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Abstract

The paper deals with multiple scales in both space and time. First, the state-of-
the-art is presented. Then, we discuss a family of computational approaches using
time-space homogenization. Emphasis is put on the time aspects.

Key words: multiscale in time and space, homogenization, domain decomposition,
LATIN, parallel computing, proper orthogonal decomposition.

1 Introduction

Today, in structural mechanics, there is a growing interest in a class of tech-
niques called “multiscale computational approaches”, which are capable of
analyzing structures in which two or more very different scales can be iden-
tified. A typical engineering example is that of a relatively large structure in
which local cracking or local buckling occurs [1,2]. Another typical engineering
problem is related to the increasing interest in material models described on a
scale smaller than that of the macroscopic structural level, with applications
ranging from the design of composite materials and structures to manufac-
turing [3,4]. In such situations, the structure being studied is highly hetero-
geneous and the local solution involves short-wavelength phenomena in both
space and time. As a result, classical finite element codes lead to systems with
very large numbers of degrees of freedom and the corresponding calculation
costs are generally prohibitive. Therefore, one of today’s main challenges is to

∗ Corresponding author. E-mail: ladeveze@lmt.ens-cachan.fr

Preprint submitted to Elsevier Science 26 January 2008



derive computational strategies capable of solving such engineering problems
through true interaction between the two scales in both space and time: the
microscale and the macroscale.

This paper focuses on this challenge, with the objective of reducing calculation
costs drastically while, at the same time, trying to improve robustness.

The central issue is the transfer of information from one scale to another.
A very efficient strategy for linear periodic media consists in applying the
homogenization theory initiated by Sanchez-Palencia [5,6]. Further develop-
ments and related computational approaches can be found in [7–12]. First,
the resolution of the macro problem leads to effective values of the unknowns;
then, the micro solution is calculated locally based on the macro solution. The
fundamental assumption, besides periodicity, is that the ratio of the charac-
teristic length of the small scale to the characteristic length of the large scale
must be small. Boundary zones, in which the material cannot be homogenized,
require special treatment. Moreover, this theory is not directly applicable to
time-dependent nonlinear problems. Other computational strategies using ho-
mogenization techniques based on the Hill-Mandel conditions [13] have also
been proposed [14,15] and have similar limitations. Other paradigms for build-
ing multiscale computational strategies can be found in [16,17]. All these ap-
proaches introduce different scales only in space.

Only relatively few works have been devoted to multi-time-scale computa-
tional strategies. What are called multi-time-step methods [18–21] and time-
decomposed parallel time integrators [22,23] deal with different time discretiza-
tions and integration schemes. Local enrichment functions were introduced in
[24]. In multiphysics problems, coupling between time grids may be envisaged.
This type of problem was solved in [25] through the introduction of “mi-
cro/macro projectors” between grids. Parareal [26] or PITA [22] approaches
belong in this category. However, none of these strategies involves a true time-
homogenization technique. Such a technique seems to have been used only for
periodic loading histories [27–35].

Our first attempt to meet our challenge was to devise a new micro/macro com-
putational strategy [17] which involved space homogenization over the whole
domain while avoiding the drawbacks of classical homogenization theory. This
technique was expanded in [36] to include time as well as space thanks to
the LATIN Method, which enables one to work globally over the time-space
domain [37]. This is an iterative strategy. Here, it will be described in detail
for (visco)plastic materials and optional unilateral contact with or without
friction, a case already introduced in [17]. More complex types of material
behavior could also be taken into account.

The first characteristic of the method resides in the partitioning of the space-
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time domain. The structure is defined as an assembly of substructures and
interfaces. Each component has its own variables and its own equations. The
time interval is divided into subintervals, using the discontinuous Galerkin
method to handle possible discontinuities. The junction between the macroscale
and the microscale takes place only at the interfaces. Each quantity of interest
is considered to be the sum of a macro quantity and a micro quantity, where
the macro quantities are defined as “mean values” in time and in space, and
the associated micro quantities are the complementary parts; this is a choice.
An important point is that due to the Saint Venant principle the effects of the
micro quantities are localized in space.

The second characteristic of the method is the use of what we call the LATIN
method, a nonincremental iterative computational strategy applied over the
entire time interval being studied [37]. At each iteration, one must solve a
macro problem defined over the entire structure and the entire time interval,
along with a family of independent linear problems, each concerning a sub-
structure and its boundary. The latter are “micro” problems in contrast with
the “macro” problem which corresponds to the entire structure homogenized
in time as well as in space.

The third characteristic of the method concerns the resolution, over the time-
space domain, of the numerous micro problems (whose size can be very large)
within the cells or substructures. With the LATIN method, a classical ap-
proach consists in using radial time-space approximations [37,38], which re-
duce calculation and storage costs drastically. Here, a new, more efficient and
more robust version is introduced. This technique consists in approximating
a function defined in the space-time domain by a sum of products of scalar
functions of the time variable by functions of the space variable. As the iter-
ative process goes on, the functions of the space variable constructed in this
manner constitute a consistent basis which can be reused for successive it-
erations. Moreover, when dealing with similar substructures such as cells in
composites, this basis is common to all the substructures.

After reviewing the bases of the multiscale strategy with space and time ho-
mogenization, this paper will focus on suitable approximation techniques for
the resolution of the micro and macro problems and particularly on the new
radial time-space approximation. Several numerical examples will illustrate
the capabilities of the approach presented.

2 The reference problem

Under the assumption of small perturbations, let us consider the quasi-static
and isothermal evolution of a structure defined in the time-space domain

3



[0, T ]×Ω. This structure is subjected to prescribed body forces f
d
, to traction

forces F d over a part ∂2Ω of the boundary, and to prescribed displacements
Ud over the complementary part ∂1Ω (see Figure 1).

∂1Ω

∂2Ω

Ω

Fd

Ud

fd

Fig. 1. The reference problem

The state of the structure is defined by the set of the fields (ε̇p, Ẋ,σ,Y) (using
the dot notation �̇ for the time derivative), in which:

• εp designates the inelastic part of the strain field ε which corresponds to
the displacement field U , uncoupled into an elastic part εe and an inelastic
part εp = ε − εe; X designates the remaining internal variables;

• σ designates the Cauchy stress field and Y the set of variables which are
conjugates of X.

All these quantities are defined over the time-space domain [0, T ] × Ω and
assumed to be sufficiently regular. For the sake of simplicity, only the dis-
placement U is assumed to have a nonzero initial value, denoted U 0.

