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Esistenza e regolarità di soluzioni di alcuni problemi ellittici

Premessa

Queste note nascono da lezioni (per il corso di laurea o per il dottorato in Matematica) del primo autore all'Università La Sapienza di Roma. Abbiamo cercato di illustrare risultati classici e meno classici relativi a problemi di Dirichlet per equazioni ellittiche. L'obiettivo è infatti fornire una base per tali problematiche, anche a chi voglia avvicinarsi alla ricerca in questo campo.

Il corso che abbiamo costruito è autocontenuto. I risultati di analisi reale, analisi funzionale e spazi di Sobolev che usiamo possono essere tutti trovati nel libro Analyse fonctionnelle di Haïm Brezis [9]. Per comodità del lettore i principali prerequisiti sono citati nelle appendici.

Queste note possono essere divise in due parti. La prima è dedicata a risultati classici di esistenza e regolarità di soluzioni di problemi ellittici in forma di divergenza. Dopo aver studiato equazioni semilineari, ci occupiamo del problema di Leray-Lions

dove a è un'applicazione ellittica, cioè a(x, s, ξ) • ξ ≥ α|ξ| 2 e f appartiene a H -1 (Ω), illustrando i risultati di esistenza e di regolarità di Leray-Lions e di Stampacchia. Nella prima parte trattiamo inoltre la teoria spettrale degli operatori lineari e la regolarità delle soluzioni di problemi lineari. Sebbene questo
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Introduzione

Nello studio dell'esistenza ed unicità di soluzioni di equazioni differenziali si ricorre frequentemente ad una classe di risultati noti come teoremi di punto fisso. È infatti spesso possibile cercare le soluzioni di un problema differenziale fra i punti fissi di un opportuno operatore legato al problema stesso. In questo capitolo presenteremo alcuni teoremi di punto fisso che saranno utili in seguito.

Ben noto, in particolare dallo studio delle equazioni differenziali ordinarie, è il primo risultato che presenteremo: il teorema delle contrazioni. Esso lega l'esistenza di punti fissi per una funzione alla natura geometrica della stessa: afferma infatti che una funzione definita su uno spazio metrico completo a valori nello spazio stesso con la proprietà di contrarre le distanze ammette un unico punto fisso.

Il secondo risultato di punto fisso che presenteremo è il teorema di Brouwer. A differenza del teorema delle contrazioni, esso punta l'attenzione sulle proprietà geometriche dello spazio su cui la funzione è definita. Nella sua versione originale, afferma l'esistenza di un punto fisso per applicazioni continue dalla palla unitaria di R N in sé; è poi possibile estenderlo ad una funzione definita su un qualunque insieme convesso chiuso e limitato di R N .

Presenteremo infine il teorema di Schauder, essendo anch'esso uno strumento utile nello studio di alcuni problemi differenziali, come vedremo. Esso è l'equivalente del teorema di Brouwer per funzioni definite su un qualunque spazio di Banach.

Teorema delle contrazioni

Ci accingiamo ora a dimostrare il teorema delle contrazioni: Teorema 1.1. Siano (X, d) uno spazio metrico completo ed F : X → X un'applicazione con le seguenti proprietà: esiste θ ∈ (0, 1) tale che d(F (x), F (y)) ≤ θ d(x, y), ∀x, y ∈ X .

(1.2. [START_REF] Ambrosetti | A primer of nonlinear analysis[END_REF] Allora esiste un unico x ∈ X tale che F (x) = x, ovvero un unico punto fisso di F .

Osservazione 1.2. Un'applicazione F che verifica le ipotesi del teorema delle contrazioni viene spesso detta contrazione.

Osservazione 1.3. Tra i teoremi di punto fisso che presenteremo in questo capitolo, solo il teorema delle contrazioni fornisce un risultato di unicità.

La dimostrazione di questo risultato, come vedremo, è basata su un elementare argomento di iterazione. Dimostrazione. Fissiamo un qualunque x 0 ∈ X e definiamo per ricorrenza la successione 

x n := F (x n-1 ), n ≥ 1. ( 1 
) ≤ p+1 i=1 d(x n+i , x n+i-1 ) ≤ [θ n+p + • • • + θ n ] d(x 1 , x 0 ).
Per il criterio di Cauchy per le serie numeriche a termini positivi, applicato alla serie (convergente)

∞ n=1
θ n , possiamo dire che la successione x n è di Cauchy. La completezza dello spazio X implica che x n converge ad un elemento x ∈ X. Poiché F è continua per l'ipotesi (1.2. [START_REF] Ambrosetti | A primer of nonlinear analysis[END_REF], F (x n ) converge ad F (x). Passando al limite nella (1.2.2), si ottiene l'esistenza di un punto fisso. L'unicità del punto fisso segue dalla (1.2.1): infatti, siano x, y due punti fissi per F ; ne segue che:

d(x, y) = d(F (x), F (y)) ≤ θ d(x, y)
e quindi necessariamente x = y, visto che θ < 1.

Teorema di Brouwer

Teorema 1.4 (Brouwer). Siano K un sottinsieme convesso, chiuso e limitato di R N e f : K → K una funzione continua. Allora f ha almeno un punto fisso.

Osservazione 1.5. Notiamo che le ipotesi su f non sono comparabili con quelle del teorema 1.1: nel teorema di Brouwer infatti f è solo continua, ma si richiede l'esistenza di un convesso, chiuso e limitato che sia invariante sotto l'azione di f . Osservazione 1.6. In dimensione 1 il teorema di Brouwer afferma che se φ : [a, b] → [a, b] è continua, allora φ ammette un punto fisso. In questo specifico caso, il teorema può essere dimostrato in un modo semplicissimo: basta infatti applicare il teorema di esistenza degli zeri alla funzione (continua) ψ(t) = tφ(t) .

Ci accingiamo ora a dimostrare il teorema di Brouwer. Seguiremo la prova data in [START_REF] Milnor | Analytic proofs of the "hairy ball theorem" and the Brouwer fixed-point theorem[END_REF] (osserviamo che esistono diverse altre dimostrazioni, tra cui una che usa la nozione di grado topologico e un'altra che usa la nozione di gruppo di omologia).

Utilizzeremo il teorema di retrazione, che andiamo ora ad enunciare e provare. A tale scopo, fissiamo le seguenti notazioni:

B(0, r) = {x ∈ R N : |x| < r}; ∂B(0, r) = {x ∈ R N : |x| = r}; B(0, r) = {x ∈ R N : |x| ≤ r}.
Teorema 1.7 (di retrazione). Sia F : B(0, 1) → ∂B(0, 1) una funzione continua. Allora esiste x ∈ ∂B(0, 1) tale che F (x) = x.

Dimostrazione. Supponiamo, per assurdo, che F (x) = x, per ogni x ∈ ∂B(0, [START_REF] Ambrosetti | A primer of nonlinear analysis[END_REF]. Definiamo la seguente estensione continua di F : | f (x)f 1 (x)| < 1 2 .

(1.3.1)

A questo punto, consideriamo una qualunque funzione φ ∈ C 1 (R, R) tale che 0 ≤ φ ≤ 1 e φ(t) = 1, se t ≤ 3/2, 0, se t ≥ 2, con φ(t) decrescente per t ∈ (3/2, 2). Costruiamo la seguente combinazione di f e di f 1 :

f c (x) = [1 -φ(|x|)] f (x) + φ(|x|)f 1 (x).
Definiamo infine

N (x) = f c (2x) |f c (2x)| .
Definite tali funzioni, dividiamo il resto della dimostrazione in tre passi. Passo I: dimostriamo che N è di classe C 1 (R N , R N ) e che è un'applicazione lipschitz. Per quello che riguarda la regolarità, basta dimostrare che

f c ∈ C 1 (R N , R N ) e che f c = 0 per ogni x ∈ R N . Ora, osserviamo che se |x| > 1 f c (x) = (1 -φ(|x|)) x |x| + φ(|x|)f 1 (x)
che è ovviamente una funzione di classe C 1 se |x| > 1. D'altra parte, se |x| < 3/2 si ha

f c = f 1 , che è per definizione di classe C 1 (R N , R N ) ; di conseguenza f c ∈ C 1 (R N , R N ) . Dimostriamo ora che f c = 0 per ogni x ∈ R N . A tale scopo basta osservare che |f c (x)| ≥ | f (x)| -|φ(|x|)[ f (x) -f 1 (x)]| ≥ 1 -| f (x) -f 1 (x)| > 1 2 ,
grazie alla (1.3. [START_REF] Ambrosetti | A primer of nonlinear analysis[END_REF] . Abbiamo dunque provato che N ∈ C 1 (R N , R N ) .

Verifichiamo che N è un'applicazione lipschitz. Sicuramente lo è nel compatto B(0, [START_REF] Ambrosetti | A primer of nonlinear analysis[END_REF], visto che N ∈ C 1 (B(0, 1), R N ) ; al di fuori di B(0, 1) si ha

f c (2x) = [1 -φ(2|x|)] f (2x) + φ(2|x|)f 1 (2x) = f (2x) = 2x 2|x| , e dunque se |x| > 1 N (x) =
x |x| che è chiaramente un'applicazione lipschitz: di conseguenza esiste una costante M > 0 tale che

|N (v) -N (w)| ≤ M |v -w| ∀ v, w ∈ R N .
Passo II: dimostriamo che I+tN è un diffeomorfismo, per t ∈ (0, 1 M ), tra B(0, 1) e B(0, t + 1) . Osserviamo innanzitutto che l'immagine di B(0, 1) attraverso I + tN è effettivamente contenuta in B(0, t + 1) : se |x| ≤ 1, allora |x + tN (x)| ≤ |x| + t|N (x)| ≤ 1 + t . Dimostriamo ora che dato y ∈ B(0, t + 1), esiste un unico x ∈ B(0, 1) tale che y = x + tN (x). Basterebbe allora dimostrare che l'applicazione T : R N → R N definita da T (x) = y -tN (x) ha un unico punto fisso x 0 ∈ B(0, [START_REF] Ambrosetti | A primer of nonlinear analysis[END_REF] . A tale scopo, proviamo che T è una contrazione: si ha che

|T (v) -T (w)| = t|N (v) -N (w)| ≤ tM |v -w| ∀ v, w ∈ R N :
per la scelta di t, T è una contrazione. Grazie al teorema 1.1 esiste un unico x 0 = y-tN (x 0 ) . Dimostriamo che |x 0 | ≤ 1. Supponiamo per assurdo che |x 0 | > 1 : si avrebbe x 0 = yt x0 |x0| e dunque

|y| = x 0 + t x 0 |x 0 | = |x 0 | + t > 1 + t ,
ma ciò è assurdo, visto che y ∈ B(0, t + 1) . Ci resta da dimostrare che det(D(I + tN )) = 0 : in questo modo I + tN sarà un diffeomorfismo tra B(0, 1) e B(0, t + 1) . Supponiamo per assurdo che ciò non sia vero; allora esiste un y = 0 tale che y = -t(DN )y. Passando ai moduli si ha |y| ≤ t|DN ||y| ≤ tM |y|. Questa relazione è in contraddizione con la scelta di t. Passo III: siamo ora in grado di arrivare ad una contraddizione, terminando dunque la prova. Sarà utile dimostrare che esiste un x 0 ∈ B(0, 1) tale che det DN (x 0 ) = 0. Per fare ciò distinguiamo i due casi det(I + tDN ) > 0 et det(I + tDN ) < 0 . Nel primo caso, usando il teorema del cambiamento di variabile, si ha

(1 + t) N B(0, [START_REF] Ambrosetti | A primer of nonlinear analysis[END_REF] dy = B(0,t+1) dy = B(0, [START_REF] Ambrosetti | A primer of nonlinear analysis[END_REF] det(I + tDN (x)) dx = t N B(0, [START_REF] Ambrosetti | A primer of nonlinear analysis[END_REF] det(DN (x)) dx + polinomio in t di grado N -1.

Per il principio di identità fra polinomi, B(0, [START_REF] Ambrosetti | A primer of nonlinear analysis[END_REF] dy = B(0, [START_REF] Ambrosetti | A primer of nonlinear analysis[END_REF] det(DN (x))dx.

Questa identità implica che esiste un x 0 ∈ B(0, 1) tale che det DN (x 0 ) = 0 . Nel caso in cui det(I +DN ) < 0, basta scrivere (1 + t) N B(0, [START_REF] Ambrosetti | A primer of nonlinear analysis[END_REF] dy = B(0,t+1) dy = -B(0, [START_REF] Ambrosetti | A primer of nonlinear analysis[END_REF] det(I + tDN (x)) dx = -t N B(0, [START_REF] Ambrosetti | A primer of nonlinear analysis[END_REF] det(DN (x)) dx + polinomio in t di grado N -1.

Per il principio di identità fra polinomi, B(0, [START_REF] Ambrosetti | A primer of nonlinear analysis[END_REF] dy = -B(0, [START_REF] Ambrosetti | A primer of nonlinear analysis[END_REF] det(DN (x))dx.

Come prima, esiste x 0 ∈ B(0, 1) tale che det DN (x 0 ) = 0 . Ora, essendo DN un isomorfismo, il suo nucleo è costituito dal solo vettore nullo; N (x 0 ) appartiene al nucleo di DN (x 0 ): infatti, differenziando l'identità (N (x)|N (x)) = 1, otteniamo DN (x) N (x) = 0 per ogni x ∈ R N . Ne deduciamo dunque che N (x 0 ) = 0, ma ciò è assurdo, perché |N (x)| = 1 per ogni x ∈ R N . Ciò conclude la prova.

Possiamo ora dimostrare il teorema di Brouwer. Dimostrazione. Le dimostrazione è suddivisa in due passi. Passo I: dimostriamo il teorema nel caso K = B(0, 1). Supponiamo, per assurdo, che f (x) = x, per ogni x in B(0, 1). Definiamo, per ogni x ∈ B(0, 1), F (x) come l'intersezione della semiretta f (x) + λ(xf (x)), λ ≥ 0 con ∂B(0, [START_REF] Ambrosetti | A primer of nonlinear analysis[END_REF]. Dimostriamo che F è continua. Possiamo scrivere x = t(x)F (x) + (1t(x))f (x) , t(x) ∈ (0, 1]

(1.3. 2) da cui si ricava che F (x) = s(x)x + (1s(x))f (x) dove s(x) = 1 t(x) ≥ 1 è tale che |F (x)| = 1. Dimostriamo che s(x) è ben definita e continua: ciò implicherà che F è continua. Si ha che

1 = |F (x)| 2 = s 2 (x)|x -f (x)| 2 + |f (x)| 2 + 2s(x)(x -f (x)|f (x)) , ovvero s 2 (x)|x -f (x)| 2 + 2s(x)(x -f (x)|f (x)) + |f (x)| 2 -1 = 0 .
Ora, per x fissato, la funzione

ψ(s) = s 2 |x -f (x)| 2 + 2s(x -f (x)|f (x)) + |f (x)| 2 -1
è un polinomio di secondo grado, quindi ammette al più due zeri. Poiché ψ(1) ≤ 0 e lim s→∞ ψ(s) = +∞, ψ ammette un solo zero, per s ≥ 1 . Ciò implica che s(x) è ben definita. Inoltre s è continua, essendo uno zero di un polinomio di secondo grado a coefficienti continui. Dimostriamo che se |x| = 1 allora F (x) = x. Grazie alla (1.3.2), ciò è equivalente a dimostrare che t(x) = 1. Se t(x) = 1, dalla (1.3.2) ricaviamo che

t 2 (x) + (1 -t(x)) 2 |f (x)| 2 + 2t(x)(1 -t(x))(F (x)|f (x)) = 1 cioè (1 -t(x)) 2 |f (x)| 2 + 2t(x)(1 -t(x))(F (x)|f (x)) = (1 -t(x))(1 + t(x)) .
Dividendo per 1t(x) otteniamo che

t(x)[2(F (x)|f (x)) -1 -|f (x)| 2 ] = 1 -|f (x)| 2 , che è equivalente a t(x)|F (x) -f (x)| 2 = -1 + |f (x)| 2 :
ciò è assurdo, perché |f | 2 -1 < 0. Pertanto t(x) = 1 e x = F (x) . Abbiamo dunque costruito un'applicazione F : B(0, 1) → ∂B(0, 1) continua che lascia fissi tutti i punti della sfera ∂B(0, 1) : ciò è in contraddizione con il teorema di retrazione 1.7.

Passo II: trattiamo ora il caso in cui K è un convesso compatto qualsiasi. Per la limitatezza di K, esiste R > 0 tale K ⊂ B(0, R). Siano P K l'applicazione proiezione su K e f : B(0, R)

→ K ⊂ B(0, R) x → f (P K (x))
Per quanto dimostrato nella prima parte, f ha un punto fisso x ∈ B(0, R); ma f ha immagine in K, perciò x ∈ K. Ne segue che x = f (x).

Teorema di Schauder

In questo paragrafo dimostriamo il teorema di Schauder, che è l'estensione naturale del teorema di Brouwer a funzioni definite su spazi di Banach di dimensione infinita. Come abbiamo visto nel paragrafo precedente, nel teorema di Brouwer si richiede che l'insieme invariante sia chiuso e limitato, cioè compatto, visto che si lavora in R N . In spazi di dimensione infinita, sappiamo bene, grazie a un teorema dovuto a Riesz, che i chiusi e limitati non sono in genere compatti (vedere [START_REF] Brezis | Analyse fonctionnelle[END_REF]). L'esempio che segue, dovuto a Kakutani [START_REF] Kakutani | Topological properties of the unit sphere of a Hilbert space[END_REF], mostra effettivamente che si può costruire in l 2 un operatore continuo che lascia invariata la palla unitaria, ma non vi ammette punti fissi.

Esempio 1.8. Consideriamo T : l 2 → l 2 definito da

T (x) = 1 2
(1x 2 ), x 1 , x 2 , . . . ,

per ogni x = (x 1 , x 2 , . . . ) ∈ l 2 , dove x 2 = ∞ i=1 |x i | 2 . L'operatore T è continuo: infatti T (x) -T (y) 2 = 1 4 [ y 2 -x 2 ] 2 + x -y 2 ;
inoltre, la palla unitaria, cioè l'insieme {x ∈ l 2 : x ≤ 1} è invariante. Infatti, se x ≤ 1 allora

T (x) 2 = 1 2 (1 -x 2 ) 2 + x 2 ≤ 1,
essendo la funzione t → 1 -1 4 (1t 2 ) 2t 2 positiva e decrescente per t ∈ [0, 1]. D'altra parte, si vede facilmente che T non ha punti fissi nella palla unitaria. Infatti, se x = 1, si ha T (x) = (0, x 1 , x 2 . . . ); se fosse T (x) = x, si avrebbe x j = 0, per ogni j, quindi x = 0 = 1. Nei punti interni alla palla unitaria, ossia se x = θ < 1, allora T (x) = ( 12 (1θ 2 ), x 1 , x 2 , . . . ); se fosse T (x) = x, si avrebbe x j = 1 2 (1θ 2 ), per ogni j, ma questo è assurdo, in quanto x ∈ l 2 .

In tutto il paragrafo X sarà uno spazio di Banach e x denoterà la norma di un elemento x ∈ X. Ci accingiamo a presentare il teorema di Schauder (per la dimostrazione originale vedere [START_REF] Schauder | Der fixpunktsatz in funktionalraumen[END_REF]). Ne presenteremo due versioni: nella prima si richiede la compattezza del convesso invariante. Teorema 1.9. Siano F : K ⊂ X → X una funzione continua e K un convesso compatto invariante per F . Allora F ammette un punto fisso in K.

Dimostrazione. Fissiamo ε > 0. Essendo K compatto, esistono x 1 , ..., x Nε ∈ K tali che

K ⊂ Nε i=1 B(x i , ε).
Ora, siano E ε lo spazio vettoriale generato da {x 1 , . . . , x Nε } e b j : K → R, j = 1, ..N ε le funzioni definite da b j (x) = (εxx j ) + .

Poiché, per x ∈ K, non tutte le b j (x) possono essere nulle, possiamo definire (1.4.1)

G ε (x) =

TEOREMA DI SCHAUDER
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Essendo K ∩E ε compatto, esiste una sottosuccessione che continuiamo a denotare con x ε tale che x ε → x 0 per un certo x 0 ; per la continuità di F , F (x ε ) → F (x 0 ) . D'altra parte, per la (1.4.1), poiché

F (x ε ) ∈ K ε > G ε (F (x ε )) -F (x ε ) = x ε -F (x ε ) .
Ciò implica che x 0 = F (x 0 ) .

Nella seconda versione del teorema di Schauder viene richiesta la compattezza nella funzione.

Definizione 1.10. Un'applicazione T di X in X è detta completamente continua se è continua e se per ogni B ⊂ X limitato, T (B) è compatto.

Teorema 1.11. Siano F una funzione completamente continua e K un sottoinsieme di X, convesso, chiuso, limitato e invariante per F . Allora F ammette un punto fisso su K.

Dimostrazione. Fissiamo ε > 0. Essendo F (K) compatto, esistono v 1 , ..., v Nε ∈ F (K) ⊂ K tali che F (K) ⊂ Nε i=1 B(v i , ε).
Ora, siano E ε lo spazio vettoriale generato da {v 1 , . . . , v Nε } e b j :

K → R le funzioni definite da b j (x) = (ε -x -v j ) + . Per ogni u ∈ F (K), possiamo definire G ε (u) = Nε j=1 b j (u)v j Nε j=1 b j (u) che è una combinazione convessa di punti di K e una combinazione lineare di {v 1 , . . . , v Nε }: ciò implica che G ε • F (K ∩ E ε ) ⊂ K ∩ E ε . Osserviamo inoltre che G ε • F è continua. Grazie al teorema di Brouwer, esiste x ε ∈ K ∩ E ε tale che G ε (F (x ε )) = x ε . Osserviamo che per ogni x ∈ K G ε (F (x)) -F (x) = ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ Nε j=1 b j (F (x))(v j -F (x)) ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ Nε j=1 b j (F (x)) ≤ Nε j=1 b j (F (x)) v j -F (x) Nε j=1 b j (F (x)) ≤ ε.
Questa stima e il fatto che

G ε (F (x ε )) = x ε implicano che F (x ε ) -x ε → 0, ε → 0 . D'altra parte F (x ε ) ∈ F (K) che è un compatto, e dunque a meno di una sottosuccessione F (x ε ) → x 0 . Ora, x ε -x 0 ≤ x ε -F (x ε ) + F (x ε ) -x 0 → 0 ε → 0 .
Ciò implica, per la continuità di F , che F (x ε ) → F (x 0 ); abbiamo già visto che F (x ε ) → x 0 e quindi x 0 = F (x 0 ) per l'unicità del limite.

Capitolo 2

Preliminari di analisi reale

Introduzione

Questo capitolo in cui studiamo alcuni importanti risultati di analisi reale, è diviso in due parti. La prima parte è dedicata al teorema di composizione di Nemitski; tale risultato stabilisce la continuità di un operatore definito mediante composizione con una funzione reale tra due spazi di Lebesgue. Nella seconda parte del capitolo definiremo gli spazi di Marcinkiewicz M p , particolari spazi di funzioni: saranno utili per stabilire dei risultati di regolarità.

Teorema di composizione di Nemitski

Scopo di questo paragrafo è lo studio della continuità dell'operatore

φ : L p (Ω) → L q (Ω) u(x) → f (x, u(x))
definito tra due spazi di Lebesgue mediante composizione con una funzione f . Ci saranno utili diversi risultati di analisi reale. I due teoremi che seguono studiano alcune proprietà di convergenza negli spazi L p . Teorema 2.1. Siano f n una successione di funzioni e f una funzione in L p (Ω), per p > 1. Supponiamo che

1. f n è uniformemente limitata in L p (Ω); 2. f n → f q.o. in Ω. Allora f n → f in L q (Ω), per ogni q ∈ [1, p) e debolmente in L p (Ω).
Dimostrazione. Possiamo dire che esiste una costante L positiva tale che

f n -f L p (Ω) ≤ L ∀ n ∈ N . (2.2.1) Sia k ∈ R + . Risulta k p µ({|f n -f | > k}) ≤ {|fn-f |>k} |f n -f | p ≤ Ω |f n -f | p ≤ L p . (2.2.2) 16 CAPITOLO 2. PRELIMINARI DI ANALISI REALE Per ogni q ∈ [1, p), abbiamo Ω |f n -f | q = {|fn-f |>k} |f n -f | q + {|fn-f |≤k} |f n -f | q .
Applicando la disuguaglianza di Hölder con esponente p q al primo addendo, otteniamo

Ω |f n -f | q ≤    {|fn-f |>k} |f n -f | p    q p µ({|f n -f | > k}) 1-q p + + {|fn-f |≤k} |f n -f | q .
Grazie alle disuguaglianze (2.2.1), (2.2.2) applicate al secondo membro, la disuguaglianza preedente implica che

Ω |f n -f | q ≤ L q L k p-q + {|fn-f |≤k} |f n -f | q .
Osserviamo che fissato k ∈ R + il teorema di Lebesgue ci assicura che il secondo addendo del secondo membro tende a 0. Dunque, fissato ε > 0 esiste k tale che il primo addendo è minore di ε; per tale k, esiste n tale che il secondo addendo è minore di ε per ogni n ≥ n; in conclusione

f n → f in L q (Ω) se q < p. Dimostriamo che f n → f debolmente in L p (Ω).
Sicuramente possiamo estrarre una sottosuccessione debolmente convergente in L p (Ω). Per l'unicità del limite debole la sottosuccessione converge a f. Per dimostrare che f n → f debolmente in L p (Ω) basta ragionare per assurdo.

Il seguente teorema ci fornisce delle condizioni sufficienti per la convergenza in L p (Ω) .

Teorema 2.2 (Vitali). Siano f n una successione di funzioni e f una funzione in L p (Ω). Supponiamo che

1. f n → f q.o. in Ω; 2. lim µ(E)→0 Ω |f n | p = 0, uniformemente rispetto a n, se E è un sottinsieme misurabile di Ω. Allora f n → f in L p (Ω).
Andiamo ora a dimostrare il teorema di Vitali. Dimostrazione. Fissiamo ε > 0. Sia E ⊂ Ω misurabile (che fisseremo dopo); possiamo scrivere

Ω |f n -f | p ≤ Ω\E |f n -f | p + 2 p-1 E [|f n | p + |f | p ]. (2.2.3) Grazie all'ipotesi 2, esiste δ 1 (ε) > 0 tale che, se µ(E) < δ 1 (ε), allora E |f n | p < ε ∀ n ∈ N . Per l'assoluta continuità dell'integrale, esiste δ 2 (ε) > 0 tale che, se µ(E) < δ 2 (ε), allora E |f | p < ε.
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In conclusione il secondo addendo del secondo membro della (2.2.3) è minore di 2 p ε . Occupiamoci del primo: ponendo δ = min{δ 1 (ε), δ 2 (ε)} e applicando il teorema di Egorov, troviamo ν ε ∈ N e un insieme misurabile

E 0 ⊂ Ω tali che µ(E 0 ) < δ e Ω\E0 |f n -f | p < ε, per ogni n > ν ε . Scegliendo allora E = E 0 , otteniamo la tesi.
Corollario del teorema di Vitali è il seguente risultato.

Teorema 2.3. Siano f n una successione di funzioni e f una funzione in L p (Ω). Allora f n → f in L p (Ω) se e soltanto se 1. f n → f in misura; 2. lim µ(E)→0 E |f n | p = 0 uniformemente rispetto a n, con E sottoinsieme misurabile di Ω.
Dimostrazione. Dividiamo la dimostrazione in due parti.

Parte I: supponiamo che f n → f in L p (Ω) : vogliamo dimostrare le condizioni 1 e 2. È evidente che f n → f in misura. Inoltre, se E è un qualunque sottoinsieme misurabile di Ω, si ha E |f n | p = E |f n -f + f | p ≤ 2 p-1 E |f n -f | p + 2 p-1 E |f | p .
Fissiamo ε > 0; per l'assoluta continuità dell'integrale, esiste δ > 0 tale che, se µ(E) < δ, allora

E |f | p < ε; d'altra parte, poiché f n → f in L p (Ω), esiste ν ε in N tale che   E |f n | p   p -   E |f | p   p ≤   E |f n -f | p   p < ε ∀ n > ν ε . (2.2.4) Cioò implica che ∀ n > ν ε , se µ(E) < δ(ε)   E |f n | p   p ≤ ε +   E |f | p   p ≤ 2ε . Per l'assoluta continuità dell'integrale applicata a f 1 , ..., f νε ∈ L p (Ω), esiste δ 1 (ε) tale che µ(E) < δ 1 (ε) E |f j | p < ε ∀ j = 1, .., ν ε .
Ciò dimostra la tesi.

Parte II: dimostriamo che le ipotesi 1 e 2 implicano che

f n → f in L p (Ω). Poiché f n → f in misura, si può estrarre una sottosuccessione tale che f n k → f q.o. in Ω. Il teorema di Vitali implica che f n k → f in L p (Ω). Per dimostrare che f n → f in L p (Ω)
e non solo una sottosuccessione, si ragiona per assurdo: infatti, se esistessero una sottosuccessione f nj ed ε 0 > 0 tali che

f nj -f L p (Ω) ≥ ε 0 , (2.2.5) 
ripetendo il ragionamento appena fatto, si potrebbe estrarre da f nj una sottosuccessione convergente ad f in L p (Ω); questo è in contraddizione con la (2.2.5).

Diamo ora la definizione di funzione di Carathéodory che useremo spesso in queste note. 

u n → u 0 in misura. Allora f (x, u n ) → f (x, u 0 ) in misura.
Dimostrazione. Sia ε arbitrario e u una funzione misurabile fissata arbitrariamente. Poniamo

Ω k = x ∈ Ω : |u 0 (x) -u(x)| < 1 k ⇒ |f (x, u 0 (x)) -f (x, u(x))| < ε . Poiché f è continua nella seconda variabile, si ha k∈N Ω k = Ω. Essendo Ω i ⊂ Ω j , per i < j, si ha lim k→∞ µ(Ω k ) = µ(Ω); quindi, fissato η, esiste k 0 tale che µ(Ω) -µ(Ω k0 ) < η 2 . Poniamo A n = x ∈ Ω : |u n (x) -u 0 (x)| < 1 k 0 ; poiché u n → u 0 in misura, esiste n 0 tale che, per ogni n > n 0 , risulta µ(Ω) -µ(A n ) < η 2 . Poniamo infine D n = {x ∈ Ω : |f (x, u n (x)) -f (x, u 0 (x))| < ε}. Per definizione si ha che A n ∩ Ω k0 ⊂ D n e da ciò si ricava µ(Ω) -µ(D n ) < [µ(Ω) -µ(A n )] + [µ(Ω) -µ(Ω k0 )] < η 2 + η 2 = η.
Ciò dimostra la tesi.

Siamo ora in grado di dimostrare il teorema di composizione di Nemitski.

Teorema 2.6 (composizione di Nemitski). Sia f (x, t) : Ω × R → R una funzione di Carathéodory. Supponiamo che esistano una funzione positiva a ∈ L q (Ω) ed una costante γ > 0 tale che |f (x, t)| ≤ a(x) + γ|t| p q . (2.2.6) Allora l'operatore φ : L p (Ω) → L q (Ω) u(x) → f (x, u(x)) è continuo. Dimostrazione. Supponiamo che u n → u in L p (Ω): vogliamo dimostrare che φ(u n ) → φ(u) in L q (Ω).
Per fare ciò dimostreremo che φ(u n ) soddisfa le ipotesi 1 e 2 del teorema 2.3. Sicuramente u n → u in misura e dunque, per il lemma precedente si ha che f (x,

u n (x)) → f (x, u(x)) in misura, cioè φ(u n ) → φ(u) in misura. Dimostriamo ora che lim µ(E)→0 E |φ(u n )| q = 0
uniformemente rispetto a n. Se E è un sottoinsieme misurabile di Ω, integrando su E, grazie alla (2.2. [START_REF] Boccardo | Unicité de la solution pour des équations elliptic non linéaires[END_REF], otteniamo .

E |f (x, u n (x))| q ≤ 2 q-1 E a(x) q + γ 2 q-1 E |u n (x)| p , e quindi lim µ(E)→0 E |f (x, u n (x))| q = 0,
Concludiamo questo paragrafo con un risultato che ci sarà utile nel capitolo 4.

Teorema 2.7. Siano q > 1 e p ≥ 1. Sia f (x, t) : Ω × R → R una funzione di Carathéodory che soddisfa la (2.2.6). Se u n → u debolmente in L p (Ω) e q.o. in Ω, allora f (x, u n ) → f (x, u) debolmente in L q (Ω). Dimostrazione. Poiché u n → u q.o. in Ω ed f è una funzione di Carathéodory, allora f (x, u n ) → f (x, u) q.o. in Ω. Poiché u n L p (Ω) è limitata, grazie all'ipotesi (2.2.6), f (x, u n ) L q (Ω) è limitata. Quindi, applicando il teorema 2.1 alla successione f (x, u n ), otteniamo che f (x, u n ) → f (x, u) debolmente in L q (Ω).

