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Trajectories of tropical cyclones may show large deviations from predicted tracks leading to uncertainty as to
their landfall location for example. Prediction schemes usually render this uncertainty by showing track
forecast cones representing the most probable region for the location of a cyclone during a period of time. By
using the statistical properties of these deviations, we propose a simple method to predict possible corridors
for the future trajectory of a cyclone. Examples of this scheme are implemented for hurricane Ike and
hurricane Jimena. The corridors include the future trajectory up to at least 50 h before landfall. The cones
proposed here shed new light on known track forecast cones as they link them directly to the statistics of
these deviations.

T
ropical Cyclones (TCs), otherwise known as hurricanes or typhoons, are extreme atmospheric events which
can be devastating upon landfall in populated areas. Several schemes are used to predict their trajectories1,2.
Some predictions are based on the knowledge of previous hurricane tracks in the geographical area of

interest and others use full scale numerical simulations1. Different statistical analyses are also carried out on
the nature of the trajectory (i.e. linear versus recurved) for different basins, on the mean velocity and the
deviations from predicted tracks, and on the landfall probability for different regions3–8. Since trajectories of
TCs show large deviations from a generally predictable mean trajectory (which could be linear or recurved),
prediction schemes can be imprecise, giving the statistical approaches a legitimate place. These deviations are
difficult to predict as they are due to different factors such as the proximity of land and its topography, variations
in the surrounding large scale flow, or modifications of the vortex structure itself1. In fact, track predictions
usually include an estimate of the deviation of the trajectory from the predicted track in the form of so called track
forecast cones which are based on error statistics from previous hurricane tracks as compared to predictions.

Here we show that the statistical properties of these deviations, from say a predictable simple linear track, can
be used to determine possible corridors or track forecast cones for TCs. This is based on recent observations
suggesting that the deviations of the trajectory of generic vortices or TCs from a mean trajectory can be modeled
with a universal law9 for their so called mean square displacement. This law appears for the random movement of
generic vortices in two dimensions as has been shown in experiments and numerical simulations9–11. In particular
we suggest that track forecast cones available today can be linked directly to this measure of the trajectory
deviations around a mean and that unless these deviations can be understood, and the factors giving rise to them
are fully taken into account in models and simulations, reducing such uncertainty will be a difficult task.

The mean square displacement (MSD), a notion borrowed from statistical physics and the study of Brownian
motion, is a measure of the deviation from a mean trajectory. A classical example where this notion has gained all
its importance is that of a colloidal particle in a simple fluid. In the absence of flow, the particle, subject to thermal
agitation of the surrounding fluid, will have a position which fluctuates in time. If this position is denoted X, the
MSD is defined as follows: , (X(t 1 t9) 2 X(t9))2 . (the brackets denote an average over time t’) where X(t) is the
instantaneous position of the particle at time t. As this position varies erratically in time, the particle will explore a
certain area which is given by the MSD. According to statistical mechanics , (X(t 1 t9) 2 X(t9))2 .5 Dt where D
is the so called diffusion coefficient which depends on the temperature, the radius of the particle and the viscosity
of the fluid. This is known as normal Brownian diffusion. If a mean flow of constant velocity VX steers the particle
in a particular direction, the position of the particle will have a fluctuating component dX(t) and a deterministic
part given by the mean flow: X(t) 5 VXt 1 dX(t). In this case, the fluctuating part will have a MSD given by the
previous expression while the mean position increases as VXt. While normal diffusion describes a large set of
random movements, anomalous diffusion may occur under certain conditions. Perhaps the most famous
example is random movement in the presence of so called Levy flights12,13 where the particle exhibits large jumps
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from time to time in its trajectory. A general form of the MSD is
suggested by the expression , (X(t 1 t9) 2 X(t9))2 ., t a where the
exponent a may take values smaller (subdiffusion) or larger (super-
diffusion) than 1. Several examples of super diffusion have been
observed experimentally such as the case of an object in a turbulent
flow for example. Super diffusive behavior can be related to the
interaction between the object and the medium12,13. Examples of
entities that interact with the medium itself have been illustrated in
the case of passive beads in a bath of self propelling bacteria14, and the
movement of passive beads in a laminar rotating flow15. The isolated
vortices, discussed below to illustrate the role of fluctuations, are
randomly kicked by the turbulent agitation of the flow. These vor-
tices must have an important reaction on the medium itself. The
movement of vortices is also sensitive to the sign of vorticity varia-
tions16 which in a turbulent medium may show a complicated spatial
and temporal distribution giving rise to a non trivial interaction with
the moving vortex. TCs are also entities that interact with the sur-
rounding flow, the topography, and that may change structure in the
course of their movement giving possible reasons for changing
course and engendering deviations from a simple track.

