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Laboratoire de Mécanique de Contacts et des Structures (LaMCoS), INSA de Lyon/CNRS
UMR5259/Université de Lyon, 20, avenue des Sciences, F-69621 Villeurbanne Cedex, France

Abstract

A concurrent multigrid method is devised for the direct estimation of stress intensity
factors (SIF) and higher order coefficients of the elastic crack tip asymptotic field. The
proposed method bridges three characteristic length scales that can be present in fracture
mechanics: the structure, the crack and the singularity at the crack tip. For each of
them, a relevant model is proposed. First, a truncated analytical reduced order model
based on the Williams’ expansion is used to describe the singularity at the tip. Then, it is
coupled with a standard X-FEM model which is known to be suitable for the scale of the
crack. A multigrid solver finally bridges the scale of the crack to that of the structure for
which a standard FE model is often accurate enough. Dedicated coupling algorithms are
presented and the effects of their parameters are discussed. The efficiency and accuracy
of this new approach is exemplifyed using three benchmarks.

1 Introduction

The eXtended Finite Element Method (X-FEM [23, 24, 11]), was initially developed for the
simulation of failure in solids. It is able to account for the displacement discontinuity across
the crack and the asymptotic displacement at the crack tip by the introduction of additional
enrichment functions into the classical finite element space, thanks to the Partition of the
Unity (PUM) [22]. Its main advantage is that it allows the use of a mesh not matching the
crack geometry. This avoids the re-meshing and, in the context of Linear Elastic Fracture Me-
chanics (LEFM), interpolation operations which can cause numerical errors and even possible
numerical instabilities, when the crack propagates [29]. Unfortunately, the classical enrichment
fields are not able to provide reliable estimates of the stress intensity factors (SIF) directly [7].
Generalized finite element and experimental methods [28] require post-processing to recover
SIF, either with least-square methods, energy related techniques like interaction integrals or
configuration forces (see for instance [26, 19]).

Alternative tip enrichment techniques have been devised to simulate failure and yet allow
for direct estimation of SIF. In this respect, Karihaloo & Xiao [20] introduced a method which
is still relying on the PUM, but with specific enrichment functions that are the Williams’
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series [35]. The area in which the nodes are enriched by the singular functions can be different
from the area used to extract the SIFs (area where the degrees of freedom (DOF) associated
with the same singular enrichment function are constrained to be equal) [20]. In [37], the
underlying partition of the unity is inactivated by simply setting the regular DOFs to zero
in the extraction zone. It was shown that these approaches do not predict accurately the
coefficients of the higher order terms in the elastic crack tip asymptotic fields [37].

Another tip enrichment technique, no longer based on the PUM, called the Hybrid Crack
Element (HCE) was initially proposed by Tong et al. [33] and extended to the determination of
the coefficients of the higher order terms of the Williams’ expansion in [15]. This last method
provides more accurate SIF and also yields higher order coefficients precisely. Recently, a
Hybrid Analytical and eXentended Finite Element Method (HAX-FEM) was proposed by
Réthoré et al. [31]. This convenient and accurate tool couples two different models: an
analytical reduced order model based on a truncated Williams’ expansion in the vicinity of the
crack tip and a standard X-FEM model with the discontinuous function along the crack faces
alone. The models are coupled by partitioning the energy on an overlapping zone (Arlequin
method [3]).

In the present paper, we propose a simpler version of HAX-FEM while providing the same
level of accuracy. The analytical and the FE descriptions are no longer overlapping and
their coupling is thus guaranteed by an integral matching technique (Mortar [4, 2]) on their
intersection which restricts to an interface. This method is easier to implement, since no
overlap is involved, and easier to use since the choice of two parameters (size of the overlap,
energy weighting function) are avoided. The major advantage of this formulation is that it
allows an easy coupling with a multigrid method as it is done afterwards. By the way, if
this approach presents some similarities with HCE, the analytical model has the advantage to
include directly the rigid body translations and rotation in the formulation whereas they need
a special treatment to be recovered a posteriori with HCE [38].