Spazi di Marcinkiewicz

In questo paragrafo definiremo uno spazio di funzioni che risulterà naturale nello studio della regolarità delle soluzioni dei problemi differenziali che studieremo in queste note.

Definizione 2.8. Sia p ≥ 0. Lo spazio di Marcinkiewicz M p (Ω) è lo spazio delle funzioni f : Ω → R misurabili con la seguente proprietà: esiste una costante γ > 0 tale che

µ({|f | > λ}) ≤ γ λ p ∀ λ > 0. (2.3.1)
La norma di una funzione f ∈ M p (Ω) è definita come

f p M p (Ω) = inf{γ > 0 : vale la (2.3.1)} . Osserviamo che M p (Ω) ⊆ L p (Ω), p ≥ 1, come dimostra la proposizione seguente. Proposizione 2.9. Sia p ≥ 1. Allora L p (Ω) ⊂ M p (Ω). Dimostrazione. Sia f una funzione in L p (Ω). Allora Ω |f | p ≥ {|f |>λ} λ p = λ p µ({|f | > λ}) cioè f appartiene a M p (Ω).
Osservazione 2.10. L p (Ω) è strettamente contenuto in M p (Ω); basta infatti considerare in Ω = (0, 1) ⊂ R la funzione f (x) = 1 x . Questa funzione non appartiene a L 1 (0, [START_REF] Ambrosetti | A primer of nonlinear analysis[END_REF], ma appartiene a M 1 (0, 1), perché

µ 1 x > λ ≤ 1 λ .
Vogliamo ora vedere se M p (Ω) è incluso in qualche spazio di Lebesgue. Riferendoci ad una funzione f , indicheremo con A k il seguente insieme:

A k = {|f | ≥ k}, e con B k l'insieme B k = {k ≤ |f | < k + 1}. Lemma 2.11. Siano r ≥ 1 e f una funzione misurabile. Allora f ∈ L r (Ω) ⇐⇒ ∞ k=0 k r-1 µ(A k ) < +∞.
Dimostrazione. Cominciamo con delle osservazioni che ci saranno utili in seguito. Notiamo innanzitutto che possiamo scrivere

Ω |f | r = ∞ k=0 B k |f | r . (2.3.2) D'altra parte, osserviamo anche che A k = ∞ i=k B i , e l'unione è disgiunta; perciò ∞ k=0 k r-1 µ(A k ) = ∞ k=0 k r-1 ∞ i=k µ(B i ) = +∞ i=0 µ(B i ) i k=0 k r-1 , (2.3.3) 
potendo scambiare l'ordine di somma, visto che i termini sono positivi. Notiamo inoltre che per una qualunque funzione reale g : R + → R + continua e crescente si ha

n k=0 g(k) ≤ n+1 0 g(t) dt ≤ n k=0 g(k + 1).
In particolare useremo la funzione g(t) = t r-1 , continua e crescente su R + per r ≥ 1: potremo dunque scrivere che 

m-1 j=0 j r-1 ≤ m 0 t r-1 dt = m r r ≤ m-1 j=0 (j + 1)
∞ k=0 k r-1 µ(A k ) ≤ ∞ i=0 µ(B i ) (i + 1) r r ; poiché su B i |f | ≥ i, usando la (2.3.2) si ha ∞ k=0 k r-1 µ(A k ) ≤ ∞ i=0 1 r Bi (1 + |f |) r = 1 r Ω (1 + |f |) r ≤ 2 r-1 r   µ(Ω) + Ω |f | r   .
Visto che f ∈ L r (Ω), la serie a primo membro è convergente.

Parte II: supponiamo che

∞ k=0 k r-1 µ(A k ) < +∞. Vogliamo dimostrare che f ∈ L r (Ω). Si ha, grazie alla (2.3.3) e (2.3.4) ∞ k=0 k r-1 µ(A k ) = ∞ i=0 µ(B i ) i k=0 k r-1 = ∞ i=0 µ(B i ) i-1 h=0 (h + 1) r-1 ≥ ∞ i=0 µ(B i ) i r r . e dunque ∞ i=0 µ(B i )i r < ∞ . Per definizione di B i ∞ i=0 µ(B i )i r ≥ ∞ i=2 Bi (|f | -1) r ≥ 1 2 r-1 Ω\(B0∪B1) |f | r -3µ(Ω) :
ciò implica la tesi.
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Proposizione 2.12.

Sia p > 1 e 0 < ε ≤ p -1. Allora M p (Ω) ⊂ L p-ε (Ω).
Dimostrazione. Sia f ∈ M p (Ω). In base al lemma precedente, basterà dimostrare che

∞ k=0 k p-ε-1 µ(A k ) < ∞. Poiché µ(A k ) ≤ γ k p per un certo γ > 0, si ha ∞ k=0 k p-ε-1 µ(A k ) ≤ ∞ k=0 k p-ε-1 γ k p ;
l'ultima serie è convergente perché ε > 0 e dunque si ha la tesi.

Proposizione 2.13. Sia f una funzione appartenente a M p (Ω), con p > 1. Allora esiste una costante

B = B( f M p (Ω) , p) > 0 tale che, per ogni insieme misurabile E ⊂ Ω E |f | ≤ B µ(E) 1-1 p . (2.3.5) Dimostrazione. Cominciamo dimostrando che per ogni f ∈ L 1 (Ω) si ha E |f | = +∞ 0 µ(A t ∩ E) dt. (2.3.6) 
La prova di questa identità sarà suddivisa in vari passi. Passo I: supponiamo che f (x) = α χ E (x), α > 0, dove χ E (x) è la funzione che vale 1 se x ∈ E e 0 altrove.

Allora E |f (x)| = α µ(E). D'altra parte, A t ∩ E = {x ∈ E : |f (x)| > t} = E se t ≤ α ∅ se t > α, (2.3.7) e quindi +∞ 0 µ(A t ∩ E) dt = α 0 µ(E) dt = α µ(E).
Passo II:

supponiamo ora che f (x) = M i=1 α i χ Ei , dove gli E i sono dei sottoinsiemi misurabili di E tali che M i=1 E i = E E i ∩ E j = ∅ se i = j, e α i ∈ R + . Allora E |f | = M i=1 E α i χ Ei = M i=1 +∞ 0 µ(A i,t ) dt per il passo I, dove A i,t = {x ∈ Ω : α i χ Ei (x) > t}. Ora, A t ∩ E = M i=1 (A t ∩ E i ) = M i=1
x ∈ E i :

M i=1 α i χ Ei > t = M i=1 A i,t 22 CAPITOLO 2. PRELIMINARI DI ANALISI REALE che implica che +∞ 0 µ(A t ∩ E) dt = +∞ 0 M i=1 µ(A i,t ) dt = M i=1 +∞ 0 µ(A i,t ) dt .
Passo III: sia ora f una qualunque funzione appartenente a L 1 (Ω 

g n (t) dt = +∞ 0 µ(A t ∩ E) dt . Si ha che g n (t) → µ(A t ∩ E) q.o. in (0, ∞); inoltre |g n (t)| ≤ µ(E); basterà dimostrare che µ(A t ∩ E) appartiene a L 1 (0, ∞), per poi applicare il teorema di Lebesgue. Dato che f ∈ M p (Ω) µ(A t ) ≤ γ t p e per questo +∞ 0 µ(A t ∩ E)dt ≤ 1 0 µ(A t ∩ E) dt + +∞ 1 µ(A t ) dt ≤ µ(E) + +∞ 1 γ t p dt < +∞ , in quanto p > 1.
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Siamo ora in grado di dimostrare la (2.3.5): infatti

E |f | = ∞ 0 µ(A t ∩ E) dt = = µ(E) -1 p 0 µ(A t ∩ E) dt + +∞ µ(E) -1 p µ(A t ∩ E) dt ≤ µ(E) 1-1 p + ∞ µ(E) -1 p µ(A t ) dt ≤ µ(E) 1-1 p + f p M p (Ω) ∞ µ(E) -1 p t -p dt ≤ B µ(E) 1-1 p , dove B dipende da f M p (Ω) e da p.

Appendice

Ricordiamo qui i principali risultati sugli spazi di Lebesgue che usiamo in questo corso (consultare [START_REF] Evans | Measure theory and fine properties of functions[END_REF] per maggiori dettagli).

Sia E un sottoinsieme di R N , N ≥ 1, misurabile secondo Lebesgue. Sia 1 < p < ∞; p ′ denota p p -1 .
Teorema 2.14 (Disuguaglianza di Hölder).

Siano f ∈ L p (E) e g ∈ L p ′ (E). Allora E |f g| ≤ f L p (E) g L p ′ (E) . Teorema 2.15 (Disuguaglianza di interpolazione). Siano p, q, r ∈ [1, ∞) tali che p < r < q. Sia f ∈ L q (E). Allora f L r (E) ≤ f θ L p (E) f 1-θ L q (E) , dove θ è tale che 1 r = θ p + 1 -θ q . Teorema 2.16 (Beppo Levi). Sia f n una successione di funzioni L 1 (E) tali che 1. f n (x) ≤ f n+1 (x) q.o. in E per ogni n ∈ N; 2. E f n < +∞ per ogni n ∈ N. Allora f n → f in L 1 (E).
Teorema 2.17 (Lebesgue). Sia

f n una successione di funzioni L 1 (E) tali che 1. f n → f q.o. in E; 2. ∃ g ∈ L 1 (E) tale che |f n (x)| ≤ g(x) q.o. in E. Allora f n → f in L 1 (E).
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Teorema 2.18 (Fatou). Sia f n una successione di funzioni L 1 (E) tali che 1. f n ≥ 0 q.o. in E;

2.

E f n < +∞ per ogni n ∈ N. Sia f (x) = lim inf n→∞ f n (x) per q.o. x ∈ E. Allora E f ≤ lim inf n→∞ E f n .
Teorema 2.19 (Egorov). Sia f n una successione di funzioni e f una funzione definite su E, µ(E) < +∞.

Supponiamo che f n → f q.o. in E. Allora per ogni ε > 0 esiste un sottoinsieme misurabile A di E tale che µ(E \ A) < ε e f n → f uniformemente su A. Teorema 2.20. Sia 1 < p < ∞. Una successione {f n } ∈ L p (E) converge debolmente a f in L p (E) se E (f n -f )g → 0 per ogni g ∈ L p ′ (E). Una successione {f n } ∈ L 1 (E) converge debolmente a f in L 1 (E) se E (f n -f )g → 0 per ogni g ∈ L ∞ (E).
Teorema 2.21. Sia 1 < p < ∞. Allora L p (E) è riflessivo, cioè ogni successione limitata {f n } in L p (E) ha una sottosuccessione debolmente convergente a qualche f ∈ L p (E).

Capitolo 3

Equazioni ellittiche lineari e semilineari

Introduzione

In questo capitolo studieremo alcune equazioni ellittiche, di tipo lineare e semilineare. La prima classe di problemi che affronteremo sarà

-div(M (x)∇u) = f in Ω u = 0 su ∂Ω e poi aggiungeremo una nonlinearità sulla variabile u, studiando -div(M (x)∇u) + g(u) = f in Ω u = 0 su ∂Ω .
In tutto il capitolo M (x) denoterà una matrice N × N simmetrica, ellittica, cioè tale che esiste una costante α > 0 per cui

M (x)ξ • ξ ≥ α|ξ| 2 ∀ ξ ∈ R N (3.1.1) e limitata, cioè |M (x)| ≤ β ∀ x ∈ Ω . (3.1.2)

Teoremi di Lax-Milgram e Stampacchia

In questo paragrafo presenteremo dei risultati di analisi funzionale astratta che ci saranno utili nello studio di alcuni problemi differenziali: il teorema di Lax-Milgram e il teorema di Stampacchia ( [16], [START_REF] Stampacchia | Formes bilinéaires coercitives sur les ensembles convexes[END_REF]).

Useremo le seguenti notazioni. Sia H un spazio di Hilbert; denotiamo con (u|v) il prodotto scalare di due elementi u, v ∈ H, e con u = (u|u) la norma di un elemento

u ∈ H . Se ϕ ∈ H ′ , indicheremo con < ϕ, v > il valore di ϕ in v ∈ H. Teorema 3.1 (Lax-Milgram). Sia H uno spazio di Hilbert ed a : H × H → R una forma lineare in entrambi gli argomenti, continua e coerciva. Allora, fissato g ∈ H ′ , esiste un unico u ∈ H tale che a(u, v) =< g, v > ∀ v ∈ H .
Nella dimostrazione del teorema di Lax-Milgram faremo uso della seguente proposizione: Proposizione 3.2 (Stampacchia). Siano H uno spazio di Hilbert, K ⊆ H un insieme chiuso e convesso; sia a : K × K → R una forma lineare in entrambi gli argomenti, continua e coerciva. Allora, fissato g ∈ H ′ esiste un unico u ∈ K tale che

a(u, v -u) ≥< g, v -u > ∀ v ∈ K .
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Dimostrazione. Fissato g ∈ H ′ , per il teorema 3.16 esiste un unico f ∈ H tale che

< g, v >= (f |v) ∀ v ∈ H .
Inoltre, ad u fissato, l'applicazione v → a(u, v) è continua e lineare su H, e dunque, ancora grazie al teorema 3.16, esiste A(u) ∈ H tale che a(u, v) = (A(u)|v). La tesi consiste allora nel provare che esiste un unico u ∈ K tale che

(A(u) -f |v -u) ≥ 0 ∀v ∈ K o equivalentemente, se λ > 0 (-λA(u) + λf )|v -u ≤ 0 ∀ v ∈ K .
A tale scopo, useremo il teorema della proiezione 3.15. Infatti, sia C : H → K ⊂ H l'applicazione che associa ad ogni z ∈ H la proiezione sul convesso K del punto z-λA(z)+λf, cioè C(z) = P K (z-λA(z)+λf ) secondo le notazioni del teorema della proiezione 3.15. In base alla proprietà (3.6.1) della proiezione, sappiamo che (z -λA(z)

+ λf -C(z)|v -C(z)) ≤ 0 ∀ v ∈ K .
Per provare la tesi, basta allora dimostrare che l'applicazione C ha un punto fisso. A tale scopo dimostriamo che C è una contrazione e usiamo il teorema 1.1: grazie alla proprietà (3.6.2) della proiezione, si ha

C(z 1 ) -C(z 2 ) 2 ≤ z 1 -z 2 -λ(A(z 1 ) -A(z 2 )) 2 .
Ora, dalle proprietà di continuità e di coercività di A, si ha

C(z 1 ) -C(z 2 ) 2 ≤ z 1 -z 2 2 + λ 2 A(z 1 ) -A(z 2 ) 2 -2λ(z 1 -z 2 |A(z 1 ) -A(z 2 )) ≤ z 1 -z 2 2 + λ 2 β 2 z 1 -z 2 2 -2αλ z 1 -z 2 2 = (1 + λ 2 β 2 -2αλ) z 1 -z 2 2 .
Pertanto C ammette un unico punto fisso, a patto di scegliere λ tale che 0 < λ < 2α/β 2 . Questo conclude la dimostrazione.

Siamo ora in grado di dimostrare il teorema di Lax-Milgram. Dimostrazione. Dato ϕ ∈ H ′ esiste un unico u ∈ H tale che

a(u, v -u) ≥< ϕ, v -u > ∀ v ∈ H grazie alla proposizione precedente. In particolare a(u, tv -u) ≥< ϕ, tv -u > ∀ v ∈ H ∀ t ∈ R , cioè t[a(u, v)-< ϕ, v >] ≥ a(u, u)-< ϕ, u >: ciò implica che a(u, v)-< ϕ, v >= 0 per ogni v ∈ H .
Teorema 3.3 (Stampacchia). Sia H uno spazio di Hilbert. Sia a : H × H → R una forma lineare nella seconda variabile tale che

1. |a(ψ 1 , w) -a(ψ 2 , w)| ≤ β ψ 1 -ψ 2 w ∀ ψ 1 , ψ 2 , w ∈ H; 2. a(ψ 1 , ψ 1 -ψ 2 ) -a(ψ 2 , ψ 1 -ψ 2 ) ≥ C ψ 1 -ψ 2 2 ∀ ψ 1 , ψ 2 ∈ H.
Allora per ogni ϕ ∈ H ′ esiste un unico u ∈ H tale che a(u, w) = ϕ(w) ∀ w ∈ H.

Dimostrazione. Divideremo la prova in due passi. Passo I: Dimostriamo che se A : H → H è un operatore tale che

a) A(x) -A(y) ≤ γ x -y ∀ x, y ∈ H b) (x -y|A(x) -A(y)) ≥ α x -y 2 ∀ x, y ∈ H allora, fissato f ∈ H esiste un unico u ∈ H tale che A(u) = f . A tale scopo basta dimostrare che R(v) = v -λA(v) + λf è una contrazione per un certo λ. Vedremo che è sufficiente scegliere 0 < λ < 2α γ 2 . Si ha infatti che R(v) -R(w) 2 = (R(v) -R(w)|R(v) -R(w)) = v -w 2 + λ 2 A(v) -A(w) 2 -2λ(v -w|A(v) -A(w)) .
Sfruttando le ipotesi su A si ottiene

R(v) -R(w) 2 ≤ (1 + λ 2 γ 2 -2λα) v -w 2 .
Affinché R sia una contrazione basta allora scegliere 0 < λ < 2α γ 2 . Passo II: In base al teorema di 3.16, fissato ϕ ∈ H ′ esiste un unico x 0 ∈ H tale che ϕ(w) = (x 0 |w) ∀ w ∈ H. La tesi consiste allora nel cercare u ∈ H tale che a(u, w) = (x 0 |w) ∀ w ∈ H. Ora, per ogni v ∈ H possiamo considerare il funzionale lineare continuo su H definito da

T v : H → R w → a(v, w) .
Ancora in base al teorema 3.16 esiste un unico

v 0 ∈ H tale che T v (w) = (v 0 |w) ∀ w ∈ H. Possiamo allora definire A : H → H v → v 0 .
L'operatore così definito verifica le ipotesi a) e b) del passo I; di conseguenza dato f ∈ H esiste un unico u tale che A(u) = f, cioè a(u, w) = (A(u)|w) = (f |w) per ogni w ∈ H .

Equazioni lineari

In questo paragrafo tratteremo il problema lineare

-div(M (x)∇u) = f in Ω u = 0 su ∂Ω . (3.3.1) 
Vedremo che il teorema di Lax-Milgram sarà uno strumento fondamentale nella dimostrazione. Osserviamo che in questa classe di problemi rientra il laplaciano, ossia il problema

-∆u = f in Ω u = 0 su ∂Ω . Teorema 3.4. Sotto le ipotesi (3.1.1), sia f ∈ L m (Ω), m ≥ 2N N +2 . Allora esiste un'unica soluzione debole u ∈ H 1 0 (Ω) del problema (3.3.1), ossia Ω M (x)∇u • ∇v = Ω f v ∀ v ∈ H 1 0 (Ω) . (3.3.2)
Dimostrazione. Definiamo la forma lineare a :

H 1 0 (Ω) × H 1 0 (Ω) → R come a(u, v) = Ω M (x)∇u • ∇v.
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Si vede facilmente che a è continua: infatti, per la limitatezza dei coefficienti della matrice M e per la disuguaglianza di Cauchy-Schwartz, si ha

|a(u, v)| ≤ Ω |M (x)∇u • ∇v| ≤ β ∇u L 2 (Ω) ∇v L 2 (Ω) .
D'altra parte a è coerciva, visto che M (x)ξ • ξ ≥ α|ξ| 2 . La tesi segue dal teorema di Lax-Milgram.

Osservazione 3.5. Vedremo un'altra dimostrazione di questo teorema nel capitolo 8.

Alcune equazioni semilineari monotone

In questo paragrafo ci occuperemo dello studio del seguente problema semilineare 

-div(M (x)∇u) + g(u) = f in Ω u = 0 su ∂Ω . ( 3 
(Ω) × H 1 0 (Ω) a(u, w) = Ω M (x)∇u • ∇w + Ω g(u)w.
Osserviamo che a è ben definita, perché

|a(u, w)| ≤ β Ω |∇u||∇w| + γ Ω |uv|
per le ipotesi du M e le ipotesi di crescita su g. Dimostreremo la tesi utilizzando il teorema 3.3. La forma a è ovviamente lineare nella seconda variabile; soddisfa l'ipotesi 1 del teorema 3.3 perché

|a(u 1 , w) -a(u 2 , w)| ≤ β ∇(u 1 -u 2 ) L 2 (Ω) ∇w L 2 (Ω) + C u 1 -u 2 L 2 (Ω) w L 2 (Ω)
per la limitatezza della matrice M e la lipschitzianità della funzione g. Inoltre a soddisfa l'ipotesi 2 del teorema 3.3:

a(u 1 , u 1 -u 2 ) -a(u 2 , u 1 -u 2 ) = Ω M (x)∇(u 1 -u 2 ) • ∇(u 1 -u 2 ) + Ω [g(u 1 ) -g(u 2 )](u 1 -u 2 ) ≥ α ∇(u 1 -u 2 ) 2 L 2 (Ω)
per l'ellitticità di M e la monotonia di g. La tesi segue dunque dal teorema 3.3.

Dimostreremo anche il seguente risultato, dove, a differenza del teorema precedente non facciamo ipoteri sulla crescita della funzione g: Teorema 3.7. Sia g : R → R una funzione crescente, lipschitziana e tale che g(0

) = 0 . Sia f ∈ L m (Ω), m ≥ 2N N +2 . Allora esiste un'unica funzione u ∈ H 1 0 (Ω) che verifica Ω M (x)∇u • ∇ϕ + Ω g(u)ϕ = Ω f ϕ per ogni ϕ ∈ H 1 0 (Ω) ∩ L ∞ (Ω).
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Nella dimostrazione faremo uso della funzione

T k (x) = max{min{k, x}, -k}, per k > 0. (3.4.2)
Dimostrazione. Passo I: Dimostriamo l'esistenza di una soluzione. Lavoreremo per approssimazione. A tale scopo, sia g n (t) = T n (g(t)); siano u n ∈ H 1 0 (Ω) le soluzioni dei problemi 

-div(M (x)∇u n ) + g n (u n ) = f in Ω u n =
M (x)∇u n • ∇u n + Ω u n g(u n ) = Ω f u n . (3.4.4) 
L'ellitticità di M e la monotonia di g implicano che

α ∇u n 2 L 2 (Ω) ≤ Ω f u n .
Usando la disuguaglianza di Hölder e di Poincaré sul secondo membro si ha che u n H 1 0 (Ω) è uniformemente limitata. Riprendendo la (3.4.4) possiamo dire che esiste una costante C > 0 tale che

Ω u n g(u n ) ≤ C per ogni n ∈ N (visto che Ω M (x)∇u n • ∇u n è positivo e Ω f u n è limitato uniformemente).
Deduciamo che esiste una funzione u ∈ H 1 0 (Ω) tale che u n → u debolmente in H 1 0 (Ω) e q.o., a meno di una sottosuccessione. Dimostriamo ora che g n (u n ) → g(u) in L 1 (Ω). Sicuramente g n (u n ) → g(u) q.o. Inoltre se E è un qualunque sottoinsieme di Ω e t ∈ R + si ha che

E |g n (u n )| = {x∈E:|un(x)|≤t} |g n (u n )| + {x∈E:|un(x)|>t} |g n (u n )| ≤ E |g n (t)| + 1 t {x∈E:|un(x)|>t} u n g(u n ) ≤ |g(t)|µ(E) + C t grazie alle stime precedenti. Di conseguenza lim µ(E)→0 E |g n (u n )| ≤ C t ∀ t > 0.
In base al teorema 2.

2 g n (u n ) → g(u) in L 1 (Ω). Allora per ogni ϕ ∈ H 1 0 (Ω) ∩ L ∞ (Ω) è possibile passare al limite in Ω M (x)∇u n • ∇ϕ + Ω g n (u n )ϕ = Ω f ϕ e si ottiene che u verifica Ω M (x)∇u • ∇ϕ + Ω g(u)ϕ = Ω f ϕ per ogni ϕ ∈ H 1 0 (Ω) ∩ L ∞ (Ω).
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Passo II: Dimostriamo l'unicità della soluzione. Siano u 1 e u 2 due soluzioni. Nelle formulazioni deboli scegliamo come funzione test T k (u 1u 2 ): in qusto modo abbiamo

Ω M (x)∇(u 1 -u 2 ) • ∇T k (u 1 -u 2 ) + Ω [g(u 1 ) -g(u 2 )]T k (u 1 -u 2 ) = 0 .
La monotonia di g e l'ellitticità di M implicano che T k (u 1u 2 ) = 0 per ogni k, e dunque u 1 = u 2 q.o. in Ω.

Esempio 3.8. Il precedente teorema ci permette di risolvere in H 1 0 (Ω), per esempio, le seguenti equazioni:

-div(M (x)∇u) + |u| p-2 u = f e -div(M (x)∇u) + e u -1 = f . Osservazione 3.9. Il lavorare su problemi approssimanti, ricavarne delle stime a priori e poi passare al limite è una tecnica che ci sarà utile anche in seguito, in particolare nei capitoli 9 e 10.

Equazioni semilineari: metodo delle sopra e sotto-soluzioni

In questo paragrafo di occuperemo del problema semilineare

-div(M (x)∇u) = g(u) + f in Ω u = 0 su ∂Ω (3.5.1) 
sotto le seguenti ipotesi:

1. f ∈ L 2N N +2 (Ω);
2. g : R → R è crescente e continua e tale che per un γ > 0

|g(s)| ≤ γ|s| α , α ≤ N + 2 N -2 .
Osserviamo che g è crescente come nel paragrafo precedente, ma diversamente da prima si trova a secondo membro. Risolveremo tale problema con il cosiddetto metodo delle sopra e sotto-soluzioni ( [23]).

Definizione 3.10. Lemma 3.12.

Una funzione u ∈ H 1 0 (Ω) è una sotto-soluzione di (3.5.1) se per ogni v ∈ H 1 0 (Ω) positiva Ω M (x)∇u • ∇v ≤ Ω g(u)v + Ω f v . Analogamente, una funzione u ∈ H 1 0 (Ω) è una sopra-soluzione di (3.5.1) se per ogni v ∈ H 1 0 (Ω) positiva Ω M (x)∇u • ∇v ≥ Ω g(u)v + Ω f v .
Sia u ∈ H 1 0 (Ω) tale che Ω M (x)∇u • ∇v ≤ 0 per ogni v ∈ H 1 0 (Ω) positiva. Allora u ≤ 0. Dimostrazione. Sia v = u + . Allora Ω M (x)∇u + • ∇u + = Ω M (x)∇(u + -u -) • ∇u + ≤ 0 Per l'ellitticità di M , u + = 0 .
Passiamo ora alla dimostrazione del teorema 3.11. Dimostrazione. La dimostrazione si svilupperà in tre passi: nel primo costruiremo per ricorrenza una successione u n in H 1 0 (Ω); nel secondo dimostreremo che u ≤ u 1 ≤ ..... ≤ u n ≤ ... ≤ u; nel terzo proveremo che la successione converge ad una soluzione u del nostro problema. Primo passo: poniamo u 1 =u e costruiamo la successione u n per ricorrenza ponendo

u 2 ∈ H 1 0 (Ω) : -div(M (x)∇u 2 ) = g(u 1 ) + f u 3 ∈ H 1 0 (Ω) : -div(M (x)∇u 3 ) = g(u 2 ) + f . Al passo n-simo, avremo u n ∈ H 1 0 (Ω) : -div(M (x)∇u n ) = g(u n-1 ) + f .
Secondo passo: Dimostriamo per induzione che la successione u n è crescente. Dimostriamo che

u 1 = u ≤ u 2 . Ricordiamo che per ogni ϕ ≥ 0 si ha            Ω M (x)∇u 1 • ∇ϕ ≤ Ω (g(u 1 ) + f )ϕ Ω M (x)∇u 2 • ∇ϕ = Ω (g(u 1 ) + f )ϕ .
Sottraendo membro a membro si ha

Ω M (x)∇(u 1 -u 2 ) • ∇ϕ ≤ 0. Di conseguenza grazie al lemma precedente u 1 -u 2 ≤ 0. Dimostriamo ora che u n ≤ u n+1 , supponendo che u n ≥ u n-1 . Possiamo scrivere Ω M (x)∇u n • ∇ϕ = Ω (g(u n-1 ) + f )ϕ Ω M (x)∇u n+1 • ∇ϕ = Ω (g(u n ) + f )ϕ . Ricordando l'ipotesi di crescenza della funzione g, g(u n ) ≥ g(u n-1
) e dunque u n+1 ≥ u n grazie al lemma precedente. Di conseguenza risulta provata la crescenza della successione u n . Con tecniche analoghe si dimostra che u n ≤ u.

Terzo passo: Vogliamo provare che u n converge verso una soluzione del problema (3.5.1). Cominciamo col provare che

u n → u in L 2 * (Ω) per una certa u ∈ L 2 * (Ω). Visto che u n è crescente, u n ammette un limite q.o., diciamo u. Ora, dal secondo passo segue che |u n | ≤ |u| + |u|; al limite u ∈ L 2 * (Ω) e |u| ≤ |u| + |u|. Di conseguenza |u n -u| 2 * ≤ C(N )(|u n | 2 * + |u| 2 * ) ≤ C(N )(|u| + |u|) 2 * + C(N )|u| 2 * ∈ L 1 (Ω) . Il teorema di Lebesgue implica che u n → u in L 2 * (Ω). Grazie all'ipotesi 2, g(u n ) → g(u) in L 2N N +2 (Ω) per il teorema di composizione 2.6.
Dimostriamo ora che u è soluzione del problema (3.5.1). Ricordando la definizione di u n , si ha

Ω M (x)∇u n • ∇u n = Ω (g(u n-1 ) + f )u n .
Usando la disuguaglianza di Hölder sul secondo membro e l'ipotesi di ellitticità di M al primo otteniamo che

α ∇u n 2 L 2 (Ω) ≤ g(u n-1 ) + f L 2N N +2 (Ω) u n L 2 * (Ω) .
Essendo il secondo membro uniformemente limitato in n, u n ammette un limite debole in H 1 0 (Ω), che è necessariamente u per identificazione. Possiamo allora passare al limite in

Ω M (x)∇u n+1 • ∇v = Ω (g(u n ) + f )v ∀ v ∈ H 1 0 (Ω)
per ottenere che

Ω M (x)∇u • ∇v = Ω (g(u) + f )v ∀ v ∈ H 1 0 (Ω)
cioè una soluzione del problema (3.5.1).

Esempio 3.13. Con il precedente teorema è facile dimostrare l'esistenza di una soluzione del problema

-∆u = u 2 -f in Ω u = 0 su ∂Ω (3.5.2) dove f ∈ L ∞ (Ω) ed è positiva q.o. in Ω.
Infatti la funzione u = 0 è una sopra-soluzione. D'altra parte per il lemma 3.12 la soluzione ψ del problema

-∆ψ = -f in Ω ψ = 0 su ∂Ω è una sotto-soluzione negativa del problema (3.5.2).

Appendice

Raccogliamo qui alcuni richiami sull'analisi funzionale e sugli spazi di Sobolev (per le dimostrazioni vedere [START_REF] Brezis | Analyse fonctionnelle[END_REF]).

Alcuni richiami di analisi funzionale

Ci sembra utile ricordare i risultati sugli spazi di Hilbert che abbiamo usato in questo capitolo.

Definizione 3.14. Sia H uno spazio di Hilbert. Sia a : H × H → R una forma lineare in entrambi gli argomenti.

1. a è continua se esiste un reale β > 0 tale che

|a(u, v)| ≤ β u v ∀ u, v ∈ H .
2. a è coerciva se esiste un reale α > 0 tale che

a(u, u) ≥ α u 2 ∀ u ∈ H .
Teorema 3.15 (della proiezione). Sia H uno spazio di Hilbert e K ⊂ H un convesso chiuso non vuoto. Allora per ogni g in H esiste un unico punto in K, che denoteremo con P K g, tale che

g -P K g ≤ g -v ∀ v ∈ K .
Inoltre P K g soddisfa le seguenti proprietà: 

(g -P K g|v -P K g) ≤ 0 ∀ v ∈ K (3.6.1) e P K g 1 -P K g 2 ≤ g 1 -g 2 ∀ g 1 , g 2 ∈ K . ( 3 
< ϕ, v >= (g|v) ∀ v ∈ H .