Results
As a way to introduce the concept of mean square displacement and
show how it can be implemented for TCs, we illustrate this behavior
using experiments on soap bubbles first. Indeed when half a soap
bubble, deposited on a plate that is heated from below at tempera-
tures in the range 35 to 60uC, thermal convection can be observed
around the equator of this half bubble9,17. As the temperature
increases, the thermal plumes emitted from the heated part of the
half bubble start to reach higher heights. This agitation produces,
from time to time, single vortices of a few centimeters in diameter
and that wander around the bubble as shown in the inset of figure 1
where the trajectory of this vortex presents noticeable fluctuations
around a mean position. This can be seen for both longitude and
latitude. When this signal is analyzed to extract the MSD of the
vortex versus time, , (X(t 1 t9) 2 X(t9))2 ., we obtain a well-defined
dependence in the form of a power law with an exponent that is
higher than 1 as seen in figure 1. Note that the longitude and latitude
(denoted Y and X) show roughly equal amplitudes for the MSD
meaning that the fluctuations are isotropic. Also, the exponent com-
ing out of this analysis turns out to be independent of temperature

and soap concentration and has a value around a 5 1.69. The fact that
the exponent is higher than 1 indicates that these vortices exhibit so
called superdiffusion attributed to large and random jumps9.

It is this observation that has guided us to look for such a behavior
in the movement of TCs, which are large scale single vortices. Indeed,
for generic vortices in two dimensional turbulent flows10,11 and for
TCs9, the trajectory shows important deviations from a mean track.
In the case of TCs, a displacement along a preferred direction with a
non zero velocity is usually present. However, the MSD of the fluc-
tuating part due to the deviations from a mean trajectory (when the
mean drift has been subtracted) turns out to increase with time
following a well-defined power law versus time9. This MSD can be
written as : , (dX(t 1 t9) 2 dX(t9))2 .5 Ac(t/tc)a (the brackets are an
average over time t9). Here dX is the deviation from the mean tra-
jectory in either longitude or latitude, Ac is the value of the MSD at t
5 tc, and tc is a characteristic time. The exponent a has a value near
1.65 indicating superdiffusion.

Here, we show through an analysis of an extended set of TC
trajectories in different basins18 that this law is obeyed very well by
the great majority of TCs and for different basins. For each TC, and in
order to extract the deviations from a mean track, the longitude and
latitude coordinates were plotted versus time separately. A linear fit
was carried out to estimate the constant drift velocity of the TC in the
longitude and latitude directions. This linear dependence of the posi-
tion versus time defines the mean trajectory of the cyclone. When
this mean linear trajectory is subtracted from the data, we obtain
what we call the fluctuating part of the trajectory as shown in the
example of figure 2 and in the lower inset to this figure for hurricane
Jimena. At times, the variation of the longitude or latitude versus
time cannot be approximated correctly using a linear law: This hap-
pens routinely when the TC is close to the coast for example. In such
cases, we remove the few points that deviate strongly from a linear
dependence. Basically the model we are using supposes that the TCs
move along a straight mean trajectory with superimposed deviations
or fluctuations. Such a simple model has also been proposed by7. The
linear approximation of the mean trajectory is not the rule. However,
a recent classification has found significant clusters of linear traject-
ory cyclones8. For the sake of comparison we have also tested a
parabolic fit to the track data of the example of figure 2. Once this
mean parabolic trend is subtracted from the trajectory, the deviations
are again recovered as shown in the lower inset of figure 2. Note that