Introducing the following notations for the primal fields:

ep =






εp

−X




 , e =






ε

0




 and ee =






εe

X




 so that ep = e − ee (1)

and for the dual fields:

f =






σ

Y




 (2)

the mechanical dissipation rate for the entire structure Ω is:

∫

Ω
(ε̇p : σ − Ẋ ·Y)dΩ =

∫

Ω
(ėp ◦ f)dΩ (3)

where · denotes the contraction adapted to the tensorial nature of X and
Y, and ◦ denotes the corresponding operator. Let us introduce the following
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fundamental “dissipation” bilinear form:

〈s, s′〉 =
∫

[0,T ]×Ω
(1 − t

T
)(ėp ◦ f ′ + ė′

p ◦ f)dΩdt (4)

along with E and F, the spaces of the fields ėp and f which are compatible
with (4). These spaces enable us to define S = E× F, the space in which the
state s = (ėp, f) of the structure is being sought.

2.1 State laws

Following [37], a normal formulation with internal state variables is used to
represent the behavior of the material. If ρ denotes the mass density of the ma-
terial, from the free energy ρΨ(εe,X) with the usual uncoupling assumptions,
the state law yields:

σ = ρ
∂ψ

∂εe
= Kεe

Y = ρ
∂ψ

∂X
= ΛX

(5)

where the Hooke’s tensor K and the constant, symmetric and positive definite
tensor Λ are material characteristics. These equations can be rewritten in the
form:

f = Aee with A =






K 0

0 Λ




 (6)

where A is a constant, symmetric and positive definite operator. Let us note
that such an approach is available for most material models [37].

The constitutive equation is given by the positive differential operator B,
which is considered to be derived from the dissipation pseudo-potential φ∗(σ,Y):

ėp =






∂σφ
∗

∂Yφ
∗




 = B(f) with ep|t=0 = 0 (7)

One should note that for the sake of simplicity we are restricting this presen-
tation to the case of a sufficiently smooth pseudo-potential. Should this not
be the case, one would modify (7) by considering ∂�φ

∗ to be a subdifferential
and replacing the first equality by an inclusion.

For example, if we consider standard viscoplastic behavior with isotropic strain
hardening described by the scalar p and kinematic strain hardening described
by the second-order tensor α, and if the scalar R and the tensor β are the
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conjugate variables of p and α respectively, we have:

ρψ =
1

2
εe : K : εe +

1

2
c ‖α‖2 +

1

2
λp2

φ∗ =
k

n+ 1
〈‖σD − β‖ +

a

2c
‖β‖2 − ℓ(R) − R0〉n+1

+

(8)

where ‖β‖ =
√

β : β, σD is the deviatoric part of Tensor σ and 〈�〉+ extracts
the positive part of the argument. Scalars k, n, c, λ, a, R0 and Function ℓ are
material characteristics.

2.2 Compatibility conditions and equilibrium equations

The compatibility conditions and equilibrium equations are described below
and some functional spaces are introduced. We use the notation �⋆ to desig-
nate the vector space associated with an affine space �.

• The displacement field U should match the prescribed displacement Ud at
Boundary ∂1Ω and the initial condition U 0 at t = 0:

U |∂1Ω = Ud and U |t=0 = U 0 (9)

The corresponding space of displacement fields U is denoted U .

• The stress field σ should be symmetric and in equilibrium with the external
prescribed forces F d at ∂2Ω and the prescribed body forces f

d
in Ω. The

corresponding variational formulation is:

∀U ⋆ ∈ U⋆, −
∫

[0,T ]×Ω
σ : ε(U̇

⋆
)dΩdt

+
∫

[0,T ]×Ω
f

d
· U̇ ⋆

dΩdt+
∫

[0,T ]×∂2Ω
F d · U̇

⋆
dSdt = 0 (10)

The subspace of F whose elements f = [σ Y]T verify the previous condition
is denoted F . These fields are said to be “statically admissible”.

• The strain rate field ε̇ should derive from the symmetric part of the gradient
of a displacement field belonging to Space U . The corresponding variational
formulation is:

∀f⋆ ∈ F
⋆, −

∫

[0,T ]×Ω
σ⋆ : ε̇dΩdt+

∫

[0,T ]×∂1Ω
σ⋆n · U̇ddSdt = 0 (11)

The subspace of E whose elements ė = [ε̇ −Ẋ]T verify the previous condition
is denoted E . These fields are said to be “kinematically admissible”.
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2.3 Formulation of the reference problem

The reference problem defined over the time-space domain [0, T ] × Ω can be
formulated as follows:

Find sref = (ėp, f) which verifies, with e = ee + ep,

• the kinematic admissibility ė ∈ E

• the static admissibility f ∈ F

• the state law f = Aee

• the evolution law ėp = B(f) with ep|t=0 = 0

(12)

which is equivalent to:

Find sref = (ėp, f) which verifies

(A−1ḟ + ėp) ∈ E , f ∈ F , ėp = B(f) with ep|t=0 = 0
(13)

3 Reformulation of the problem with structure decomposition

Now, the basic idea consists in describing the structure as an assembly of sim-
ple components, i.e. substructures and interfaces, each with its own variables
and equations (admissibility, equilibrium and behavior) [37] (see Figure 2).

Each substructure ΩE of Ω is defined by the set of variables (ėpE, fE) and
subjected at its boundary ∂ΩE to the action of its environment (the neigh-
boring interfaces), described by a displacement distribution WE and a force
distribution FE . We will use the subscript �E to designate the restriction of
variables and operators to Subdomain ΩE .

Clearly, WE and FE viewed from Substructure ΩE play the role of prescribed
boundary conditions. If these boundary conditions are assumed to be known
and compatible, the problem in Subdomain ΩE consists in finding a solution
of an equation similar to (13) in which WE participates in the definition of
kinematic admissibility and FE in the definition of static admissibility.

Let sE = (ėpE , ẆE , fE, FE) denote the set of the variables describing the state
of Substructure ΩE and its boundary ∂ΩE . The mechanical dissipation rate
in Substructure ΩE is:

∫

ΩE

(ėpE ◦ fE)dΩ −
∫

∂ΩE

ẆE · FEdS (14)
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FE'

ΦEE'

FE

WE'

WE

ΩE

ΩE'

ΩE ΩE'ΦEE'

Fig. 2. Decomposition of the structure into substructures and interfaces

and we introduce the following fundamental “dissipation” bilinear form:

〈sE , s
′
E〉E =

∫

[0,T ]×ΩE

(1 − t

T
)(ėpE ◦ f ′E + ė′

pE ◦ fE)dΩdt

−
∫

[0,T ]×∂ΩE

(1 − t

T
)(ẆE · F ′

E + Ẇ
′

E · FE)dSdt (15)

along with EE, WE , FE and FE , the spaces of the fields ėpE , ẆE , fE and FE

which are compatible with (15). These spaces enable us to introduce SE =
EE ×WE ×FE ×FE, the space within which sE = (ėpE, ẆE, fE , FE) is being
sought.

Partitioning a structure into non-overlapping subdomains is a rather classical
idea in mechanics. Another idea consists in considering the interface variables,
or at least some of these variables, to be Lagrange multipliers. With this
approach, the variables we introduced can be viewed as distributed Lagrange
multipliers of both the displacement and force types. One can observe that at
each point of an interface one has three displacement-force pairs: one for each
substructure on either side of the interface plus one for the interface itself.