Alcuni richiami sugli spazi di Sobolev

Sia 1 ≤ p < N ; indicheremo con p * il numero reale tale che

1 p * = 1 p - 1 N .
Teorema 3.17

(immersioni di Sobolev). Le seguenti immersioni 1. W 1,p 0 (Ω) ⊂ L p * (Ω) se 1 ≤ p < N ; 2. W 1,p 0 (Ω) ⊂ L q (Ω) ∀ q ∈ [p, +∞) se p = N ; 3. W 1,p 0 (Ω) ⊂ L ∞ (Ω) se p > N sono continue.
In particolare, per ogni u ∈ W 1,p 0 (Ω), esiste una costante positiva S dipendente solo da N e da p tale che

S u L p * (Ω) ≤ ∇u (L p (Ω)) N ; questa disuguaglianza prendre il nome di disuguaglianza di Sobolev. Teorema 3.18 (Rellich-Kondrachov). Le seguenti immersioni 1. W 1,p (Ω) ⊂ L q (Ω) ∀ q ∈ [1, p * ) se 1 ≤ p < N ; 2. W 1,p (Ω) ⊂ L q (Ω) ∀ q ∈ [1, +∞) se p = N ; 3. W 1,p (Ω) ⊂ C(Ω) se p > N ; sono compatte. Teorema 3.19 (disuguaglianza di Poincaré). Sia 1 ≤ p < +∞. Allora esiste una costante positiva c = c(Ω, p) tale che u L p (Ω) ≤ c ∇u (L p (Ω)) N ∀ u ∈ W 1,p 0 (Ω). L'espressione ∇u (L p (Ω)) N è una norma su W 1,p 0 (Ω) equivalente alla norma usuale u W 1,p 0 (Ω) .
Capitolo 4

Teorema di Leray-Lions

Introduzione

In questo capitolo dimostreremo un risultato di esistenza di soluzioni per una classe di problemi ellittici non lineari. Più precisamente ci occuperemo del problema (che chiameremo del tipo Leray-Lions)

(LL) -div(a(x, u, ∇u)) = F (x, u, ∇u) in Ω u = 0 su ∂Ω dimostrando il seguente teorema ( [17]): Teorema 4.1 (Leray-Lions). Sia p ∈ (1, ∞). Siano a : Ω × R × R N → R N e F : Ω × R × R N → R due funzioni di Carathéodory, con le seguenti proprietà: 1. esiste β > 0 tale che |a(x, s, ξ)| ≤ β[|s| p-1 + |ξ| p-1 ]; 2. esiste α > 0 tale che a(x, s, ξ) • ξ ≥ α|ξ| p , ∀ ξ ∈ R N ; 3. [a(x, s, ξ) -a(x, s, η)] • [ξ -η] > 0 se ξ = η. 4. esiste f ∈ L p ′ (Ω) tale che |F (x, s, ξ)| ≤ f (x). Allora esiste una soluzione u ∈ W 1,p 0 (Ω) del problema (LL), cioè Ω a(x, u, ∇u) • ∇v = Ω F (x, u, ∇u)v ∀ v ∈ W 1,p ′ 0 (Ω) .
Come vedremo, la nonlinearità a rende molto più complesso il problema rispetto ai problemi studiati nel capitolo 3.

Teorema di suriettività

La dimostrazione del teorema di Leray-Lions è basata su un risultato astratto di suriettività per operatori definiti su spazi di Banach riflessivi in dualità (vedere [START_REF] Leray | Quelques résulatats de Višik sur les problèmes elliptiques nonlinéaires par les méthodes de Minty-Browder[END_REF] e [START_REF] Brezis | Équations et inéquations non linéaires dans les espaces vectoriels en dualité[END_REF]). Per enunciare il teorema di suriettività abbiamo bisogno delle seguenti definizioni. Lavoreremo su un generico spazio di Banach V dove indicheremo con ||x|| la norma di un elemento x ∈ V . Definizione 4.2. Sia V uno spazio di Banach riflessivo. Un operatore A : V → V ′ è pseudomonotono se soddisfa le seguenti condizioni:

1. A è limitato, cioè trasforma limitati di V in limitati di V ′ ; 36 CAPITOLO 4. TEOREMA DI LERAY-LIONS 2. se u j → u debolmente in V e se lim sup j→+∞ < A(u j ), u j -u >≤ 0, allora lim inf j→+∞ < A(u j ), u j -v >≥< A(u), u -v > per ogni v in V . Definizione 4.3. Sia V uno spazio di Banach riflessivo. Un operatore A : V → V ′ è detto monotono se ∀ u, v ∈ V < A(u) -A(v), u -v >≥ 0. Definizione 4.4. Sia V uno spazio di Banach riflessivo. Un operatore A : V → V ′ è detto coercivo se < A(v), v > v → +∞, v → +∞
Nella dimostrazione del teorema di suriettività useremo il seguente lemma:

Lemma 4.5. Sia P : R m → R m un'applicazione continua. Supponiamo che esista un ρ > 0 tale che

P (ξ) • ξ ≥ 0, per ogni ξ con |ξ| = ρ. Allora esiste ξ con |ξ| ≤ ρ tale che P (ξ) = 0.
Dimostrazione. Supponiamo per assurdo che P (ξ) = 0 in

K = {ξ ∈ R m : |ξ| ≤ ρ}; possiamo allora considerare l'applicazione continua da K in sé ξ → -P (ξ)ρ |P (ξ)| .
Grazie al teorema di Brouwer 1.4 esiste un punto fisso, cioè uno ξ tale che ξ = -

P (ξ)ρ |P (ξ)| . Da ciò deduciamo che |ξ| = ρ. D'altra parte P (ξ) • ξ = -ρ|P (ξ)| < 0, ma ciò è in contraddizionie con le ipotesi.
Siamo ora in grado di provare il seguente teorema. Teorema 4.6 (Suriettività). Sia V uno spazio di Banach riflessivo e separabile. Sia A : V → V ′ un operatore pseudomonotono e coercivo. Allora A è suriettivo, cioè per ogni

f in V ′ esiste u in V tale che A(u) = f.
Dimostrazione. Dividiamo la prova in due passi. Passo I: sia {w 1 , ...w n , ...} un insieme denso e numerabile di V . Indichiamo con

V n = [w 1 , ...w n ] il sottospazio di V generato da {w 1 , ...w n } . Fissato n ∈ N, vogliamo trovare u n ∈ V n che verifichi < A(u n ), w j >=< f, w j > 1 ≤ j ≤ n . (4.2.1) 
A tale scopo consideriamo l'applicazione

T : V n → V n v → < A(v) -f, v > v . Dimostreremo che T verifica (T (v)|v) ≥ 0 per ogni v con v = ρ, per un certo ρ > 0 e che T è continuo. L'esistenza di u n seguirà dal lemma precedente. Si ha che (T (v)|v) ≥ 0, perché < A(v), v > -< f, v >≥< A(v), v > -f V ′ v ≥ 0 , per v = ρ, con ρ sufficientemente grande, grazie alla coercività di A. Per dimostrare che T è continuo, basta dimostrare che il funzionale v →< A(v), v > è continuo su V n . Supponiamo che w m → w : dimostreremo che A(w m ) → A(w) debolmente in V ′ : ciò implicherà che < A(w m ), w m >→< A(w), w > e quindi la continuità di T . Poiché A è limitato, A(w m ) è limitata uniformemente. Ciò implica che lim m→∞ < A(w m ), w m -w >= 0; passando ad una sottosuccessione A(w m ) → g debolmente in V ′ . Grazie alla pseudomonotonia lim inf m k →∞ < A(w m k ), w m k -v >=< g, w -v >≥< A(w), w -v > 4.3. TEOREMA DI ESISTENZA DI LERAY-LIONS 37 per ogni v ∈ V . Allora g = A(w). Possiamo dunque dire che A(w m k ) → A(w) debolmente in V ′ .
Ora, supponiamo per assurdo che A(w m ) non converga debolmente ad A(w) in V ′ : applicando il ragionamento appena fatto si arriverebbe ad un assurdo. Passo II:

Poiché < A(u n ), u n >=< f, u n >≤ f u n ,
usando la corcitività di A, si ha che u n è uniformemente limitata. Per la limitatezza dell'operatore A, possiamo dire che anche A(u n ) è uniformemente limitata. Si può allora estrarre una sottosuccessione

u n k tale che u n k → u debolmente in V, A(u n k ) → χ debolmente in V ′ . (4.2.2) Passando al limite per n → ∞ nella (4.2.1), (con j fissato) si ha < χ, w j >=< f, w j > per ogni j. Dunque χ = f. Inoltre < A(u n k ), u n k >=< f, u n k >→< f, u > e quindi < A(u n k , u n k ) >→< χ, u > . Dimostriamo ora che χ = A(u). Si ha che lim sup n k →∞ < A(u n k ), u n k -u >≤ 0 e dunque, per la pseudomonotonia < A(u), u -v >≤ lim inf n k →∞ < A(u n k ), u n k -v >≤< χ, u -v > per ogni v ∈ V . Otteniamo che χ = A(u) e cioè f = A(u) .

Teorema di esistenza di Leray-Lions

Vogliamo ora dimostrare il teorema di Leray-Lions 4.1. Osserviamo che nei prossimi capitoli ci concentreremo sul caso p = 2. In particolare dunque useremo il seguente corollario:

Corollario 4.7. Sia a : Ω × R × R N → R N una funzione di Carathéodory, con le seguenti proprietà: 1. esiste β > 0 tale che |a(x, s, ξ)| ≤ β[|s| + |ξ|]; 2. esiste α > 0 tale che a(x, s, ξ) • ξ ≥ α|ξ| 2 . 3. [a(x, s, ξ) -a(x, s, η)] • [ξ -η] > 0 se ξ = η. Allora l'operatore A : v → -div(a(x, v, ∇v)), definito tra H 1 0 (Ω) e H -1 (Ω) è suriettivo. In particolare, se f ∈ L m (Ω), con m ≥ 2N N +2 , oppure f ∈ M m (Ω), con m > 2N N +2 , esiste una funzione u ∈ H 1 0 (Ω) soluzione dell'equazione -div(a(x, u, ∇u)) = f .
Osservazione 4.8. Un'applicazione a che verifica l'ipotesi 2 verrà detta ellittica.

Passiamo ora alla dimostrazione del teorema di Leray-Lions: useremo il teorema di suriettività. Per dimostrare che l'operatore

A : W 1,p 0 (Ω) → W -1,p (Ω) v → -div(a(x, v, ∇v)) -F (x, v, ∇v)
è pseudomonotono, useremo il seguente lemma.

Lemma 4.9. Supponiamo che

u n → u debolmente in W 1,p 0 (Ω) e che [a(x, u n , ∇u n )-a(x, u, ∇u)]•∇(u n - u) → 0 q.o. in Ω. Allora ∇u n → ∇u q.o. in Ω. Dimostrazione. Poiché [a(x, u n , ∇u n ) -a(x, u, ∇u)] • ∇(u n -u) → 0 q.o. in Ω CAPITOLO 4. TEOREMA DI LERAY-LIONS si ha che |[a(x, u n k , ∇u n k ) -a(x, u, ∇u)] • ∇(u n k -u)| ≤ c(x).
A meno di ragionare su un insieme Z di misura nulla, possiamo dire che le relazioni appena scritte valgono puntualmente. Proviamo che esiste una funzione C tale che

|∇u n k (x)| ≤ C(x). (4.3.1) Si ha c(x) ≥ [a(x, u n k , ∇u n k ) -a(x, u, ∇u)] • ∇(u n k -u) ≥ α[|∇u n k | p + |∇u| p ] -|∇u n k |[β(|u| p-1 + |∇u| p-1 )] -|∇u|[β(|u n k | p-1 + |∇u p-1 n k |)]. (4.3.2)
Poiché u n → u debolmente in W 1,p 0 (Ω), esiste una sottosuccessione (che continuiamo a denotare con n) e esiste una funzione g in L 1 (Ω) per le quali

|u n | p-1 |∇u| ≤ g e u n → u q.o. in Ω. Avendo nella (4.3.2) un polinomio in |∇u n |, vale la (4.3.1). Vogliamo ora dimostrare che ∇u n (x) → ∇u(x) in Ω \ Z. (4.3.3) Supponiamo per assurdo che esiste x 0 ∈ Ω \ Z tale che ∇u n (x 0 ) non converge a ∇u(x 0 ). Per il teorema di Bolzano-Weierstrass, a meno di passare ad una sottosuccessione, ∇u n (x 0 ) → b ∈ R N . Passando al limite nell'espressione [a(x, u n , ∇u n ) -a(x, u, ∇u)] • ∇(u n -u) , otteniamo [a(x 0 , u(x 0 ), b) -a(x 0 , u(x 0 ), ∇u(x 0 ))] • (b -∇u(x 0 )) = 0 ,
da cui deduciamo, per la monotonia di a, che b = ∇u(x 0 ); dunque vale la (4.3.3).

Lemma 4.10.

Siano u n , u in W 1,p 0 (Ω) tali che u n → u debolmente in W 1,p 0 (Ω). Se Ω [a(x, u n , ∇u n ) -a(x, u, ∇u)] • ∇(u n -u) → 0, (4.3.4) allora a(x, u n , ∇u n ) → a(x, u, ∇u) debolmente in L p ′ (Ω). Dimostrazione. Dimostriamo che [a(x, u n , ∇u n ) -a(x, u, ∇u)] • ∇(u n -u) → 0 in L 1 (Ω). (4.3.5) Possiamo scrivere che [a(x, u n , ∇u n ) -a(x, u, ∇u)] • ∇(u n -u) = α n + β n dove α n = [a(x, u n , ∇u n ) -a(x, u n , ∇u)] • ∇(u n -u) β n = [a(x, u n , ∇u) -a(x, u, ∇u)] • ∇(u n -u) .
Osseviamo che

β n → 0 in L 1 (Ω), perché Ω |β n | ≤ a(x, u n , ∇u) -a(x, u, ∇u) L p ′ (Ω) ∇u n -∇u L p (Ω) . Ora, ∇u n -∇u L p (Ω) è limitata, e a(x, u n , ∇u) → a(x, u, ∇u) in L p ′ (Ω) per il teorema di composizione 2.6, visto che u n → u in L p (Ω) . Abbiamo dunque che Ω α n + β n → 0 (per ipotesi) e β n → 0 in L 1 (Ω) : ciò 4.3. TEOREMA DI ESISTENZA DI LERAY-LIONS 39 implica che Ω α n → 0; poiché α n ≥ 0 per la monotonia di a, si ha che α n + β n → 0 in L 1 (Ω), cioè abbiamo provato la (4.3.5). Dunque a meno di una sottosuccessione, [a(x, u n , ∇u n ) -a(x, u, ∇u)] • ∇(u n -u) → 0 q.o. in Ω.
Grazie al lemma 4.9, ∇u n → ∇u q.o. in Ω. Per concludere basta usare il teorema 2.7.

Siamo ora in grado di dimostrare il teorema di Leray-Lions 4.1. Dimostrazione. Dimostreremo che A(v) = -div(a(x, v, ∇v)) -F (x, v, ∇v) è coercivo e pseudomonotono; la tesi seguirà dal teorema di suriettività 4.6. La coercività segue dalle ipotesi 2 e 4: infatti

< A(v), v >≥ α Ω |∇v| p - Ω |f ||v| ≥ α Ω |∇v| p -f L p ′ (Ω) v L p (Ω) .
Grazie alla disuguaglianza di Poincaré ciò implica la coercività dell'operatore A. La limitatezza di A si ottiene scrivendo, grazie alle ipotesi 1 e 4,

< A(v), w > = Ω a(x, v, ∇v) • ∇w - Ω F (x, v, ∇v)w ≤ β   Ω |v| p-1 |∇w| + Ω |∇v| p-1 |∇w|   + Ω |f ||w| ≤ β v p-1 L p (Ω) ∇w L p (Ω) + ∇v p-1 L p (Ω) ∇w L p (Ω) + f L p ′ (Ω) w L p (Ω) . Supponiamo ora che u n → u debolmente in W 1,p 0 (Ω) e che lim sup n→+∞ < A(u n ), u n -u >≤ 0 . Vogliamo dimostrare che lim inf n→∞ < A(u n ), u n -w >≥< A(u), u -w > ∀ w ∈ W 1,p 0 (Ω).
Osserviamo che

< A(u n ), u n -w >= Ω a(x, u n , ∇u n ) • ∇(u n -w) + Ω F (x, u n , ∇u n )(u n -w) .
Occupiamoci separatamente dei due termini dell'ultima uguaglianza. Per quanto riguarda il primo termine, sarà utile provare che

lim n→∞ Ω [a(x, u n , ∇u n ) -a(x, u, ∇u)] • ∇(u n -u) = 0 . (4.3.6) Osserviamo che Ω F (x, u n , ∇u n )(u n -u) → 0 visto che u n → u in L p (Ω) e F (x, u n , ∇u n ) è uniformemente limitato in L p ′ (Ω) per le ipotesi su F . Ciò implica, insieme all'ipotesi di pseudomonotonia, che lim sup n→∞ Ω [a(x, u n , ∇u n ) -a(x, u, ∇u)] • ∇(u n -u) ≤ 0 .
Ma, grazie alle ipotesi su a, 

Ω [a(x, u n , ∇u n ) -a(x, u, ∇u)] • ∇(u n -u) ≥ Ω [a(x, u n , ∇u) -a(x, u, ∇u)] • ∇(u n -u)
a(x, u n , ∇u n ) • ∇u n ≥ Ω a(x, u, ∇u) • ∇u. Studiamo ora Ω F (x, u n , ∇u n )(u n -w) .
Poiché u n → u e ∇u n → ∇u q.o. in Ω e debolmente in L p (Ω) applicando il teorema di composizione 2.7 si ha che

F (x, u n , ∇u n ) → F (x, u, ∇u) debolmente in L p ′ (Ω). Ciò implica che Ω F (x, u n , ∇u n )(u n -w) → Ω F (x, u, ∇u)(u -w) visto che u n → u in L p (Ω). Otteniamo dunque lim inf < A(u n ), u n -w > ≥ Ω a(x, u, ∇u) • ∇u - Ω a(x, u, ∇u) • ∇w + Ω F (x, u, ∇u)(u -w) = < A(u), u -w > .
In conclusione l'operatore A è pseudomonotono.

Capitolo 5

Sommabilità delle soluzioni dei problemi di Leray-Lions

Introduzione

Nel precedente capitolo abbiamo dimostrato l'esistenza di soluzioni deboli per problemi del tipo Leray-Lions -div(a(x, u, ∇u)) = F (x, u, ∇u) in Ω u = 0 su ∂Ω . Vogliamo ora studiare la regolarità delle soluzioni, concentrandoci però solamente sulla sommabilità della soluzione e non del suo gradiente. Ovviamente la regolarità della soluzione dipenderà dalla regolarità della sorgente. In questo capitolo supporremo che la sorgente sia una funzione f appartenente a uno spazio di Lebesgue o a uno spazio di Marcinkiewicz. I due casi saranno trattati separatamente, ma con tecniche analoghe. Tratteremo inoltre il caso in cui la sorgente è sotto forma di divergenza. Per le dimostrazioni originali, ci riferiamo a [START_REF] Stampacchia | Èquations elliptiques du second ordre à coefficients discontinus[END_REF].

Riportiamo qui di seguito uno schema riassuntivo dei principali risultati di questo capitolo. Studieremo il problema dove a : Ω × R × R N → R N è una funzione di Carathéodory con le seguenti proprietà

1. esiste β > 0 tale che |a(x, s, ξ)| ≤ β[|s| + |ξ|]; 2. esiste α > 0 tale che a(x, s, ξ) • ξ ≥ α|ξ| 2 , ∀ ξ ∈ R N ; 3. [a(x, s, ξ) -a(x, s, η)] • [ξ -η] > 0 se ξ = η. Dimostreremo i seguenti risultati: f ∈ L m (Ω), m > N/2 ⇒ u ∈ L ∞ (Ω) f ∈ L m (Ω), m ∈ [2N/(N + 2), N/2) ⇒ u ∈ L m * * (Ω) f ∈ L N 2 (Ω) ⇒ e λ|u| ∈ L 2 * (Ω) ∀ λ > 0 (dove m * * = (m * ) * ). Nel caso in cui f ∈ M m (Ω) proveremo che f ∈ M m (Ω), m > N/2 ⇒ u ∈ L ∞ (Ω) f ∈ M m (Ω), m ∈ [2N/(N + 2), N/2) ⇒ u ∈ M m * * (Ω) f ∈ M N 2 (Ω) ⇒ ∃ b > 0 : Ω e b|u| < ∞ .
Nel caso in cui la sorgente è sotto forma di divergenza di un campo vettoriale

F : Ω → R N tale che div F ∈ L 2 (Ω), detta u la soluzione, dimostreremo che F ∈ (L m (Ω)) N , m > N ⇒ u ∈ L ∞ (Ω) F ∈ (L m (Ω)) N , 2 < m < N ⇒ u ∈ L m * (Ω) .

CAPITOLO 5. SOMMABILIT À DELLE SOLUZIONI DEI PROBLEMI DI LERAY-LIONS

Preliminari

Useremo spesso in questo capitolo la funzione T k (x) già definita in (3.4.2) e la funzione G k (x) = x-T k (x).

Inoltre, riferendoci ad una funzione f useremo le seguenti notazioni:

g(k) = Ω |G k (f )| e A k = {|f | > k}. Lemma 5.1. Sia f ∈ L 1 (Ω). Allora g(k) è derivabile quasi ovunque e g ′ (k) = -µ(A k ) .
Dimostrazione. Dimostriamo che la funzione

g(k) = {w-k>0} (w -k) è derivabile rispetto a k. A tale scopo, poniamo A k,+ = {w -k > 0}. La funzione g(k) è derivabile quasi ovunque, in quanto monotona decrescente. Passiamo a valutarne la derivata. Sia h ∈ R + ; il rapporto incrementale di f è dato da g(k + h) -g(k) h = 1 h    A k+h,+ (w -k -h) - A k,+ (w -k)    = 1 h    A k+h,+ -h - {k<w≤k+h} (w -k)    = - A k+h,+ 1 - 1 h {k<w≤k+h} (w -k). Abbiamo che 0 ≤ {k<w≤k+h} (w -k) ≤ {k<w≤k+h} h e dunque 0 ≤ 1 h {k<w≤k+h} (w -k) ≤ Ω χ {k<w≤k+h} → 0 , h → 0 + . Di conseguenza lim h→0 g(k + h) -g(k) h = -lim h→0 Ω χ {w>k+h} = -µ({w > k}), ovvero g′ (k) = -µ(A k,+ ).
Per il caso generale, basta osservare che

g(k) = {f -k>0} (w -k) + {-(f -k)>0} -(w -k);
ponendo u = -f , ci riconduciamo al caso già studiato.

Ci sarà utile anche il seguente lemma:

Lemma 5.2. Sia f ∈ L 1 (Ω) tale che la relativa funzione g(k) soddisfa la seguente disuguaglianza per ogni k: g(k) ≤ Cµ(A k ) α con α > 1 e C > 0. Allora f ∈ L ∞ (Ω) e vale la seguente stima: esiste una costante γ = γ(α, Ω) tale che f L ∞ (Ω) ≤ Cγ .

PRELIMINARI

Dimostrazione. In base al lemma 5.1 abbiamo

g(k) ≤ C(-g ′ (k)) α cioè g ′ (k)[g(k)] -1 α ≤ - 1 C 1 α . Integrando la precedente disuguaglianza tra 0 e k otteniamo -1 - 1 α k C 1 α ≥ g(k) 1-1 α -g(0) 1-1 α = g(k) 1-1 α -f 1-1 α L 1 (Ω) .
Di conseguenza

g(k) 1-1 α ≤ f 1-1 α L 1 (Ω) -1 - 1 α k C 1 α ∀ k > 0.
In particolare questa disuguaglianza vale per

k 0 = C 1 α f 1-1 α L 1 (Ω) 1-1 α . Ciò implica che g(k 0 ) = 0, ossia |f | ≤ k 0 = C 1 α f 1-1 α L 1 (Ω) 1 -1 α ≤ C 1 α f 1-1 α L ∞ (Ω) µ(Ω) 1-1 α 1 -1 α cioè f L ∞ (Ω) ≤ 1 - 1 α - α µ(Ω) α-1 C . Osservazione 5.3. Se la disuguaglianza g(k) ≤ Cµ(A k ) α vale per ogni k ≥ h 0 , si può ancora dimostrare che f appartiene a L ∞ (Ω).
Nel caso in cui la sorgente f appartiene a M N 2 (Ω), ci saranno utili i seguenti risultati.

Proposizione 5.4. Sia f una funzione misurabile definita in Ω e a una costante positiva.

Allora 

Ω e a |f | < ∞ ⇐⇒ ∞ k=0 e a k µ(A k ) < ∞ . Dimostrazione. Osserviamo che ∞ k=0 e a k µ(A k ) = ∞ k=0 e a k ∞ i=k µ(B i ) = ∞ i=0 µ(B i ) i k=0 e a k (5.2.1) dove B i = {i ≤ |f | < i + 1} . Poiché
∞ k=0 e ak µ(A k ) ≤ ∞ i=0 µ(B i ) i+1 0 e at dt = e a a ∞ i=0 µ(B i ) e ai - 1 e a ≤ e a a ∞ i=0 Bi e a |f | - 1 e a = e a a Ω e a |f | - 1 e a < ∞.
Parte II: supponiamo ora che

∞ k=0 e a k µ(A k ) < ∞. Grazie alla (5.2.
2) e alla (5.2.1) 

∞ k=0 e a k µ(A k ) = ∞ i=0 µ(B i ) i k=0 e a k = ∞ i=0 µ(B i ) i-1 j=-1 e a(j+1) ≥ ∞ i=0 µ(B i ) i -1 e at dt = ∞ i=0 µ(B i ) e i a -e -a a ≥ 1 a ∞ i=0 Bi

SORGENTI APPARTENENTI

A L M (Ω) 45 5.3 Sorgenti appartenenti a L m (Ω)
Ci accingiamo ora a dimostrare dei risultati di regolarità delle soluzioni del problema

-div(a(x, u, ∇u)) = f in Ω u = 0 su ∂Ω (5.3.1)
nel caso in cui la sorgente f appartiene a L m (Ω), con m ≥ 2N N +2 .

Teorema 5.6. Sia f appartenente ad L m (Ω) con m > N/2. Allora ogni soluzione u ∈ H 1 0 (Ω) del problema di Dirichlet (5.3.1) è limitata; vale inoltre la seguente stima:

u L ∞ (Ω) ≤ C f L m (Ω) , dove C = C(N, m, α) .
Dimostrazione. Scegliamo v = G k (u) come funzione test nella formulazione debole del problema (5.3.1) e trattiamo i due membri separatamente. Per quanto riguarda il primo, grazie all'ellitticità della funzione a e alla disuguaglianza di Sobolev, abbiamo

Ω a(x, u, ∇u) • ∇G k (u) ≥ α A k |∇u| 2 = α Ω |∇G k (u)| 2 ≥ αS 2   Ω |G k (u)| 2 *   2 2 * .
Occupiamoci ora del secondo membro: usando due volte la disuguaglianza di Hölder, prima con esponente 2 * e poi con esponente m, otteniamo

Ω f G k (u) ≤   Ω |G k (u)| 2 *   1 2 *   A k |f | 2N N +2   N +2 2N ≤ f L m (Ω) Ω |G k (u)| 2 * 1 2 * µ(A k ) (1-2N (N +2)m ) N +2 2N .
Ricapitolando abbiamo la seguente stima

αS 2   Ω |G k (u)| 2 *   2 2 * ≤ f L m (Ω) Ω |G k (u)| 2 * 1 2 * µ(A k ) (1-2N (N +2)m ) N +2 2N , cioè αS 2   Ω |G k (u)| 2 *   1 2 * ≤ f L m (Ω) µ(A k ) (1-2N (N +2)m ) N +2 2N . (5.3.2)
Osserviamo che grazie alla disuguaglianza di Hölder con esponente 2 * risulta

Ω |G k (u)| ≤   Ω |G k (u)| 2 *   1 2 * µ(A k ) N +2 2N
e dunque riprendendo la (5.3.2), vale la stima

g(k) = Ω |G k (u)| ≤ 1 αS 2 f L m (Ω) µ(A k ) 1+ 2 N -1 m , Utilizzando il lemma 5.2 con α = 1 + 2 N -1 m e C = 1 αS 2 f L m (Ω)
, si ha la tesi. Passiamo ora allo studio della regolarità delle soluzioni nel caso in cui

f ∈ L m (Ω), con 2N N +2 ≤ m < N 2 . Teorema 5.7. Sia f ∈ L m (Ω) con 2N N +2 ≤ m < N 2 .
Allora ogni soluzione u ∈ H 1 0 (Ω) del problema (5.3.1) appartiene a L m * * (Ω); inoltre vale la seguente stima:

u L m * * (Ω) ≤ C f L m (Ω) dove C = C(N, m, α) . Dimostrazione. Scegliamo come funzione test v = |T k (u)| 2λ T k (u) 2λ + 1 ,
con λ > 0 nel problema (5.3.1). In tutta la dimostrazione denoteremo con c(λ, α, N, Ω) ogni costante che dipende solo dalle variabili λ, α, N e Ω. Trattiamo separatamente i due membri della formulazione debole. Per il primo si ha, per l'ellitticità di a e la disuguaglianza di Sobolev

1 2λ + 1 Ω a(x, u, ∇u) • ∇(|T k (u)| 2λ T k (u)) ≥ αS 2   Ω |T k (u)| (λ+1)2 *   2 2 * .
Per il secondo membro, usando la disuguaglianza di Hölder con esponente m otteniamo

1 2λ + 1 Ω f |T k (u)| 2λ T k (u) ≤ 1 2λ + 1   Ω |T k (u)| (2λ+1)m ′   1 m ′ f L m (Ω) .
Ricapitolando si ha

αS 2 (2λ + 1) |T k (u)| (λ+1)2 * 2 2 * ≤ |T k (u)| (2λ+1)m ′ 1 m ′ f L m (Ω) .
A questo punto, è sufficiente scegliere λ tale che (λ + 1)2 * = m ′ (2λ + 1), ovvero

λ = -mN + 2N -2m 4m -2N .
In questo modo, semplificando la disuguaglianza appena scritta, in virtù del fatto che

2 2 * > 1 m ′ , si ha T k (u) L m * * (Ω) ≤ C(α, N, m) f L m (Ω) .
Per concludere basta applicare il lemma di Fatou, per k → ∞.

Passiamo ora al caso in cui la sorgente f appartiene a

L N 2 (Ω) . Teorema 5.8. Sia f ∈ L N 2 (Ω). Allora ogni soluzione u ∈ H 1 0 (Ω) del problema (5.3.1) è tale che e λ|u| appartiene a L 2 * (Ω) per ogni λ > 0. Dimostrazione. Scegliamo [e 2λ |G k (u)| -1]sgn(G k (u))
, k > 0 come funzione test nella formulazione debole del problema (5.3.1) e trattiamo i due membri separatamente. Possiamo stimare il secondo membro grazie alla disuguaglianza seguente, valida per ogni t ≥ 0 e per ogni Q > 1:

|t 2 -1| ≤ Q(t -1) 2 + 1 Q -1 . Otteniamo allora Ω f [e 2λ |G k (u)| -1]sgn(G k (u)) ≤ Q A k |f |[e λ |G k (u)| -1] 2 + 1 Q -1 A k |f | . La disuguaglianza di Hölder con esponente N 2 implica che Ω f [e 2λ |G k (u)| -1]sgn(G k (u)) ≤ Q f L N 2 (A k )   Ω [e λ |G k (u)| -1] 2 *   2 2 * + 1 Q -1 A k |f |.
Grazie all'ellitticità di a, il primo membro può essere stimato con 2λα

Ω |∇G k (u)| 2 e 2λ |G k (u)| = 2λα Ω 1 λ 2 ∇ e λ |G k (u)| -1 2 . Usando la disuguaglianza di Sobolev otteniamo S 2 λ 2α   Ω [e λ |G k (u)| -1] 2 *   2 2 *
.

In conclusione le stime dei due membri ci portano a dire che

S 2 λ 2α   Ω [e λ |G k (u)| -1] 2 *   2 2 * ≤ Q f L N 2 (A k )   Ω [e λ |G k (u)| -1] 2 *   2 2 * + 1 Q -1 A k |f | cioè S 2 λ 2 2λα - λ 2 Q S 2 f L N 2 (A k )   Ω [e λ |G k (u)| -1] 2 *   2 2 * ≤ 1 Q -1 A k |f | . Sicuramente esiste un k λ tale che 2λα - λ 2 Q f L N 2 (A k ) S 2 > 0, ∀ k ≥ k λ visto che f L N 2 (A k )
→ 0 se k → +∞. Inoltre la disuguaglianza precedente implica che la successione

{e λ |G k (u)| -1} k≥k λ è limitata in L 2 * (Ω). Ciò implica che e λ |u| appartiene a L 2 * (Ω). Infatti [e λ |u| -1] 2 * = [e λ |T k (u)+G k (u)| -1] 2 * ≤ [e λk e λ |G k (u)| -e λk + e λk -1] 2 * ≤ 2 2 * -1 e λk2 * [e λ |G k (u)| -1] 2 * + 2 2 * -1 [e λk -1] 2 * . Di conseguenza, per ogni k ≥ k λ abbiamo Ω [e λ |u| -1] 2 * ≤ 2 2 * -1 e λk2 * Ω [e λ |G k (u)| -1] 2 * + 2 2 * -1 [e λk -1] 2 * µ(Ω) ,
cioè e λ |u| appartiene a L 2 * (Ω) per ogni λ > 0.

