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In the study of elliptic problems, it is quite standard to find solutions belonging either to BV (Ω) or to W 1,s (Ω), with s > 1. In this paper we prove the existence of a W 1,1 0 distributional solution for the following boundary value problem:

(1)

       -div a(x) ∇u (1 + b(x)|u|) 2 + u = f in Ω, u = 0 on ∂Ω.
Here Ω is a bounded, open subset of R N , with N > 2, a(x), b(x) are measurable functions such that

(2) 0 < α ≤ a(x) ≤ β, 0 ≤ b(x) ≤ B, with α, β ∈ R + , B ∈ R and

(3) f (x) belongs to L 2 (Ω).

We are going to prove that problem (1) has a distributional solution u belonging to the non-reflexive Sobolev space W 1,1 0 (Ω). Problems like [START_REF] Alvino | Existence results for nonlinear elliptic equations with degenerate coercivity[END_REF] have been extensively studied in the past. In [START_REF] Boccardo | Existence and regularity results for some elliptic equations with degenerate coercivity, dedicated to[END_REF], existence and regularity results were obtained for (4)

       -div a(x) ∇u (1 + |u|) θ = f in Ω, u = 0 on ∂Ω,
where 0 < θ ≤ 1 and f belongs to L m (Ω) for some m ≥ 1. A whole range of existence results was proved, yielding solutions belonging to some Sobolev space W 1,q 0 (Ω), with q = q(2, m) ≤ 2 or entropy solutions.

In the case where θ > 1 a non-existence result for constant sources has been proved in [START_REF] Alvino | Existence results for nonlinear elliptic equations with degenerate coercivity[END_REF]. As pointed out in [START_REF] Boccardo | Some remarks on a class of elliptic equations[END_REF], existence of solutions can be recovered for any value of θ > 0, by adding a lower order term of order zero. If we consider the problem (5)

       -div a(x)∇u (1 + |u|) 2 + u = f in Ω, u = 0 on ∂Ω,
with f in L m (Ω), then the following results can be proved (see [START_REF] Boccardo | Some remarks on a class of elliptic equations[END_REF] and [START_REF] Croce | The regularizing effects of some lower order terms in an elliptic equation with degenerate coercivity[END_REF]):

i) if 2 < m < 4, then there exists a distributional solution in

W 1, 2m m+2 0 (Ω) ∩ L m (Ω); ii) if 1 ≤ m ≤ 2,
then there exists an entropy solution in L m (Ω) whose gradient belongs to the Marcinkiewicz space M m 2 (Ω). In this paper we deal with the borderline case m = 2, improving the above results as follows.

Theorem 1. Assume (2) and (3). Then there exists a distributional solution u ∈ W 1,1 0 (Ω) ∩ L 2 (Ω) to problem [START_REF] Alvino | Existence results for nonlinear elliptic equations with degenerate coercivity[END_REF], in the sense that

Ω a(x) ∇u • ∇ϕ (1 + b(x)|u|) 2 + Ω u ϕ = Ω f ϕ , for all ϕ ∈ W 1,∞ 0 (Ω).
Remark 2. If the operator is nonlinear with respect to the gradient, existence of distributional solutions will be studied in a forthcoming paper ([3]).

Proof of Theorem 1.

Step 1. We begin by approximating our boundary value problem (1) and we consider a sequence {f n } of L ∞ (Ω) functions such that f n strongly converges to f in L 2 (Ω), and

|f n | ≤ |f | for every n in N.
The same technique of [START_REF] Boccardo | Some remarks on a class of elliptic equations[END_REF] assures the existence of a solution u n in

H 1 0 (Ω) ∩ L ∞ (Ω) of (6)        -div a(x) ∇u n (1 + b(x)|u n |) 2 + u n = f n in Ω, u n = 0 on ∂Ω.
Indeed, let M n = f n L ∞ (Ω) + 1, and consider the problem

(7)        -div a(x)∇w (1 + b(x)|T Mn (w)|) 2 + w = f n in Ω, w = 0 on ∂Ω,
where T k (s) = max(-k, min(s, k)) for k ≥ 0 and s in R. The existence of a weak solution w in H 1 0 (Ω) of ( 7) follows from Schauder's theorem. Choosing (|w|f n L ∞ (Ω) ) + sgn(w) as a test function we obtain, dropping the nonnegative first term,

Ω |w| (|w| -f n L ∞ (Ω) ) + ≤ Ω f n L ∞ (Ω) (|w| -f n L ∞ (Ω) ) + . Thus, Ω (|w| -f n L ∞ (Ω) ) (|w| -f n L ∞ (Ω) ) + ≤ 0 , so that |w| ≤ f n L ∞ (Ω) < M n . Therefore, T Mn (w) = w,
and w is a bounded weak solution of (6).