One can also note that our description provides a natural framework for deal-
ing with different discretizations in adjacent subdomains (non-matching grids),
because the interfaces and subdomains can be meshed independently of one
another.
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3.1 Admissibility conditions for Substructure ΩE

The following conditions must be verified:

• The displacement field UE should match the interface displacement WE at
Boundary ∂ΩE and the initial condition UE0 at t = 0:

UE |∂ΩE
= WE and UE |t=0 = UE0 (16)

The corresponding space of displacement fields (UE ,WE) is denoted UE.

• The stress field σE should be symmetric and in equilibrium with the in-
terface forces FE on ∂ΩE

and the prescribed body forces f
d

on ΩE . The
corresponding variational formulation is:

∀(U ⋆
E,W

⋆
E) ∈ U⋆

E , −
∫

[0,T ]×ΩE

σE : ε(U̇
⋆

E)dΩdt

+
∫

[0,T ]×ΩE

f
d
· U̇ ⋆

EdΩdt+
∫

[0,T ]×∂ΩE

FE · Ẇ ⋆

EdSdt = 0 (17)

The subspace of FE×FE whose elements fE = [σE YE]T verify the previous
condition is denoted FE.

• The strain rate field ε̇E should derive from the symmetric part of the gra-
dient of a displacement field belonging to Space UE . The corresponding
variational formulation is:

∀(f⋆
E , F

⋆
E) ∈ F

⋆
E, −

∫

[0,T ]×ΩE

σ⋆
E : ε̇EdΩdt+

∫

[0,T ]∂ΩE

F ⋆
E · ẆEdSdt = 0

(18)
The subspace of EE × WE whose elements eE = [ε̇E − ẊE]T verify the
previous condition is denoted EE .

• Then, the set of variables sE = (ėpE , ẆE , fE, FE) should verify:

(A−1ḟE + ėpE) ∈ EE and fE ∈ FE (19)

which defines AdE, the subspace of SE whose elements sE verify the previous
conditions (these fields are said to be “E-admissible”), but also the evolution
law:

ėpE = B(fE) and epE |t=0 = 0 (20)
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3.2 Interface behavior

The interface concept can be easily extended to the boundary of Ω, ∂Ω, where
either the displacements or the forces are prescribed. It suffices to set:

• for a prescribed displacement at ΦE1 = ∂ΩE ∩ ∂1Ω: WE = Ud;
• for a prescribed force at ΦE2 = ∂ΩE ∩ ∂2Ω: FE = F d.

Let ΩE denote the set of the neighboring substructures of ΩE and ΦEE′ the
interface between ΩE and ΩE′ ∈ ΩE. This interface is characterized by the re-
strictions to ΦEE′ of both the displacement field (WE,WE′) and the force field
(FE, FE′), denoted (WEE′,WE′E) and (FEE′, FE′E) respectively. At Interface
ΦEE′, the action-reaction principle:

FEE′ + FE′E = 0 (21)

holds, along with a constitutive relation of the form:

FEE′|t = bEE′

([

ẆEE′ − ẆE′E

]

|τ
, τ 6 t

)

(22)

where bEE′ is an operator characterizing the behavior of the interface. For
instance, one can have:

• for a perfect connection:

WEE′ = WE′E (23)

which can be interpreted as bEE′ being a linear stiffness operator with an
infinite norm;

• for unilateral contact without friction:







ΠEE′ FEE′ = 0

nEE′ · (WEE′ −WE′E − g
EE′

) > 0, nEE′ · FEE′ 6 0
(

nEE′ · (WEE′ −WE′E − g
EE′

)
)

(nEE′ · FEE′) = 0

(24)

where nEE′ is the vector normal to Interface ΦEE′ going from Subdomain
ΩE to Subdomain ΩE′ , ΠEE′ is the corresponding orthogonal projector, and
g

EE′
is the initial gap between the substructures.

Clearly, in the case of problems with multiple contacts, the philosophy of the
method consists in fitting the contact interfaces between the substructures
with the material interfaces between the different components of the assembly
[37,39]. Each individual component can also be partitioned artificially using a
perfect connection interface.

10



3.3 Reformulation of the reference problem

Going back to the reference problem stated at the beginning (13), this problem
obviously consists in finding the set s = (sE)ΩE⊂Ω in the space S =

⊗

ΩE⊂Ω SE .
Let E, W, F and F denote the extensions of the previous spaces EE, WE , FE

and FE to the entire problem. For the sake of simplicity, we will use the nota-
tion (ėp, Ẇ , f , F ) ∈ E×W×F×F to designate a set (ėpE , ẆE , fE, FE)ΩE⊂Ω ∈
EE ×WE × FE × FE.

The decomposed reference problem, defined over the entire time-space domain
[0, T ] × Ω, can be formulated as follows:

Find sref = (sE)ΩE⊂Ω which verifies, ∀ΩE ⊂ Ω,

• the E-admissibility condition sE ∈ AdE

• the evolution law ėpE = B(fE) with epE |t=0 = 0

• the interface behavior ∀ΩE′ ∈ ΩE , FEE′ + FE′E = 0 and

FEE′|t = bEE′

([

ẆEE′ − ẆE′E

]

|τ
, τ 6 t

)

(25)

4 Multiscale description in the time-space domain [0, T ] × Ω

4.1 A two-scale description of the unknowns

The following idea was initially introduced for multiscale problems in space,
then extended to multiscale problems in both time and space in [36]. The
approach consists in introducing a two-scale description of the unknowns:
these two scales are denoted “macro” and “micro” and concern both space
and time. The distinction between the macrolevel and the microlevel is made
only at the interfaces.

For the neighboring interfaces of Substructure ΩE , the unknowns (ẆE , FE) ∈
WE × FE are split into:

ẆE = Ẇ
M

E + Ẇ
m

E and FE = FM
E +Wm

E (26)

where Superscripts �M and �m designate the macro parts and the micro
complements of the fields respectively. The spaces corresponding to the macro
parts are WM

E and FM
E , and the spaces corresponding to the micro parts are

Wm
E and Fm

E . The extensions of these spaces to the entire set of interfaces are
WM , FM , Wm and Fm.
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Spaces WM
E and FM

E can be chosen arbitrarily, provided that they are com-
patible with (15) and that WM

E includes the trace of the rigid body modes on
∂ΩE (which implies that FM contains the self-balanced forces). Once these

spaces have been chosen, the macro part Ẇ
M

E of Field ẆE ∈ WE is defined
by:

∀F ⋆ ∈ FM
E ,

∫

[0,T ]×∂ΩE

(Ẇ
M

E − ẆE) · F ⋆dSdt = 0 (27)

and the macro part FM
E of Field FE ∈ FE by:

∀W ⋆ ∈ WM
E ,

∫

[0,T ]×∂ΩE

(FM
E − FE) · Ẇ ⋆

dSdt = 0 (28)

Consequently, the micro parts are Ẇ
m

E = ẆE − Ẇ
M

E and Fm
E = FE − FM

E ,
and the scales are uncoupled as follows:

∫

[0,T ]×∂ΩE

ẆE · FEdSdt =
∫

[0,T ]×∂ΩE

(Ẇ
M

E · FM
E + Ẇ

m

E · Fm
E )dSdt (29)

For space, the macroscale is defined by the characteristic length of the inter-
faces, which is a priori much larger than the scale of the spatial discretization.
For example, the macro parts are defined as affine functions on each interface
ΦEE′.