Sorgenti appartenenti a M m (Ω)

Ci accingiamo a trattare lo studio della regolarità delle soluzioni deboli di (5.3.1), nel caso in cui f appartiene allo spazio di Marzinkiewicz M m (Ω).

Teorema 5.9. Sia f ∈ M m (Ω), con m > N 2 . Allora ogni soluzione u ∈ H 1 0 (Ω) del problema (5.3.1) è limitata.

Dimostrazione. La dimostrazione segue dal teorema 5.6, in virtù dell'inclusione M m (Ω) ⊂ L m-ε (Ω), dimostrata nella proposizione 2.12.

Teorema 5.10. Sia f ∈ M m (Ω) con 2N N +2 < m < N 2 . Allora ogni soluzione u ∈ H 1 0 (Ω) del problema (5.3.1) appartiene a M m * * (Ω).
Dimostrazione. Scegliamo come funzione test v = G k (u) nella formulazione debole del problema (5.3.1) e trattiamo i due membri separatamente. Cominciamo dal primo: per l'ellitticità della funzione a e per la disuguaglianza di Sobolev, abbiamo

Ω a(x, u, ∇u) • ∇G k (u) ≥ α A k |∇u| 2 ≥ α S 2   Ω |G k (u)| 2 *   2 2 * .
Per il secondo membro, usando la disuguaglianza di Hölder con esponente 2 * e la proposizione 2.13

(applicata alla funzione |f | 2N N +2 ∈ M m(N +2) 2N
), otteniamo

Ω f G k (u) ≤   Ω |G k (u)| 2 *   1/2 *   A k |f | 2N N +2   N +2 2N ≤ c   Ω |G k (u)| 2 *   1 2 * µ(A k ) [1-2N (N +2)m ] N +2 2N dove c = c(m, f M m (Ω) ). Ricapitolando abbiamo   Ω |G k (u)| 2 *   1 2 * ≤ c α S 2 µ(A k ) 1 2 + 1 N -1 m
e dunque, grazie alla disuguaglianza di Hölder applicata al primo membro della disuguaglianza appena scritta,

Ω |G k (u)| ≤ c α S 2 µ(A k ) 1+ 2 N -1 m .
Applicando il lemma 5.1, la disuguaglianza precedente si riscrive in questo modo: Dimostrazione. Scegliendo v = G k (u) come funzione test nella formulazione debole di (5.3.1), e ragionando come nel teorema precedente, otteniamo

- α S 2 c µ ≥ g ′ (k)g(k) -µ dove µ := mN mN + 2m -N . Integrando tra 0 e k otteniamo (µ -1) α S 2 c µ k ≥ [g(k)] 1-µ -[g(0)] 1-µ ovvero g(k) ≤ (µ -1) α S 2 c µ k + [g(0)] 1-µ 1 1-µ ≤ C(α, N, m, Ω) k 1 µ-1 , visto che µ > 1. Notiamo che A 2k ⊂ A k , quindi vale la disuguaglianza g(k) ≥ A 2k |G k (u)| dx ≥ A 2k (|u| -k) dx ≥ kµ(A 2k ) , e di conseguenza µ(A 2k ) ≤ C(α, N, m, Ω) k µ µ-1 , cioè u ∈ M m * * (Ω).
1 ≤ - c α S 2 g ′ (k) g(k)
.

Integrando in k si ha k 0 dt ≤ - c α S 2 k 0 g ′ (t) g(t) dt, ovvero k ≤ - c α S 2 [ln g(k) -ln g(0)] = c α S 2 ln u L 1 (Ω) g(k)
.

Ciò implica che

e kα S 2 /c ≤ u L 1 (Ω) g(k) , e quindi, per k ≥ 1, si ottiene kµ(A 2k ) ≤ g(k) ≤ u L 1 (Ω)
e kα S 2 /c .

Si può allora concludere la dimostrazione utilizzando il lemma 5.5.

CAPITOLO 5. SOMMABILIT À DELLE SOLUZIONI DEI PROBLEMI DI LERAY-LIONS

Sorgenti in forma di divergenza

In questo paragrafo ci occuperemo del seguente problema

-div(a(x, u, ∇u)) = -div F in Ω u = 0 su ∂Ω (5.5.1)
dove F : Ω → R N è un campo vettoriale tale che divF ∈ L 2 (Ω). Notiamo che l'esistenza di una soluzione debole in H 1 0 (Ω) ci è assicurata dallo stesso teorema di Leray-Lions 4.1. Teorema 5.12. Sia F ∈ (L m (Ω)) N , m > N . Allora ogni soluzione debole u ∈ H 1 0 (Ω) del problema (5.5.1) è limitata; vale inoltre la seguente stima:

u L ∞ (Ω) ≤ C F L m (Ω) , dove C = C(N, m, α) .
Dimostrazione. Consideriamo come funzione test la funzione G k (u):

Ω a(x, u, ∇u) • ∇G k (u) = Ω F • ∇G k (u) .
Utilizzando la condizione di ellitticità di a al primo membro e la disuguaglianza di Hölder al secondo, otteniamo la seguente stima:

α Ω |∇G k (u)| 2 ≤   A k |F | 2   1/2   Ω |∇G k (u)| 2   1/2 , dove A k = {|u| > k}.
Applichiamo la disuguaglianza di Hölder di esponente m/2 al secondo membro:

α   Ω |∇G k (u)| 2   1 2 ≤   A k |F | m   1/m µ(A k ) 1 2 -1 m ; l'immersione di Sobolev permette di concludere che αS   Ω |G k (u)| 2 *   1/2 * ≤ ||F || L m (Ω) µ(A k ) 1 2 -1 m . (5.5.2) 
Per il primo membro della (5.5.2) utilizziamo ancora la disuguaglianza di Hölder:

Ω |G k (u)| ≤   Ω |G k (u)| 2 *   1/2 * µ(A k ) 1-1/2 * =   Ω |G k (u)| 2 *   1/2 * µ(A k ) 1/2+1/N ;
quindi la stima (5.5.2) assicura che

Ω |G k (u)| ≤ C(α, S)||F || L m (Ω) µ(A k ) 1-1 m + 1 N .
Utilizzando il lemma 5.

2 con α = 1 + 1 N -1 m e C = C(α, S)||F || L m (Ω)
, si ha la tesi. 

u L m * (Ω) ≤ C F L m (Ω) , dove C = C(N, m, α).
Dimostrazione. Scegliamo come funzione test la funzione v = |T k (u)| 2γ T k (u), dove l'esponente γ sarà scelto opportunatamente nel seguito. Abbiamo, per la condizione di ellitticità di a α

Ω |∇T k (u)| 2 |T k (u)| 2γ ≤ Ω F • ∇T k (u)|T k (u)| 2γ .
Tramite la disuguaglianza di Cauchy-Schwartz applicata al secondo membro otteniamo

α Ω |∇T k (u)| 2 |T k (u)| 2γ ≤   Ω |F | 2 |T k (u)| 2γ   1/2   Ω |∇T k (u)| 2 |T k (u)| 2γ   1/2 , e di conseguenza, semplificando α 2 Ω |∇T k (u)| 2 |T k (u)| 2γ ≤ Ω |F | 2 |T k (u)| 2γ .
Un'ulteriore applicazione della disuguaglianza di Hölder con esponente m/2 al secondo membro conduce alla stima

α 2   Ω ∇|T k (u)| γ+1 2   ≤ ||F || 2 L m (Ω)   Ω |T k (u)| m2γ m-2   m-2 m .
Per il primo membro dell'ultima disuguaglianza utilizziamo l'immersione di Sobolev ed otteniamo

α 2 S 2   Ω |T k (u)| (γ+1)2 *   2/2 * ≤ ||F || 2 L m (Ω)   Ω |T k (u)| m2γ m-2   m-2 m .
(5.5.3)

A questo punto scegliamo γ in modo che

(γ + 1) 2 * = 2mγ m -2 ;
in questo modo la stima (5.5.3) può essere scritta nella forma seguente:

  Ω |T k (u)| m *   2 2 * -m-2 m ≤ 1 α 2 S 2 ||F || 2 L m (Ω) . Osserviamo che m < N implica che 2 2 * -m-2 m > 0; applicando il lemma di Fatou, al limite per k → +∞ otteniamo ||u|| L m * (Ω) ≤ C||F || L m (Ω) , con 0 < C = C(α, N, m).

Capitolo 6

Regolarità per problemi ellittici lineari

Introduzione

In questo capitolo ci dedicheremo allo studio della regolarità delle soluzioni di problemi ellittici lineari.

Studieremo il problema -div(M (x)∇u) = f in Ω u = 0 su ∂Ω (6.1.1) dove f appartiene a L 2 (Ω) e M (x) è una matrice in R N ×N tale che M (x)ξ • ξ ≥ α|ξ| 2 per ogni ξ ∈ R N . Supporremo che i coefficienti m ij di M (x) siano lipschitz, cioè |m ij (x) -m ij (y)| ≤ K|x -y| ∀ x, y ∈ Ω, ∀ i, j = 1, ..N .
Nel capitolo 3 abbiamo visto che esiste una soluzione in H 1 0 (Ω). In questo capitolo dimostreremo che u è H 2 (Ω ′ ) per ogni Ω ′ ⊂⊂ Ω, seguendo [19]. Teorema 6.1. Sia u ∈ H 1 0 (Ω) la soluzione del problema (6.1.1). Allora, per ogni Ω ′ ⊂⊂ Ω, u appartiene a H 2 (Ω ′ ) e vale la seguente stima:

u H 2 (Ω ′ ) ≤ C( u H 1 0 (Ω) + f L 2 (Ω) ) (6.1.2) dove C = C(Ω, K, α, d), essendo d(x) = dist(Ω ′ , ∂Ω).

Preliminari

Ci sarà utile il concetto di rapporto incrementale di una funzione. Denotiamo con e i ∈ R N il vettore avente tutte le componenti nulle, tranne la i-esima, che vale 1.

Definizione 6.2. Siano f : Ω → R una funzione e h ∈ R \ {0}. Il rapporto incrementale di f rispetto a e i è la funzione ∆ h i f : {x ∈ Ω : x + he i ∈ Ω} → R, definita come ∆ h i f (x) := f (x + he i ) -f (x) h .

Osserviamo che in particolare ∆

h i f risulta definita in Ω |h| := {x ∈ Ω : dist(x, ∂Ω) > |h|}.
D'ora in poi scriveremo ∆ h invece che ∆ h i . Inoltre ∇ i f sarà la i-esima componente del vettore ∇f.
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1. Se f ∈ W 1,p (Ω), allora ∆ h f ∈ W 1,p (Ω |h| ) e si ha ∇ i (∆ h f ) = ∆ h (∇ i f ). (6.2.1)
2. Se almeno una delle funzioni f o g ha supporto contenuto in Ω |h| , risulta

Ω f ∆ h i g = - Ω g∆ -h i f. (6.2.2)

Si ha

∆ h i (f g)(x) = f (x + he i )∆ h i g(x) + g(x)∆ h i f (x). (6.2.3) Lemma 6.4. Sia v ∈ W 1,p (Ω). Allora ∆ h v ∈ L p (Ω ′ ) per ogni Ω ′ ⊂⊂ Ω tale che h < dist(Ω ′ , ∂Ω) e vale la seguente stima: ∆ h i v L p (Ω ′ ) ≤ ∇ i v L p (Ω ′ ) . Dimostrazione. Supponiamo inizialmente che v ∈ C 1 (Ω) ∩ W 1,p (Ω). Allora ∆ h i v(x) = v(x + he i ) -v(x) h = 1 h h 0 ∇ i v(x 1 , ..., x i-1 , x i + ξ, x i+1 , ..., x N )dξ.
Grazie alla disuguaglianza di Hölder si ha

|∆ h i v(x)| p ≤ 1 h h 0 |∇ i v(x 1 , ..., x i-1 , x i + ξ, x i+1 , ..., x N | p dξ e dunque Ω ′ |∆ h i v| p ≤ 1 h h 0 Ω ′ |∇ i v| p dξ ≤ Ω ′ |∇ i v| p .
Per risultati di densità si ha la tesi.

Nel seguente lemma vediamo in che senso il risultato precedente si può invertire.

Lemma 6.5. Sia v ∈ L p (Ω), 1 < p < ∞ e supponiamo che esista una costante K tale che

∆ h v L p (Ω ′ ) ≤ K per ogni h > 0 e Ω ′ ⊂⊂ Ω per cui h < dist(Ω ′ , ∂Ω).
Allora ∇v esiste e soddisfa ∇v L p (Ω) ≤ K.

Dimostrazione. Sia h n ⊆ R una successione infinitesima; definiamo per ogni i = 1, ..N, fissato

g n := ∆ hn i v in Ω |hn| 0 in Ω \ Ω |hn|
La successione g n è limitata in L p (Ω) e dunque, a meno di una sottosuccessione, g n converge debolmente ad una funzione ṽ ∈ L p (Ω), con ṽi

L p (Ω) ≤ K. Dunque per ogni ϕ ∈ C 1 0 (Ω) si ha Ω ϕ∆ hn i v → Ω ϕ ṽi .
D'altra parte per h n < dist(supp ϕ, ∂Ω), abbiamo, grazie alla (6.2.2) e al teoreme di Lebesgue che

Ω ϕ∆ hn i v = - Ω v∆ -hn i ϕ → - Ω v∇ i ϕ, n → ∞.
Ne segue che per ogni ϕ ∈ C 1 0 (Ω)

Ω ϕ ṽi = - Ω v∇ i ϕ e perciò ṽi = ∇ i v. 6.3. REGOLARIT À H 2 (Ω) DELLE SOLUZIONI 55 6.3 Regolarità H 2 (Ω) delle soluzioni
In questo paragrafo dimostreremo il teorema 6.1. Osserviamo che grazie a questo risultato, possiamo dire che u risolve l'equazione -div(M (x)∇u) = f q.o. in Ω ′ ⊂⊂ Ω, visto che u ∈ H 2 (Ω ′ ).

In realtà si può dimostrare qualcosa di più preciso (consultare [START_REF] Evans | Partial differential equations[END_REF]):

Teorema 6.6. Sia u la soluzione H 1 0 (Ω) del problema (6.1.1).

1. Supponiamo che i coefficienti di M siano C m+1 (Ω) e f ∈ W m,2 (Ω). Allora u ∈ W m+2,2 (Ω ′ ) per ogni Ω ′ ⊂⊂ Ω. 2. Supponiamo che i coefficienti di M siano C ∞ (Ω) e f ∈ C ∞ (Ω). Allora u ∈ C ∞ (Ω ′ ) per ogni Ω ′ ⊂⊂ Ω.
La regolarità della soluzione fino al bordo richiede la regolarità del bordo di Ω, come il teorema seguente mostra: Teorema 6.7. Sia u la soluzione H 1 0 (Ω) del problema (6.1.1).

1. Supponiamo che i coefficienti di M siano C m+1 (Ω) e f ∈ W m,2 (Ω). Supponiamo che ∂Ω ∈ C m+2 .
Allora u ∈ W m+2,2 (Ω).

Supponiamo che

i coefficienti di M siano C ∞ (Ω) e f ∈ C ∞ (Ω). Supponiamo che ∂Ω ∈ C ∞ . Allora u ∈ C ∞ (Ω).
Passiamo ora alla dimostrazione del teorema 6.1. Dimostrazione. La soluzione u soddisfa

N i,j=1 Ω m ij (x)∇ j u∇ i v = Ω f v ∀ v ∈ H 1 0 (Ω) .
Siano ϕ una funzione a supporto compatto in Ω e |2h| < dist(supp ϕ, ∂Ω). Scegliamo come funzione test v = ∆ -h k ϕ, per 1 ≤ k ≤ N : grazie alle proprietà (6.2.1) e (6.2.2), otteniamo

N i,j=1 Ω ∆ h k (m ij ∇ j u)∇ i ϕ = - N i,j=1 Ω m ij ∇ j u∇ i ∆ -h k ϕ = - Ω f ∆ -h k ϕ.
Siccome, per la proprietà (6.2.3),

∆ h k (m ij ∇ j u)(x) = m ij (x + he k )∆ h k ∇ j u(x) + ∆ h k m ij (x)∇ j u(x) si ha che N i,j=1 Ω m ij (x + he k )∆ h k ∇ j u(x)∇ i ϕ = - N i,j=1 Ω ∆ h k m ij (x)∇ j u(x)∇ i ϕ + m ij (x)∇ j u(x)∇ i ∆ -h k ϕ = - N i,j=1 Ω [∆ h k (m ij (x))∇ j u(x)∇ i ϕ + f ∆ -h k ϕ]. Dunque N i,j=1 Ω m ij (x + he k )∆ h k ∇ j u(x)∇ i ϕ = - Ω [g • ∇ϕ + f ∆ -h k ϕ],
dove g = (g 1 , ..., g n ) con

g i = ∆ h k m ij ∇ j u.
Usando la disuguaglianza di Cauchy-Schwartz e il lemma 6.4 otteniamo

N i,j=1 Ω m ij (x + he k )∆ h k ∇ j u(x)∇ i ϕ ≤ (K ∇u L 2 (Ω) + f L 2 (Ω) ) ∇ϕ L 2 (Ω)
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visto che i coefficienti m ij sono lipschitz. La (6.2.1) implica che

N i,j=1 Ω m ij (x + he k )∇ j ∆ h k u(x)∇ i ϕ ≤ (K u H 1 0 (Ω) + f L 2 (Ω) ) ∇ϕ L 2 (Ω) . (6.3.1) Ora prendiamo η ∈ C 1 0 (Ω) tale che 0 ≤ η ≤ 1 e scegliamo ϕ = η 2 ∆ h k u. Esplicitando ∇ i ϕ e usando la (6.2.1), otteniamo N i,j=1 Ω η 2 m ij (x + he k )∇ i ∆ h k u∇ j ∆ h k u = N i,j=1 Ω m ij (x + he k )∇ j ∆ h k u(∇ i ϕ -2∆ h k uη∇ i η) . (6.3.2)
Grazie all'ellitticità della matrice M si ha

α Ω |η∇∆ h k u| 2 ≤ N i,j=1 Ω η 2 m i,j (x + he k )∆ h k ∇ i u∆ h k ∇ j u .
Lavoriamo ora sul secondo membro della (6.3.2): si ha, per la stima (6.3.1) e la disuguaglianza di Cauchy-

Schwartz N i,j=1 Ω m i,j (x + he k )∇ j ∆ h k u(∇ i ϕ -2∆ h k uη∇ i η) ≤ N i,j=1 Ω m i,j (x + he k )∇ j ∆ h k u∇ i ϕ + 2 Ω m i,j (x + he k )η∇ j ∆ h k u∆ h k u∇ i η ≤ (K u H 1 0 (Ω) + f L 2 (Ω) ) ∇(η 2 ∆ h k u) L 2 (Ω) + 2K η∇∆ h k u L 2 (Ω) ∆ h k u∇η L 2 (Ω) ≤ (K u H 1 0 (Ω) + f L 2 (Ω) ) 2η∇η∆ h k u + η 2 ∇∆ h k u L 2 (Ω) +2K η∇∆ h k u L 2 (Ω) ∆ h k u∇η L 2 (Ω) . (6.3.3) 
Osserviamo ora che

2η∇η∆ h k u + η 2 ∇∆ h k u L 2 (Ω) ≤ 2∇η∆ h k u L 2 (Ω) + η∇∆ h k u L 2 (Ω)
visto che 0 ≤ η ≤ 1 . Grazie alle stime appena fatte, deduciamo da (6.3.3) che

N i,j Ω m i,j (x + he k )∇ j ∆ h k u(∇ i ϕ -2∆ h k uη∇ i η) ≤ (K u H 1 0 (Ω) + f L 2 (Ω) )( 2∇η∆ h k u L 2 (Ω) + η∇∆ h k u L 2 (Ω) ) +2K η∇∆ h k u L 2 (Ω) ∆ h k u∇η L 2 (Ω) .
Ricapitolando le stime fatte sui due membri della (6.3.2), abbiamo ottenuto

α η∇∆ h k u 2 L 2 (Ω) ≤ η∇∆ h k u L 2 (Ω) (K u H 1 0 (Ω) + f L 2 (Ω) ) +2 ∆ h k u∇η L 2 (Ω) (K u H 1 0 (Ω) + f L 2 (Ω) ) + 2K η∇∆ h k u L 2 (Ω) ∆ h k u∇η L 2 (Ω) .
Dalla disuguaglianza di Young, applicata a ciascun addendo del secondo membro della disuguaglianza precedente segue che

α η∇∆ h k u 2 L 2 (Ω) ≤ 1 2ε (K u H 1 0 (Ω) + f L 2 (Ω) ) 2 + ε 2 η∇∆ h k u 2 L 2 (Ω) + 6.3. REGOLARIT À H 2 (Ω) DELLE SOLUZIONI 57 + 1 ε (K u H 1 0 (Ω) + f L 2 (Ω) ) 2 + ε ∆ h k u∇η 2 L 2 (Ω) + εK η∇∆ h k u 2 L 2 (Ω) + 1 ε ∆ h k u∇η 2 L 2 (Ω) , cioè α - ε 2 -εK η∇∆ h k u 2 L 2 (Ω) ≤ 3 2ε (K u H 1 0 (Ω) + f L 2 (Ω) ) 2 + ε + 1 ε ∆ h k u∇η 2 L 2 (Ω) .
Ora, scegliendo ε sufficientemente piccolo possiamo scrivere

η∇∆ h k u 2 L 2 (Ω) ≤ c(K u H 1 0 (Ω) + f L 2 (Ω) ) 2 + c ∆ h k u∇η 2 L 2 (Ω) ≤ c( u H 1 0 (Ω) + f L 2 (Ω) + ∆ h k u∇η L 2 (Ω)
) 2 dove c denota una costante che dipende da α e da K. Di conseguenza, per la (6.2.1)

η∆ h k ∇u L 2 (Ω) ≤ c( u H 1 0 (Ω) + f L 2 (Ω) + sup Ω |∇η| ∆ h k u L 2 (spt η) )
dove spt η denota il supporto di η. Per il lemma 6.4 otteniamo

η∆ h k ∇u L 2 (Ω) ≤ c( u H 1 0 (Ω) + f L 2 (Ω) + sup Ω |∇η| ∇u L 2 (Ω) ) e quindi, fissato Ω ′ ⊂⊂ Ω η∆ h k ∇u L 2 (Ω ′ ) ≤ c(1 + sup Ω |∇η|)( u H 1 0 (Ω) + f L 2 (Ω) ) .
Ora, la funzione η può essere scelta come una funzione cut-off, tale che

η = 1 su Ω ′ e |∇η| ≤ 2 d , dove d = dist(Ω ′ , ∂Ω).
Per il lemma 6.5 otteniamo che ∇u ∈ H 1 (Ω ′ ) per ogni Ω ′ ⊂⊂ Ω , così u ∈ H 2 (Ω) e la stima (6.1.2) è dimostrata grazie alla disuguaglianza di Poincaré.

Capitolo 7

Analisi spettrale per operatori lineari ellittici

Introduzione

In questo capitolo ci concentreremo sul problema

-div(M (x)∇u) = λu in Ω u = 0 su ∂Ω (7.1.1) dove M (x) è una matrice simmetrica N × N , limitata e tale che M (x)ξ • ξ ≥ α|ξ| 2 per ogni ξ ∈ R N .
Studieremo dapprima l'esistenza e alcune proprietà degli autovalori e delle autofunzioni dell'operatore L(v) = -div(M (x)∇v). Ci dedicheremo poi ad alcune applicazioni della teoria spettrale a problemi semilineari. 

Autovalori e autofunzioni di operatori ellittici lineari

-div(M (x)∇v) = λ m v in Ω v = 0 su ∂Ω .
Nella dimostrazione useremo il seguente lemma.

Lemma 7.2. Sia T : L 2 (Ω) → L 2 (Ω) f → u (7.2.1) dove u ∈ H 1 0 (Ω) risolve -div(M (x)∇u) = f . Allora T è compatto.
Dimostrazione. T è ben definito (per il teorema 3.4) e lineare; è facile dimostrare che T è autoaggiunto (vedere definizione 7. 19), poiché M è una matrice simmetrica. Dimostriamo che T è compatto: se

T (f ) = u, abbiamo α ∇u 2 L 2 (Ω) ≤ Ω M (x)∇u • ∇u = Ω f u ≤ c f L 2 (Ω) ∇u L 2 (Ω)
59 per l'ellitticità di M e la disuguaglianza di Poincaré. Ne deduciamo che

T (f ) H 1 0 (Ω) ≤ c α f L 2 (Ω) ∀ f ∈ L 2 (Ω) .
Poiché l'immersione H 1 0 (Ω) ֒→ L 2 (Ω) è compatta, T è compatto. Possiamo ora dimostrare il teorema 7.1. Dimostrazione. Usando il lemma 7.2 e il teorema spettrale 7.22 applicato all'operatore T definito dalla (7.2.1), possiamo dire che esiste una base ortonormale

w n di L 2 (Ω) e una successione µ n → 0, n → ∞ tale che T (w n ) = µ n w n , cioè, Ω M (x)∇w n • ∇ϕ = 1 µ n Ω w n ϕ ∀ ϕ ∈ H 1 0 (Ω) .
Osserviamo che w n ∈ H 1 0 (Ω). Inoltre µ n ≥ 0: infatti basta scegliere ϕ = w n come funzione test. D'altra parte µ n = 0, altrimenti

w n = 0 da T (w n ) = 0 . Definizione 7.3. Secondo le notazioni del teorema precedente, diremo che {λ m } m∈N è l'insieme degli autovalori di L(v) = -div(M (x)∇v) : ciò significa che { 1 λm } m∈N è l'insieme degli autovalori di T : L 2 (Ω) → L 2 (Ω) f → u dove u ∈ H 1 0 (Ω) verifica -div(M (x)∇u) = f . Inoltre diremo che le autofunzioni w n di T sono le autofunzioni di L(v) = -div(M (x)∇v).
Il prossimo teorema concerne la rappresentazione di λ 1 , il primo autovalore di L(v) = -div(M (x)∇v):

Teorema 7.4. Sia λ 1 il più piccolo autovalore di L(v) = -div(M (x)∇v) . Allora λ 1 = min v∈H 1 0 (Ω) v =0 A(v), dove A(v) = Ω M (x)∇v • ∇v Ω v 2 .
Inoltre ogni funzione u che minimizza A è un'autofunzione di L relativa a λ 1 .

Osservazione 7.5. Per p = 2 la disuguaglianza di Poincaré ci dice che esiste una costante positiva c = c(Ω) tale che

1 c u L 2 (Ω) ≤ ∇u L 2 (Ω) ∀ u ∈ H 1 0 (Ω).
Il teorema 7.4 ci permette di dire che il più piccolo autovalore di L(v) = -∆v è uguale alla radice quadrata della migliore costante nella disuguaglianza di Poincaré.

Useremo il seguente lemma:

Lemma 7.6. A ha minimo in H 1 0 (Ω) . Dimostrazione. A è limitato inferiormente, per la disuguaglianza di Poincaré. Dimostriamo che ammette minimo. Sia v n una successione minimizzante, cioè, A(v n ) → inf A . Osserviamo che z n = v n v n H 1 0 (Ω) è una successione minimizzante e z n H 1 0 (Ω) = 1. Ciò implica che, a meno di una sottosuccessione, z n → z in L 2 (Ω) e debolmente in H 1 0 (Ω). Inoltre inf A ≥ lim inf n→∞ Ω M (x)∇z n • ∇z n ≥ Ω M (x)∇z • ∇z = A(z) : (7.2.2)
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61 infatti 0 ≤ M (x)∇(z n -z) • ∇(z n -z) = M (x)∇z n • ∇z n -2M (x)∇z n • ∇z + M (x)∇z • ∇z e quindi basta passare al lim inf nella disuguaglianza Ω M (x)∇z n • ∇z n ≥ 2 Ω M (x)∇z n • ∇z - Ω M (x)∇z • ∇z
per ottenere la (7.2.2). Di conseguenza z minimizza A. Dobbiamo solo controllare che z = 0. Poiché z n è una successione minimizzante, esiste una costante

C > 0 tale che A(z n ) ≤ C per ogni n, cioè Ω M (x)∇z n • ∇z n ≤ C Ω z 2 n .
L'ellitticità di M e la disuguaglianza di Poincaré implicano l'esistenza di una constante c > 0 tale che

Ω z 2 n ≥ c. Poiché z n → z in L 2 (Ω), Ω z 2 ≥ c. Ne deduciamo che z = 0.
Possiamo ora dimostrare il teorema 7.4. Dimostrazione. Sia u ∈ H 1 0 (Ω) un minimo per A. Usando il lemma precedente possiamo dire che la funzione g(t) = A(u + tw), dove w ∈ H 1 0 (Ω), ha minimo in 0. Essendo g derivabile, g ′ (0) = 0, cioè,

Ω M (x)∇u • ∇w = Ω M (x)∇u • ∇u Ω u 2 Ω uw = (inf A) Ω uw ∀ w ∈ H 1 0 (Ω) (7.2.3) cioè, ogni minimo u ∈ H 1 0 (Ω) di A è un'autofunzione di L(v) = -div(M (x)∇v) e Ω M (x)∇u • ∇u Ω u 2 è il
relativo autovalore. Dimostriamo che inf A = λ 1 . Poiché λ 1 è il più piccolo autovalore di -div(M (x)∇v) si ha λ 1 ≤ inf A . Dimostriamo la disuguaglianza opposta. Sia w 1 un'autofunzione relativa a λ 1 ; abbiamo

Ω M (x)∇w 1 • ∇v = λ 1 Ω w 1 v ∀ v ∈ H 1 0 (Ω); di conseguenza scegliendo v = w 1 otteniamo inf A = inf Ω M (x)∇v • ∇v Ω v 2 ≤ Ω M (x)∇w 1 • ∇w 1 Ω w 2 1 = Ω λ 1 w 2 1 Ω w 2 1 = λ 1 .
Osservazione 7.7. Come vedremo nel capitolo 8, la (7.2.3) è l'equazione di Eulero associata a A.

Corollario 7.8. Ogni autofunzione w 1 di L(v) = -div(M (x)∇v) relativa a λ 1 ha segno constante in Ω.

Dimostrazione. Per definizione di autofunzione relativa a λ 1 , w 1 risolve

Ω M (x)∇w 1 • ∇v = λ 1 Ω w 1 v ∀ v ∈ H 1 0 (Ω) . Considerando v = w + 1 si ha λ 1 = Ω M (x)∇w + 1 • ∇w + 1 Ω (w + 1 ) 2
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cioè, w + 1 minimizza A. Per il teorema 7.4, w + 1 è un'autofunzione di L(v) = -div(M (x)∇v) relativa a λ 1 . Ovviamente aw + 1 è un'autofunzione di L(v) = -div(M (x)∇v) relativa a λ 1 per ogni a ∈ R. Più in generale si può dimostrare la seguente rappresentazione degli autovalori. Teorema 7.9. Per ogni m > 1 si ha

λ m = Ω M (x)∇w m • ∇w m Ω w 2 m = inf v∈Pm-1,v =0 Ω M (x)∇v • ∇v Ω v 2 dove P m =    v ∈ H 1 0 (Ω) : Ω w n v = 0, n = 1, ..m    .
Passiamo ora a dimostrare l'ultim orisultato di questo paragrafo: la limitatezza delle autofunzioni del problema (7.1.1).

Teorema 7.10. Sia u un'autofunzione di L(v) = -div(M (x)∇v) relativa all'autovalore λ. Allora u è limitata e vale la seguente stima:

u L ∞ (Ω) ≤ c(α, N )λ N 2 u L 1 (Ω) , (7.2.4) 
dove c(α, N ) indica una costante che dipende solo da α e da N .

Dimostrazione. Scegliamo G k (u) = u -T k (u) come funzione test nella (7.1.1): in questo modo α A k |∇G k (u)| 2 ≤ Ω M (x)∇u • ∇u = λ Ω uG k (u) ,
per l'ellitticità di M . Stimiamo ora il membro destro. Scrivendo u come uk + k, otteniamo, per la disuguaglianza di Young

λ Ω uG k (u) ≤ λ A k |G k (u)| 2 + λ A k k |G k (u)| ≤ λ A k |G k (u)| 2 + λ 2 A k |G k (u)| 2 + k 2 µ(A k ) = 3 λ 2 A k |G k (u)| 2 + k 2 λ 2 µ(A k ) .