Step 2. We prove some a priori estimates on the sequence {u n }. Let k ≥ 0, i > 0, and let ψ i,k (s) be the function defined by

ψ i,k (s) =        0 if 0 ≤ s ≤ k, i(s -k) if k < s ≤ k + 1 i , 1 if s > k + 1 i , ψ i,k (s) = -ψ i,k (-s) if s < 0. Note that lim i→+∞ ψ i,k (s) =    1 if s > k, 0 if |s| ≤ k, -1 if s < -k.
We choose |u n | ψ i,k (u n ) as a test function in (6), and we obtain

Ω a(x)|∇u n | 2 (1 + b(x)|u n |) 2 |ψ i,k (u n )| + Ω a(x)|∇u n | 2 (1 + b(x)|u n |) 2 ψ ′ i,k (u n )|u n | + Ω u n |u n |ψ i,k (u n ) = Ω f n |u n |ψ i,k (u n ) .
Since ψ ′ i,k (s) ≥ 0, we can drop the second term; using (2), and the assumption

|f n | ≤ |f |, we have α Ω |∇u n | 2 (1 + b(x)|u n |) 2 |ψ i,k (u n )|+ Ω u n |u n |ψ i,k (u n ) ≤ Ω |f ||u n ||ψ i,k (u n )| .
Letting i tend to infinity, we thus obtain, by Fatou's lemma (on the left hand side) and by Lebesgue's theorem (on the right hand side, recall that u n belongs to L ∞ (Ω)),

(8) α {|un|≥k} |∇u n | 2 (1 + b(x)|u n |) 2 + {|un|≥k} |u n | 2 ≤ {|un|≥k} |f | |u n | .
Dropping the nonnegative first term in (8) and using Hölder's inequality on the right hand side, we obtain

{|un|≥k} |u n | 2 ≤ {|un|≥k} |f | 2 1 2 {|un|≥k} |u n | 2 1 2
.

Simplifying equal terms we thus have

(9) {|un|≥k} |u n | 2 ≤ {|un|≥k} |f | 2 .
For k = 0, (9) gives ( 10)

Ω |u n | 2 ≤ Ω |f | 2 , so that {u n } is bounded in L 2 (Ω)
. This fact implies in particular that (11) lim k→+∞ meas({|u n | ≥ k}) = 0 , uniformly with respect to n.

From (8), written for k = 0, dropping the nonnegative second term and using that b(x) ≤ B, we have

α Ω |∇u n | 2 (1 + B|u n |) 2 ≤ Ω |f | |u n | .
Hölder's inequality on the right hand side then gives

α Ω |∇u n | 2 (1 + B|u n |) 2 ≤ Ω |f | 2 1 2 Ω |u n | 2 1 2
, so that, by (10), we infer that

(12) α Ω |∇u n | 2 (1 + B|u n |) 2 ≤ Ω |f | 2 .
Step 3. We prove that, up to subsequences, the sequence {u n } strongly converges in L 2 (Ω) to some function u.

From (12) we deduce that

v n = log(1 + B|u n |)sgn(u n ) is bounded in H 1 0 (Ω).
Therefore, up to subsequences, it converges to some function v weakly in H 1 0 (Ω), strongly in L 2 (Ω), and almost everywhere in Ω. If we define u = e |v| -1 B sgn(v), then u n converges almost everywhere to u in Ω. Let now E be a measurable subset of Ω; then

E |u n | 2 ≤ E∩{|un|≥k} |u n | 2 + E∩{|un|<k} |u n | 2 ≤ {|un|≥k} |f | 2 + k 2 meas(E) ,
where we have used (9) in the last passage. Thanks to (11), we may choose k large enough so that the first integral is small, uniformly with respect to n; once k is chosen, we may choose the measure of E small enough such that the second term is small. Thus, the sequence {u 2 n } is equiintegrable and so, by Vitali's theorem, u n strongly converges to u in L 2 (Ω).