For time, the macroscale is associated with a coarse partition T M
h = {0 =

tM0 , . . . , t
M
nM = T} of the time interval [0, T ] being studied. Its characteristic

time (i.e. the maximum length of a time step) is chosen much larger than the
characteristic time of the initial time discretization Th = {0 = t0, . . . , tn = T}.
For example, the macro parts are defined as polynomials of degree p in each
macro interval IM

k =]tMk , t
M
k+1[. Let us note that the choice of functions which

are possibly discontinuous implies that one should consider all the equations
in the time-discontinuous Galerkin scheme sense [40].

The choices adopted for the definition of the macro quantities are physically
sound: these quantities are mean values in time and in space. Fields WM

E

and FM
E are written at each space-time point (M, t) of ΦEE′ × IM

k in the
form

∑

i,j αije
M
j (M)fM

i (t), for which a choice of basis functions eM
j and fM

j is
represented in Figures 3 and 4 in the case of a two-dimensional interface.

4.2 Admissibility of the macro quantities

An important feature of the multiscale computational strategy presented here
is that the transmission conditions at the interfaces are partially verified a

12
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Fig. 4. Time level: quadratic basis functions (p = 2) {fM
i }i∈{1,...,3} in Interval IM

k

priori. The set of the macro forces FM = (FM
E )ΩE⊂Ω is required to verify the

transmission conditions systematically, including the boundary conditions:

FM
EE′ + FM

E′E = 0 on ΦEE′

FM
E2 + FM

d = 0 on ΦE2

(30)

The corresponding subspace of FM is designated by FM
ad. We also introduce

WM
ad, the subspace of WM whose elements are continuous at the interfaces and

equal to the prescribed velocity U̇d on ∂1Ω. The subspaces of W and F whose
elements have their macro parts in WM

ad and FM
ad are designated by Wad and

Fad.
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5 The multiscale computational strategy

5.1 The driving force of the strategy

The decomposed reference problem, defined over the time-space domain [0, T ]×
Ω, can be formulated as follows:

Find sref = (sE)ΩE⊂Ω which verifies, ∀ΩE ⊂ Ω,

(a) the E-admissibility condition sE ∈ AdE

(b) the admissibility of the macro forces F ∈ Fad

(c) the evolution law ėpE = B(fE) with epE |t=0 = 0

(d) the interface behavior ∀ΩE′ ∈ ΩE, FEE′ + FE′E = 0 and

FEE′|t = bEE′

([

ẆEE′ − ẆE′E

]

|τ
, τ 6 t

)

(31)

The driving force of the strategy we are about to describe is the LATIN method
[37], which is a general, mechanics-based computational strategy for the res-
olution of time-dependent nonlinear problems which works over the entire
time-space domain. It has been successfully applied to a variety of problems:
quasi-static and dynamic analysis, post-buckling analysis, analysis of highly
heterogeneous systems [39,17,41] and multiphysics problems [25].

The first principle of the LATIN method consists in dealing with the difficulties
separately by dividing the solutions of the equations into two independent
subspaces: the space Ad of the solutions to the global linear equations (31a)
and (31b) (defined on the level of the whole structure) and the space Γ of
the solutions to the local nonlinear equations (31c) and (31d) (defined on the
local level).

The second principle of the method consists in using an iterative scheme to
obtain the solution of the problem, which can be interpreted as sref = Ad∩Γ.
One iteration consists of two stages, called the “local stage” and the “linear
stage”. As shown in Figure 5, these stages consist in building fields of Γ and
Ad alternatively, an iterative process which, under conditions which will be
described later, converges towards the solution sref of the problem. These
stages will be analyzed in the following sections.

Figure 6 attempts to give a geometrical interpretation of the method in the
space generated by (ėp,W ) and (f , F ), by showing the sets of equations Ad and
Γ, and the “search directions” E+ and E− which are introduced to converge
toward the solution.
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· · · −→ sn ∈ Ad
local stage−−−−−−→ ŝn+1/2 ∈ Γ

linear stage−−−−−−→ sn+1 ∈ Ad
︸ ︷︷ ︸

Iteration n + 1

−→ ŝn+3/2 ∈ Γ −→ · · · −→ sref

Fig. 5. Local stage and linear stage at Iteration n + 1

+

−

^
sn+1/2

sn+1

sn

sref

Γ

Ad

E

E

(ep, W)

(f, F)

Fig. 6. One iteration of the LATIN method

5.2 The local stage at Iteration n+ 1

This stage consists in building ŝn+1/2 = (ŝE)ΩE⊂Ω ∈ Γ knowing sn = (sE)ΩE⊂Ω ∈
Ad and using an “ascent” search direction E+, followed by ŝn+1/2 − sn = Ds

(see Figure 6). This search direction is defined by:

Ds = (DsE)ΩE⊂Ω ∈ E+ ⇐⇒ ∀ΩE ⊂ Ω,







DėpE + HDfE = 0

DẆE − hDFE = 0
(32)

where H and h are symmetric, positive definite operators which are parameters
of the method. This search direction can be redefined using a weak formulation
for the substructure part:

∀f⋆ ∈ F,
∑

ΩE⊂Ω

∫

[0,T ]×ΩE

(DėpE + HDfE) ◦ f⋆
EdΩdt = 0 (33)

and for the boundary part:

∀F ⋆ ∈ F ,
∑

ΩE⊂Ω

∫

[0,T ]×∂ΩE

(DẆE − hDFE) · F ⋆
EdSdt = 0 (34)

One can easily show that seeking ŝn+1/2 common to Γ and E+ leads to the
resolution of a set of problems which are local in the space variable (and, very
often, also in the time variable), and, therefore, lend themselves to the highest
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degree of parallelism. This property justifies the term “local” to describe this
stage.