Abbiamo dunque dimostrato che

α A k |∇G k (u)| 2 ≤ 3 λ 2 A k |G k (u)| 2 + k 2 λ 2 µ(A k ) . (7.2.5)
Usando le disuguaglianze di Hölder e di Sobolev, abbiamo

S A k |G k (u)| 2 1 2 ≤ S A k |G k (u)| 2 * 1 2 * µ(A k ) 1 N ≤ A k |∇G k (u)| 2 1 2 µ(A k ) 1 N ; (7.2.6) la (7.2.5) implica che α A k |∇G k (u)| 2 ≤ 3λ 2S 2 µ(A k ) 2 N A k |∇G k (u)| 2 + k 2 λ 2 µ(A k ) . Consideriamo k ≥ k 0 , dove k 0 = k 0 (λ) è tale che α ≥ 3λ S 2 µ(A k0 ) 2 N .
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Con questa scelta 

α A k |∇G k (u)| 2 ≤ k 2 λµ(A k ) . ( 7 
A k |G k (u)| ≤ A k |G k (u)| 2 1 2 µ(A k ) 1 2 ≤ µ(A k ) 1+ 1 N k(S 2 α) -1 2 λ 1 2 . Ponendo g(k) = A k |G k (u)| e usando il lemma 5.1, la disuguaglianza precedente è equivalente a Sα 1 2 g(k) ≤ [-g ′ (k)] 1+ 1 N kλ 1 2 cioè, g ′ (k)g(k) -N N +1 λ N 2(N +1) ≤ -k -N N +1 (Sα 1 2 
)

N N +1 .
Integrando su (k 0 , k) abbiamo

g(k) 1 N +1 ≤ g(k 0 ) 1 N +1 + (Sα 1 2 ) N N +1 λ -N 2(N +1) [k 1 N +1 0 -k 1 N +1 ] . Poiché g(k 0 ) ≤ u L 1 (Ω) abbiamo g(k) 1 N +1 ≤ u 1 N +1 L 1 (Ω) + (Sα 1 2 ) N N +1 λ -N 2(N +1) [k 1 N +1 0 -k 1 N +1 ] . Osserviamo che se k è tale che il lato destro sia nullo, otteniamo u L ∞ (Ω) ≤ k. Si ha k = (Sα 1 2 ) -N N +1 λ N 2(N +1) u 1 N +1 L 1 (Ω) + k 1 N +1 0 N +1 ≤ c(N )[(Sα 1 2 ) -N λ N 2 u L 1 (Ω) + k 0 ] . Ricordiamo che k 0 è tale che µ(A k0 ) ≤ λ -N 2 αS 2 3 N 2 . Poiché µ(A k0 ) ≤ u L 1 (Ω) k0 , basta considerare k 0 in modo che k 0 ≤ λ N 2 u L 1 (Ω) αS 2 3 -N 2 : sceglieremo k 0 = 2λ N 2 u L 1 (Ω) αS 2 3 -N 2 . In questo modo k ≤ c(N )(Sα 1 2 ) -N λ N 2 u L 1 (Ω) + 2c(N ) αS 2 3 -N 2 λ N 2 u L 1 (Ω) cioè, u L ∞ (Ω) ≤ c(α, N )λ N 2 u L 1 (Ω) .
Osservazione 7.11. La limitatezza delle autofunzioni di L(v) = -div(M (x)∇v) può essere dimostrata con una tecnica differente rispetto al teorema precedente, detta bootstrap, che ora illustriamo. Per definizione,

w m ∈ H 1 0 è soluzione di -div(M (x)∇w m ) = λ m w m in Ω w m = 0 su ∂Ω.
Poiché H 1 0 (Ω) ⊆ L 2 * (Ω), per il teorema 5.7 abbiamo w m ∈ L 2 * * * (Ω). Usando il teorema 5.7 iterativamente, attraverso un numero finito di passi otterremo la sommabilità L p (Ω) con p > N/2, per ogni N ≥ 3. A questo scopo, definiamo

       q 0 = 2 *
. . .

q k+1 = q * * k = N q k N -2q k , k ≥ 0.
Supponiamo per assurdo che q k ≤ N/2 per ogni k. Essendo q k strettamente monotona, esiste l := lim k→∞ q k ; necessariamente 0 < l ≤ N/2. Passando al limite in k, otteniamo l = N l N -2l : ciò implica l = 0 che è assurdo. Di conseguenza esiste k ≥ 0 tale che qk > N/2. Basta usare il teorema 5.6 per ottenere la tesi. Notiamo comunque che il teorema precedente ci dà un'informazione supplementare: la stima (7.2.4).

Alcune conseguenze della teoria spettrale in equazioni semilineari

In questo paragrafo studieremo alcune equazioni semilineari usando i risultati di teoria spettrale per operatori ellittici del paragrafo precedente. Più precisamente studieremo il problema

-div(M (x)∇u) = g(u) + f in Ω u = 0 su ∂Ω (7.3.1)
sotto diverse ipotesi du g. Osserviamo che abbiamo già studiato alcune equazioni semilineari nel capitolo 3.

Cominceremo studiando il problema lineare

-div(M (x)∇u) = µu + f in Ω u = 0 su ∂Ω (7.3.2)
dove µ ∈ R, con una semplce applicazione dell'alternativa di Fredholm 7.24.

Teorema 7.12.

Sia µ ∈ R con µ = λ k per ogni k ∈ N (dove {λ k } k∈N sono gli autovalori di L(v) = -div(M (x)∇v))
. Allora per ogni f ∈ L 2 (Ω) esiste un'unica soluzione u del problema (7.3.2).

Dimostrazione. Supponiamo che µ = 0, perché abbiamo già visto nel teorema 3.4 che esiste un'unica soluzione H 1 0 (Ω) del problema -div(M (x)∇u) = f . Sia T l'operatore definito da (7.2.1). Allora µ -1 non è un autovalore di T . Di conseguenza usando il teorema 7.24, per ogni f ∈ L 2 (Ω) esiste un'unica soluzione dell'equazione T uµ -1 = -µ -1 T f , cioè esiste un'unica soluzione del problema (7.3.2). Dimostrazione. Come nel teorema precedente useremo l'operatore T definito da (7.2.1). Usando il teorema 7.24, esiste una soluzione di µ -1 u-T u = f (cioè del problema (7.3.2)) a condizione che

Ω f ϕ = 0 per ogni ϕ tale che µ -1 ϕ = T ϕ. Ciò significa che µ -1 Ω M (x)∇ϕ • ∇v = Ω ϕv, cioè ϕ è un'autofunzione di L(v) = -div(M (x)∇v)) relativa a µ.
L'esistenza delle autofunzioni di L(v) = -div(M (x)∇v) può essere utile per trovare una sottosoluzione o una sopra-soluzione se si vuole applicare il teorema 3.11, come mostra il prossimo risultato. Teorema 7.14. Sia θ ∈ (0, 1). Allora esiste una soluzione positiva u ∈ H 1 0 (Ω) del problema

-∆u = u θ in Ω u = 0 su ∂Ω . (7.3.3)
Dimostrazione. Sia ψ ∈ H 1 0 (Ω) la soluzione positiva del problema -∆ψ = 1 in Ω ψ = 0 su ∂Ω .
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Sappiamo dal teorema 5.6 che ψ è limitata; allora per ogni T > 0 tale che T

1-θ θ

≥ ψ L ∞ (Ω) , u = T ψ è una sopra-soluzione del problema (7.3.3). D'altra parte, sia ϕ 1 un'autofunzione relativa al primo autovalore λ 1 di L(v) = -∆v: ϕ 1 può essere scelta positiva grazie al teorema 7.8 ed è limitata grazie al teorema 7.10. Scegliendo t > 0 tale che λ 1 (tϕ 1 ) 1-θ ≤ 1, si ha che u = tϕ 1 è una sottosoluzione di (7.3.3). Per dimostrare che u ≤ u, osserviamo che per linearità -∆(T ψtϕ 1 ) = Tλ 1 tϕ 1 . Basta allora considerare T tale che T ≥ λ 1 t ϕ 1 L ∞ (Ω) : in questo modo u ≥ u per il lemma 3.12. Possiamo dunque applicare il teorema 3.11 per trovare una soluzione positiva del problema (7.3.3).

Nei prossimi due teoremi, le ipotesi sulla funzione g del problema (7.3.1) sono in relazione agli autovalori dell'operatore L(v) = -div(M (x)∇v).

Andiamo ora a enunciare il teorema di Dolph.

Teorema 7.15 (Dolph). Sia g : R → R una funzione con la proprietà che esiste δ > 0 tale che

0 < λ k + δ < g(t) -g(s) t -s < λ k+1 -δ, per qualche k ∈ N, dove {λ k } sono gli autovalori di L(v) = -div(M (x)∇v). Allora, per ogni f ∈ L 2 (Ω),
esiste una soluzione u ∈ H 1 0 (Ω) del problema (7.3.1). Nella dimostrazione useremo il seguente risultato:

Lemma 7.16. Sia µ ∈ R con µ = λ k . Allora l'operatore S definito da S : L 2 (Ω) → L 2 (Ω) f → w dove w risolve -div(M (x)∇w) = µw + f , è compatto. Dimostrazione. Basta dimostrare che S : L 2 (Ω) → H 1 0 (Ω) è continuo, visto che l'immersione H 1 0 (Ω) ֒→ L 2 (Ω) è compatta. Per linearità dimostreremo che se f n → 0 in L 2 (Ω) allora le corrispondenti soluzioni z n del problema (7.3.2) convergono a 0 in H 1 0 (Ω). Consideriamo ϕ i (le autofunzioni L(v) = -div(M (x)∇v)) come funzione test in (7.3.2): si ha (λ i -µ) Ω z n ϕ i = Ω M (x)∇z n • ∇ϕ i -µ Ω z n ϕ i = Ω f n ϕ i . Poiché f n → 0 in L 2 (Ω) abbiamo Ω z n ϕ i → 0. {ϕ i } è una base ortonormale di L 2 (Ω), come dimostrato nel teorema 7.1: ciò implica che z n → 0 debolmente in L 2 (Ω). Di conseguenza z n è limitata in L 2 (Ω). Scegliendo z n come funzione test in (7.3.2), si ha α Ω |∇z n | 2 ≤ Ω M (x)∇z n • ∇z n = µ Ω z 2 n + Ω f n z n . (7.3.4) 
Essendo l'ultimo membro limitato uniformemente, possiamo dire che a meno di una sottosuccessione z n ha un limite debole in H 1 0 (Ω) che è necessariamente 0 e z n → 0 in L 2 (Ω). Di conseguenza il membro destro della (7.3.4) tende a zero e quindi z n → 0 in H 1 0 (Ω). Possiamo ora dimostrare il teorema di Dolph: Dimostrazione. Il problema (7.3.1) equivalente a

-div(M (x)∇u) -λu = g(u) -λu + f in Ω u = 0 su ∂Ω dove λ = λ k+1 +λ k 2
. Osserviamo che λ = 0 e che λ non è un autovalore di L, cioè 1 λ non è un autovalore dell'operatore T definito da (7.2.1). Grazie al teorema 7.12

S : L 2 (Ω) → H 1 0 (Ω) ⊂ L 2 (Ω) f → w dove w risolve -div(M (x)∇w) -λw = f è ben definito. Ponendo Θ : L 2 (Ω) → L 2 (Ω) v → S[g(v) -λv + f ]
basta dimostrare che Θ è una contrazione. La linearità e la continuità di S implicano che

Θv -Θw L 2 (Ω) ≤ S L(L 2 (Ω)) g(v) -g(w) -λ(v -w) L 2 (Ω) . (7.3.5) Stimiamo ora g(v) -g(w) -λ(v -w) L 2 (Ω) . Dalle ipotesi su g deduciamo che g(v) -g(w) v -w -λ ≤ λ k+1 -λ k 2 -δ : ciò è equivalente a |g(v) -g(w) -λ(v -w)| ≤ λ k+1 -λ k 2 -δ |v -w|, e quindi g(v) -g(w) -λ(v -w) L 2 (Ω) ≤ λ k+1 -λ k 2 -δ v -w L 2 (Ω) .
Usando la (7.3.5), si ha

Θv -Θw L 2 (Ω) ≤ S L(L 2 (Ω)) λ k+1 -λ k 2 -δ v -w L 2 (Ω) . (7.3.6) 
Per dimostrare che Θ è una contrazione dimostreremo che

S L(L 2 (Ω)) λ k+1 -λ k 2 -δ < 1.
A questo scopo, stimiamo S L(L 2 (Ω)) . Denotiamo con ν k gli autovalori di -div(M (x)∇v)λv, cioè

-div(M (x)∇z k ) -λz k = ν k z k : questa uguaglianza implica che ν k = λ k -λ (dove λ k sono gli autovalori di L(v) = -div(M (x)∇v)). Gli autovalori di S sono dunque ν -1 k = 1 λ k -λ .
Usando il teorema 7.23, si ha

S (L 2 (Ω)) ′ = sup i 1 λ i -λ (7.3.7)
visto che S è compatto, come dimostrato nel lemma 7.16. Poiché 0 < . . . < λ k < λ < λ k+1 < . . . abbiamo

S (L 2 (Ω)) ′ = sup i=k,k+1 1 λ i -λ . Inoltre il fatto che λ -λ k = λ k+1 -λ implica che S (L 2 (Ω)) ′ = 1 λ k+1 -λ = 2 λ k+1 -λ k .
Sostituendo quest'uguaglianza nella (7.3.6), otteniamo

Θv -Θw L 2 (Ω) ≤ 2 λ k+1 -λ k λ k+1 -λ k 2 -δ v -w L 2 (Ω) ≤ 1 - 2δ λ k+1 -λ k v -w L 2 (Ω) .
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Di conseguenza Θ è una contrazione e deduciamo dal teorema 1.1 che esiste un'unica u ∈ L 2 (Ω) tale che -div(M (x)∇u) + λu = g(u) + λu + f . Poiché S : L 2 (Ω) → H 1 0 (Ω) abbiamo che u ∈ H 1 0 (Ω), cioè u è la soluzione.

Studiamo ora il seguente teorema ( [1]):

Teorema 7.17 (Ambrosetti-Prodi). Sia g : R → R una funzione lipschitz tale che g(0) = 0. Supponiamo che 

lim s→±∞ g(s) s = γ ± , γ -< λ 1 < γ + < λ 2 dove λ 1 e λ 2 sono i primi due autovalori di L(v) = -div(M (x)∇v). Allora per ogni f ∈ L 2 (Ω), esiste un t ∈ R tale che: 1. se Ω f ϕ 1 > t,
, u ∈ L 2 (Ω) tali che u n → u in L 2 (Ω), per n → +∞. 1. Se t n → +∞, allora g(t n u n ) t n → γ + u + -γ -u -in L 2 (Ω). 2. Se t n → -∞, allora g(t n u n ) t n → γ -u + -γ + u -in L 2 (Ω).
Dimostrazione. Poniamo

ρ n (x) =    g(t n u n (x)) t n u n (x) se u n (x) = 0 0 se u n (x) = 0 . Dobbiamo dimostrare che ρ n u n → γ + u + -γ -u -. Si ha che |ρ n | ≤ K q.o. per le ipotesi su g. Di conseguenza ρ n (u n -u) → 0 in L 2 (Ω).
1. Supponiamo che t n → +∞. Studiano separatamente

Ω - n = {x ∈ Ω : u n (x) < 0} Ω 0 n = {x ∈ Ω : u n (x) = 0} Ω + n = {x ∈ Ω : u n (x) > 0} si ottiene che ρ n u → γ + u + -γ -u -q.o.; usando il teorema di Lebesgue ρ n u → γ + u + -γ -u -in L 2 (Ω). Di conseguenza ρ n u n → γ + u + -γ -u -in L 2 (Ω) .
2. Il caso t n → -∞ è simile al precedente.

Dimostriamo ora il teorema 7.17. Dimostrazione. Sia ϕ 1 un'autofunzione positiva di L(v) = -div(M (x)∇v) relativa al primo autovalore

λ 1 , tale che ϕ 1 L 2 (Ω) = 1. Dimostreremo che per ogni s ∈ R esiste un'unica soluzione z = z s ∈ H 1 0 (Ω) di Ω M (x)∇z • ∇w = Ω g(z + sϕ 1 )w + Ω f w ∀ w ∈ H 1 0 (Ω) : Ω wϕ 1 = 0 (7.3.8)
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e Ω zϕ 1 = 0. Studieremo poi l'esistenza di un reale s tale che

λ 1 s - Ω g(z + sϕ 1 )ϕ 1 = Ω f ϕ 1 . (7.3.9)
Si vede facilmente che il problema (7.3.1) è equivalente all'esistenza di z e s.

Step I: Studiamo il problema (7.3.8). Per ogni s ∈ R fissato, troveremo un'unica soluzione z s del problema (7. 

|a(ψ 1 , w) -a(ψ 2 , w)| ≤ C ∇w L 2 (Ω) ∇(ψ 1 -ψ 2 ) L 2 (Ω) .
Inoltre si vede facilmente che

a(ψ 1 , ψ 1 -ψ 2 ) -a(ψ 2 , ψ 1 -ψ 2 ) ≥ Ω M (x)∇(ψ 1 -ψ 2 ) • ∇(ψ 1 -ψ 2 ) -γ + Ω |ψ 1 -ψ 2 | 2 .
Usando il teorema 7.9 e l'ellitticità di M a(ψ

1 , ψ 1 -ψ 2 ) -a(ψ 2 , ψ 1 -ψ 2 ) ≥ 1 - γ + λ 2 α ∇(ψ 1 -ψ 2 ) 2 L 2 (Ω) .
Possiamo allora usare il teorema 3.3 e affermare che per ogni s ∈ R esiste un'unica soluzione z s del problema (7.3.8) .

Step II: Dimostriamo che

h(s) := λ 1 s - Ω g(z s + sϕ 1 )ϕ 1
è una funzione continua da R in R. Ovviamente è sufficiente dimostrare che il secondo termine è continuo. A questo scopo, sia s n una successione di reali. Dimostreremo che la corrispondente soluzione z sn delle soluzioni del problema (7.3.8) è uniformemente limitata in H 1 0 (Ω). Possiamo scrivere

Ω M (x)∇z sn • ∇z sn = Ω g(z sn + s n ϕ 1 )z sn + Ω f z sn .
Moltiplicando e dividendo per z sn + s n ϕ 1 nell'integrale del secondo membro e usando le ipotesi sul limite di g, abbiamo

Ω M (x)∇z sn • ∇z sn ≤ γ + Ω z 2 sn + f L 2 (Ω) z sn L 2 (Ω)
Di conseguenza, per il teorema 7.9 e l'ellitticità di

M α 1 - γ + λ 2 ∇z sn 2 L 2 (Ω) ≤ f L 2 (Ω) z sn L 2 (Ω)
La disuguaglianza di Poincaré implica che z sn è uniformemente limitata in H 1 0 (Ω). Ora, supponiamo che s n → s 0 per n → ∞. A meno di una sottosuccessione, z sn converge debolmente ad una successione w

ALCUNE CONSEGUENZE DELLA TEORIA SPETTRALE IN EQUAZIONI SEMILINEARI 69

in H 1 0 (Ω). Il teorema 2.6 implica che g(z sn + s n ϕ 1 ) → g(w + s 0 ϕ 1 ) in L 2 (Ω). Dobbiamo dimostrare che w = z s0 , cioè che w risolve il problema (7.3.8) relativo a s 0 . Passando al limite in

Ω M (x)∇z sn • ∇ψ = Ω g(z sn + s n ϕ 1 )ψ + Ω f ψ ∀ ψ : Ω ψ ϕ 1 = 0 abbiamo che Ω M (x)∇w • ∇ψ = Ω g(w + s 0 ϕ 1 )ψ + Ω f ψ .
Dallo step I esiste un'unica soluzione del problema -div(M (x)∇z s0 ) = g(z s0 +s 0 ϕ 1 )+f e quindi necessariamente w = z s0 . Di conseguenza a meno di una sottosuccessione

Ω g(z sn +s n ϕ 1 )ϕ 1 → Ω g(z s0 +s 0 ϕ 1 )ϕ 1 .
Si può dimostrare, ragionando per assurdo che

Ω g(z sn + s n ϕ 1 )ϕ 1 → Ω g(z s0 + s 0 ϕ 1 )ϕ 1
e non solo una sottosuccessione. Questo implica che h è una funzione continua.

Step III: Dimostriamo che

lim s→±∞ h(s) s = λ 1 -γ ± . Si ha h(s) s = λ 1 - Ω g s zs s + ϕ 1 s ϕ 1 :
basta dimostrare l'ultimo termine. Osserviamo che z s è uniformemente limitata in H 1 0 (Ω) come già dimostrato nello step precedente. Di conseguenza zs s → 0 in

H 1 0 (Ω) per s → ∞. Ponendo v s = zs s + ϕ 1 abbiamo che v s → ϕ 1 in L 2 (Ω).
1. Supponiamo che s → +∞. Usando il lemma 7.18 abbiamo che

g(sv s ) s → γ + ϕ + 1 -γ -ϕ - 1 in L 2 (Ω). Essendo ϕ 1 positiva, Ω g s zs s + ϕ 1 s ϕ 1 → γ + .
2. In modo simile si può studiare il caso s → -∞.

Step IV: Il problema (7.3.9) è equivalente a h(s) Nonostante questo corso sia dedicato a equazioni differenziali ci sembra utile esporre alcuni risultati di base del calcolo delle variazioni. Vedremo come la minimizzazione di un funzionale possa essere usata per studiare l'esistenza di soluzioni di problemi differenziali.

= Ω f ϕ 1 . Essendo λ 1 -γ + < 0 < λ 1 -γ -,

Metodi diretti nel calcolo delle variazioni

In questo paragrafo ci sembra utile ricordare alcuni risultati classici del calcolo delle variazioni che ci saranno utili in seguito per studiare la minimizzazione di un funzionale. Ci riferiamo a [START_REF] Dacorogna | Direct methods in the calculus of variations[END_REF] per le relative dimostrazioni.

Teorema 8.1 (Weierstrass). Sia X uno spazio di Banach riflessivo. Sia F : X → R coercivo e debolmente semicontinuo inferiormente. Allora F ammette minimo.

Tratteremo essenzialmente funzionali integrali del tipo

F (v) = Ω f (x, v, ∇v),
definiti su W 1,p 0 (Ω) con 1 < p < +∞ (che è uno spazio di Banach riflessivo). Il seguente teorema ci dà una condizione sufficiente affinché un funzionale di questo tipo sia debolmente semicontinuo inferiormente in W 1,p 0 (Ω):

Teorema 8.2 (De Giorgi). Sia f (x, s, ξ) : Ω × R × R N → R una funzione di Carathéodory, convessa in ξ e tale che f (x, s, ξ) ≥ a(x) • ξ + b(x), dove a : Ω → R N appartiene a (L p ′ (Ω)) N e b ∈ L 1 (Ω). Siano u n , u ∈ W 1,p 0 (Ω) tali che u n → u debolmente in W 1,p (Ω). Allora Ω f (x, u, ∇u) ≤ lim inf n→∞ Ω f (x, u n , ∇u n ) .
La dimostrazione del teorema di De Giorgi è abbastanza complessa. Ci sembra comunque istruttivo presentare la dimostrazione per una particolare classe di funzionali. Useremo la notazione ∇ ξ f per indicare il gradiente di f rispetto alla variabile ξ.
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Teorema 8.3. Sia f (x, s, ξ) : Ω × R × R N → R una funzione di Carathéodory convessa nell'ultima variabile. Supponiamo esistano α, β > 0 tali che α|ξ| p ≤ f (x, s, ξ) ≤ β|ξ| p . Supponiamo inoltre che per q.o. x ∈ Ω e per ogni s ∈ R f (x, s, •) sia derivabile e che esista ν > 0 tale che |∇ ξ f (x, s, ξ)| ≤ ν|ξ| p-1 . Allora F (v) = Ω f (x, v, ∇v), definito su W 1,p 0 (Ω), ammette minimo.
Dimostrazione. Il funzionale F è coercivo grazie al fatto che f (x, s, ξ) ≥ α|ξ| p . Dimostriamo ora che è debolmente semicontinuo inferiormente. Sia v n una successione debolmente convergente a v in W 1,p 0 (Ω). Le precedenti ipotesi di convessità e di derivabilità su f permettono di scrivere

f (x, s, ξ) ≥ f (x, s, η) + ∇ ξ f (x, s, η) • (ξ -η) : (8.2.1)
tale disuguaglianza implica che

Ω f (x, v n , ∇v n ) ≥ Ω f (x, v n , ∇v) + Ω ∇ ξ f (x, v n , ∇v) • (∇v n -∇v).
Grazie al teorema 2.6 possiamo dire che la funzione f (x, v n , ∇v) converge in L 1 (Ω) a f (x, v, ∇v) per la continuità di f (x, •, ξ) e per le condizioni di crescita di f . Studiamo il secondo termine. ∇v n -∇v converge debolmente a 0 in (L p (Ω)) N per ipotesi. Ancora grazie al teorema 2.6 la funzione

∇ ξ f (x, v n , ∇v) converge a ∇ ξ f (x, v, ∇v) in (L p ′ (Ω)) N sempre per la continuità di f (x, •, ξ) e per le condizioni di crescita di ∇ ξ f . Quindi, passando al limite inferiore nella disuguaglianza (8.2.1) si ha lim inf n→+∞ Ω f (x, v n , ∇v n ) ≥ Ω f (x, v, ∇v).
In base al teorema 8.1 F ammette minimo.

Equazione di Eulero

Diamo ora in astratto la definizione di equazione di Eulero associata ad un funzionale. Come vedremo l'equazione di Eulero è legata alla derivata secondo Gâteaux del funzionale. Seguiremo le notazioni della definizione 8.18.

Definizione 8.4. Sia X uno spazio di Banach. Sia J : X → R un funzionale che ammette minimo u. Supponiamo che J sia derivabile secondo Gâteaux. L'equazione < J ′ (u), ϕ >= 0, ϕ ∈ X, è l'equazione di Eulero associata a J.

Enunciamo ora un teorema che ci permette di calcolare l'equazione di Eulero associata a dei funzionali integrali.

Teorema 8.5. Sia f : Ω × R × R N → R di classe C 1 . Sia F (v) = Ω f (x, v, ∇v) definito su W 1,p 0 (Ω). Sia u un minimo per F . Allora: 1. L'equazione di Eulero Ω ∇ ξ f (x, u, ∇u) • ∇ϕ + Ω ∂f ∂s (x, u, ∇u)ϕ = 0
è soddisfatta per ogni ϕ ∈ W 1,p 0 (Ω) se f soddisfa le seguenti condizioni:

(a) caso p > N : per ogni |s| < R,

|∇ ξ f | ≤ α 1 (x) + β(1 + |ξ| p-1 ) ∂f ∂s ≤ α 2 (x) + β(1 + |ξ| p ) dove α 1 ∈ L p ′ (Ω), α 2 ∈ L 1 (Ω), β ≥ 0. (b) caso p = N : |∇ ξ f | ≤ α 1 (x) + β(|s| q1 + |ξ| p-1 ) ∂f ∂s ≤ α 2 (x) + β(|s| r1 + |ξ| r2 ) dove α 1 ∈ L p ′ (Ω), α 2 ∈ L s (Ω), con s > 1, β ≥ 0, q 1 , r 1 ≥ 1 e 1 ≤ r 2 < p. (c) caso 1 < p < N : |∇ ξ f | ≤ α 1 (x) + β(|s| q1 + |ξ| p-1 ) ∂f ∂s ≤ α 2 (x) + β(|s| r1 + |ξ| r2 ) dove α 1 ∈ L p ′ (Ω), α 2 ∈ L N p N p-N +p (Ω), β ≥ 0, 1 ≤ q 1 ≤ N (p-1) N -p , 1 ≤ r 1 ≤ p * e 1 ≤ r 2 < p-1+ p N . 2. L'equazione di Eulero è soddisfatta per ogni ϕ ∈ W 1,p 0 (Ω) ∩ L ∞ (Ω) se per ogni |s| < R, |∇ ξ f | ≤ α 1 (x) + β(1 + |ξ| p-1 ) ∂f ∂s ≤ α 2 (x) + β(1 + |ξ| p ) dove α 1 ∈ L p ′ (Ω), α 2 ∈ L 1 (Ω), β ≥ 0.
Esempio 8.6. Consideriamo il funzionale

J : H 1 0 (Ω) → R, definito da J(v) = 1 2 Ω M (x)|∇v| 2 - Ω f v dove M (x) ∈ R N ×N è una matrice simmetrica a coefficienti limitati e tale che M (x)ξ • ξ ≥ α|ξ| 2 ; inoltre f ∈ L 2 (Ω). È facile vedere che J ammette minimo u usando il teorema 8.2. L'equazione di Eulero che u soddisfa è -div(M (x)∇u) = f in Ω u = 0 su ∂Ω.
Esempio 8.7. Dimostreremo l'esistenza di soluzioni del problema ). A tale scopo, sia J il funzionale definito su H 1 0 (Ω) da

-∆u = |u| p-2 u in Ω u = 0 su ∂Ω con p ∈ [1, 2 
J(v) = 1 2 Ω |∇v| 2 - 1 p Ω |v| p .
Tale funzionale ammette minimo u per il teorema 8.2. L'equazione di Eulero che u soddisfa è appunto

Ω ∇u • ∇v = Ω |u| p-2 uv ∀ v ∈ H 1 0 (Ω) .
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Osserviamo che le equazioni con una certa struttura non sono sempre equazioni di Eulero associate ad un funzionale. Consideriamo ad esempio il funzionale J : H 1 0 (Ω) → R definito da

J(v) = 1 2 Ω a(v)|∇v| 2 - Ω f v (8.3.1)
sotto le seguenti ipotesi:

1. 0 < α ≤ a(s) ≤ β, per certi α, β > 0; 2. a è derivabile e ∃ γ > 0 tale che |a ′ (s)| ≤ γ; 3. f appartiene a L 2N N +2 (Ω) .
Osserviamo che tale funzionale ammette un minimo u (grazie al teorema 8.2) che risolve

Ω a(u)∇v • ∇u + 1 2 Ω a ′ (u)|∇u| 2 v - Ω f v = 0 ∀ v ∈ H 1 0 (Ω) ∩ L ∞ (Ω).
Di conseguenza l'equazione -div(a(u)∇u) + g(u)|∇u| 2 = f può essere vista come l'equazione di Eulero associata ad un funzionale se e solo se g = a ′ /2.

Esempio 8.8. Sia J il funzionale definito su H 1 0 (Ω) da

J(v) = 1 2 Ω |∇v| 2 - 1 p Ω |v| p con 2 < p < 2 *
. Notiamo che tale funzionale, a differenza del precedente non è coercivo; anzi si può dimostrare che J non ammette minimo su H 1 0 (Ω) : infatti, detta ϕ 1 ∈ H 1 0 (Ω) l'autofunzione relativa al primo autovalore del laplaciano (ossia -∆ϕ 1 = λ 1 ϕ 1 ), si ha

J(tϕ 1 ) = t 2 2 Ω |∇ϕ 1 | 2 - t p p Ω |ϕ 1 | p = t 2 2 λ 1 Ω ϕ 2 1 - t p p Ω |ϕ 1 | p .
Il limite per t → +∞ mostra che J è illimitato inferiormente visto che p > 2. È facile dimostrare che J ammette invece minimo sull'insieme

A =    v ∈ H 1 0 (Ω) : Ω |v| p = 1    .
Infatti J è limitato inferiormente su A. Inoltre se v n è una successione minimizzante, a meno di una sottosuccessione, v n converge debolmente in H 1 0 (Ω) ad una funzione v 0 in A, che è un minimo, per debole semicontinuità inferiore di J. Vediamo l'equazione che soddisfa il minimo u di J su A. Per definizione di minimo abbiamo che

J(u) ≤ J          u + tv   Ω |u + tv| p   1 p          , per ogni t ∈ R e per ogni v ∈ H 1 0 (Ω). Poniamo g(t) = J          u + tv   Ω |u + tv| p   1 p          . Osserviamo che d dt   Ω |u + tv| p   = p Ω |u + tv| p-2 (u + tv)v; di conseguenza g ′ (0) = 2   Ω |u| p   1 p 2 Ω ∇u • ∇v - Ω |∇u| 2 2   Ω |u| p   1 p ′ Ω |u| p-2 uv 4   Ω |u| p   2 p . Poiché u ∈ A, otteniamo g ′ (0) = 1 4   4 Ω ∇u • ∇v -2 Ω |∇u| 2 Ω |u| p-2 uv   = 0.
Si ha perciò che

Ω ∇u • ∇v - 1 2 Ω |∇u| 2 Ω |u| p-2 uv = 0 Quindi se u è il minimo di J, u risolve 2 Ω ∇u • ∇v = u 2 H 1 0 (Ω) Ω |u| p-2 uv.
Tale funzione u è dunque un punto critico del funzionale J (che, ricordiamo, non ammette minimo).