Step 4. We prove that, up to subsequences, the sequence {u n } weakly converges to u in W 1,1 0 (Ω). Let again E be a measurable subset of Ω, and let i be in {1, . . . , N}. Then

E |∂ i u n | ≤ E |∇u n | = E |∇u n | 1 + B|u n | (1 + B|u n |) ≤ E |∇u n | 2 (1 + B|u n |) 2 1 2 E (1 + B|u n |) 2 1 2 ≤ 1 α Ω |f | 2 1 2 2meas(E) + 2B 2 E |u n | 2 1 2
, where we have used (12) in the last passage. Since the sequence {u n } is compact in L 2 (Ω), we have that the sequence {∂ i u n } is equiintegrable. Thus, by Dunford-Pettis theorem, and up to subsequences, there exists

Y i in L 1 (Ω) such that ∂ i u n weakly converges to Y i in L 1 (Ω). Since ∂ i u n
is the distributional derivative of u n , we have, for every n in N,

Ω ∂ i u n ϕ = - Ω u n ∂ i ϕ , ∀ϕ ∈ C ∞ 0 (Ω) .
We now pass to the limit in the above identities, using that ∂ i u n weakly converges to Y i in L 1 (Ω), and that u n strongly converges to u in L 2 (Ω); we obtain

Ω Y i ϕ = - Ω u ∂ i ϕ , ∀ϕ ∈ C ∞ 0 (Ω) ,
which implies that Y i = ∂ i u, and this result is true for every i. Since Y i belongs to L 1 (Ω) for every i, u belongs to W 1,1 0 (Ω), as desired.

Note now that, since s → log(1 + Bs) is Lipschitz continuous on R + , and u belongs to W 1,1 0 (Ω), by the chain rule we have

∇[log(1 + B|u|) sgn(u)] = ∇u 1 + B|u|
, almost everywhere in Ω.

Hence, from the weak convergence of v n to v in H 1 0 (Ω) we deduce that (13) lim

n→+∞ ∇u n 1 + B|u n | = ∇u 1 + B|u| , weakly in (L 2 (Ω)) N .
Step 5. We now pass to the limit in the approximate problems (6).

Both the lower order term and the right hand side give no problems, due to the strong convergence of u n to u, and of f n to f , in L 2 (Ω).

For the operator term we can write, if

ϕ belongs to W 1,∞ 0 (Ω), ( 14 
) Ω a(x) ∇u n • ∇ϕ (1 + b(x)|u n |) 2 = Ω a(x) ∇u n 1 + B|u n | • ∇ϕ 1 + B|u n | (1 + b(x)|u n |) 2 .
In the last integral, the first term is fixed in L ∞ (Ω), the second is weakly convergent in (L 2 (Ω)) N by (13), the third is fixed in (L ∞ (Ω)) N , and the fourth is strongly convergent in L 2 (Ω), since is bounded from above by 1 + B|u n |, which is compact in L 2 (Ω). Therefore, we can pass to the limit to have that with the first term fixed in L ∞ (Ω), the second weakly convergent in (L 2 (Ω)) N , and the third strongly convergent in the same space by Lebesgue's theorem.

≤ 1 + 1 + 1 +

 111 lim n→+∞ Ω a(x) ∇u n • ∇ϕ (1 + b(x)|u n |) 2 = Ω a(x) ∇u • ∇ϕ (1 + b(x)|u|) 2 , as desired. Remark 3. Note that if b(x) ≥ b > 0 in Ω, then we can choose test functions ϕ in H 1 0 (Ω). Indeed, 0 B|u n | (1 + b(x)|u n |) 2 ≤ B|u n | (1 + b|u n |) 2 ≤ C(B, b) ,for some nonnegative constant C(B, b), so that we can rewrite (14) asΩ a(x) ∇u n • ∇ϕ (1 + b(x)|u n |) 2 = Ω a(x) ∇u n B|u n | • ∇ϕ (1 + B|u n |) (1 + b(x)|u n |) 2 ,