5.3 The linear stage at Iteration n+ 1

This stage consists in building sn+1 = (sE)ΩE⊂Ω ∈ Ad knowing ŝn+1/2 =
(ŝE)ΩE⊂Ω ∈ Γ and using a “descent” search direction E−, followed by sn+1 −
ŝn+1/2 = Ds (see Figure 6). This search direction is defined by:

Ds = (DsE)ΩE⊂Ω ∈ E− ⇐⇒ ∀ΩE ⊂ Ω,







DėpE −HDfE = 0

DẆE + hDFE = 0
(35)

This search direction can be redefined using a weak formulation for the sub-
structure part:

∀f⋆ ∈ F,
∑

ΩE⊂Ω

∫

[0,T ]×ΩE

(DėpE −HDfE) ◦ f⋆
EdΩdt = 0 (36)

and for the boundary part:

∀F ⋆ ∈ Fad,
∑

ΩE⊂Ω

∫

[0,T ]×∂ΩE

(DẆE + hDFE) · F ⋆
EdSdt = 0 (37)

with the adjunction of the condition that the test function F ⋆ belongs to Fad

instead of F , which enables one to guarantee the admissibility of the macro
forces. The last equation is reformulated with the introduction of a Lagrange

multiplier ˙̃WM ( ˙̃WM = ( ˙̃WM
E )ΩE⊂Ω ∈ WM⋆

ad ):

∀F ⋆ ∈ F ,
∑

ΩE⊂Ω

{
∫

[0,T ]×∂ΩE

(DẆE + hDFE) · F ⋆
EdSdt

−
∫

[0,T ]×∂ΩE

˙̃WM
E · F ⋆

EdSdt

}

= 0 (38)

and the admissibility of the macro forces is expressed by:

∀ ˙̃WM⋆ ∈ WM⋆
ad ,

∑

ΩE⊂Ω

{
∫

[0,T ]×∂ΩE

˙̃WM⋆
E · FEdSdt−

∫

[0,T ]×ΦE2

˙̃WM⋆
E · F ddSdt

}

= 0 (39)

The resolution of the linear stage can be divided into two parts: the resolution
of a set of micro problems defined over each time-space substructure [0, T ] ×
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ΩE , and the resolution of a global macro problem defined over the entire time-
space domain [0, T ] × Ω.

5.3.1 The micro problems defined over each [0, T ] × ΩE and [0, T ] × ∂ΩE

Each micro problem associated with ΩE is a linear evolution equation:

Find (sE)ΩE⊂Ω which verifies, ∀ΩE ⊂ Ω,

• the E-admissibility condition sE ∈ AdE

• the search direction (36, 38)

(40)

Since (38) is local at Boundary ∂ΩE , the micro problems in the substructures
are independent of one another. Since H and h are positive definite operators,
the micro problem defined over [0, T ] × ΩE has a unique solution such that:

sE = s
(1)
E + s

(2)
E ( ˙̃WM

E ) (41)

where s
(1)
E depends on the additional loading and on the previous approxima-

tion of the solution ŝE , and s
(2)
E depends linearly on ˙̃WM

E , which is unknown
at this stage. In particular, one has:

FM
E = F̂

M

E,d + LE
˙̃WM

E (42)

where F̂E,d is due to the additional loading and to the previous approximation
to the solution, and LE is a linear operator which can be interpreted as a
homogenized behavior operator over the time-space substructure [0, T ] × ΩE .
This operator can be calculated by solving a set of micro problems over [0, T ]×
ΩE in which one takes successively for ˙̃WM

E the macro basis functions of WM
E .

5.3.2 The macro problem defined over [0, T ] × Ω

The macro problem defined over the entire time-space domain [0, T ] × Ω is:

Find ( ˙̃WM , FM) which verifies

• the admissibility of the Lagrange multiplier ˙̃WM ∈ WM⋆
ad

• the admissibility of the macro forces F ∈ Fad

• the homogenized behavior (42)

(43)

Introducing (42) into the admissibility condition of the macro forces (39), then
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using the micro-macro uncoupling property (29), one has:

∀ ˙̃WM⋆ ∈ WM⋆
ad ,

∑

ΩE⊂Ω

{
∫

[0,T ]×∂ΩE

˙̃WM⋆
E · (F̂M

E,d + LE
˙̃WM

E )dSdt

−
∫

[0,T ]×ΦE2

˙̃WM⋆
E · F ddSdt

}

= 0 (44)

which corresponds to the resolution of a homogenized problem over the whole
structure. If the number of macro time-space substructures is large, an ap-
proximation technique based on the introduction of a third scale can be used
[36].

5.3.3 Resolution of the linear stage

The resolution of the linear stage proceeds as follows: first, one solves a series of
micro problems, each defined over [0, T ]×ΩE , in which one takes into account

only the data ŝE of the previous stage. This leads to s
(1)
E . Then, one solves

the macro problem defined over [0, T ] × Ω, leading to ˙̃WM . Finally, in order

to obtain s
(2)
E , one solves a second series of micro problems with the Lagrange

multiplier as the only data.

Since the macro mesh is defined in time and in space, the micro problems
are independent not only from one substructure to another, but also from one
macro time interval to another. One should note that the macro quantities are
defined at the interfaces only. By treating the medium as a Cosserat material,
one can define macro stresses, macro strains... inside a substructure ΩE . Each
cell is assumed to be homogeneous on the macroscale. Thus, macro quan-
tities and conjugate quantities could be derived from the generalized forces
and displacements at the interfaces, which would lead to a nonconventional
Cosserat-like material.

5.4 Choice of the parameters (H,h) and convergence of the algorithm

Following the proof given in [37], one can prove that the quantity 1
2
(sn+1 +

sn) converges towards sref , the solution of Problem (31). The choice of the
parameters (H,h) influences only the convergence of the algorithm, but does
not affect the solution.

To ensure the convergence of sn and, more generally, to ensure convergence
for many types of material behavior, a relaxation technique may be needed.
Renaming s̄n+1 the quantity previously denoted sn+1, we redefine sn+1, the
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approximation generated by the linear stage n+ 1, as:

sn+1 = µs̄n+1 + (1 − µ)sn (45)

where µ is a relaxation parameter usually equal to 0.8.

In the case of linear behavior, one can choose, for example, H = B and
h = L

ET
I, where E is the Young’s modulus of the material, LE a characteristic

length of the interfaces, T the duration of the phenomenon being studied and I

the identity operator. Other possible choices, especially in the nonlinear case,
are discussed in [37].

Since the reference solution sref is the intersection of Γ and Ad, the distance
between ŝn+1/2 and sn is a good error indicator to verify the convergence of
the algorithm [42]. The simplest measure of this distance is:

η =
‖ŝn+1/2 − sn‖
1
2
‖ŝn+1/2 + sn‖

(46)

with:

‖s‖2 =
1

2

∑

ΩE⊂Ω

∫

[0,T ]×ΩE

(1 − 1

T
)(ėpE ◦ H−1ėpE + fE ◦ HfE)dΩdt (47)

5.5 First example

Let us consider the 3D problem of a composite structure containing cracks (see
Figure 7(a)). The structure is fixed at the bottom and subjected to forces F 1,
F 3 and F 3 (see Figure 7(b)). The overall dimensions are 120× 120 × 20 mm,
and the time interval being studied is T = 10 s. The cracks are described using
unilateral contact with Coulomb friction characterized by Parameter f = 0.3.

