mathematical model can be
derived using the Law of Mass Action giving the differential equations

dL

dt
= −ke(L)L − konLR + koffP (1)

dR

dt
= kin − koutR − konLR + koffP (2)

dP

dt
= konLR − koffP − ke(P)P (3)

The steady state of this system is given by L = P = 0, R = kin/kout . Adding the bolus injection
gives the initial conditions

L(0) = L0, R(0) = R0 =
kin

kout
, P (0) = 0. (4)

We non-dimensionalise these equations by defining the dimensionless variables

x =
L

L0
, y =

R

R0
, z =

P

R0
, τ = koutt.

We also define the non-dimensional parameter

μ =
R0

L0
. (5)

This non-dimensionalisation is different from the one used by Peletier and Gabrielsson [10] who
defined the new time variable as τ = konR0t . The reason for this is that later on we want to
explore the limits of kon → 0 and kon → ∞ , and so we do not want kon to be used in the
rescaling of time. We also note that kout must be non-zero for the steady state R0 to exist, and
so this is an obvious choice of parameter to use for the non-dimensionalisation. In terms of these
non-dimensional quantities, equations (1)–(3) become

dx

dτ
= −K1x − K2xy + μK3z (6)

dy

dτ
= 1 − y − K2

μ
xy + K3z (7)

dz

dτ
=

K2

μ
xy − (K3 + K4) z (8)

with initial conditions
x(0) = 1, y(0) = 1, z(0) = 0,

where the dimensionless parameters are defined by

K1 =
ke(L)

kout
, K2 =

konR0

kout
, K3 =

koff

kout
, K4 =

ke(P)

kout
.

The constant term in (7) is derived by using the definition of the steady state R0 in (4). We note
that the six parameters and one initial value (L0 ) of the dimensional equations have been reduced
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Kinetic Constant Value Parameter Value
ke(L) 0.024 day−1 K1 0.02916
ke(P) 0.201 day−1 K2 1.93353
kout 0.823 day−1 K3 1.09356
koff 0.900 day−1 K4 0.24423
kon 0.592 (nM day)−1 μ 0.18144
KD 1.520 nM
kin koutR0 nM day−1

L0 14.8148 nM
R0 2.688 nM

Table 1: Numerical values of the dimensioned and dimensionless constants for IgE mAb omalizumab [11].

to five non-dimensional constants for the non-dimensional equations, which simplifies the model
equations while keeping the essence of the system.

We use parameter values from the IgE mAb omalizumab case study [11] (which were also used
in [2]) as an example. The numerical values of the dimensioned and dimensionless parameters for
this case are given in Table 1, where we have also included the value of the equilibrium dissociation
constant KD = koff/kon . For the dimensioned parameters, we use these units hereafter without
mentioning them specifically. Using these parameters, the time profile of the ligand, receptor and
ligand-receptor complex are shown in Fig. 2 for a short time (just past the minimum of R) and
for a longer time interval in Fig. 3. Clearly, plots of the non-dimensional quantities x , y and z

will be similar but with a difference scale on the vertical axis.
These numerical results show different phases occurring. Initially, in a very short time, the

receptor R drops down to a low value while the product P shows a corresponding jump. There
is also an initial sharp but small drop in the ligand L . This phase is dominated by the binding
action of the ligand to the receptor resulting in the product. In the next phase, which happens
on a much slower timescale, the receptor and the product gradually increase, while the ligand
continues with a gradual decrease. Finally, the system settles back to its steady state values.

3. Approximation of the Drug Potency – Method 1

In our analysis, the in vivo potency of the drug is defined to be the minimum free receptor
level that can be achieved for a particular dose of the drug. Potency is defined as the amount of
drug (the dose) that is needed to produce a defined effect [12]. We use the minimum free receptor
level as the measure of ‘defined effect’ since this can conceptually be related to a level of clinical
outcome. For example, in the case of omaluzimab and follow-on IgE mAbs, reducing mean free
IgE levels to approximately 10 IU/ml in asthma patients has been used as a target to achieve the
desired clinical efficacy [4].