Esempio 8.9. Dimostreremo l'esistenza di una soluzione u ∈ W 1,p 0 (Ω) del seguente problema: A tale scopo, definiamo σ :

-div(|∇u| p-2 ∇u) = b(x, u) in Ω u = 0 su ∂Ω , ( 8 
W 1,p 0 (Ω) → W 1,p 0 (Ω) come l'applicazione che associa a w ∈ W 1,p 0 (Ω) la soluzione z ∈ W 1,p 0 (Ω) del problema -div(|∇z| p-2 ∇z) = b(x, w) in Ω z = 0 su ∂Ω . (8.3.3)
Tale applicazione è ben definita: infatti il funzionale
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ammette un minimo grazie al teorema 8.2, e l'equazione di Eulero associata è appunto -div(|∇z| p-2 ∇z) = b(x, w) . Inoltre tale minimo è unico, grazie alla stretta convessità del funzionale J. Dimostriamo ora che σ ammette un convesso invariante chiuso e limitato e che è completamente continua. L'esistenza di una soluzione del problema (8.3.2) seguirà dal teorema di Schauder. Per quanto riguarda il convesso invariante, scegliamo z nella formulazione debole del problema (8.3.3) come funzione test: otteniamo, grazie alla limitatezza della funzione b e alla disuguaglianza di Poincaré

∇z p L p (Ω) = Ω |∇z| p-2 ∇z • ∇z = Ω b(x, w)z ≤ C ∇z L p (Ω) :
ciò implica che esiste un R tale che se ∇w L p (Ω) ≤ R allora ∇z L p (Ω) ≤ R, cioè esiste un convesso invariante chiuso e limitato per σ.

Per dimostrare che σ è completamente continua, basterà dimostrare che se

w n → w debolmente in W 1,p 0 (Ω) allora σ(w n ) → σ(w) in W 1,p 0 (Ω). A tale scopo, possiamo dire che Ω |∇z n | p-2 ∇z n • ∇(z n -z) = Ω b(x, w n )(z n -z) Ω |∇z| p-2 ∇z • ∇(z n -z) = Ω b(x, w)(z n -z) :
sottraendo membro a membro si ha

Ω |∇z n | p-2 ∇z n -|∇z| p-2 ∇z • ∇(z n -z) = Ω [b(x, w n ) -b(x, w)](z n -z).
Sfruttando che [|s| p-2 s -|t| p-2 t](st) ≥ C|s -t| p per s, t ∈ R al primo membro e la disuguaglianza di Hölder al secondo si ottiene

Ω |∇(z n -z)| p ≤ b(x, w n ) -b(x, w) L p ′ (Ω) z n -z L p (Ω) ; grazie alla disuguaglianza di Poincaré ∇(z n -z) p-1 L p (Ω) ≤ b(x, w n ) -b(x, w) L p ′ (Ω) . Per il teorema di composizione 2.6 b(x, w n ) → b(x, w) in L p ′ (Ω), visto che w n → w in L p (Ω). Di conseguenza z n → z in W 1,p 0 (Ω), cioè σ(w n ) → σ(w) in W 1,0 0 (Ω).

Principio variazionale di Ekeland

Abbiamo visto nel paragrafo 8.2 l'importanza delle successioni minimizzanti di un funzionale. In questo paragrafo vogliamo discutere il principio variazionale di Ekeland, che è uno strumento utile per studiare il loro comportamento (vedere [START_REF] Ekeland | Nonconvex minimization problems[END_REF]). Infatti consente in un certo senso di migliorare una successione minimizzante, sostituendola con un'altra successione minimizzante i cui elementi godono di particolari proprietà di minimo.

Teorema 8.10 (Principio di Ekeland). Sia (X, d) uno spazio metrico completo. Sia Φ : X → R ∪ {∞} un funzionale semicontinuo inferiormente e limitato dal basso. Sia u ∈ X tale che

Φ(u) ≤ inf X Φ + 1 n . (8.4.1) Allora esiste v ∈ X tale che Φ(v) ≤ Φ(u) (8.4.2) d(v, u) ≤ 1 (8.4.3) Φ(v) < Φ(w) + 1 n d(v, w), ∀ w ∈ X, w = v. (8.4.4)
Dimostrazione. Definiamo per induzione una successione u k ⊂ X nel modo che segue. Poniamo

u 1 = u. Supponiamo di aver definito u 1 , u 2 , ...u k . Sia S k = {w ∈ X : Φ(w) ≤ Φ(u k ) - 1 n d(u k , w)}. L'insieme S k = ∅ poiché u k ∈ S k . Per definizione di estremo inferiore, esiste un punto u k+1 ∈ S k tale che Φ(u k+1 ) ≤ 1 2 {Φ(u k ) + inf S k Φ}. (8.4.5) 
Dimostriamo che la successione u k così costruita è di Cauchy. Visto che u k+1 ∈ S k allora

1 n d(u k , u k+1 ) ≤ Φ(u k ) -Φ(u k+1 ) (8.4.6) 
e dunque, per la disuguaglianza triangolare

1 n d(u k , u k+m ) ≤ 1 n m j=1 d(u k+j , u k+j-1 ) ≤ Φ(u k ) -Φ(u k+m ). (8.4.7) Ora, dalla (8.4.6) 
segue che la successione Φ(u k ) è decrescente; poiché Φ è limitato inferiormente in X, si ha che lim k→∞ Φ(u k ) = α per qualche α ∈ R. Di conseguenza la (8.4.7) mostra che u k è di Cauchy. Allora esiste v ∈ X tale che v = lim k→∞ u k . D'altra parte, siccome Φ è semicontinuo inferiormente Φ(v) ≤ lim inf m→∞ Φ(u k+m ) = α.
Questa disuguaglianza e il limite per m → ∞ nella (8.4.7) implicano che

1 n d(u k , v) ≤ Φ(u k ) -Φ(v). (8.4.8) 
Preso

k = 1 abbiamo 1 n d(u, v) ≤ Φ(u) -Φ(v) ≤ Φ(u) -inf X Φ ≤ 1
n grazie all'ipotesi (8.4.1) e quindi d(u, v) ≤ 1 e Φ(v) ≤ Φ(u) cioè abbiamo dimostrato la (8.4.2) e la (8.4.3) Per dimostrare la (8.4.4) supponiamo per assurdo che esista w ∈ X tale che

Φ(w) < Φ(v) - 1 n d(w, v) . (8.4.9) 
Grazie alla (8.4.8) si ha che

Φ(w) < Φ(u k ) - 1 n d(u k , v) - 1 n d(w, v) < Φ(u k ) - 1 n d(u k , w), e dunque w ∈ S k , per ogni k; di conseguenza inf S k Φ ≤ Φ(w).
Per la (8.4.5) e la (8.4.9) abbiamo

2Φ(u k+1 ) -Φ(u k ) ≤ Φ(w) < Φ(v) - 1 n d(w, v); al limite per k → ∞ otteniamo Φ(v) ≤ Φ(w) < Φ(v) - 1 n d(v, w) che è assurda. 78CAPITOLO 8. INTRODUZIONE AL CALCOLO DELLE VARIAZIONI E EQUAZIONE DI EULERO Osservazione 8.11. Introduciamo in X la distanza d 1 = 1 n d. Allora (X, d 1 )
è uno spazio metrico completo. Segue dal teorema 8.10 che se u n è una successione minimizzante, allora esiste v n ∈ X tale che

1. Φ(v n ) ≤ Φ(u n ) 2. d(u n , v n ) ≤ 1 n 3. Φ(v n ) ≤ Φ(w) + 1 n d(v n , w) ∀ w ∈ X. Quindi v n è anch'essa una successione minimizzante i cui elementi verificano particolari proprietà di minimo.
Vedremo ora come il principio di Ekeland possa essere usato per lo studio della minimizzazione di funzionali regolari su spazi di Banach X. Proposizione 8.12. Sia (X, • ) uno spazio di Banach e Φ : X → R un funzionale semicontinuo inferiormente e limitato dal basso. Sia Φ differenziabile secondo Gâteaux in ogni direzione w ∈ X. Allora per ogni n > 0 esiste u n ∈ X tale che

Φ(u n ) ≤ inf X Φ + 1 n Φ ′ (u n ) X ′ ≤ 1 n .
Dimostrazione. Dal teorema 8.10 esiste u n ∈ X tale che

Φ(u n ) ≤ Φ(v) + 1 n v -u n , per ogni v ∈ X.
Sia w ∈ X e t > 0 arbitrario. Prendendo v = u n + tw nella disuguaglianza precedente, otteniamo

Φ(u n ) -Φ(u n + tw) t ≤ 1 n w .
Passando al limite per t → 0, si ha < Φ ′ (u n ), w >≤ 1 n w per ogni dato w ∈ X. Siccome questa disuguaglianza è vera per w e -w otteniamo

| < Φ ′ (u n ), w > | ≤ 1 n w ∀ w ∈ X. Allora Φ ′ (u n ) X ′ = sup w∈X w =0 < Φ ′ (u n ), w > w ≤ 1 n .
Nel prossimo risultato useremo una sorta di condizione di compattezza per il funzionale Φ (vedere [START_REF] Palais | A generalized Morse theory[END_REF]).

Definizione 8.13. Sia (X,

• ) uno spazio di Banach e Φ : X → R un funzionale C 1 . Diremo che Φ soddisfa la condizione di Palais-Smale se ogni successione u n in X tale che |Φ(u n )| è uniformemente limitata e Φ ′ (u n ) → 0 in X ′ possiede una sottosuccessione convergente.
Esempio 8.14. Sia 2 < p < 2 * . Il funzionale

J(v) = 1 2 Ω |∇v| 2 - 1 p Ω |v| p
definito su H 1 0 (Ω) soddisfa la condizione di Palais-Smale. Abbiamo già visto nell'esempio 8.8 che J non è limitato inferiormente. Teorema 8.15 (Minimizzazione con la condizione di Palais-Smale). Sia (X, • ) uno spazio di Banach e Φ : X → R un funzionale C 1 che soddisfa la condizione di Palais-Smale. Supponiamo che Φ sia limitato inferiormente. Allora l'estremo inferiore di Φ è assunto in un punto u 0 ∈ X e u 0 è un punto critico di Φ, cioè Φ ′ (u 0 ) = 0.

Dimostrazione. Usando il teorema 8.12 per ogni intero n esiste u n ∈ X tale che

Φ(u n ) ≤ inf X Φ + 1 n , Φ ′ (u n ) X ′ ≤ 1 n .
Usando la condizione di Palais-Smale abbiamo una sottosuccessione u nj e un elemento u 0 ∈ X tale che

u nj → u 0 . Dalla continuità di Φ e Φ ′ , passando al limite per n → ∞ otteniamo che Φ(u 0 ) = inf X Φ e Φ ′ (u 0 ) = 0.
Vediamo ora un'applicazione del teorema precedente allo studio dei punti critici di un funzionale:

Teorema 8.16. Sia λ 1 il primo autovalore dell'operatore L(v) = -∆v. Sia f ∈ L p (Ω) per 2 < p < 2 * . Il funzionale J(v) = 1 2 Ω |∇v| 2 - λ 1 2 Ω v 2 + 1 p Ω |v| p - Ω f v definito su H 1 0 (Ω), per 2 < p < 2 * ammette un minimo u che soddisfa u ∈ H 1 0 (Ω) : -∆u + |u| p-2 u = λ 1 u + f .
Dimostrazione. Dimostreremo l'esistenza del minimo con l'aiuto del teorema precedente. Sicuramente il funzionale J è di classe C 1 . Inoltre è limitato inferiormente, perché

1 2 Ω |∇v| 2 - λ 1 2 Ω v 2 ≥ 0
come visto nel teorema 7.4. D'altra parte, per la disuguaglianza di Hölder

1 p Ω |v| p - Ω f v ≥ 1 p Ω |v| p -f L p ′ (Ω) v L p (Ω)
che è limitato inferiormente. Dimostriamo che J soddisfa la condizione di Palais-Smale. Sia u n una successione tale che

|J(u n )| ≤ R (8.4.10) e J ′ (u n ) → 0 (8.4.11) vogliamo dimostrare che u n converge in H 1 0 (Ω) a meno di una sottosuccessione. La (8.4.10) è equivalente a -R ≤ 1 2 Ω |∇u n | 2 - λ 1 2 Ω u 2 n + 1 p Ω |u n | p - Ω f u n ≤ R; visto che 1 2 Ω |∇u n | 2 - λ 1 2 Ω u 2 n ≥ 0 si ha, grazie alla disuguaglianza di Young 1 p Ω |u n | p ≤ R + Ω f u n ≤ R + 1 2p Ω |u n | p + c(p) Ω |f | p ′ .
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Di conseguenza u n è limitata uniformemente in L p (Ω) e dunque a meno di una sottosuccessione u n → u debolmente in L p (Ω). D'altra parte la (8.4.11) ci dà che

-∆u n + |u n | p-2 u n -λ 1 u n -f = y n (8.4.12)
con y n ∈ H -1 che converge a 0 in H -1 (Ω). Scegliendo nell'equazione precedente u n come funzione test, si ha

Ω |∇u n | 2 ≤ Ω |∇u n | 2 + Ω |u n | p = λ 1 Ω u 2 n + Ω f u n + < y n , u n >: l'ultimo membro è limitato uniformemente e di conseguenza u n → u debolmente in H 1 0 (Ω). Scegliendo ora come funzione test u n -u si ottiene che u n → u in H 1 0 (Ω): infatti, l'equazione (8.4.12) ci dà Ω ∇(u n -u) • ∇(u n -u) = - Ω |u n | p-2 u n (u n -u) + λ 1 Ω u n (u n -u) + Ω f (u n -u) + y n (u n -u) - Ω ∇u • ∇(u n -u) .
È facile dimostrare che il secondo membro tende a zero, grazie al fatto che

u n → u debolmente in H 1 0 (Ω) (e fortemente in L 2 (Ω)) e quindi u n → u in H 1 0 (Ω). Il teorema precedente implica che il funzionale J ammette minimo in u ∈ H 1 0 (Ω). Scrivendo la relativa equazione d Eulero, si ottiene che u soddisfa u ∈ H 1 0 (Ω) : -∆u + |u| p-2 u = λ 1 u + f .

Appendice

Definizione 8.17. Sia X uno spazio di Banach. Sia F : X → R un funzionale. 1. F è debolmente semicontinuo inferiormente se lim inf

n→∞ F (x n ) ≥ F (x) per ogni successione x n che converge a x debolmente. 2. F è coercivo se lim x →∞ F (x) = +∞.
Ricordiamo la derivazione secondo Gâteaux di un funzionale F : X → R, dove X è uno spazio di Banach. Denoteremo con x la norma di un elemento x ∈ X (vedere [START_REF] Ambrosetti | A primer of nonlinear analysis[END_REF] per maggiori dettagli).

Definizione 8.18. F è differenziabile in x ∈ X secondo Gâteaux nella direzione h ∈ X se esiste un funzionale lineare continuo F ′ (x) : X → R tale che lim t→0 F (x + th) -F (x) t =< F ′ (x), h > .
Ricordiamo ora la differenziabilità secondo Fréchet.

Definizione 8.19. F è differenziabile in x ∈ X secondo Fréchet se esiste A x ∈ X ′ tale che lim h →0 F (x + h) -F (x) -A x (h) h = 0 . Se l'applicazione X → X ′ x → A x è continua, diremo che F è C 1 .
Ricordiamo che se F è differenziabile secondo Fréchet, allora lo è anche secondo Gâteaux. Viceversa, se l'applicazione x → F ′ (x) esiste in un intorno di un punto x 0 ed è continua in x 0 , allora F è differenziabile secondo Fréchet in x 0 e F ′ (x 0 ) = A x0 .

Capitolo 9

Un problema a crescita naturale

Introduzione

Abbiamo visto nel capitolo 8 come dalla minimizzazione del semplice funzionale

F (v) = Ω a(v)|∇v| 2 - Ω f v sorga la necessità dello studio dell'equazione (di Eulero associata) -div(a(u)∇u) + a ′ (u)|∇u| 2 = f in cui compare un termine del tipo |∇u| 2 , a crescita naturale.
In questo capitolo vogliamo studiare il seguente problema (non necessariamente variazionale)

-div(M (x, u)∇u) + µu = b(x, u, ∇u) + f (x) in Ω u = 0 su ∂Ω (9.1.1)
dove appunto b ha crescita quadratica (naturale). Presenteremo il seguente teorema di esistenza e di regolarità seguendo la dimostrazione di [START_REF] Boccardo | L ∞ -estimate for nonlinear elliptic partial differential equations and application to an existence result[END_REF] (cui rimandiamo anche per referenze bibliografiche):

Teorema 9.1. Sia µ > 0. Sia b : Ω × R × R N → R, una funzione di Carathéodory tale che, per un certo γ positivo |b(x, s, ξ)| ≤ γ|ξ| 2 ; inoltre sia M = M (x, s) una matrice simmetrica a coefficienti di Carathéodory che verifica M (x, s)ξ • ξ ≥ α|ξ| 2 e |M (x, s)| ≤ β . Sia f appartenente a L m (Ω), m > N 2 . Allora esiste u ∈ H 1 0 (Ω) ∩ L ∞ (Ω)
soluzione del problema (9.1.1) nel seguente senso debole:

Ω M (x, u)∇u • ∇ϕ + µ Ω uϕ = Ω b(x, u, ∇u)ϕ + Ω f ϕ, ∀ ϕ ∈ H 1 0 (Ω) ∩ L ∞ (Ω).
Ritroviamo dunque la stessa regolarità delle soluzioni dei problemi di Leray-Lions.

Studio del problema

Ci accingiamo a dimostrare il teorema 9.1. Lavoreremo sui seguenti problemi approssimanti:

-div(M (x, u)∇u)

+ µu = b n (x, u, ∇u) + f n (x) in Ω u = 0 su ∂Ω , (9.2.1) 
dove b n (x, s, ξ) = b(x, s, ξ) 1 + 1 n |b(x, s, ξ)| 82 CAPITOLO 9. UN PROBLEMA A CRESCITA NATURALE e f n (x) = f (x) 1 + 1 n |f (x)|
.

I teoremi di Leray-Lions 4.1 e di regolarità 5.6 implicano che per ogni n ∈ N esiste una soluzione debole

u n in H 1 0 (Ω) ∩ L ∞ (Ω).
Il primo passo della dimostrazione consisterà nel ricavare delle stime sulle norme H 1 0 (Ω) e L ∞ (Ω) di tali soluzioni; queste ci permetteranno successivamente di passare al limite e dimostrare l'esistenza di una soluzione del problema (9.1.1). Ci saranno utili i seguenti lemmi. Lemma 9.2. Sia u n la successione delle soluzioni dei problemi (9.2.1). Allora u n è uniformemente limitata in norma H 1 0 (Ω).

Dimostrazione. Scegliamo ϕ n = (e 2λ|un| -1)sgn(u n ), con λ > γ 2α , come funzione test nella formulazione debole dei problemi approssimanti (9.2.1): tale scelta è possibile essendo u n ∈ L ∞ (Ω). Sul primo membro, sfruttando l'ellitticità di M , si ha

Ω M (x, u n )∇u n • ∇ϕ n + µ Ω u n ϕ n ≥ 2αλ Ω |∇u n | 2 e 2λ|un| + µ Ω |u n |(e 2λ|un| -1) . Le ipotesi di crescita di b ci permettono di dire che Ω b(x, u n , ∇u n )ϕ n + Ω f n ϕ n ≤ Ω γ|∇u n | 2 e 2λ|un| + Ω |f |(e 2λ|un| -1) .

Osservando che

Ω |∇u n | 2 e 2λ|un| = 1 λ 2 Ω |∇(e λ|un| -1)| 2 si ha 2αλ -γ λ 2 ∇(e λ|un| -1) 2 L 2 (Ω) + µ Ω |u n |(e 2λ|un| -1) ≤ Ω f n ϕ n .
Lavoriamo ora sul termine

Ω f n ϕ n . Sia R > 1. Usando la diseguaglianza e 2t -1 ≤ R (e t -1) 2 + 1 R-1 , t ∈ R + e la disuguaglianza di Hölder abbiamo Ω f n ϕ n ≤ 1 R -1 Ω |f | + R f L m (Ω) e λ|un| -1 2 L 2m ′ (Ω) . (9.2.2) 
Notiamo che 2 < 2m ′ < 2N N -2 = 2 * . Sfruttando la disuguaglianza di interpolazione si ha Ω f n ϕ n ≤ 1 R -1 Ω |f | + R f L m (Ω) e λ|un| -1 2θ L 2 * (Ω) e λ|un| -1 2(1-θ) L 2 (Ω) dove θ è definito da 1 2m ′ = θ 2 * + 1-θ 2 .
Applicando la disuguaglianza di Young al secondo termine del secondo membro della precedente espressione, otteniamo

Ω f n ϕ n ≤ 1 R -1 Ω |f | + ε(R f L m (Ω) ) 1 θ e λ|un| -1 2 L 2 * (Ω) + C ε e λ|un| -1 2 L 2 (Ω) , dove C ε = ε θ 1-θ . Ricapitolando le stime sui due membri abbiamo ottenuto 2αλ -γ λ 2 ∇(e λ|un| -1) 2 L 2 (Ω) + µ Ω |u n |(e 2λ|un| -1)
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≤ 1 R -1 Ω |f | + ε(R f L m (Ω) ) 1 θ e λ|un| -1 2 L 2 * (Ω) + C ε e λ|un| -1 2 L 2 (Ω) .
Usiamo ora la disuguaglianza di Sobolev al secondo termine del secondo membro e scegliamo poi ε in modo da avere 2λαγ

2λ 2 = 1 S 2 ε(R f L m (Ω) ) 1 θ : in questo modo 2αλ -γ 2λ 2 ∇(e λ|un| -1) 2 L 2 (Ω) + µ Ω |u n |(e 2λ|un| -1) ≤ 1 R -1 Ω |f | + C ε Ω (e λ|un| -1) 2 . (9.2.3) Visto che (e λt -1) 2 ≤ e 2λt -1, per t ≥ 0, si ha 2αλ -γ 2λ 2 ∇(e λ|un| -1) 2 L 2 (Ω) + µ {Cε≤µ|un|} |u n |(e 2λ|un| -1) ≤ 1 R -1 Ω |f | + C ε {Cε≤µ|un|} (e 2λ|un| -1) + C ε {Cε>µ|un|} (e 2λ|un| -1) . Di conseguenza 2αλ -γ 2λ 2 ∇(e λ|un| -1) 2 L 2 (Ω) ≤ f L 1 (Ω) R -1 + C ε (e 2λ Cε µ -1)µ(Ω) . 
L'ultima disuguaglianza ci dice che Dimostrazione. Scegliamo v n = (e 2λ|G k (un)| -1)sgn(u n ) come funzione test nei problemi (9.2.1).

Usando esattamente gli stessi argomenti usati nel lemma precedente per arrivare alla (9.2.3) abbiamo

2λα -γ 2λ 2 ∇(e λ|G k (un)| -1) 2 L 2 (Ω) + µ {|un|≥k} |u n |(e 2λ|G k (un)| -1) ≤ 1 R -1 {|un|≥k} |f | + C ε {|un|≥k} (e λ|G k (un)| -1) 2 . La disuguaglianza di Sobolev implica che (2λα -γ)S 2 2λ 2 e λ|G k (un)| -1 2 L 2 * (Ω) + µ {|un|≥k} |u n |(e 2λ|G k (un)| -1) ≤ 1 R -1 {|un|≥k} |f | + C ε {|un|≥k} (e λ|G k (un)| -1) 2 .
Sfruttando che (e λt -1) 2 ≤ e 2λt -1, per t ≥ 0 sul secondo termine del primo membro si ha

1 2 (2λα -γ)S 2 λ 2 e λ|G k (un)| -1 2 L 2 * (Ω) + µ {|un|≥k} k(e λ|G k (un)| -1) 2 ≤ 1 R -1 {|un|≥k} |f | + C ε {|un|≥k} (e λ|G k (un)| -1) 2 . Scegliendo k ≥ C ε µ , otteniamo 1 2 (2λα -γ)S 2 λ 2 e λ|G k (un)| -1 2 L 2 * (Ω) ≤ 1 R -1 {|un|≥k} |f |.
Usiamo ora che e t -1 ≥ t per ogni t ≥ 0 e la disuguaglianza di Hölder con esponente 2 * al primo membro per ottenere

λ Ω |G k (u n )| ≤ Ω |e λ|G k (un)| -1| ≤ µ({|u n | > k}) N +2 2N e λ|G k (un)| -1 L 2 * (Ω) ≤ C 1 µ({|u n | > k}) N +2 2N    {|un|≥k} |f |    1 2
dove C 1 indica una costante che dipende da λ, α, S e R. Grazie alla disuguaglianza di Hölder con esponente m otteniamo

λ Ω |G k (u n )| ≤ C 1 f 1 2 L m (Ω) µ({|u n | > k}) N +2 2N + 1 2m ′ Il lemma 5.2 e l'osservazione 5.3 implicano che u n L ∞ (Ω) è uniformemente limitata.
Siamo ora in grado di dimostrare il teorema di esistenza precedentemente enunciato. Dimostrazione. La dimostrazione si divide in due passi. Passo 1: Dette u n le soluzioni dei problemi (9.2.1), i lemmi precedenti ci permettono di dire che esiste u ∈ H 1 0 (Ω) tale che ∇u n → ∇u debolmente in L 2 (Ω) (a meno di una sottosuccessione). Vogliamo ora dimostrare che u n → u in H 1 0 (Ω). A tale scopo, consideriamo come funzione test nei problemi approssimanti v n := ψ(u nu), dove ψ(t) = (e λ|t| -1)sgn(t); dopo aver sommato e sottratto

Ω M (x, u n )∇u • ∇(u n -u)ψ ′ (u n -u) si ottiene la seguente disuguaglianza: Ω M (x, u n )(∇u n -∇u) • (∇u n -∇u)ψ ′ (u n -u) = -µ Ω u n v n + Ω b n (u n , ∇u n )v n - Ω M (x, u n )∇u • (∇u n -∇u)ψ ′ (u n -u) + Ω f n v n ≤ - Ω M (x, u n )∇u • ∇(u n -u)ψ ′ (u n -u) -µ Ω u n v n + γ Ω |∇u n | 2 v n + Ω f v n . Sfruttando l'ellitticità di M , si ottiene α Ω |∇u n -∇u| 2 ψ ′ (u n -u) ≤ - Ω M (x, u n )∇u • ∇(u n -u)ψ ′ (u n -u) -µ Ω u n v n + γ Ω |∇u n | 2 v n + Ω f v n . 9.2. STUDIO DEL PROBLEMA 85 Ora |∇u n | 2 = |(∇u n -∇u) + ∇u| 2 ≤ 2|∇u n -∇u| 2 + 2|∇u| 2 , che implica che Ω |∇u n -∇u| 2 [αψ ′ (u n -u) -2γ|ψ(u n -u)|] ≤ 2γ Ω |∇u| 2 v n - Ω M (x, u n )∇u • (∇u n -∇u)ψ ′ (u n -u) -µ Ω u n v n + Ω f v n . Scegliamo λ > 2γ α (in questo modo αψ ′ (u n -u)-2γ|ψ(u n -u)| ≥ 1) e poniamo C = sup n ψ ′ (u n -u) L ∞ (Ω) : si ha ∇u n -∇u 2 L 2 (Ω) ≤ C Ω M (x, u n )∇u • (∇u n -∇u) -µ Ω u n v n +2γ Ω |∇u| 2 v n + Ω f v n .
Vogliamo ora dimostrare che i termini del secondo membro della precedente disuguaglianza tendono a zero. Sicuramente possiamo dire che che v n → 0 q.o. 

Ω M (x, u n )∇u n • ∇ϕ + µ Ω u n ϕ = Ω b n (x, u n , ∇u n )ϕ + Ω f n ϕ.
Risulta:

Ω M (x, u n )∇u n • ∇ϕ → Ω M (x, u)∇u • ∇ϕ perché u n → u in H 1 0 (Ω) e perché M (x, u n )∇v → M (x, u)∇v in L 2 (Ω) per ogni v ∈ H 1 0 (Ω); ovviamente Ω f n ϕ → Ω f ϕ e µ Ω u n ϕ → µ Ω uϕ . Osserviamo infine che Ω b n (x, u n , ∇u n )ϕ → Ω b(x, u, ∇u)ϕ. Infatti, u n → u e ∇u n → ∇u q.o. e quindi b n (x, u n , ∇u n ) → b(x, u, ∇u) q.o.; inoltre |b n (x, u n , ∇u n )| ≤ γ|∇u n | 2 : quest'ultima successione converge fortemente in L 1 (Ω). b n (x, u n , ∇u n )ϕ → b(x, u, ∇u)ϕ in L 1 (Ω) per il teorema di Lebesgue. È quindi possibile passare al limite, ottenendo, ∀ ϕ ∈ H 1 0 (Ω) ∩ L ∞ (Ω) Ω M (x, u)∇u • ∇ϕ + µ Ω uϕ = Ω b(x, u, ∇u)ϕ + Ω f ϕ.
Osservazione 9.4. La presenza del termine µu, con µ > 0, ha un ruolo importante per l'esistenza di soluzioni nel caso in esame. Vale infatti il seguente semplice controesempio. Consideriamo il problema in senso distribuzionale. Se scegliamo come funzione test, nell'ultima equazione scritta, ϕ 1 , la prima autofunzione dell'operatore L(v) = -div∇u (vedere capitolo [START_REF] Boccardo | L ∞ -estimate for nonlinear elliptic partial differential equations and application to an existence result[END_REF], si ottiene

-∆u = |∇u| 2 + f in Ω u = 0 su ∂Ω dove f ∈ L ∞ (Ω)
0 ≤ λ 1 Ω ϕ 1 z = Ω ∇ϕ 1 • ∇z = - Ω f (z + 1)ϕ 1 < - Ω f zϕ 1 ≤ 0 cioè un assurdo.
Capitolo 10

Problemi di Leray-Lions con sorgenti a bassa sommabilità

Introduzione

Nel capitolo 4 ci siamo occupati dell'esistenza di soluzioni del problema

-div(a(x, u, ∇u)) = f in Ω u = 0 su ∂Ω, (10.1.1) 
supponendo che la sorgente f appartenesse a L m (Ω) con m ≥ 2N N +2 . In questo capitolo studieremo l'esistenza e la regolarità di soluzioni nel caso in cui f è una funzione appartenente a L m (Ω) con 1 ≤ m < 2N N +2 . Non possiamo usare il teorema di Leray-Lions 4.1, visto che il dato non appartiene al duale di H 1 0 (Ω). Dimostreremo l'esistenza di soluzioni distribuzionali e in particolare l'esistenza di soluzioni di entropia u, delle soluzioni distribuzionali speciali. Ciò significa che u sarà una funzione in W 1,1 0 (Ω) (almeno) tale che

Ω a(x, u, ∇u) • ∇ϕ = Ω f ϕ ∀ ϕ ∈ C ∞ 0 (Ω) ;
inoltre soddisferà una condizione supplementare, che sarà fondamentale per l'unicità, come vedremo nel capitolo 11. Per comodità del lettore riportiamo qui di seguito uno schema riassuntivo dei risultati che proveremo (seguendo le dimostrazioni di [4], [4], cui rimandiamo anche per referenze bibliografiche) sulle soluzioni di entropia u in funzione della sorgente f :

f ∈ L m (Ω), m > 1 =⇒ u ∈ W 1,m * 0 (Ω) f ∈ L 1 (Ω) =⇒ u ∈ M N N -2 (Ω), |∇u| ∈ M N N -1 (Ω)
In un paragrafo a parte, analizzeremo il caso in cui la sorgente è una misura. Vedremo che essenzialmente ciò è equivalente ad avere come sorgente una funzione f ∈ L 1 (Ω). Dimostreremo infatti con una tecnica del tutto simile che esiste una soluzione u ∈ M 

Stime a priori

Per dimostrare l'esistenza di soluzioni nel senso delle distribuzioni e di entropia del problema (10.1.1), lavoreremo per approssimazione. Ciò significa che considereremo i problemi

-div(a(x, u n , ∇u n )) = f n in Ω u n = 0 su ∂Ω, (10.2.1) 
dove

f n è una successione di funzioni in H -1 (Ω)∩L ∞ (Ω) tale che f n → f in L m (Ω), f n L m (Ω) ≤ f L m (Ω) ed |f n (x)| ≤ |f (x)| q.o. in Ω (per esempio f n = T n (f ))
. L'esistenza delle soluzioni u n , per ogni n, segue dal teorema di Leray-Lions 4.1; inoltre ogni soluzione u n appartiene a H 1 0 (Ω) ∩ L ∞ (Ω) per il teorema di regolarità 5.6. Ora, per ottenere una soluzione del problema (10.1.1) da questi problemi approssimanti, ricaveremo delle stime sulle norme dei ∇u n : del tipo ∇u n L m * (Ω) ≤ C uniformemente in n nel caso m > 1 e ∇u n L q (Ω) ≤ C, con q < N N -1 uniformemente in n nel caso m = 1 . Ciò ci permetterà di estrarre une sottosuccessione convergente ad una funzione u. Passeremo poi al limite nei problemi approssimanti (10.2.1) per concludere che u è soluzione.