The structure consists of two types of cells: Type-I cells are homogeneous,
made of Type-1 material; Type-II cells consist of a matrix of Type-1 material
with inclusions of Type-2 material. Type-1 and Type-2 materials are viscoelas-
tic and their properties are given in Table 1. The corresponding constitutive
relations are ε̇p = Biσ = 1

ηi
K−1

i σ.

The problem was divided into 351 substructures and 1,296 interfaces as shown
on Figure 8, each substructure corresponding to one cell. On the microlevel,
Type-I and Type-II substructures and interfaces were meshed with 847, 717
and 144 degrees of freedom (DOFs) respectively. The distinction between the
macroscale and the microscale was made only at the interfaces and the macro
part consisted of a single linear element with only 9 DOFs per interface (see
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Fig. 7. Description of the problem

Material Type-1 Type-2

Young’s modulus E1 = 50 GPa E2 = 250 GPa

Poisson’s ratio ν1 = 0.3 ν2 = 0.2

Viscosity parameter η1 = 10 s η2 = 1000 s

Table 1
Material properties

Figure 3). With respect to time, the microlevel was associated with a re-
fined discretization into 60 intervals using a zero-order discontinuous Galerkin
scheme, and the macrolevel was associated with a coarse discretization into 3
macro intervals using a second-order discontinuous Galerkin scheme.

Interface
Type-I

substructure

Type-II

substructure

Fig. 8. Decomposition and microscale discretizations in space

Since the constitutive relation is linear, the search direction chosen for the
substructures was H = B. The characteristic length of the interfaces being
LE = 4 mm, we chose for all the interfaces the search direction h = hI, where
h = LE

E1ν1

is a constant scalar.
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Figure 9 shows the evolution of the error indicator η throughout the iterations.
One can observe that the algorithm converges rapidly toward an accurate
solution (1% error after 12 iterations). Figure 10 shows the approximate Von
Mises stress field over the structure (with a zoom near one of the cracks) at
the final time T = 10 s for Iterations 1, 5 and 20 and after convergence (the
reference solution). The evolution over time of the displacement field W at
Point P2 is also represented. One can observe that thanks to the resolution of
a macro problem the method leads, even on the first iteration, to a rather good
approximation of the solution of the problem over both the space and time
domains. After a few iterations, the solution becomes even more accurate and
the stress and displacement discrepancies tend to zero. After 20 iterations, the
difference between the approximate solution and the reference solution is no
longer visible.
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10-1

Iterations

E
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o
r 
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d
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Fig. 9. Convergence of the method

An example of the micro/macro description of the solution is given in Fig-
ure 11. Figures 11(a) and 11(b) show the evolutions of Force F and its macro
part FM respectively at time t = 2/3T over a horizontal line L1 in the het-
erogeneous part of the structure, and as functions of time at a point P1 of the
previous line. Figures 11(a) and 11(b) show the same evolutions for Displace-
ment W and its macro part WM .

One can observe that the macro part of the quantities being considered con-
stitutes a good average approximation of the solution, obtained with only a
very small number of basis functions (27 DOFs per interface and per macro
interval). The choice of such a basis leads to the resolution at each iteration of
a macro problem with a strong mechanical meaning and with only a few DOFs
(in this example, 35,000 DOFs compared to 270,000 DOFs for the assembled
reference problem).
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Fig. 10. Approximate solutions throughout the iterations

6 The radial time-space approximation

The global structure is decomposed into several substructures. Throughout the
iterative process, one has to solve for each of these substructures a set of micro
problems which represent the equations defined over the corresponding time-
space domains. The cost of solving these problems with standard methods can
be prohibitive, which led us to the development of what we call the “radial
time-space approximation”.

The radial time-space approximation was introduced by Ladevèze in 1985
([43], see also [34,37]) and is commonly used in the LATIN method. This is
the third principle of the LATIN method and it is indeed what makes it so
efficient. It was shown in previous works that under the small-displacement
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Fig. 11. Micro/macro description of the solution

assumption this approach reduces the computational cost drastically. The ba-
sic idea consists in approximating a function f defined over the time-space
domain [0, T ] × Ω by a finite sum of products of time functions λi by space
functions Λi:

∀(t,M) ∈ [0, T ] × Ω, f(t,M) :
∑

i

λi(t)Λi(M) (48)

where the products λi(t)Λi(M) are called “radial time-space functions”. It is
important to note that this is not a spectral decomposition because neither
the λi nor the Λi are known a priori.

The starting point of the radial time-space approximation is the radial loading
approximation, defined by a single product, which is very well-known and
commonly used in (visco-)plasticity. This type of approximation could also be
seen by replacing the time variable by space variables or stochastic variables.
Such developments have been proposed in [44] for radial hyperreduction, in
[45,46] for the resolution of fundamental physics problems and in [47] for the
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resolution of stochastic problems. In a certain way, one can say that such
approximations belong to the “Proper Orthogonal Decomposition” class of
problems [48].

6.1 General properties

Let f be a known scalar function defined over the time-space domain [0, T ]×Ω,
and let us study the best mth-order time-space approximation of Function f :

fp(t,M) =
p

∑

i=1

λi(t)Λi(M) (49)

The following scalar products are introduced:

〈f, g〉[0,T ]×Ω =
∫

[0,T ]×Ω
fg dΩdt, 〈f, g〉[0,T ] =

∫

[0,T ]
fg dt, 〈f, g〉Ω =

∫

Ω
fg dΩ

(50)

It was shown in [37] that the best approximation with respect to the ‖·‖[0,T ]×Ω-
norm is the result of an eigenvalue problem whose eigenfunctions are the time
functions λi. This problem can be rewritten as the stationarity of the Rayleigh
quotient:

R(λ) =
‖〈f, λ〉[0,T ]‖2

Ω

‖λ‖2
[0,T ]

(51)

It was also proved in [37] that if [0, T ]×Ω is the space such that f and ḟ be-
long to L2([0, T ], L2(Ω)), the eigenvalue problem has a countable sequence of
eigensolutions (α−1

i , λi) where the eigenvalues α−1
i are positive and the eigen-

functions λi are orthogonal.

The time functions λi having been determined, the corresponding space func-
tions Λi are:

Λi =
〈f, λi〉[0,T ]

‖λi‖2
[0,T ]

(52)

The following convergence property is verified:

‖f − fp‖[0,T ]×Ω −→
p→+∞

0 (53)

and a simple measure of the relative error is:

ηp =
‖f − fp‖[0,T ]×Ω

‖1
2
(f + fp)‖[0,T ]×Ω

(54)
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6.2 Illustration

In order to illustrate the relevance of the previous time-space approximation,
let us take as an example the case of a randomly-obtained irregular function
f defined over a time-space interval [0, T ] × [0, L]. Figure 12 shows Function
f along with its first-, second- and third-order approximations. The relative
error achieved with only 3 radial functions was less than 1%, which gives an
idea of the remarkable accuracy of the proposed time-space approximation.