Mathematically, this minimum receptor level, Rmin , is obtained by finding the minimum point
on the receptor-time profile (see Fig. 2(b)) and is therefore defined as the point where the time
derivative of R (or y in dimensionless form) vanishes. Setting ẏ = 0 in (7) implies that this
minimum occurs when

1 − y − K2

μ
xy + K3z = 0,

which gives

y =
μ(1 + K3z)
μ + K2x

.

The problem with this is that we do not know the values of x and z when the minimum occurs,
and so all this gives us is a two-dimensional surface in the three-dimensional phase space on which
the minimum must occur but the position on this surface where the actual minimum occurs for
the given trajectory is not known.

4



0 0.2 0.4 0.6 0.8 1
10.5

11

11.5

12

12.5

13

13.5

14

14.5

15

t (days)

L (nM)

(a)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

t (days)

R/P (nM)

(b)

Figure 2: Concentration-time profile for 0 ≤ t ≤ 1 of (a) the free ligand L , and (b) the free receptor R (blue) and
the ligand-receptor complex P (red).
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Figure 3: Concentration-time profile for 0 ≤ t ≤ 20 of (a) the free ligand L , and (b) the free receptor R (blue)
and the ligand-receptor complex P (red).
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Figure 4: Concentration-time profile of (a) the total ligand L + P and (b) the total receptor R + P . Note the
small variation in values on the vertical L + P -axis.
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To address this problem, we rewrite equations (6)–(8) in terms of different variables. In partic-
ular, we introduce a non-dimensional form of the total amount of ligand (free and bound) together
with the total amount of receptor (free and bound). Thus, we define

u =
L + P

L0
= x + μz

v =
R + P

R0
= y + z

We now rewrite our equations in terms of the variables u , v and y , giving

u̇ = −K1u − μ(K4 − K1)(v − y) (9)

v̇ = 1 − y − K4(v − y) (10)

ẏ = 1 − y − K2

μ
uy + (K2y + K3)(v − y) (11)

with initial conditions
u(0) = 1, v(0) = 1, y(0) = 1.

The concentration-time profile for the total ligand L+P and the total receptor R +P are shown
in Fig. 4.

We assume that the factor μ/K2 = kout/(konL0) is small which requires that konL0 is large
relative to kout . This condition will be satisfied if the amount L0 of ligand injected is sufficiently
large or if the ligand and the receptor combine very fast, i.e., kon is large. We define

ε = μ/K2,

as our small parameter.
As before, we can set ẏ = 0 in (11) which, using our new parameter ε , gives

1 − y − 1
ε
uy + (K2y + K3)(v − y) = 0.

We note that in this case, we have a quadratic equation for y which has one positive and one
negative solution. The positive solution is given by

y = − 1
2εK2

(
[u + ε(1 + K3 − K2v)] −

√
[(u + ε(1 + K3 − K2v))2 + 4ε2K2(1 + K3v]

)
.

Since we have assumed that ε is small, the first term under the square root will dominate the
second. Thus, taking this first term out of the square root and then expanding the square root
term gives

y = ε
1 + K3v

u + ε(1 + K3 − K2v)
+ O

(
ε2

)
. (12)

Of course, we still have the problem that this formula for y involves the variables u and v .
However, the advantage of working with equations (9)–(11) is that the variables u and v evolve
on a much slower timescale than y . To see this more clearly, we introduce the fast time variable
τ = t/ε . With this time variable, the system (9)–(11) becomes

u′ = −ε [K1u + εK2(K4 − K1)(v − y)] (13)

v′ = ε [1 − y − K4(v − y)] (14)

y′ = −uy + ε [1 − y + (K2y + K3)(v − y)] , (15)

where u′ stands for du/dτ , etc. We note that

u′(0) = −εK1, v′(0) = 0, y′(0) = −1.
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Provided that εK1 = ke(L)/(konL0) is small, which is the case for the parameter values we are
considering, then the derivative of y at time zero is much greater than the corresponding deriva-
tives of u and v , and hence y will initially change at a much faster rate than u and v , as can be
seen from Figs 2 and 4. Indeed, the variables in Fig. 4 do not show the initial sharp change that
can be observed for R (or equivalently y ) in Fig. 2.