Figure 1 | Mean square displacement versus time for a single vortex in a soap bubble heated from below. Insets: photo of a vortex and its trajectory.
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these deviations though different from the previous ones, obtained
by subtracting the linear dependence, bear much resemblance to
them. Note that the MSD of the example of figure 2, shown in the
upper inset, for both the linear and parabolic mean trajectories are
superimposed for the short times showing that the parameters of the
power law regime are hardly affected in this example by the use of a
linear or parabolic model. For this study however, and for the sim-
plicity of implementing our analysis, we have only considered the
linear track approximation despite its limitations. From such linear
fits to the data (see figure 2), we extract the mean velocity of the TC.
Once this is achieved, the MSD is calculated using the fluctuating
part of the trajectory (see lower inset of figure 2). Examples of the
MSD for a few TCs are shown in figure 3a and b for the longitude and
latitude respectively. Note that the MSD follows the power law stated
above as delimited by the dashed lines and as has been suggested
previously. Here the latitude shows less fluctuations than the longit-
ude indicating anisotropy of the calculated deviations. At long times,
the MSD no longer follows a power law and seems to either flatten
out or go through a broad maximum. This effect may be simply due
to a lack of statistics at long times but it may also signal a lack of
correlation at these times which is the most probable cause.

We now determine the parameters of the power law for each TC.
By fixing the amplitude Ac 5 10 square degrees, the only free para-
meter for the power law is the time constant. We determine the time
constant tc from such graphs as shown in figure 3 by simply reading
off the time for which the amplitude is Ac. This time constant is then
extracted for a large number of TCs in different basins (over 500
trajectories have been examined for the purpose of this study). In
addition to this time constant we also extract the exponent of the
power law dependence of the MSD using a best fit method. We now
have the three parameters characterizing our simple model: the drift
velocity, the time constant, and the exponent. One may then look at
the statistics of these quantities for each basin separately or for all
basins analyzed and examine the validity of this simple model.

The global result can be illustrated in the form of histograms of
the quantities extracted. Let us first take a look at the histogram of
exponents. This histogram, shown in figure 4 a and b for the

longitude and latitude, shows a well-defined peak at a value of
1.65. Despite the spread in values most cyclones (see cumulative
probabilities in the insets), over 70% , are well described by an expo-
nent between 1.5 and 1.8. No difference is observed between the
longitude and latitude analyses nor for the different basins examined.
Most TCs therefore show deviations characterized by a power law for
the MSD.

Let us now take a look at the characteristic times. Here again the
histograms of figure 5a and b (for all basins with no distinction) show
a well defined peak for each component with a difference between the
longitude and latitude components (indicating anisotropy) and
again despite the spread in values, a well defined peak is clearly seen
for both components. This peak is at 40 hours for the longitude and
60 hours for the latitude. The mean value of tc is 55 h for the longit-

Figure 2 | Latitude versus time for hurricane Jimena. The solid line is a

linear fit to the trajectory. The lower inset shows the fluctuating part after

subtracting the linear part. Subtraction of a parabolic fit is also shown. The

upper inset shows the MSD calculated using the the linear and parabolic

trajectory.

Figure 3a and 3b | Mean square displacement of longitude and latitude
respectively for 9 different TCs versus time. Cyclones noted 226 and 279

are in the Indian Ocean dated 27/05/2005 and 08/05/2003 respectively. The

black stars on this graph indicate the square of the circle radii (in square

degrees) used to predict track forecast cones of the National Hurricane

Center. The dashed lines indicate power laws with the indicated exponent

to delimit the observed behavior. The solid lines use tc extracted from the

peak of the histograms (upper curve) of figure 4 or the mean value (lower

curve).

www.nature.com/scientificreports
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ude and near 100 h for the latitude. From the cumulative probability,
about 60% of TCs have characteristic times between 20 and 80 hours
for longitude and 40 and 100 hours for latitude. Note that differences
between basins can also be detected in this measure with the Atlantic
basin giving the smallest times. Figure 6 shows histograms by basin
along with the mean values found. Note that different basins show
variations in the mean value of tc and in the position of the peak. The
Atlantic basin shows the smallest characteristic times indicating
stronger deviations than other basins. In general, longitude shows
stronger deviations than latitude.