(a) Irregular time-space function f (b) First-order approximation f1: error
η1 = 3.9%

(c) Second-order approximation f2: er-
ror η2 = 1.5%

(d) Third-order approximation f3: error
η3 = 0.6%

Fig. 12. Time-space approximations of an irregular function f

6.3 Practical implementation

Working with the radial time-space description alone constitutes a very con-
venient framework in which the storage requirement is drastically reduced.
Here, we are following [49] to show the potential of this framework.

Let us divide the time interval [0, T ] being studied intom subintervals {Ii}i=1,...,m
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of lengths {∆ti}i=1,...,m, as shown in Figure 13. The centers {ti}i=1,...,m of these
subintervals are called “reference times” and one has Ii = [ti − ∆ti/2, ti +
∆ti/2].

0 T

tmti

∆ti

t1 t2
t

Fig. 13. The reference times in [0, T ]

For space, let us also introduce m′ points {M j}j=1,...,m′ and partition Ω into
{Ωj}j=1,...,m′, as shown in Figure 14. These points are called “reference points”
and the measures of the subdomains are denoted {ωj}i=j,...,m′. In practice, there
should be about a few dozen reference points.

Mj

Ωj

Ω

Fig. 14. The reference points in Ω

The choice of these reference times and points is unrelated to the classical
discretizations of the time interval [0, T ] and domain Ω. Refined time and
space discretizations should still be used for the calculation of the various
quantities. What we are doing here describes a field f over the time-space
domain [0, T ] × Ω through:

âj
i (t) =







f(t,M j) if t ∈ Ii

0 otherwise
and b̂ji (M) =







f(ti,M) if M ∈ Ωj

0 otherwise

(55)

for i = 1, . . . , m and j = 1, . . . , m′.

The sets {(âj
i , b̂

j
i )}j=1,...,m′

i=1,...,m are the generalized components of f . One should
note that these quantities verify the following compatibility conditions: for
i = 1, . . . , m and j = 1, . . . , m′,

âj
i (ti) = b̂ji (M j) (56)

The main question is then how to build or rebuild a field from its components.
We choose to defined Function f from its components by only one product
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per time-space subdomain Ii × Ωj :

f(t,M) : aj
i (t)b

j
i (M) ∀(t,M) ∈ Ii × Ωj (57)

where the sets {(aj
i , b

j
i )}j=1,...,m′

i=1,...,m should be defined from the sets {(âj
i , b̂

j
i )}j=1,...,m′

i=1,...,m .
However, here, we let the time domain play a special role because there are
many more spatial degrees of freedom than time degrees of freedom. Then,
Function f is defined by:

f(t,M) : ai(t)bi(M) ∀(t,M) ∈ Ii × Ω (58)

Let us introduce the following scalar products:

〈f, g〉Ii
=

∫

Ii

fg dt and 〈f, g〉Ωj
=

∫

Ωj

fg dΩ (59)

In order to get the sets {(ai, bi)}i=1,...,m, we minimize:

J(ai, bi) =
m′

∑

j=1

[

ωj‖âj
i (t) − ai(t)bi(M j)‖2

Ii
+ ∆ti‖b̂ji (M) − ai(ti)bi(M)‖2

Ωj

]

(60)
which leads to:

ai(t) =

∑m′

j=1 ωjâ
j
i (t)bi(M j)

∑m′

j=1 ωjb2i (M j)
and bi(M) =

∑m′

j=1 b̂
j
i (M)

m′ai(ti)
(61)

Consequently, ∀(t,M) ∈ Ii × Ωj , we obtain:

f(t,M) : ai(t)bi(M) =

∑m′

k=1 ωkâ
k
i (t)b̂

k
i (Mk)

∑m′

k=1 ωk b̂ki (Mk)b̂
k
i (Mk)

b̂ji (M) (62)

Then, using the compatibility conditions (56), we get:

f(t,M) : ai(t)bi(M) =

∑m′

k=1 ωkâ
k
i (t)â

k
i (ti)

∑m′

k=1 ωkâk
i (ti)â

k
i (ti)

b̂ji (M) (63)

6.4 Reformulation of the linear stage at Iteration n + 1

6.4.1 Rewriting of a micro problem over [0, T ] × ΩE

We choose to rewrite the linear stage at Iteration n + 1 as an incremental
correction ∆s to the previous approximation sn, so that the new approxima-
tion to the solution is sn+1 = sn + ∆s. If the initial solution s0 (for example,
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the solution of a linear elastic calculation) belongs to Ad, then all the correc-
tions are sought in A⋆

d, the space which corresponds to Ad with homogeneous
conditions.

For each [0, T ] × ΩE , the search direction (35) can be interpreted as a linear
constitutive relation. Thus, an equivalent formulation consists in minimizing
the global constitutive relation error in A⋆

dE, which is defined over the time-
space substructure [0, T ] × ΩE . Then, rewriting

DsE = sE,n+1 − ŝE,n+1/2 = ∆sE − (ŝE,n+1/2 − sE,n) (64)

where, at this stage, (ŝn+1/2 − sn) is a known quantity, we must solve:

∆sE = Arg min
∆sE∈A⋆

dE

e2RC,E(∆sE − (ŝE,n+1/2 − sE,n)) (65)

where the constitutive relation error is:

e2RC,E(DsE) = ‖DėE − HDfE‖2
H,E +

∥
∥
∥DẆE + hDFE

∥
∥
∥

2

h,E
(66)

the corresponding norms are:

‖�‖2
H,E =

∫

[0,T ]×ΩE

(1 − t

T
)� ◦ H−1�dΩdt (67)

and:

‖�‖2
h,E =

∫

[0,T ]×∂ΩE

(1 − t

T
)� · h−1�dSdt (68)

6.4.2 Choice of admissible radial time-space functions

The choice of the approximation presented here is an improvement over the
version introduced in [36]. The starting point is the introduction as unknowns
of the radial time-space approximations of the corrections related to the in-
elastic strain and to the additional internal variables:

∆εpE(t,M) =
p

∑

k=1

ak(t)Ek
p(M)

∆XE(t,M) =
p′

∑

k=1

bk(t)Dk(M)

(69)

Using the E-admissibility conditions, one determines the other quantities of
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interest in terms of the previous unknowns:

(∆εE ,∆WE)(t,M) =
p

∑

k=1

ak(t)(Ek, Zk)(M)

(∆σE ,∆FE)(t,M) =
p

∑

k=1

ak(t)(Ck, Gk)(M)

∆YE(t,M) =
p′

∑

k=1

bk(t)Rk(M)

(70)

where the space functions are linked by the relations:

Ek = Ek
p + K−1Ck and Rk = ΛDk (71)

and the space operators are defined through standard finite element approxi-
mation over the space domain ΩE .

Compared to the previous version of the radial loading time-space approxima-
tion, we obtain the same quality of approximation with only half the number
of time functions.