Provided that εK4 = ke(P)/(konL0) and ε = kout/(konL0) are also small, the derivatives u′ and
v′ are small as they have an overall factor ε . So during an initial fast phase, u and v will remain
approximately constant while y quickly decreases to its minimum and so we can approximate this
minimum by setting u = u(0) = 1 and v = v(0) = 1. Substituting these values into (12) and
ignoring the higher order terms gives an approximation of the minimum value of y as

y
(1)
min = ε

1 + K3

1 + ε(1 + K3 − K2)
. (16)

Converting this expression back to the dimensional variables, we obtain an approximation for the
minimum of R as

R
(1)
min =

R0(koff + kout)
kon(L0 − R0) + koff + kout

. (17)

The justification of this approximation is obtained as a consequence of the reaction between L and
R , which produces the product P , happening on a much faster timescale than the other dynamic
processes. From the non-dimensional equations (13)–(15), we can see that the reduction of y will
happen on a fast timescale if ε is small and u and v are not depleted too quickly by elimination
relative to the reaction rate. This requires that ke(L) , ke(P) and kout are small relative to konL0 .
Clearly, these conditions can be fulfilled in two ways, namely by L0 being large relative to kout ,
ke(P) and ke(L) or by kon being large relative to kout , ke(P) and ke(L) (with no corresponding
requirement that L0 also be large).

Looking at the limiting cases, we see that varying kon gives

lim
kon→0

R
(1)
min = R0, lim

kon→∞
R

(1)
min = 0. (18)

Similarly, varying koff gives

lim
koff→∞

R
(1)
min = R0, lim

koff→0
R

(1)
min =

R0kout

kon(L0 − R0) + kout
, (19)

We note that in the limit as KD = koff/kon → ∞ there is no reaction between the ligand and
the receptor and hence no product is formed. Thus, R remains at its steady state value R0 and
so we have obtained the correct limit in this case.

In the alternative case when KD = koff/kon → 0, we note that increasing kon results in the
minimum level of the receptor decreasing to zero, while decreasing koff results in the minimum
receptor level decreasing to a non-zero level.

We note in passing that the formula for R
(1)
min can be expressed in terms of the single parameter

(koff + kout)/kon for given L0 and R0 and so an increase in kon will have the same effect as a
corresponding decrease in koff + kout . However, kout is not a constant over which we have any
control, and so this observation is not particularly helpful in practice.

4. Approximation of the Drug Potency – Method 2

In the previous section, we worked with the dimensionless variables for the total ligand (u) ,
total receptor (v) and free receptor (y) . We now consider a similar approach using instead the
dimensionless variables for the total ligand (u) , free receptor (y) and product (z). In this case,
the condition for the minimum of y (i.e. ẏ = 0) gives

ε(1 − y) − (u − εK2z)y + εK3z = 0,
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which is linear in y . Solving this equation for y we obtain

y =
ε(1 + K3z)

u + ε(1 − K2z)
.

As before, we note that u remains approximately constant during the initial fast phase and so
we again take u = 1. However, z changes rapidly during the initial phase, as does y , and so we
cannot use the initial value of z . The assumption used previously that v = 1 implies that y+z = 1
or z = 1− y . Now at the minimum point, if we assume that y = O(ε) , then z = 1−O(ε) at this
point. Since ε is assumed to be small, we simply take z = 1 as the leading order approximation.
With these two assumptions, we obtain an approximation for the minimal receptor level as

y
(2)
min = ε

1 + K3

1 + ε(1 − K2)
, (20)

which is very similar, but not quite the same, as the previous approximation y
(1)
min given in (16).

Converting back to the original coordinates gives

R
(2)
min =

R0(kout + koff)
kon(L0 − R0) + kout

. (21)

In the derivation of this approximation, we used the same assumptions as for R
(1)
min , i.e., ke(L) ,

ke(P) and kout are small compared to konL0 , plus the extra assumption that koff is small compared
to konL0 .