In figure 3, showing the MSDs, we show the computed average
MSD using the mean values extracted from our histograms (for all
basins) for the exponent and the time constant. These are the solid
lines in this graph. The upper one uses the characteristic time from
the peak position of the histogram while the lower line uses the mean
value of tc. Note that the computed MSDs are in good agreement
with the general trend. A surprising result comes from comparing
the MSD calculated to the mean deviation from the predicted tra-
jectories used to estimate track forecast cones. This data, obtained
from the National Hurricane Center web site19, is displayed as black
stars in figure 3, which shows that this mean deviation also follows a
power law as for the MSD suggesting that the error in forecasting
as represented by the track forecast cones seems to be related if not
given by the MSD calculated here.

Discussion
We suggest that the power law we have uncovered here through an
extensive analysis of TC trajectories, can be used to predict, in a
simple, quick, and cheap way, corridors for the movement of these
structures. The principle of this prediction scheme is as follows and
an illustration is shown in figure 7. This estimate assumes that the
hurricane follows a smooth mean trajectory around which deviations
occur with statistics that are well described by the power law stated
above for the MSD. Suppose now that some previous positions are
known. We first determine a mean tendency for the later movement
of the structure based on these previously known positions. The
simplest possible tendency is that the structure will just continue
along a straight line at a velocity VX given by the last known positions
versus time. Our tests of this hypothesis turned out to be reasonably
correct for most cyclones analyzed (see figure 2). Since the future
trajectory will deviate from the mean track, supposed to be linear
here, the MSD is used as a measure of this deviation by writing the
displacement X tð Þ~VX t+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ac t{t0ð Þ=tcð Þa

p
. Here X(t) refers to

either longitude or latitude. The first term is the mean linear traject-
ory with a constant speed VX and the second term measures the
deviation from this assumed trajectory with t0 being the time at
which the prediction starts. As we have shown above, the majority
of TCs we have analyzed show such a tendency as they exhibit a mean
trajectory with superimposed deviations. Figure 7 shows the result of

Figure 4 | histograms of the exponent a along with the cumulative probability. a is for longitude and b is for latitude.

Figure 5 | histograms of tc for all basins along with the cumulative probability. a is for longitude and b is for latitude.

www.nature.com/scientificreports
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Figure 6 | histogram of tc for different basins, longitude on the left and latitude on the right: NA5 North Atlantic; NP5 northeast Pacific; WP5
western North Pacific.

www.nature.com/scientificreports
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this corridor prediction for hurricane Ike (2008), which hit the coast
of Texas at Galveston. The corridor prediction is started 40 hours
before landfall. Actually, the prediction can be restarted after each
new data point by simply recalculating the velocity VX and using the
new t0 to obtain a new cone. This figure shows the full trajectory of
the cyclone in the form of circles. The dashed line is the supposed
linear trajectory with a velocity determined using the last known
positions; this is the supposed linear path if the hurricane were to
continue along a straight track with a constant velocity. The full lines
represent the predicted cone using the expression above. The pre-
diction starts at the intersection between the two full lines (i.e. at t 5