Lemma 10.1. Sia f ∈ L 1 (Ω). Allora le soluzioni u n dei problemi (10.2.1) sono uniformemente limitate in W 1,q 0 (Ω) con q < N N -1 .

Dimostrazione. Come funzioni test nei problemi approssimanti (10.2.1) utilizziamo le funzioni

v n = [(1 + |u n |) 2λ-1 -1]sgn(u n ). Scegliamo λ < 1/2, in modo che |v n | ≤ 1. Abbiamo dunque per il secondo membro Ω f n v n ≤ Ω |f n | ≤ f L 1 (Ω) .
Usando l'ellitticità di a al primo stimiamo dunque

f L 1 (Ω) ≥ Ω a(x, u n , ∇u n ) • ∇v n ≥ α Ω |∇u n | 2 (2λ -1)(1 + |u n |) 2λ-2 = (2λ -1)α Ω ∇[(1 + |u n |) λ ] λ 2 .
Osserviamo che dalle stime precedenti si ricava dunque che

Ω |∇u n | 2 (1 + |u n |) 2(1-λ) ≤ f L 1 (Ω) α(2λ -1) . ( 10.2.2) 
D'altra parte possiamo scrivere

Ω |∇u n | q = Ω |∇u n | q (1 + |u n |) 2(1-λ) q 2 (1 + |u n |) 2(1-λ) q 2 .
Applicando la disuguaglianza di Sobolev al primo membro dell'uguaglianza precedente e la disuguaglianza di Hölder con esponente 2/q al secondo, ricaviamo la stima

S q   Ω |u n | q *   q q * ≤ Ω |∇u n | q ≤   Ω |∇u n | 2 (1 + |u n |) 2(1-λ)   q 2   Ω (1 + |u n |) (1-λ)2q 2-q   1-q 2 .
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Grazie alla (10.2.2), possiamo scrivere

S q   Ω |u n | q *   q q * ≤ Ω |∇u n | q ≤ C + C   Ω |u n | (1-λ)2q 2-q   1-q 2 , (10.2.3) 
dove C denota una costante che dipende da q, λ, α, f L 1 (Ω) , indipendente da n. Scegliamo λ tale che

(1λ)2q 2q = q * ; visto che λ < 1 2 , tale scelta implica che q < N N -1 . In questo modo 

S q   Ω |u n | q *   q q * ≤ C + C   Ω |u n | q *   1-q 2 e quindi Ω |u n | q * è
v n = [(1 + |u n |) 2λ-1 -1]sgn(u n ), con λ > 1 2 da fissare successivamente. Abbiamo, per il secondo membro, Ω f n v n ≤ Ω |f |[(1 + |u n |) 2λ-1 -1] ≤ Ω |f |[(1 + |u n |) 2λ-1 + 1] .
Applicando la disuguaglianza di Hölder con esponente m otteniamo

Ω f n v n ≤ f L 1 (Ω) + f L m (Ω)   Ω (1 + |u n |) (2λ-1)m ′   1 m ′ .
Per quanto riguarda il primo membro della (10.2.1), sfruttando la proprietà di ellitticità di a e l'immersione di Sobolev, abbiamo

Ω a(x, u n , ∇u n ) • ∇v n ≥ α Ω |∇u n | 2 (2λ -1)(1 + |u n |) 2λ-2 = (2λ -1)α Ω ∇[(1 + |u n |) λ ] λ 2 ≥ (2λ -1)αS 2 λ 2   Ω [(1 + |u n |) λ ] 2 *   2 2 * . Ricapitolando si ha f L 1 (Ω) + f L m (Ω)   Ω (1 + |u n |) (2λ-1)m ′   1 m ′ ≥ (2λ -1)α Ω |∇u n | 2 (1 + |u n |) 2(1-λ) ≥ (2λ -1)αS 2 λ 2   Ω [(1 + |u n |) λ ] 2 *   2 2 *
.
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A questo punto, fissiamo λ tale che λ2 * = (2λ -1)m ′ , cioè λ = m * * /2 * (> 1/2); con tale scelta abbiamo, dalla stima appena fatta,

(2λ -1)αS 2 λ 2   Ω |(1 + |u n |) m * * 2 * | 2 *   2 2 * ≤ f L 1 (Ω) + f L m (Ω)   Ω |1 + u n | m * *   1 m ′ . Poiché 2 2 * > 1 m ′ si ha che Ω |u n | m * * ≤ Ω |1 + u n | m * * ≤ C , (10.2.5) 
per una certa costante C che dipende da S, m, α, f

L 1 (Ω) , f L m (Ω) .
Passo II: dimostriamo che u n è uniformemente limitata in W 

Ω |∇u n | 2 (1 + |u n |) 2(1-λ) è uniformemente limitata. Supponiamo che λ < 1, cioè 1 < m < 2N N + 2 . Sia 1 ≤ q < 2 e scriviamo Ω |∇u n | q = Ω |∇u n | q (1 + |u n |) 2(1-λ) q 2 (1 + |u n |) 2(1-λ) q 2 .
Applicando la disuguaglianza di Hölder con esponente 2/q ed utilizzando la stima precedente ricaviamo che

Ω |∇u n | q ≤   Ω |∇u n | 2 (1 + |u n |) 2(1-λ)   q 2   Ω (1 + |u n |) 2(1-λ) q 2-q   1-q 2 . Scegliamo q tale che (1 -λ)2q 2 -q = m * * ⇔ q = m * ;
in questo modo, dalla (10.2.5) otteniamo che Ω |∇u n | m * è uniformemente limitata, cioè la tesi .

Ci sarà utile anche il seguente lemma:

Lemma 10.3. Siano u n le soluzioni in H 1 0 (Ω) dei problemi (10.2.1). 1. Se f ∈ L 1 (Ω), allora esiste une funzione u ∈ W 1,q 0 (Ω), q < N N -1 tale che ∇u n → ∇u q.o. in Ω a meno di una sottosuccessione.

Se

f ∈ L m (Ω), m > 1, la funzione u ∈ W 1,m * 0 (Ω).
Dimostrazione. Le stime dei lemmi precedenti ci permettono di determinare una sottosuccessione, che continuiamo a denotare con u n , debolmente convergente ad una funzione u appartenente a W 1,q 0 (Ω), q <

N N -1 . Notiamo che se f ∈ L m (Ω), m > 1, allora u appartiene a W 1,m * 0
(Ω). Per dimostrare la tesi, dimostreremo che per θ ∈ (0, q/4) si ha

lim n→∞ Ω {[a(x, u n , ∇u n ) -a(x, u, ∇u)] • ∇(u n -u)} θ = 0 (10.2.6)
e poi useremo il lemma 10.3. A tale scopo scriviamo Ω come unione di A k e C k , dove

A k := {|u n | ≥ k} , C k := {|u n | ≤ k}.
In tutta la dimostrazione C denoterà una costante indipendente da n (C dipenderà da β, θ e µ(Ω)).
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A k a(x, u n , ∇u n ) -a(x, u, ∇u) • ∇(u n -u) θ .
Sfruttando la proprietà 1 di a otteniamo

A k |[a(x, u n , ∇u n ) -a(x, u, ∇u)] • ∇(u n -u)| θ ≤ A k |a(x, u n , ∇u n ) • ∇(u n -u)| θ + A k |a(x, u, ∇u) • ∇(u n -u)| θ ≤ 2β A k |u n | θ |∇u n | θ + 2β A k |u n | θ |∇u| θ + 2β A k |u| θ |∇u n | θ +2β A k |u| θ |∇u| θ + 2β A k |∇u n | 2θ + 2β A k |∇u| 2θ + 2β A k |∇u| θ |∇u n | θ .
Applicando la disuguaglianza di Cauchy-Schwartz due volte ed usando la stima di u n W 1,q 0 (Ω) ottenuta nei lemmi precedenti otteniamo

A k |[a(x, u n , ∇u n ) -a(x, u n , ∇u)] • ∇(u n -u)| θ ≤ Cµ(A k ) 1/2 . Passo 2: Stimiamo ora la quantità C k {[a(x, u n , ∇u n ) -a(x, u, ∇u)] • ∇(u n -u)} θ . Osservando che |u| ≤ k su C k (visto che u n → u q.o. in Ω e |u n | ≤ k su C k ) si ha C k {[a(x, u n , ∇u n ) -a(x, u n , ∇u)] • ∇(u n -u)} θ = C k {[a(x, u n , ∇u n ) -a(x, u, ∇T k (u))] • ∇(u n -T k (u))} θ ≤ Ω {[a(x, u n , ∇u n ) -a(x, u, ∇T k (u))] • ∇(u n -T k (u))} θ . Posto V j := {|u n -T k (u)| ≤ j}, V ′ j = {|u n -T k (u)|
> j}, l'ultimo integrale può essere stimato nel modo seguente:

C k {[a(x, u n , ∇u n ) -a(x, u, ∇u)] • ∇(u n -u)} θ ≤ Ω {[a(x, u n , ∇u n ) -a(x, u, ∇T k (u))] • ∇T j (u n -T k (u))} θ + + V ′ j {[a(x, u n , ∇u n ) -a(x, u, ∇T k (u))] • ∇(u n -T k (u))} θ .
Ora stimiamo il primo addendo del secondo membro della disuguaglianza precedente usando la disuguaglianza di Hölder con esponente 1/θ : in questo modo otteniamo

Ω {[a(x, u n , ∇u n ) -a(x, u, ∇T k (u))] • ∇T j (u n -T k (u))} θ ≤   Ω {[a(x, u n , ∇u n ) -a(x, u, ∇T k (u))] • ∇T j (u n -T k (u))}   θ µ(Ω) 1-θ .
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D'altra parte possiamo stimare il secondo addendo applicando un ragionamento analogo a quello già seguito per

A k |[a(x, u n , ∇u n ) -a(x, u, ∇u)] • ∇(u n -u)| θ :
in questo modo otteniamo

V ′ j |[a(x, u n , ∇u n ) -a(x, u, ∇T k (u)] • ∇(u n -T k (u))| θ ≤ Cµ(V ′ j ) 1 2 
. 

Ricapitolando abbiamo ottenuto

C k {[a(x, u n , ∇u n ) -a(x, u, ∇u)] • ∇(u n -u)} θ ≤ Cµ(V ′ j ) 1 2 + +   Ω {[a(x, u n , ∇u n ) -a(x, u, ∇T k (u))] • ∇T j (u n -T k (u))}   θ µ(Ω)
) • ∇T j (u n -T k (u)) = Ω f n T j (u n -T k (u))
e quindi, riprendendo la stima (10.2.7), possiamo scrivere 

C k {[a(x, u n , ∇u n ) -a(x, u, ∇u)] • ∇(u n -u)} θ ≤ ≤ C   Ω {f n T j (u n -T k (u)) -a(x, u, ∇T k (u)) • ∇T j (u n -T k (u))}   θ + Cµ(V ′ j ) 1 
f n T j (u n -T k (u)) = Ω f T j (u -T k (u)).
D'altra parte, poiché u n converge a u in misura, si ha

lim n→∞ µ(V ′ j ) = µ({|u -T k (u)| ≥ j}). Dimostriamo ora che per n → ∞ Ω a(x, u, ∇T k (u)) • ∇T j (u n -T k (u)) → Ω a(x, u, ∇T k (u)) • ∇T j (u -T k (u)). Basta dimostrare che T j (u n -T k (u)) → T j (u -T k (u)) debolmente in H 1 0 (Ω). A tale scopo osserviamo che |un-T k (u)|<j |∇u n -∇T k (u)| 2 ≤ 2 |un|<j+k |∇u n | 2 + 2 |un-T k (u)|<j
|∇T k (u)| 2 ; (10.2.9) ora, scegliendo T j+k (u n ) come funzione test nei problemi approssimanti si ha che 

α Ω |∇T j+k (u n )| 2 ≤ Ω a(x, u n , ∇u n ) • ∇T j+k (u n ) = Ω f n T j+k (u n ) ≤ Ω |f |(j + k); (10 
(u n + T k (u)) 2 L 2 (Ω) è uniformemente limitato in n; poiché T j (u n - T k (u)) → T j (u -T k (u)) q.o. in Ω, si ha che T j (u n -T k (u)) → T j (u -T k (u)) debolmente in H 1 0 (Ω).
Possiamo allora scrivere, riprendendo la (10.2.8)

lim n→∞ C k |[a(x, u n , ∇u n ) -a(x, u, ∇u)] • ∇(u n -u)| θ ≤ Cµ(V ′ j ) 1 2 +C   Ω |[f T j (u -T k (u)) -a(x, u, ∇T k (u)) • ∇T j (u -T k (u))|   θ .
Passo 3: Possiamo ora concludere: infatti

lim n→∞ Ω |[a(x, u n , ∇u n ) -a(x, u, ∇u)] • ∇(u n -u)| θ ≤ lim n→∞ A k |[a(x, u n , ∇u n ) -a(x, u, ∇u)] • ∇(u n -u)| θ + lim n→∞ C k |[a(x, u n , ∇u n ) -a(x, u, ∇u)] • ∇(u n -u)| θ ≤ Cµ(A k ) 1 2 + Cµ(V ′ j ) 1 2 + +C   Ω |[f T j (u -T k (u)) -a(x, u, ∇T k (u)) • ∇T j (u n -T k (u))|   θ .
I tre addendi tendono a 0, per k → +∞ e quindi la disuguaglianza precedente prova la (10.2.6).

Grazie al lemma 4.9 possiamo dire che ∇u n (x) → ∇u(x) q.o. in Ω.

Soluzioni nel senso delle distribuzioni

In questa sezione studieremo l'esistenza di soluzioni nel senso delle distribuzioni del problema (10.1.1).

Il risultato di questo paragrafo è il seguente:

Teorema 10.4. 1. Sia f ∈ L m (Ω), con 1 < m < 2N N +2 . Allora esiste una soluzione u ∈ W 1,m * 0
(Ω) del problema (10.1.1) nel senso delle distribuzioni.

2. Sia f ∈ L 1 (Ω). Allora esiste una soluzione u ∈ W 1,q 0 (Ω), q < N N -1 , del problema (10.1.1) nel senso delle distribuzioni.

Dimostrazione. Distinguiamo i casi m > 1 e m = 1. Passeremo al limite nei problemi approssimanti (10.2.1). In tutta la dimostrazione C denoterà una costante indipenente da n.

1) Nel caso in cui m > 1, sia u la funzione trovata nel lemma 10.3. Ora, se E è un qualunque sottoinsieme misurabile di Ω, applicando la disuguaglianza di Hölder con esponente m * r , per r < m * , si ottiene, grazie al lemma 10.2, debolmente in (L r (Ω))

E |∇u n | r ≤   E |∇u n | m *   r m * µ(E) 1-r m * ≤ Cµ(E)
N . Possiamo concludere la dimostrazione dell'esistenza di una soluzione u del problema iniziale passando al limite nei problemi approssimanti (10.2.1).

2) Nel caso in cui m = 1, detta u la funzione trovata nel lemma 10.3, analogamente a prima, se r <

N N -1 , E |∇u n | r-ε ≤   E |∇u n | r   r-ε r µ(E) ε r ≤ Cµ(E) ε r
e quindi, per il teorema di Vitali 2.2, si ha che ∇u n → ∇u in L q (Ω) per ogni q < N N -1 . Come nel caso m > 1 a(x, u n (x), ∇u n (x)) → a(x, u(x), ∇u(x)) q.o. in Ω.

L'ipotesi 1 su a e il lemma 10.1 assicurano che a(x, u n , ∇u n ) L q (Ω) è uniformemente limitata, e dunque, grazie al teorema 2.1, otteniamo che

a(x, u n , ∇u n ) → a(x, u, ∇u)
debolmente in (L q (Ω))

N . Possiamo concludere la dimostrazione dell'esistenza di una soluzione u del problema iniziale passando al limite nei problemi approssimanti (10.2.1).

Il caso lineare: una dimostrazione alternativa

In questa sezione presentiamo una maniera alternativa per dimostrare il teorema 10.4 nel caso lineare, ossia nel caso in cui la funzione a è rappresentata da una matrice N × N . Dimostreremo il seguente risultato, dovuto a Stampacchia: Proposizione 10.5. Sia M una matrice N × N simmetrica a coefficienti limitati; supponiamo che esista α > 0 tale che

M (x)ξ • ξ ≥ α|ξ| 2 ∀ξ ∈ R N . Sia f ∈ L 1 (Ω). Allora esiste una soluzione u ∈ W 1,q 0 (Ω), q ∈ (1, N N -1 ) del problema -div(M (x)∇u) = f (10.4.1)
che verifica la seguente stima:

||u|| W 1,q 0 (Ω) ≤ C||f || L 1 (Ω) , (10.4.2) 
per qualche C = C(N, q, α) > 0.

Dimostrazione. Siano f n = T n (f ) e u n ∈ H 1 0 (Ω) la soluzione debole del problema -div(M (x)∇u n ) = f n . (10.4.3) 
È noto che u n ∈ L ∞ (Ω), per ogni n ∈ N grazie al teorema 5.6.
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A questo punto, introduciamo un problema ausiliario costruito per dualità: più precisamente, per ogni n, sia w n la soluzione di

Ω M (x)∇w n • ∇v = Ω χ k |∇u n | q-2 ∇u n • ∇v, (10.4.4) 
per ogni v ∈ H 1 0 (Ω), dove indichiamo con χ k la funzione caratteristica dell'insieme {|∇u n | ≤ k}. Osserviamo che χ k |∇u n | q-2 ∇u n ∈ L ∞ (Ω), per ogni n e quindi il problema (10.4.4) ammette una soluzione per il teorema di Leray-Lions. È inoltre possibile applicare il teorema 5.12 per concludere che w n ∈ L ∞ (Ω). A questo punto accoppiamo i problemi (10.4.3) ed (10.4.4) scegliendo ϕ = w n e v = u n rispettivamente; in questo modo otteniamo

Ω M (x)∇u n • ∇w n = Ω f n w n Ω M (x)∇w n • ∇u n = Ω χ k |∇u n | q-2 ∇u n • ∇u n . Di conseguenza Ω χ k |∇u n | q = Ω f n w n ≤ ||f n || L 1 (Ω) ||w n || L ∞ (Ω) .
Applichiamo ora la stima del teorema 5.12 con m = q q-1 > N : otteniamo

Ω χ k |∇u n | q ≤ C||f n || L 1 (Ω)   Ω χ k |∇u n | q   q-1 q dove C dipende da N, q e α; quindi   Ω χ k |∇u n | q   1/q ≤ C||f n || L 1 . (10.4.5) 
Passando al limite per k → +∞ nella (10.4.5), per il lemma di Fatou abbiamo

||∇u n || L q (Ω) ≤ C||f || L 1 (Ω) , per ogni q ∈ (1, N N -1
) (e di conseguenza necessariamente anche per q = 1). Quindi, la successione u n è equilimitata in W 1,q 0 (Ω) ed è dunque possibile estrarne una sottosuccessione u n h debolmente convergente in W 1,q 0 (Ω). Detto u il limite debole, si ha che u è soluzione debole del problema (10.4.1). Inoltre la stima (10.4.2) è verificata per il teorema di Banach-Steinhaus. Ciò conclude la dimostrazione.

Soluzioni di entropia

In questo paragrafo introdurremo un nuovo concetto di soluzione del problema (10.1.1): il concetto di soluzione di entropia. Ne daremo la definizione, alcune proprietà e poi ne dimostreremo l'esistenza. Capiremo l'importanza di tale concetto nel capitolo 11: infatti nell'ambito delle soluzioni di entropia saremo capaci di dare un risultato di unicità.
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Definizione 10.6. Definiamo

T (Ω) = {u : Ω → R misurabili e finite q.o. tali che T k (u) ∈ H 1 0 (Ω) ∀k > 0} .
Occupiamoci ora del gradiente di una funzione in T (Ω).

Lemma 10.7. Per ogni u ∈ T (Ω) esiste un'unica funzione misurabile v : Ω → R N tale che

∇T k (u) = v χ {|u|<k} q.o. in Ω .
Inoltre, se u ∈ H 1 0 (Ω), v coincide con il gradiente distribuzionale ∇u usuale.

Dimostrazione. Siano k, ε > 0; allora T k (T k+ε (u)) = T k (u); poiché T j (u) appartiene a H 1 0 (Ω) per ogni j, si ha ∇T k (T k+ε (u)) = ∇T k (u). In Ω k = {|u| < k} l'uguaglianza precedente diventa ∇T k+ε (u) = ∇T k (u) per ogni ε > 0. Poiché k>0 Ω k = Ω, ponendo ∇u(x) = ∇T k (u(x)) q.o. in Ω k , si ha la tesi.
Detto ciò, possiamo dare il concetto di soluzione di entropia del problema (10.1.1).

Definizione 10.8. Sia f una funzione in L 1 (Ω). Una funzione u appartenente a T (Ω) è detta soluzione di entropia del problema (10.1. [START_REF] Ambrosetti | A primer of nonlinear analysis[END_REF] se

Ω a(x, u, ∇u) • ∇T k (u -ϕ) ≤ Ω f T k (u -ϕ) ∀ k > 0 e ∀ ϕ ∈ H 1 0 (Ω) ∩ L ∞ (Ω). (10.5.1) 
Osservazione 10.9. Notiamo che grazie al fatto che u appartiene a T (Ω) la disuguaglianza di entropia appena scritta ha senso. Infatti il secondo membro è ben definito, vista la limitatezza della funzione

T k (u -ϕ). Per il primo, osservando che T k (u -ϕ) appartiene a H 1 0 (Ω) e ∇T k (u -ϕ) = ∇(u -ϕ) χ {|u-ϕ|≤k} , abbiamo Ω a(x, u, ∇u) • ∇T k (u -ϕ) = {|u-ϕ|≤k} a(x, u, ∇u) • ∇(u -ϕ);
nell'insieme {|u -ϕ| ≤ k}, ∇u appartiene a L 2 (Ω) e di conseguenza anche a(x, u, ∇u) appartiene a L 2 (Ω). Pertanto anche il secondo membro è ben definito.

Osservazione 10.10.

Una funzione u ∈ H 1 0 (Ω) che soddisfa Ω a(x, u, ∇u) • ∇v = Ω f v ∀ v ∈ H 1 0 (Ω)
è ovviamente una soluzione di entropia del problema (10.1.1). Ciò implica che le soluzioni H 1 0 (Ω) (nel senso delle distribuzioni) trovate nel capitolo 4 nel caso in cui il dato f ∈ L m (Ω), m ≥ 2N N +2 , sono soluzioni di entropia del problema (10.1.1).

Vediamo ora le principali proprietà delle soluzioni di entropia. 

α ∇T k (u) 2 L 2 (Ω) ≤ Ω a(x, u, ∇u) • ∇T k (u) ≤ k f L 1 (Ω) ∀k > 0 .
Grazie alla disuguaglianza di Sobolev, la disugualianza appena scritta implica che

k 2 * µ{|u| > k} < {|T k (u)|>k} |T k (u)| 2 * ≤ ck 2 * /2 . Si deduce che µ({|u| > k}) ≤ c k -N N -2 ovvero u ∈ M N N -2 (Ω).
Proposizione 10.12. Sia u una soluzione di entropia del problema (10.1.1). Allora |∇u| ∈ M N N -1 (Ω).

Dimostrazione. In tutta la dimostrazione c sarà una costante indipendente da u e da k. Prendendo ϕ = 0 come funzione test in (10.5.1), abbiamo

α ∇T k (u) 2 L 2 (Ω) ≤ Ω a(x, u, ∇u) • ∇T k (u) ≤ Ω f T k (u) ≤ k f L 1 (Ω) .
Usando la disuguaglianza di Sobolev, si ha

k 2 S 2 µ ({|u| > k}) 2/2 * ≤ S 2    {|u|>k} |T k (u)| 2 *    2/2 * ≤ S 2   Ω |T k (u)| 2 *   2/2 * ≤ Ω |∇T k (u)| 2 ≤ kc che implica che µ({|u| > k|}) ≤ c k N N -2 . ( 10.5.2) 
Inoltre, visto che

Ω |∇T k (u)| 2 ≤ ck possiamo scrivere che t 2 µ({|u| ≤ k, |∇u| > t}) ≤ {|u|≤k,|∇u|>t} |∇u| 2 ≤ ck .
Quest'ultima stima e la (10.5.2) implicano che 

µ({|u| ≤ k, |∇u| > t}) + µ({|u| > k}) ≤ c k t 2 + c k N N -2 . Di conseguenza µ({|∇u| > t}) ≤ c k t 2 + c k N N - 
(x, u, ∇u)| ∈ M N N -1 (Ω) ⊆ L 1 (Ω).
Dimostriamo che le soluzioni di entropia sono particolari soluzioni nel senso delle distribuzioni: Proposizione 10.14. Sia u ∈ T (Ω) una soluzione d'entropia del problema (10.1.1). Allora u è una soluzione nel senso delle distribuzioni, ovvero

Ω a(x, u, ∇u) • ∇ψ = Ω f ψ ∀ ψ ∈ C ∞ 0 (Ω) . Dimostrazione. Sia ψ ∈ C ∞ 0 (Ω) e prendiamo ϕ = T h (u) -ψ ∈ H 1 0 (Ω) ∩ L ∞ (Ω) come funzione test nella (10.5.1). Allora si ha {|u-T h (u)+ψ|<k} a(x, u, ∇u) • (∇u χ {|u|>h} + ∇ψ) ≤ Ω f T k (u -T h (u) + ψ) da cui, per l'ellitticità di a {|u-T h (u)+ψ|<k} a(x, u, ∇u) • ∇ψ ≤ Ω f T k (u -T h (u) + ψ) . Se prendiamo k > ψ L ∞ (Ω) si ha χ {|u-T h (u)+ψ|<k} → χ Ω per h → +∞ e poiché a(x, u, ∇u) • ∇ψ ∈ L 1 (Ω) si può applicare il teorema di Lebesgue e concludere, al limite per h → +∞, che Ω a(x, u, ∇u) • ∇ψ ≤ Ω f ψ ∀ψ ∈ C ∞ 0 (Ω) .
Prendendo -ψ al posto di ψ si ha la disuguaglianza inversa, da cui -div(a(x, u, ∇u)) = f nel senso delle distribuzioni.

Vogliamo ora dimostrare l'esistenza di soluzioni di entropia per il problema (10.1.1):

Teorema 10.15. Sia f ∈ L m (Ω), con m ≥ 1. Allora esiste u ∈ T (Ω) soluzione d'entropia del problema (10.1.1).
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1

. Se f ∈ L 1 (Ω), la funzione u appartiene a M N N -2 (Ω), |∇u| ∈ M N N -1 (Ω). 2. Se f ∈ L m (Ω), m > 1 allora la funzione u appartiene a W 1,m * 0 (Ω).
Dimostrazione. Siano u n le soluzioni dei problemi (10.2.1): scegliamo come funzioni test T k (u nϕ). Possiamo dire grazie al lemma 10.1 che, a meno di una sottosuccessione, u n converge debolmente ad una funzione u in W 1,q 0 (Ω) con q < N N -1 . Grazie al lemma 10.3 ∇u n → ∇u q.o. in Ω e dunque a(x, u n , ∇u n ) → a(x, u, ∇u) q.o. in Ω. D'altra parte, fissati k e ϕ ∈ H 1

0 (Ω) ∩ L ∞ (Ω), possiamo dire che ∇T k (u n -ϕ) → ∇T k (u -ϕ) q.o. in Ω. Di conseguenza, il lemma di Fatou lim inf n→∞ Ω a(x, u n , ∇u n ) • ∇T k (u n -ϕ) Ω a(x, u, ∇u) • ∇T k (u -ϕ) .
Per il teorema di Lebesgue

lim n→∞ Ω f n T k (u n -ϕ) = Ω f T k (u -ϕ) .
Abbiamo dunque provato che u verifica la disuguaglianza (10.5.1). Per provare che T k (u) appartiene a H 1 0 (Ω) per ogni k > 0, basta scegliere come funzione test nei problemi aprossimanti (10.2.1)

T k (u n ). Infatti sfruttando l'ellitticità di a si ha che ∇T k (u n ) L 2 (Ω) 2 ≤ k f L 1 (Ω) . Poiché ∇u n → ∇u q.o. in Ω, passando al limite per n → ∞ si ha che ∇T k (u) L 2 (Ω) 2 ≤ k f L 1 (Ω) .
Per quanto riduarda le regolarità della funzione u:

1. se f appartiene a L 1 (Ω), basta usare le proposizioni 10.11 e 10.12;

2. se f appartiene a L 1 (Ω), m > 1, basta usare il lemma 10.2.

Confronto tra soluzioni di entropia e soluzioni nel senso delle distribuzioni

Nei precedenti paragrafi abbiamo visto i concetti di soluzione nel senso delle distribuzioni e soluzione di entropia del problema (10.1.1). In questo paragrafo vogliamo mettere a confronto questi due concetti, dimostrando che non si equivalgono. Ricordiamo che, come visto nella proposizione 10.14, una soluzione di entropia del problema (10.1.1) è una particolare soluzione nel senso delle distribuzioni. Considereremo ora un problema lineare e faremo vedere che tale problema ammette una soluzione nel senso delle distribuzioni che non è soluzione di entropia (vedere [START_REF] Serrin | Pathological solutions of elliptic differential equations[END_REF], [START_REF] Prignet | Remarks on existence and uniqueness of solutions of elliptic problems with right-hand side measures[END_REF]).

Sia

M = (m ij ) N i,j=1 ∈ R N ×N la matrice seguente: se x = (x 1 , .., x N )    m ij = δ ij + 1 -ε 2 ε 2 x i x j x 2 1 + x 2 2 , i, j = 1, 2 m ij = δ ij , i, j = 1, 2 (10.6.1) con ε < 1 N -1 . M è ellittica e limitata. Osserviamo che la funzione u 0 (x) = x 1 (x 2 1 + x 2 2 ) 1+ε 2 (10.6.2) verifica -div(M (x)∇u 0 ) = 0 in R N . Infatti sia ϕ una funzione C ∞ a supporto compatto in R N ; integrando 100 CAPITOLO 10. PROBLEMI DI LERAY-LIONS CON SORGENTI A BASSA SOMMABILIT À per parti si ottiene R N M (x)∇u 0 • ∇ϕ = lim ρ→0 {|x|≥ρ} M (x)∇u 0 • ∇ϕ = -lim ρ→0 {|x|=ρ} ϕ M (x)∇u 0 • x |x| ds = - 1 ε lim ρ→0 {|x|=ρ} 1 ρ ε ϕ x 1 ds = 0 visto che l'ultimo integrale è un o(ρ 2 ) per ρ → 0. Inoltre, fissato Ω = {|x| < 1} si ha che u 0 ∈ W 1,q (Ω) per q < N N -1 e T k (u 0 ) / ∈ H 1 (Ω). Di conseguenza, posto f (x) = 1 -ε 2 ε 2 x 1 x 2 1 + x 2 2 , (10.6.3) la funzione v(x) = x 1 -u 0 (x) (10.6.4) 
è una soluzione nel senso delle distribuzioni del problema

-div(M (x)∇v) = f in Ω v = 0
su ∂Ω ma non è una soluzione di entropia, visto che non appartiene a T (Ω).

Soluzioni per problemi con sorgenti misura

In questo paragrafo vogliamo studiare l'esistenza di soluzioni nel senso delle distribuzioni del seguente problema -div(a(x, u, ∇u)) = λ in Ω u = 0 su ∂Ω, (10.7. [START_REF] Ambrosetti | A primer of nonlinear analysis[END_REF] dove λ ∈ M(Ω) (per la definizione vedere appendice), ossia dimostreremo l'esistenza di una funzione

u ∈ W 1,1 0 (Ω) tale che Ω a(x, u, ∇u) • ∇ϕ = Ω ϕdλ ∀ ϕ ∈ C ∞ 0 (Ω) .
Come nei paragrafi precedenti lavoreremo sui problemi approssimanti (10.2.1). Questa volta

{f n } è una successione di funzioni in C ∞ 0 (Ω) tale che f n L 1 (Ω) ≤ λ M(Ω) e f n → λ * -debolmente in M(Ω) ( 
l'esistenza di tale successione è garantita dal teorema 10.27). Dimostreremo il seguente teorema: Teorema 10.16. Sia λ ∈ M(Ω). Allora esiste una soluzione u ∈ W 1,q 0 (Ω), q < N N -1 del problema (10.1.1) nel senso delle distribuzioni.