It is easily verified that y
(2)
min = y

(1)
min + O(ε2). We also note that

lim
kon→∞

R
(2)
min = lim

kon→∞
R

(1)
min = 0, (22)

and that
lim

koff→0
R

(2)
min = lim

koff→0
R

(1)
min =

R0kout

kon(L0 − R0) + kout
, (23)

and so the limiting values for the two approximations R
(1)
min and R

(2)
min as KD = koff/kon → 0 are

the same. However, in the other limit with KD = koff/kon → ∞ , we find that

lim
kon→0

R
(2)
min = R0

(
1 +

koff

kout

)
, lim

koff→∞
R

(2)
min = ∞.

Thus, the correct values are not obtained in this limit. This is expected since we assumed above
that ymin = O(ε), which in turn implies that koff/(konL0) is small. When koff/kon is large, this
condition is violated and the approximation is not valid. We note that even for a large (fixed)
value of L0 , if KD becomes sufficiently large, then konL0 will no longer be large relative to koff

and so this approximation fails.

5. Validation and Further Analysis of the Approximations

We now compare these predicted approximate values with numerical values obtained from the
differential equations. We use the values of the constants from the omalizumab case study, as
given in Table 1. Since ε = 0.0938 is quite small and KD = 1.52, both approximations will be
valid in this case. Solving the differential equations numerically gives the true minimum of R to
be Rmin = 0.5811. Our two approximations give values of

R
(1)
min = 0.5203, R

(2)
min = 0.5787,

from which we can see that the second approximation gives a better result
It is also interesting to consider these approximations over a range of values of KD = koff/kon .

In the omalizumab study we have the parameter values koff = 0.9 and kon = 0.592, hence
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Figure 5: The minimal value of R as a function of KD with (a) KD plotted on a log scale for a wide range of

KD values and (b) KD plotted on a linear scale for KD small. In both plots, the red solid curve (R
(1)
min ) and

dash-dotted curve (R
(2)
min ) and points ∗ (numerical simulation) are for koff = 0.9 and kon = 0.9/KD . Similarly,

the blue solid curve (R
(1)
min ) and dashed curve (R

(2)
min ) and points • (numerical simulation) are for kon = 0.592

andkoff = 0.592 KD .

KD = 1.52. To make it easier to compare results for varying either kon or koff , we first fix
kon = 0.592 and vary koff via koff = 0.592KD and then we fix koff = 0.9 and vary kon = 0.9/KD .
The resulting Rmin data points from the numerical simulation of the differential equations and
approximation curves R

(1)
min and R

(2)
min are plotted as functions of the variable KD in Fig. 5. This

illustrates that R
(1)
min is a good approximation for all values of KD . For small values of KD ,

the approximation R
(2)
min is better than R

(1)
min , but for larger values of KD , the approximation

R
(2)
min starts to fail as expected. For koff = 0 and kon = 0.592, we have the approximation

R
(1)
min = R

(2)
min = 0.2765, while the numerical simulation gives Rmin = 0.3014. For koff = 0.9 and

kon → ∞ , we have both the simulation and the approximations converging to zero.
It can be seen that the approximation R

(1)
min corresponds well to the results obtained by simu-

lation over the whole range of KD values, while the approximation R
(2)
min is a good approximation

when Rmin/R0 is small, which occurs when either L0 or kon is large. Thus the analytical expres-
sions capture the relationship between the potency (Rmin ) and the affinity constants (koff and
kon ) very well.

Another way to view the expression for R
(1)
min is by plotting it as a function of the two variables

log10(koff) and log10(kon) as shown in Fig. 6. The R
(1)
min contours of this surface are shown in

Fig. 7, while the contours with koff and kon constant are shown in Figs 8 and 9 respectively. We
note in Fig. 7 that when log10(koff) is positive, the contours of R

(1)
min appear to be approximately

straight lines of slope one. On the other hand, when log10(koff) is less than −1, the contours are
approximately horizontal lines. This can be explained as follows.