t0). An important feature here is that the future trajectory of the
hurricane remains confined within this cone for a time comparable
to but smaller than the time period for which the power law above is
valid as panels a and b of figure 7 show for longitude and latitude
versus time. Beyond this time scale (which is typically between 60
and 100 hours, see figure 3), the power law for the MSD is no longer
valid so the corridor estimate breaks down. Figure 7c shows the
corridor in a latitude versus longitude graph. Note that the landfall
location, marked by a red dot, is very well captured by the corridor
despite the fact that Hurricane Ike drifts sharply to the north east
after landfall. This scheme can be implemented on different hurri-
canes. Figure 8 shows an implementation of the proposed scheme for
Hurricane Jimena (2009) in the western Pacific basin. This is shown
for longitude and latitude versus time as well as in a latitude versus
longitude plot. Again, the corridor proposed includes the landfall
location. The cones shown use the mean value of tc extracted from
the statistical analysis shown above for each basin (i.e. North Atlantic
for Ike and North Eastern Pacific for Jimena). In fact, such a scheme,
and if the TC has been tracked for a long enough time, can also use
the tc calculated from the past trajectory of the cyclone itself. If the
considered TC has less or more deviations from the calculated mean,
the predicted cone using the actual data from the trajectory of the
specific cyclone considered will take this into account and provide a
more realistic estimate for the forecast cone. This is illustrated for the
two hurricanes in figures 7 and 8 where the cones shown use three
different values, the mean characteristic time for the basin consid-
ered, the characteristic times calculated from the past trajectory, as
well as the values given by the NHC cone for the relevant basin. We
believe that both schemes (the use of a mean characteristic time, or
the use of the characteristic time extracted from the MSD of the past
trajectory of the cyclone itself) can be implemented. This latter pro-
cedure would therefore take into account the inherent variability
from cyclone to cyclone and provide a means to make TC-specific
forecast cones. In the case where the TC is nearing landfall, the use of
the parameters given by the past trajectory of the cyclone itself would
be feasible since a sufficient number of locations would already be at
hand. This procedure, which has the advantage of being cheap and
fast to implement, could complement other TC-specific forecast
cones such as those obtained from ensemble schemes20,21 which are
better at including the variability in initial conditions.

Since forecast agencies use a fixed probability (67th percentile for
the NHC for example) to determine the forecast cones while our
scheme proposes a different method, namely a measure of the devi-
ation from a supposed mean trajectory, a question arises as to how
these two schemes compare with each other. To answer this question
we tracked the probability that the TC remains within the cone for up
to 5 days in the North Atlantic basin. The cones used are those for
longitude and latitude versus time. It turns out that for the case where
a linear mean track is assumed, the probability that the track remains
within the cone is roughly constant and around 63%. If on the other
hand, the velocity of the TC is determined using only the last 2
known positions before the prediction, the probability for 12 h,
24 h, and 36 h can be much better with 91, 81, and 71% respectively.
In both cases, the use of the characteristic time is that of the TC itself
so the cone is cyclone-specific. This scheme can therefore be very

Figure 7 | Implementation of the proposed scheme for hurricane Ike (2008):
a) longitude b) latitude (open circles) versus time near landfall (red dot). The

blue dashed line is the linear prediction 40 hours before landfall. The blue solid

lines delimit the predicted cone using the mean values of tc for the Atlantic

basin. The magenta line uses the tc calculated from the MSD of the trajectory

before the prediction point, the red line is the NHC forecast cone. Panel c shows

the trajectory in a latitude versus longitude plot (same symbols as a and b). The

hurricane trajectory is obtained from the National Hurricane Center web site.

www.nature.com/scientificreports
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useful near landfall and up to at least 36 h since the parameters
characterizing the TC would be known from the previous trajectory.
A further improvement of this probability can be obtained by taking
into account the fluctuations in speed of the TC, which can be esti-
mated from the previous trajectory before the prediction starts. If one
uses the mean velocity determined from say the previous 5 known

best track positions, and instead of VX, we use VX 6 Vrms, to take the
fluctuations of speed into account (Vrms is the root mean square of
the velocity averaged over 5 positions and obtained using the known
trajectory before the prediction starts), the probabilities are better
than 80% for up to 5 days.

The suggested scheme therefore uses the statistical properties of
the deviations in hurricane motion from a mean track to delimit the
departure from a predicted trajectory. The cones proposed here shed
new light on available track forecast cones, to which they compare
very well, by linking them directly to the statistics of these deviations.
In fact, the track forecast cones used by the National Hurricane
Center also follow the power law found here suggesting that devia-
tions from predicted tracks are captured by the behavior of the MSD
very well. Our analysis of over 500 TC trajectories allows us to val-
idate our proposal. The procedure suggested here also allows to make
TC-specific forecast cones especially near landfall through a cheap,
quick, and simple calculation of the MSD of the known part of the
trajectory.

Methods
For the experiments using the soap bubble, the experimental techniques were
described in9 and17. For all the trajectory data, the analysis of the fluctuations and the
calculations of the MSDs were carried out using home made software.
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