6.4.3 Definition of the best approximation

In order to solve (65), the idea is to seek minima alternatively with respect to
time (which leads to a system of differential equations) and to space (which
leads to a “spatial” problem). Since the construction of the space functions is
by far the most expensive step of this process, it is advantageous to store and
reuse these functions. Thus, the space functions constructed up to Iteration n
are reused systematically during Iteration n + 1. Let us note that a reduced
basis can be shared by several substructures if these substructures are similar.

6.4.4 Practical resolution technique

Let us assume that we are dealing with Iteration n+1 and that we have at our
disposal a reduced basis made up of the space functions {(Ek

p,D
k)}k=1,...,m for

the approximation of the corrections related to the inelastic strain ∆εpE and
to the additional internal variables ∆XE . The space functions related to the
other quantities ∆εE, ∆WE, ∆σE and ∆FE are also considered to be known.

Step 1: use of the reduced basis. One introduces the approximation:

∆εpE(t,M) =
m∑

k=1

ak(t)Ek
p(M)

∆XE(t,M) =
m∑

k=1

bk(t)Dk(M)

(72)
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into the constitutive relation error (66) where only the time functions are the
unknowns. Thus:

ak(0) = bk(0) = 0, k = 1, . . . , m (73)

These time functions verify a linear differential equation in time with con-
ditions at t = 0 and t = T , whose solution is obtained classically. This is
generally a rather small system. If the value of the constitutive relation error
is small enough, one stops the process and selects the approximation obtained.
Otherwise, one proceeds to Step 2.

Step 2: adding new functions. One adds:

∆εpE(t,M) =
m+r∑

k=1

ak(t)Ek
p(M)

∆XE(t,M) =
m+r∑

k=1

bk(t)Dk(M)

(74)

where both {(ak, bk)}k=m+1,...,m+r and {(Ek
p,D

k)}k=m+1,...,m+r are now unknowns.
In practice, one takes r = 1. One seeks a minimum alternatively over the time
functions and the space functions. These subiterations begin with an initial-
ization of the time functions. In order to do that, one uses the residue written
in terms of the reference points and reference times. The minimization with
respect to the space functions is standard, with twice the size of a classical fi-
nite element calculation. The minimization with respect to the time functions
leads to a differential equation with conditions at t = 0 and t = T , which can
be easily solved using a standard technique. In practice, one stops after 1 or
2 subiterations. What is important is the complete calculation of the reduced
spatial basis.

6.5 Numerical example of the resolution of a micro problem

In order to illustrate how this technique is used in the multiscale strategy, let
us go back to the example described in Section 5.5 and use the radial time-
space approximation to represent the unknowns of a problem similar to the
micro problem associated with a Type-II substructure in which the loading

consists of the distribution of the Lagrange multiplier W̃
M

E alone. For the
sake of simplicity, we assume that this loading consists of only a normal force
distribution f(t) over the top surface of the substructure (see Figure 15).

Figure 16 shows the evolution of the constitutive relation error associated
with the search direction with respect to the number of functions, using two
techniques: the first technique consisted in systematically building new pairs of
time/space functions; the second technique consisted in first reusing the basis
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Fig. 15. Description of the micro problem and its loading

of space functions previously calculated to update the time functions alone,
and only then seeking a new pair of time/space functions. One can see that the
accuracy of the approximation is very good because the error was less than 1%
using only 4 radial functions. However, one can observe that the convergence
rate of the second technique is higher than that of the first. For example, in
order to get less than 0.1% error, one needs to calculate 15 functions if one
does not update the time functions, as opposed to only 8 functions with the
updating procedure. Since the computing cost of the updating stage is much
less than that of another space function, it is very important to update the
time functions systematically.
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Fig. 16. Convergence of the approximation

Figure 17, shows the first four pairs, each constituted of one space function
and one time function. The space functions are normalized and, thus, one can
observe a decrease in the level of the corresponding time function. Figure 18
gives a comparison of the radial time-space approximation and the classical
incremental solution in terms of Von Mises stresses over the space and time
domains.

A very important point is that the basis of space functions is a priori specific
to the problem and the loading for which it is defined, but it can be reused

31



0 2 4 6 8 10

−5

10
5
0

15
20
25

−5

10
5
0

15
20
25

−5

10
5
0

15
20
25

−5

10
5
0

15
20
25

1st pair 2nd pair 3rd pair 4th pair

Time /s
0 2 4 6 8 10

Time /s
0 2 4 6 8 10

Time /s
0 2 4 6 8 10

Time /s

Fig. 17. The first four radial time-space functions for the problem

to solve another problem with comparable accuracy. For example, we solved
the previous example with 6 functions and reused these functions for all the
loading cases of Figure 19. In order to do that, we carried out a single update
stage and evaluated the corresponding error.

Table 20 shows that by updating the time functions alone using the same
space functions as for a previous problem f(t) one obtains an approximate
solution of the new problem fi(t) with an accuracy comparable to that of the
first problem. The robustness of the radial time-space approximation makes it
well-adapted to multiresolution. Thus, this approximation technique is quite
suitable for the multiscale strategy, which involves the resolution of a set of
micro problems at each iteration of the LATIN method. We can reuse the same
basis for every iteration of these micro problems, and even consider using a
common basis for the whole set of substructures.

The coupling of the multiscale time and space aspects of Section 4 with the new
version of the radial time-space approximation of Section 6 is being developed.
Nevertheless, examples of the capabilities of the method have already been
given in [36,38].

7 Conclusions

The first version of the multiscale computational strategy described here has
been applied to several large-scale engineering problems involving multiple
scales, such as the prediction of damping in space launcher joints [50] or the
simulation of microcracking in composite materials. The radial time-space ap-
proximation leads to a drastic reduction in calculation and storage costs, es-
pecially with the new version described here, without affecting the robustness
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Fig. 19. The different loading cases for the micro problem

Loading case f(t) f2(t) f3(t) f4(t) f5(t) f6(t) f7(t)

Error eCR 0.179% 0.183% 0.239% 0.291% 0.332% 0.411% 0.434%

Fig. 20. Reuse of a space function with the radial time-space approximation

and the effectiveness of the method. This, however applies only to quasi-static
problems. A first improvement, currently in progress, consists in the intro-
duction of a new algebra, i.e. a general mathematical framework, in which all
functions are described thanks to the radial time-space approximation. An-
other work in progress is the extension of the scalability proven for multiple
space scales to the general case. The final development, still under quasi-static
conditions, will deal with the extension to large-displacement problems follow-
ing the mathematical framework already proposed in [37].
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[39] P.-A. Boucard, P. Ladevèze, H. Lemoussu, A modular approach to 3-D impact
computation with frictional contact, Computer and Structures 78 (1-3) (2000)
45–52.

[40] K. Eriksson, C. Johnson, V. Thomée, Time discretization of parabolic problems
by the discontinuous galerkin formulation, RAIRO Modélisation Mathématique
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