If koff � kout , then koff will make a negligible contribution to the numerator and the denom-
inator of R

(1)
min and so we can set it to zero, giving

R
(1)
min ≈ R0koff

kon(L0 − R0) + koff
=

R0KD

L0 − R0 + KD
, for koff � kout.

Thus, in this case, R
(1)
min depends only on the single parameter KD = koff/kon and not separately

on koff and kon . If we now consider a contour which corresponds to a constant value of Rmin = Rc ,
for some given constant Rc , then we can solve the equation R

(1)
min = Rc for KD giving

KD =
Rc(L0 − R0)

R0 − Rc
, for koff � kout.
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Figure 6: Plot of R
(1)
min given by (17) as a function of log10(koff ) and log10(kon) .

Figure 7: Contours of the surface shown in Fig. 6 for constant values of Rmin .
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Figure 8: Contours of the surface shown in Fig. 6 for constant values of koff .

Figure 9: Contours of the surface shown in Fig. 6 for constant values of kon .
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Taking logs, we then find that

log10(kon) = log10(koff) − log
(

Rc(L0 − R0)
R0 − Rc

)
, for koff � kout

and so the relationship between log10(koff) and log10(kon) is linear with slope one, as seen in Fig.
7, for koff sufficiently large.

At the other extreme, when koff � kout , then koff will be negligible compared to kout and so,
setting it to zero, we obtain

R
(1)
min ≈ R0kout

kon(L0 − R0) + kout
, for koff � kout.

In this case, setting R
(1)
min = Rc and solving for kon , we obtain

kon =
kout(R0 − Rc)
Rc(L0 − R0)

, for koff � kout

and clearly this expression for kon does not depend on koff (since we set it to zero!) and so
log10(kon) is a constant.

Thus, the contours asymptote to a constant as log10(koff) → −∞ (koff → 0) and asymptote
to a straight line of slope one as log10(koff) → ∞ (koff → ∞). The in-between region, when koff

and kout are of similar order, gives the curve that joins these two straight lines.
We are now able to derive further information on the effect of varying koff or kon on Rmin .

When koff is large relative to kout , we have seen that R
(1)
min effectively depends only on the single

parameter KD , in which case increasing kon by a factor of α will have the same effect on Rmin

as decreasing koff by a factor of α . However, when koff is either small or of similar magnitude
to kout (as is the case for omalizumab), then increasing kon by a factor of α will have a much
greater effect than reducing koff by a factor of α .

We note that over the whole range of values of log10(koff) to move from one contour in Fig. 7 to
a lower one can always be achieved by a relatively small increase in log10(kon) . However, moving
to a lower contour by decreasing log10(koff) can easily be achieved with a relatively small decrease
when log10(koff) is large, but requires a much larger decrease for smaller values of log10(koff) ,
and for smaller values still, it is not possible to move to a lower contour by decreasing log10(koff) .
This is consistent with the results shown in Fig. 5.

Finally, we consider what increase in kon , or decrease in koff , is required to reduce Rmin by a
factor of two (which correponds to increasing the efficacy from say 90% to 95%). We suppose that
R

(1)
min = Rc when kon = k0

on and that R
(1)
min = Rc/2 when kon = k1

on . This gives the two equations

Rc =
R0(koff + kout)

k0
on(L0 − R0) + koff + kout

,
Rc

2
=

R0(koff + kout)
k1
on(L0 − R0) + koff + kout

.

Eliminating Rc from these equations and solving for k1
on gives

k1
on = 2k0

on +
koff + kout

L0 − R0
, (24)

and so we conclude that to reduce Rmin by a factor of two, kon has to be more than doubled,
since the second term on the right of (24) is positive.

If we define K0
D = koff/k0

on and K1
D = koff/k1

on , then from (24) we find that

K1
D =

1
2
K0

D

(
2k0

on(L0 − R0)
2k0

on(L0 − R0) + koff + kout

)
.