Come nel caso in cui la sorgente è una funzione L 1 (Ω), avremo bisogno dei due seguenti lemmi: Lemma 10.17. Sia λ ∈ M(Ω). Allora le soluzioni u n dei problemi (10.2.1) sono uniformemente limitate in W 1,q 0 (Ω) con q < N N -1 . Dimostrazione. La dimostrazione è analoga a quella del lemma 10.1. Infatti, prendendo le stesse funzioni test nei problemi approssimanti (10.2.1), si ha per il secondo membro

Ω f n u n ≤ Ω |f n | ≤ λ M(Ω) .
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Si possono dunque usare gli stessi argomenti del lemma 10.1 per dimostrare che le soluzioni u n dei problemi (10.2.1) sono uniformemente limitate in W 1,q 0 (Ω) con q < N N -1 . Analogamente si dimostra il seguente lemma: Lemma 10.18. Sia λ ∈ M(Ω). Allora, dette u n le soluzioni in H 1 0 (Ω) dei problemi (10.2.1), esiste une funzione u ∈ W 1,q 0 (Ω), q < N N -1 tale che ∇u n → ∇u q.o. in Ω a meno di una sottosuccessione. Dimostrazione. La dimostrazione di questo lemma si discosta di molto poco da quella del lemma 10.3. Infatti, ripercorrendola, possiamo arrivare alla disuguaglianza (10. ciò implica che, a meno di una sottosuccessione, ∇u n → ∇u q.o. in Ω.

Grazie ai lemmi precedenti si può dimostrare il teorema 10.16 analogamente a quanto fatto per il teorema 10.4.

Appendice

Richiamiamo la definizione di M(Ω) usata nel paragrafo 10.7 (rimandiamo a [START_REF] Evans | Measure theory and fine properties of functions[END_REF] per maggiori dettagli).

Denotiamo con P(Ω) l'insieme dei sottinsiemi di Ω. In questo capitolo daremo dei risultati di unicità. Bisogna dire che, a differenza del problema dell'esistenza, per l'unicità purtroppo esistono solo risultati parziali, e ciò indipendentemente dalla sommabilità del dato f . Vedremo infatti che l'unicità è legata per lo più alla monotonia dell'operatore A(v) = -div(a(x, v, ∇v)) e non tanto alla sommabilità del dato f . Ciò ci ha condotti a dividere questo capitolo in due parti: nella prima parte forniremo un risultato abbastanza generale per il problema -div(a(x, ∇u)) = f in Ω u = 0 su ∂Ω, ossia per un problema definito tramite un operatore monotono. Non presenteremo la dimostrazione originale di [3], ma quella un poco più semplice di [21]. Nella seconda parte presenteremo un risultato di unicità (vedere [2] e [START_REF] Boccardo | Unicité de la solution pour des équations elliptic non linéaires[END_REF]) per un particolare operatore non monotono.

Unicità per operatori monotoni

In questo paragrafo ci occuperemo dell'unicità delle soluzioni del problema Dimostrazione. Siano u 1 e u 2 ∈ H 1 0 (Ω) due soluzioni. Scegliamo nella formulazione debole del problema u 1u 2 come funzione test:

Ω a(x, ∇u 1 ) • (∇u 1 -∇u 2 ) = Ω f (u 1 -u 2 ) Ω a(x, ∇u 2 ) • (∇u 1 -∇u 2 ) = Ω f (u 1 -u 2 ) .
Sottraendo membro a membro e usando l'ipotesi 3 su a si ottiene che u 1 = u 2 q.o. in Ω.

Nel caso in cui il dato f ha una sommabilità più bassa, dimostreremo l'unicità delle soluzioni nell'ambito delle soluzioni di entropia (vedere [3]). 

- Ω a(x, ∇u n ) • ∇T k (z -u n ) = - Ω f n T k (z -u n ). ( 11 
)] • ∇T k (z -u n ) ≤ Ω (f -f n )T k (z -u n ).
Osserviamo che l'integrando del primo membro della precedente diseguaglianza è positivo per la monotonia di a. Inoltre la funzione integranda [a(x, ∇z)a(x, ∇u n )] • ∇T k (zu n ) converge q.o. in Ω a Grazie alla monotonia della funzione a e all'arbitraria scelta di k ciò implica che z = u q.o. in Ω.

Il seguente esempio mostra che un problema anche lineare ammette più di una soluzione distribuzionale. (appartenente a W 1,q 0 (Ω), con q < N N -1

) risolve per linearità -div(M (x)∇w) = 0 in Ω w = 0 su ∂Ω Osserviamo inoltre che 0 è soluzione di questo problema. Dunque il problema precedente ammette due soluzioni: la soluzione identicamente nulla (soluzione distribuzionale H 1 0 (Ω) e quindi entropica) e la soluzione distribuzionale, non entropica, w.

Un risultato di unicità per un operatore non monotono

In questo paragrafo presenteremo un risultato di unicità per i problema dove C = C(Ω, α, N, q) e β = β(Ω, α, N, q).

Passiamo ora alla dimostrazione del teorema 11.6. Dimostrazione. Siano u e v due soluzioni ottenute per approssimazione dal problema 11.4.2. Allora esistono f n e g n , successioni di funzioni regolari che convergono debolmente nel senso delle misure a λ, limitate in L 1 (Ω); inoltre, dette u n e v n ∈ H 1 0 (Ω) le rispettive soluzioni dei problemi approssimanti, u n e v n convergono debolmente a u e v rispettivamente in W 1,q 0 (Ω), ∀ q < N N -1 , grazie al lemma 10.18. Per linearità si ha che

Ω M (x)(∇u n -∇v n ) • ∇φ = Ω (f n -g n ) φ
∀φ ∈ H 1 0 (Ω).

(11.4.3) D'altra parte, sia z n ∈ H 1 0 (Ω) una soluzione del problema

-div(M (x)∇z n ) = -div ∇(u n -v n ) 1 + |∇(u n -v n )| . (11.4.4) 
Poniamo

F n = ∇(u n -v n ) 1 + |∇(u n -v n )| : F n ∈ (L ∞ (Ω)
) N e divF n ∈ L 2 (Ω). Di conseguenza una soluzione z n ∈ H 1 0 (Ω) esiste per ogni n grazie al teorema 4.1. Osserviamo che le funzioni z n sono equi-hölderiane e equilimitate per il teorema 11.8. Il teorema di Ascoli-Arzelà implica che a meno di una sottosuccessione z n → z uniformemente in Ω per una certa funzione z continua in Ω. Abbiamo, scegliendo u nv n come funzione test in (11.4.4)

Ω |∇(u n -v n )| 2 1 + |∇(u n -v n )| = Ω M (x)∇z n • ∇(u n -v n ) = Ω M (x)∇(u n -v n ) • ∇z n = Ω (f n -g n ) z n .
grazie a (11.4.3). Scrivendo (f ng n ) z n come (f ng n ) (z nz) + (f ng n ) z è facile dimostrare che l'ultimo integrale tende a 0, visto che z n → z uniformemente in Ω, che la successione f ng n converge a 0 nel senso delle misure ed è limitata in L 1 (Ω). Ciò implica la convergenza a zero in norma L 1 (Ω) di ∇(u nv n ), grazie al lemma 11.7. Ricordando che u n , v n convergono debolmente a u, v in W 1,q 0 (Ω), ∀q < N N -1 , si ha che

Ω |∇(u -v)| ≤ lim inf n→+∞ Ω |∇(u n -v n )| = 0
e quindi u = v q.o. in Ω.

  < ϕ, v >= ϕ(v), se ϕ ∈ X ′ e v ∈ X L p (Ω): spazio delle funzioni f tali che |f | p è integrabile secondo Lebesgue su Ω C k (Ω): insieme delle funzioni k volte differenziabili con continuità su Ω C k 0 (Ω): insieme delle funzioni k volte differenziabili con continuità su Ω, nulle sul ∂Ω W 1,p (Ω): spazio (di Sobolev) delle funzioni con gradiente distribuzionale in (L p (Ω)) N W 1,p 0 (Ω): chiusura in norma W 1,p (Ω) delle funzioni C 1 (Ω) a supporto compatto in Ω

6 INDICE Capitolo 1

 61 altrove per indicare l'insieme {x ∈ R N : f (x) ≥ 0} per una data funzione f , scriveremo {f ≥ 0} per ogni funzione u, la funzione u + = uχ {u≥0} sarà detta parte positiva di u; u -= uχ {u≤0} sarà detta parte negativa di u T k (x) = max{min{k, x} -k} per k > 0 G k (x) = x -T k (x) per k > 0

F

  (x), se |x| ≤ 1 , x |x| , se |x| > 1; 1.3. TEOREMA DI BROUWER 9 osserviamo che | f (x)| = 1. Per il teorema di densità di Weierstrass, esiste f 1 ∈ C 1 (R N , R N ) tale che sup x∈B(0,2)

  combinazione convessa di punti di K e una combinazione lineare di {x 1 , ..x nε }. Ciò implica che G ε (K) ⊂ E ε ∩ K. Notiamo inoltre che la funzione G ε è continua. Possiamo allora applicare il teorema di Brouwer alla funzione G ε • F e al convesso compatto E ε ∩ K e dire che esiste x ε ∈ K ∩ E ε tale che G ε (F (x ε )) = x ε . Osserviamo che per ogni x ∈ K G ε (x)x =

CAPITOLO 2 . 2 . 4 .Lemma 2 . 5 .

 22425 PRELIMINARI DI ANALISI REALEDefinizione Una funzione g(x, ξ) : Ω × R m → R è una funzione di Carathéodory se è continua in ξ, per quasi ogni x in Ω e misurabile in x per ogni ξ in R m . Sia f (x, t) : Ω × R → R una funzione di Carathéodory. Siano u n una successione di funzioni e u 0 una funzione misurabile tali che

Teorema 3 . 11 .

 311 Sotto le ipotesi precedenti, siano u e u una sotto e una sopra-soluzione di (3.5.1) tali che u ≤ u. Allora esiste una soluzione u ∈ H 1 0 (Ω) del problema (3.5.1); inoltre u ≤ u ≤ u.

[

  e a (|f |-1)e -a ] = 1 a Ω [e a (|f |-1)e -a ], e quindi Ω e a|f | < ∞. Proposizione 5.5. Sia f una funzione misurabile definita in Ω; supponiamo che esistano a, c > 0 tali che µ(A k ) ≤ c k e a k per ogni k ≥ k 0 , con k 0 naturale fissato. Allora Ω e b|f | < ∞ per ogni costante reale b < a. Dimostrazione. Grazie alla proposizione 5.4, sappiamo che Ω e b|f | < ∞ se e solo se ∞ k=0 e bk µ(A k ) < ∞. D'altra parte, nel nostro caso abbiamo ∞ k=k0 e bk µ(A k ) ≤ ∞ k=k0 e bk c k e ak < ∞ per la scelta di b, e quindi ∞ k=0 e bk µ(A k ) < ∞.

Teorema 5 . 11 .

 511 Sia f ∈ M N 2 (Ω). Allora esiste una costante b > 0 tale che Ω e b |u| < ∞ per ogni soluzione u ∈ H 1 0 (Ω) del problema (5.3.1).

5. 5 .Teorema 5 . 13 .

 5513 SORGENTI IN FORMA DI DIVERGENZA 51 Sia F ∈ (L m (Ω)) N , 2 < m < N . Allora ogni soluzione debole u ∈ H 1 0 (Ω) del problema (5.5.1) appartiene a L m * (Ω); vale inoltre la seguente stima:

Teorema 7 . 1 .

 71 Esiste una base ortonormale w m ∈ L 2 (Ω) e una successione di numeri reali positivi λ m tali che 1. λ m → +∞, per m → ∞; 2. per ogni m ∈ N, w m è soluzione di

Teorema 7 . 13 .

 713 Sia µ = λ k (dove per qualche k ∈ N, λ k è un autovalore di L(v) = -div(M (x)∇v)). Sia f ∈ L 2 (Ω) tale che Ω f w k = 0 per ogni autofunzione w k relativa a λ k . Allora esiste una soluzione del problema (7.3.2).

  3.8) grazie al teorema 3.3. Infatti, definiamo a(ψ, w) = Ω M (x)∇ψ • ∇w -Ω g(ψ + sϕ 1 )w sullo spazio di Hilbert costituito dalle funzioni w ∈ H 1 0 (Ω) tali che Ω wϕ 1 = 0 . Questa forma è lineare nella seconda variabile. Usando la disuguaglianza di Cauchy-Schwartz e il fatto che g è lipschitz, possiamo dire che esiste una costante positiva C tale che

.3. 2 )

 2 dove p ≥ 2 e b(x, s) : Ω × R → R è una funzione di Carathéodory limitata. Osserviamo che tale problema rientra nella classe di problemi del tipo Leray-Lions studiati nel capitolo 4. Vogliamo far vedere come possa essere risolto usando il calcolo delle variazioni e il teorema di Schauder 1.11.

ΩeLemma 9 . 3 .

 93 2λ|un| |∇u n | 2 è uniformemente limitato. Essendo λ > 0, possiamo dire che Ω |∇u n | 2 è uniformemente limitato. Sia u n la successione delle soluzioni dei problemi (9.2.1). Allora u n è uniformemente limitata in norma L ∞ (Ω).

  ed è strettamente positiva. Allora sia per assurdo u ∈ L ∞ (Ω) una soluzione del problema precedente; osserviamo che scegliendo u -come funzione test, si vede facilmente che u è positiva. Consideriamo z : = e u -1: z ∈ H 1 0 (Ω) ∩ L ∞ (Ω)e z è positiva in Ω. Di conseguenza ∇z = (z + 1)∇u, ∆z = -(z + 1)[∆u + | ∇u | 2 ] = f (z + 1)

NN - 2

 2 (Ω) tale che |∇u| ∈ M N N -1 (Ω).Ricordiamo che le ipotesi su a sono: a : Ω × R × R N è una funzione di Carathéodory con le seguenti proprietà :1. esiste β > 0 tale che |a(x, s, ξ)| ≤ β[|s| + |ξ|]; 2. esiste α > 0 tale che a(x, s, ξ) • ξ ≥ α|ξ| 2 , ∀ ξ ∈ R N ; 3. [a(x, s, ξ)a(x, s, η)] • [ξη] > 0 se ξ = η.88 CAPITOLO 10. PROBLEMI DI LERAY-LIONS CON SORGENTI A BASSA SOMMABILIT À

Proposizione 10 . 11 .

 1011 Sia u ∈ T (Ω) una soluzione d'entropia del problema (10.1.1). Allora u appartiene a M N N -2 (Ω).

10. 5 .

 5 SOLUZIONI DI ENTROPIA 97 Dimostrazione. In tutta la dimostrazione c denoterà una costante indipendente da u e da k. Prendendo ϕ = 0 nella (10.5.1) si ottiene, grazie all'ellitticità di a

C≤θ 1 2

 1 2.8), in cui bisogna stimare la quantità  Ω {f n T j (u n -T k (u))a(x, u, ∇T k (u)) • ∇T j (u n -T k (u))} denoterà una costante indipendente da n. Osserviamo che   Ω {f n T j (u n -T k (u))a(x, u, ∇T k (u)) • ∇T j (u n -T k (u))}   θ ≤ C Ω f n T j (u n -T k (u)) θ + C Ω a(x, u, ∇T k (u)) • ∇T j (u n -T k (u)) , u, ∇T k (u)) • ∇T j (u n -T k (u)) θ Cj θ λ θ M(Ω) + C Ω a(x, u, ∇T k (u)) • ∇T j (u n -T k (u))Procedendo come fatto nel lemma 10.3 per il secondo termine e per µ(V ′ j ) , si ottienelim n→∞ Ω {[a(x, u n , ∇u n )a(x, u, ∇u)] • ∇(u nu)} θ ≤ Cj θ .Al limite per j → 0 si ha che lim n→∞ Ω {[a(x, u n , ∇u n )a(x, u, ∇u)] • ∇(u nu)} θ = 0;

Definizione 10 . 19 . 3 . 1 . 2 . 3 .

 10193123 Una σ-algebra di insiemi su Ω è una famiglia di insiemi di Σ ⊂ P(Ω) tale che 1. ∅ ∈ Σ; 102 CAPITOLO 10. PROBLEMI DI LERAY-LIONS CON SORGENTI A BASSA SOMMABILIT À2. se E ∈ Σ allora CE ∈ Σ, dove CE è Ω\E; 3. per ogni successione {E k } ⊆ Σ, +∞ k=1 E k ∈ Σ.(Ω, Σ) è chiamato spazio misurabile.Definizione 10.20. La σ-algebra dei boreliani di Ω, B(Ω), è la più piccola σ-algebra contenente i sottinsiemi aperti di Ω.Definizione 10.21. Sia (Ω, Σ) uno spzio misurabile. Una misura con segnoλ su Σ è una funzione da Σ a [-∞, +∞] tale che 1. λ(∅) = 0; 2. per ogni successione {E k } ⊆ Σ di insiemi disgiunti, λ non prende entrambi i valori -∞ e +∞.Definizione 10.22. Sia (Ω, Σ) uno spazio misurabile. Una misura λ su Σ è chiamata una misura di Borel su Ω se B(Ω) ⊆ Σ. Definizione 10.23. Sia (Ω, Σ) uno spazio misurabile. Una misura di Borel λ è regolare se, per ogni δ > 0 e per ogni E ∈ Σ, esiste un compatto K δ ⊆ E e un aperto A δ ⊇ E, tali che λ(E\K δ ) ≤ δ e λ(A δ \E) ≤ δ. Definizione 10.24. Sia (Ω, Σ) uno spazio misurabile. Sia λ una misura con segno su Σ. La variazione positiva di λ è λ + (E) = sup{λ(F ) : F ∈ Σ, F ⊆ E}, per ogni insieme E ∈ Σ. La variazione negativa di λ è λ -(E) = (-λ) + (E), per ogni insieme E ∈ Σ. La variazione totale di λ è la misura |λ| = λ + + λ -. Definizione 10.25. M(Ω) è l'insieme delle misure regolari con segno a variazione totale finita sulla σ-algebra dei boreliani di Ω. Su M(Ω) λ M(Ω) = |λ|(Ω) è una norma. Definizione 10.26. Sia {λ n } una successione di misure in M(Ω). Diremo che λ n converge * -debolmente a λ se lim n→+∞ Ω ϕ dλ n = Ω ϕ dλ, per ogni funzione continua f su C 0 (Ω). Teorema 10.27. Se λ ∈ M(Ω), allora esiste una successione {f n } di funzioni C ∞ 0 (Ω) tale che 1. f n L 1 (Ω) ≤ λ M(Ω) , ∀n ∈ N; 2. f n → λ * -debolmente in M(Ω).

  Nei capitoli 4 e 10 abbiamo visto dei risultati di esistenza di soluzioni del problema-div(a(x, u, ∇u)) = f in Ω u = 0 su ∂Ω, con f ∈ L m (Ω), per m ≥ 1.

-Teorema 11 . 1 .

 111 div(a(x, ∇u)) = f in Ω u = 0 su ∂Ω, (11.2.[START_REF] Ambrosetti | A primer of nonlinear analysis[END_REF] sotto le seguenti ipotesi: a : Ω × R N → R N è una funzione di Carathéodory, con le seguenti proprietà:1. esiste β > 0 tale che |a(x, ξ)| ≤ β|ξ|; 2. esiste α > 0 tale che a(x, ξ) • ξ ≥ α|ξ| 2 , ∀ ξ ∈ R N ; 3. [a(x, ξ)a(x, η)] • [ξη] > 0 se ξ = η.Osserviamo che l'ipotesi 3 implica che l'operatore -div(a(x, ∇v)) è monotono. Nel caso in cui il dato f ∈ L 2N N +2 (Ω), è facile dimostrarare il seguente teorema: Sotto le ipotesi precedenti, sia f ∈ L 2N N +2 (Ω). Allora il problema -div(a(x, ∇u)) = f in Ω u = 0 su ∂Ω ammette un'unica soluzione u ∈ H 1 0 (Ω).

Teorema 11 . 2 .

 112 Sia f in L 1 (Ω). Allora esiste un'unica soluzione di entropia del problema (11.2.[START_REF] Ambrosetti | A primer of nonlinear analysis[END_REF].Osservazione 11.3. Nel caso in cui f ∈ L 2N N +2 (Ω) le soluzioni in H 1 0 (Ω)sono soluzioni di entropia, come già osservato nel capitolo 10. I teoremi 11.1 e 11.2 sono dunque coerenti fra loro.Dimostrazione. Sia u una soluzione ottenuta per approssimazione come nel teorema 10.4. È sufficiente mostrare che ogni soluzione di entropia coincide con u. Per questo richiamiamo brevemente la costruzione di u. Consideriamo le soluzioni deboliu n ∈ H 1 0 (Ω) dei seguenti problemi -div(a(x, ∇u n )) = f n in Ω,(11.2.2)dove f n = T n (f ); sappiamo che u n ∈ L ∞ (Ω) per ogni n grazie al teorema 5.6. Inoltre, u n (x) e ∇u n (x) convergono, rispettivamente, a u(x) e ∇u(x) q.o. in Ω (vedere lemmi 10.1, 10.3) e abbiamo dimostrato u è una soluzione di entropia. Ora, sia z una seconda soluzione di entropia, cioèT k (z) ∈ H 1 0 (Ω) per ogni k > 0 e Ω a(x, ∇z) • ∇T k (zϕ) ≤ Ω f T k (zϕ), per ogni ϕ ∈ H 1 0 (Ω) ∩ L ∞ (Ω). Prendiamo ϕ = u n nella disuguaglianza precedente: otteniamo Ω a(x, ∇z) • ∇T k (zu n ) ≤ Ω f T k (zu n ). (11.2.3) Scegliamo inoltre T k (zu n ) ∈ H 1 0 (Ω) come funzione test in (11.2.2): abbiamo

11. 3 .

 3 UN RISULTATO DI UNICIT À PER UN OPERATORE NON MONOTONO 105 [a(x, ∇z)a(x, ∇u)] • ∇T k (zu). Il secondo membro tende a 0, fissato k, per il teorema di Lebesgue. Quindi usando il lemma di Fatou, possiamo passare al limite per n → +∞ ottenendo Ω [a(x, ∇z)a(x, ∇u)] • ∇T k (zu) ≤ 0 .

Osservazione 11 . 4 .

 114 Siano M , v e f definite dalle (10.6.1), (10.6.4) e (10.6.3) respettivamente. Il problema di Dirichlet, suΩ = {x ∈ R N : |x| < 1}, -div(M (x)∇v) = f in Ω v = 0su ∂Ω ammette due soluzioni distribuzionali. Infatti v è una soluzione, come visto nel paragrafo 10.6; inoltre esiste una soluzione v 1 in H 1 0 (Ω) dato che f ∈ L ∞ (Ω). Un esempio ancora più parlante è il seguente. Con le notazioni precedenti, la funzione w = vv 1

u ∈ H 1 0M 2 ≤ 11 . 4 Lemma 11 . 7 . 2 n 1 + 1 ( 2 n 1 + 2 n 1 + 2 n 1 + 2 n 1 +Teorema 11 . 8 .

 1211411721121212121118 (Ω) : -div(M (x, u) ∇u) = f. (11.3.[START_REF] Ambrosetti | A primer of nonlinear analysis[END_REF] Osserviamo che l'operatore A(v) = -div(M (x, v) ∇v) non è monotono. Infatti, considerando per semplicità il caso in cui M non dipende da x, si ha< A(v) -A(u), vu >= Ω [M (v)∇v -M (u)∇u] • ∇(vu).Basta scegliere u = v/2 per vedere che < A(v) -A(v/2), v/2 > non è necessariamente positivo per una qualunque scelta di M. Dimostreremo il seguente teorema: Teorema 11.5. Sia M (x, s) una matrice N × N costituita da funzioni m ij di Carathéodory, limitate e lipschitziane nella seconda variabile; supponiamo inoltre che esista una costante α > 0 tale cheM (x, s)ξ • ξ ≥ α |ξ| 2 . Allora, data f ∈ L 2N N +2 (Ω)esiste un'unica u appartenente a H 1 0 (Ω), soluzione debole di (11.3.1). Dimostrazione. L'esistenza di soluzioni segue dal teorema di Leray-Lions 4.1. Ora, siano u 1 e u 2 due soluzioni, cioè u 1 e u 2 soddisfano ΩM (x, u 1 )∇u 1 • ∇v = Ω f v ∀ v ∈ H 1 0 (x, u 2 )∇u 2 • ∇v = Ω f v ∀ v ∈ H 1 0 (Ω) .Sottraendo membro a membro otteniamoΩ M (x, u 1 )∇(u 1u 2 ) • ∇v = Ω [M (x, u 2 ) -M (x, u 1 )] ∇u 2 • ∇v. (11.3.2) Ora fissiamo due costanti reali b e B tali che 0 < b < B. Visto che le funzioni m ij sono lipschitziane, esiste una costante L > 0 tale che |M (x, u 1 ) -M (x, u 2 )| ≤ L |u 1u 2 |. Scegliendo v = u 1u 2 b + |u 1u 2 | come funzione test nella (11.3.2), otteniamo Ω M (x, u 1 )∇(u 1u 2 ) • ∇(u 1u 2 ) 1 (b + |u 1u 2 |) 2 = Ω [M (x, u 2 ) -M (x, u 1 )]∇u 2 • ∇(u 1u 2 ) 1 (b + |u 1u 2 |) 2 ;di conseguenza, sfruttando al primo membro l'ellitticità di M e al secondo la lipschitzianeità di m ij , otteniamoα Ω |∇(u 1u 2 )| 2 [b + |u 1u 2 |] 2 ≤ Ω L|∇u 2 ||∇(u 1u 2 )| b + |u 1u 2 | .Usando la disuguaglianza di Hölder con esponente 2 nel secondo membro e semplificando con il primo otteniamoα L u 2 H 1 0 (Ω) .La disuguaglianza di Poincaré applicata al primo membro implicaIntegrando su {|u 1u 2 | > B} otteniamo α cµ{|u 1u 2 | > B} log 1 + B b ≤ L u 2 H 1 0 (Ω) .Fissato B, se b → 0 + , l'ultima relazione ci dice cheµ{|u 1u 2 | > B} = 0 ∀ B > 0,e quindi u 1 = u 2 q.o. in Ω.11.4. UN RISULTATO DI UNICIT À PER SORGENTI MISURA107 Un risultato di unicità per sorgenti misuraIn questo paragrafo ci occuperemo del problema-div(M (x)∇u) = λ in Ω u = 0 su ∂Ω (11.4.1) dove λ ∈ M(Ω) e M ∈ R N ×N è una matrice simmetrica a coefficienti funzioni L ∞ (Ω) tale che M (x)ξ •ξ ≥ α|ξ| 2 . Supporremo che ∂Ω ∈ C 1 .Nel teorema 10.4 abbiamo visto che tale problema ammette una soluzione. Ricordiamo che abbiamo ottenuto tale soluzione per approssimazione. In questo paragrafo daremo appunto un risultato di unicità di soluzioni ottenute per approssimazione dai problemi-div(M (x)∇u n ) = f n in Ω u n = 0 su ∂Ω(11.4.2)dove f n è una qualunque successione di funzioni regolari che converge debolmente nel senso delle misure a λ, limitata in L 1 (Ω).Teorema 11.6. Sotto le ipotesi precedenti, siano u e v due soluzioni del problema (11.4.1) ottenute per approssimazione dal problema(11.4.2). Allora u = v.Per dimostrare il teorema abbiamo bisogno del seguente lemma: Sia f n : Ω → R una successione di funzioni tale cheΩ f |f n | → 0 . Allora f n → 0 in L parte, per ogni t > 0 fissato, Ω f |f n | ≥ {t<|fn|<1} f |f n | ≥ t 2 1 + t µ{t < |f n | < 1} . |f n | + µ{t ≤ |f n | ≤ 1} + tµ(Ω) |f n | + tµ(Ω)in base alle stime precedenti. Passando al limite per n → ∞ si halim n→∞ Ω |f n | ≤ tµ(Ω) ∀ t > 0 e dunque, vista l'arbitrarietà di t, f n → 0 in L 1 (Ω).Useremo anche il seguente teorema (per la dimostrazione vedere teorema 8.29 in[START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF] e teorema 5.12): 108 CAPITOLO 11. UNICIT À Sotto le ipotesi precedenti su M e su Ω, sia F ∈ (L q (Ω)) N , q > N . Allora la soluzione u ∈ H 1 0 (Ω) del problema -div(M (x)∇u) = divF in Ω u = 0 su ∂Ω è hölderiana in Ω e soddisfa sup x,y∈Ω |u(x)u(y)| |x -y| β ≤ C F L q (Ω)

  n+1 , x n ) = d(F (x n ), F (x n-1 )) ≤ θ d(x n , x n-1 ) ≤ ... ≤ θ n d(x 1 , x 0 ) (1.2.3)per ogni n ≥ 0. Per la disuguaglianza triangolare, dalla (1.2.3) otteniamo, per ogni p ∈ N d(x n+p+1 , x n

	8	CAPITOLO 1. ALCUNI TEOREMI DI PUNTO FISSO
	Grazie all'ipotesi (1.2.1), abbiamo	
	d(x	
		.2.2)
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  CAPITOLO 4. TEOREMA DI LERAY-LIONS e quest'ultimo termine converge a 0, visto che a(x, u n , ∇u) → a(x, u, ∇u) per il teorema di composizione 2.6. Abbiamo dunque dimostrato la(4.3.6).Applicando il lemma 4.10, a(x, u n , ∇u n ) → a(x, u, ∇u) debolmente in L p ′ (Ω), e quindi

	in Ω; usando il lemma
	di Fatou si ha
	lim inf n→∞
	Ω

Ω a(x, u n , ∇u n ) • ∇w → Ω a(x, u, ∇u) • ∇w.

D'altra parte, grazie al lemma 4.9, a(x, u n , ∇u n ) → a(x, u, ∇u) e ∇u n → ∇u q.o.

  la funzione t → e at è crescente e continua, possiamo scrivere

	Parte I: supponiamo che			
	n	n+1	n	
	e a k ≤	e at dt ≤	e a (k+1) .	(5.2.2)
	k=k0	k0	k=k0	
	Dividiamo ora la dimostrazione in due parti.			

Ω e a|f | < ∞. In base alla (5.2.2) e alla (5.2.

[START_REF] Ambrosetti | A primer of nonlinear analysis[END_REF] 

  non esiste una soluzione del problema (7.3.1);

	2. se

Ω

f ϕ 1 = t, esiste una soluzione del problema (7.3.1);

3. se

Ω f ϕ 1 < t, esistono due soluizoni del problema (7.3.1).

Useremo il seguente risultato. Lemma 7.18. Sotto le stesse ipotesi del terema 7.17 su g, siano u n

  in Ω e che |v n | ≤ C poiché ψ è continua e u n , u sono limitate in norma L ∞ (Ω); dunque per Lebesgue v n → 0. Occupiamoci ora del primo termine: si ha che M (x, u n )∇u → M (x, u)∇u q.o. e quindi in L 2 (Ω) per Lebesgue. Poiché ∇u n → ∇u debolmente in L 2 (Ω), il primo addendo tende a zero. Riprendendo dunque l'ultima disuguaglianza scritta, si ha che ∇u n -∇u L 2 (Ω) → 0.

	|∇u| 2 v n → 0 e	f v n → 0. Usando la disuguaglianza
	Ω	Ω
	di Hölder con esponente 2, si dimostra che	
	Passo 2: Vogliamo ora passare al limite nei problemi approssimanti e dimostrare che u è soluzione. Per
	ogni ϕ ∈ H 1 0 (Ω) ∩ L ∞ (Ω):	

Ω

u n

  uniformemente limitato. Grazie alla (10.2.3), Lemma 10.2. Sia f ∈ L m (Ω), m > 1. Allora le soluzioni u n dei problemi (10.2.1) sono uniformemente limitate in W 1,m * Dimostrazione. Dividiamo la prova in più passi: Passo I: dimostriamo che u n è uniformemente limitata in L m * * (Ω) . Prendiamo come funzione test nella formulazione debole dei problemi approssimanti (10.2.1)

Ω

|∇u n | q è uniformemente limitato. 0 (Ω) .

  1-θ .Ora, usando le funzioni test T j (u n -T k (u)) nei problemi (10.2.1) abbiamo

	(10.2.7)

Ω a(x, u n , ∇u n

  Il teorema di Vitali 2.2 implica che ∇u n → ∇u in L r (Ω) per ogni r < m * . Inoltre, dal fatto che ∇u n (x) → ∇u(x) q.o. in Ω, segue che a(x, u n (x), ∇u n (x)) → a(x, u(x), ∇u(x)) q.o. in Ω.L'ipotesi 1 su a e il lemma 10.2 assicurano che a(x, u n , ∇u n ) L m * (Ω) è uniformemente limitata, e dunque, grazie al teorema 2.1, otteniamo che a(x, u n , ∇u n ) → a(x, u, ∇u)
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