Since the term in the brackets is less than one, clearly KD must be reduced by a factor greater
than two in order to reduce Rmin by a factor or two, which is consistent with the above statement
regarding kon .
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A similar calculation where koff is varied rather than kon gives

k1
off =

1
2
k0
off − 1

2
kout − (k0

off + kout)2

4kon(L0 − R0) + 2(k0
off + kout)

. (25)

In this case, to reduce Rmin by a factor of two, koff must be reduced by more than a factor of
two. Moreover, it is quite possible that this formula gives k1

off < 0, which of course implies in such
a case that it is not possible to reduce Rmin by a factor of two by reducing koff , which we have
already noted above.

If we define K̃0
D = k0

off/kon and K̃1
D = k1

off/kon , then from (25) we have that

K̃1
D =

1
2
K̃0

D − kout

2kon
− (k0

off + kout)2

kon[4kon(L0 − R0) + 2(k0
off + kout)]

=
1
2
K̃0

D − k

2
− (K̃0

D + k)2

4(L0 − R0) + 2(K̃0
D + k)

where k = kout/kon . The comments above regarding koff apply also to K̃D .

6. Discussion and Conclusion

The main objective of the work presented in this paper was to explore the TMDD model
through a rigorous mathematical analysis with regards to the relationship between the target
affinity of a mAb versus its in vivo potency. In our experience, this topic invariably gets raised in
mAb drug discovery and development programs, mainly because the maximum dose for routine
clinical use in patients is typically more stringently constrained for mAbs compared to small
molecules due to non-oral route of administration, formulation complexities and cost of goods,
and because increasing the affinity of a mAb is a time-consuming process.

The first, perhaps obvious, conclusion of our analysis is that for a given dose (L0 ) the minimum
value of free target (Rmin ) can be decreased (equivalent to increasing in vivo potency) by increasing
kon or by decreasing koff . While this conclusion may be obvious, what may not be so apparent is
that there is a significant difference in the minimum receptor obtained when KD is reduced either
by reducing koff or by increasing kon . We note from (18) that as kon → ∞ , then R

(1)
min → 0,

whereas from (19), as koff → 0, then R
(1)
min tends to a non-zero value, with the same limits being

obtained from R
(2)
min , as already noted. Thus, we have a saturation effect when decreasing koff ,

in that further reductions in the value of koff will yield only limited reductions in Rmin , with a
positive limiting value as koff → 0. There is no such saturation when increasing kon , so that Rmin

is consistently reduced towards the limiting value of zero for increasing values of kon .
We see from (19) and (23) that the limiting value of Rmin as koff → 0 in both cases is given

by

lim
koff→0

R
(1)
min = lim

koff→0
R

(2)
min =

kinkout

kon(koutL0 − kin) + k2
out

,

where we have substituted R0 = kin/kout . Thus, we can see that this saturation level will be
reduced by increasing kon or L0 . Theoretically, the saturation level could also be reduced by
decreasing kin or by increasing kout .

This sheds new light on our previous work [2] in which, through simulations, we predicted
that the maximum increase in potency that could be achieved with an anti-IgE antibody by only
reducing koff would be approximately two-fold compared to omalizumab, and that this would
be achieved with a five-to-ten-fold increase in affinity. Clinical data reported subsequently by
Putnam et al. [4] on the high-affinity anti-IgE mAb, HAE1, were consistent with this prediction,
since it was shown that HAE1 achieved an approximately two-fold improvement in in vivo potency
compared to omalizumab, whereas it displayed a more than twenty-fold higher affinity for IgE.
Interestingly, the data presented in [4] show that the affinity improvement of HAE1 compared to
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omalizumab was entirely driven by a reduction in koff , consistent with our prediction that this
parameter is associated with a saturation effect regarding its impact on in vivo potency.

As far as we are aware there is no experimental data to support our hypothesis that such
a saturation effect does not exist for kon , but our analysis does suggest that a mAb potency
optimisation strategy focused on increasing kon rather than decreasing koff could be advantageous.
Currently, the majority of marketed mAbs and those in clinical development are IgE’s of about
150 kDa size and their kon values are generally uniform and limited by their size. However,
even if rational optimisation of kon is currently not experimentally possible, our analysis indicates
that between two antibodies of sufficiently low koff (in the saturation effect range), one antibody
with a higher kon is more potent even if it may have higher koff and hence, potentially higher
overall KD . While this conclusion may already have been derived in an empirical manner within
certain areas of biologics discovery (especially with the extensive research into highly labile targets
such as interleukins) we have provided the first systematic quantitative analysis that can guide
rational optimisation of mAbs within the context of the TMDD framework. For example, in
recent years, significant efforts have been put into the development of novel human and non-human
scaffolds (‘nanobodies’) of much smaller size (see [19, 20]). Although currently these efforts appear
to be mainly motivated by predicted improvement of tissue penetration, systemic stability and
preferential cleft recognition [21], an intriguing question that follows on from the present analysis
is whether nanobodies could display faster kon rates due to their smaller size and therefore may
be more amenable to optimisation of in vivo potency compared to traditional mAbs.

We have chosen our measure of drug potency to be the minimum free receptor level, although
there are other measures that could be used, such as the maximum of the complex P . However,
this maximum typically occurs at a much later time than the minimum of R (at approximately 4.5
days for the example shown in Fig. 3(b)) and at this later time, our assumptions that u = v = 1
are no longer valid. Thus, the methods that we have described are not applicable in this case.

Alternative measures of potency that could be considered are (i) the maximum of the receptor
occupancy P/R or (ii) the minimum of the proportion of free receptor relative to the total amount
of receptor R/(R + P ). In terms of the non-dimensional variables, these quantities are z/y and
y/v respectively. To find the maximum/minimum levels, we again differentiate and set to zero.
For the receptor occupancy, we then obtain

d(z/y)
dτ

= 0 =⇒ y
dz

dτ
− dy

dτ
z = 0.

For the ratio of free to total receptor, we have

d(y/v)
dτ

= 0 =⇒ v
dy

dτ
− dv

dτ
y = 0 =⇒ y

dz

dτ
− dy

dτ
z = 0.

Thus, the equation to be solved is the same in both cases. Reworking method 1 above for this
equation, we find that the maximum/minimum occurs when

R =
R0(kout + koff)

kon(L0 − R0) + 2kout + koff − ke(P)

Clearly, this is very similar to our formula for R
(1)
min given by (17). In particular, the broad

conclusions that there is saturation to a non-zero value as koff → 0 and no such saturation as
kon → ∞ still hold in both cases.

It should be pointed out that an important assumption in our analysis is that konL0 must be
significantly larger than ke(L) , ke(P) and kout . It is easily verified that the quotients ke(L)/(konL0) ,
ke(P)/(konL0) and kout/(konL0) are all less than 0.1 for the IgE mAb omalizumab case study
and hence are sufficiently small for the analysis to work well. However, while this assumption
may generally hold true for blocking and neutralising antibodies, it may not be true for agonists
and in cases where pharmacological effect may be exerted at low levels of target occupancy.
Therefore, our conclusions may not be valid in those cases. However, we do not believe this
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greatly limits applicability of the simplification we have provided, since in the cases where the
underlying assumption is violated, lower doses are only required for clinical efficacy and therefore
affinity requirements tend to be less stringent. It should also be noted that this analysis is only
applicable for a rather simple antigen-antibody system which interacts without diffusion barriers,
avidity effects, and other complexities. These complicating factors should be considered to be able
to extend the model to more realistic drug discovery situations.

In conclusion, our analysis of the TMDD model has provided a mathematical framework that
relates intrinsic pharmacological and pharmacokinetic properties of mAbs to their in vivo potency.
The finding that the greatest potency improvements can be achieved, at least in theory, through
modulation of kon could provide a basis for new strategies to drive the discovery of a new generation
of mAbs. The simple formula we have provided can also substantially reduce the need for complex
PKPD analyses resources to get an initial estimate of required affinity at the lead optimisation
stage.
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� Potency�is�measured�by�the�minimum�free�receptor�following�an�injection�of�ligand.�
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