All the methods listed before rely on the Williams’ expansion which is dedicated to straight
cracks only. In the general case, the singular enrichment zone must be defined on the scale
on which the crack can be considered straight. Therefore the FE mesh must be fine enough
to fit with this scale. Despite the difficulty of local refinement, the resulting mesh will lead
to a larger system, whose resolution cost can become prohibitive for some complex problems.
Dedicated strategies have been developed to handle these very different scales that are required
to simulate cracked bodies. These methods can use energy coupling methods [3, 13], domain
decomposition methods [12, 16], homogenization [8, 10, 1] or generalized FEM [17]. Among
them a multiscale method has been recently proposed and adapted to X-FEM [27] which is
based on a multigrid solver [5, 25]. In this paper we propose similarly a concurrent multigrid
method inspired from HAX-FEM. It will be referred to as DEK-FEM for Direct Estimation
of Generalized SIF (Kn

i ). A hierarchy of grids with increasing fineness and decreasing size
is used to solve the problem. The solution is the substitution of the solutions of finer grids
in coarser ones. The last and finest grid is the analytical model expressed in the Williams’
formalism, whereas the remaining grids are formulated with classical X-FEM with jump and
singular functions. An iterative scheme is proposed to couple these different scales.

The paper is organized as follows. After having recalled the properties of the elastic crack tip
asymptotic fields in section 2, the proposed non-overlapping variant of HAX-FEM is presented
in section 3. In section 4, the performances of the method are presented using two classical test
cases. Section 5 summarizes the principle of local multigrid solvers and presents the proposed
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DEK-FEM whose performances are illustrated in section 6.

2 Elastic crack tip asymptotic fields

Let us consider a 2D isotropic elastic structure with an initial crack. The local coordinates
centered at the crack tip are designated r and θ. If the crack is straight and has traction-free
faces, the Williams’ expansion of the displacement u(r, θ) and stress field σ(r, θ) are expressed
by the following double series [35]:

u(r, θ) ≡
[

ux

uy

]
=
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an
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where κ is the Kolossov constant such that κ = 3−4ν for plane strain or κ = ((3−ν)/(1+ν))
for plane stress conditions; ν being Poisson’s ratio.

Let us recall some notable properties of this expansion. First, a0
I , a0

II and a2
II are the rigid

body translations and rotation with respect to the crack tip, respectively. Second, a2
I is the so

called T -stress component for mode I. And finally, first order (n = 1) coefficients a1
I and a1

II

are related to the mode I and II stress intensity factors (SIFs) as:

a1
I =

KI

2µ
√

2π
and a1

II =
KII

2µ
√

2π
(3)

where µ is the second Lamé’s coefficient. Each odd term Φ2p+1

i is discontinuous across the

crack mouth and each even term Φ2p
i is continuous.
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3 Monoscale formulation

The domain is divided into two non-overlapping sub-domains ΩX and ΩW , see Figure 1,
respectively characterized by the restriction uX and uW of the unknown displacement. Sub-
domain ΩW is viewed as a patch which incorporates the crack tip whereas ΩX is the outer
domain which holds the boundary conditions, i.e. traction forces Fd on part ∂2ΩX of the
boundary and prescribed displacement ud on its complementary ∂1ΩX . Let us introduce

ud/∂1Ω ud/∂1ΩX

fd/∂2Ω fd/∂2ΩX

Ω ΩX ΩW

ΓW

Figure 1: decomposition of the domain into an X-FEM domain and an analytical patch

UX = {uX ∈ H1(ΩX) | uX = ud on ∂1ΩX}, the space of admissible displacements and U0
X its

corresponding vector space. Spaces UW and U0
W are defined in the same way—one can notice

that UW = U0
W since the crack faces are assumed to be traction-free—. On each domain Ωi

(i = X,W ) the mechanical problem reads: find ui ∈ Ui, such that:

ai(ui,u
⋆
i ) = li(u

⋆
i ) ∀u⋆

i ∈ U0
i ∀i = X,W (4)

with ai(ui,u
⋆
i ) =

∫

Ωi

ε(u⋆
i ) : Cε(ui) dΩ and lX(u⋆

X) =

∫

∂2Ω

u⋆
Xfd ds

where C is the Hooke tensor. Note that lW is zero since the crack faces are traction free.
In order to close the problem, one needs to impose the compatibility of displacement fields.

In opposition with the method proposed in [31], the sub-domains are non-overlapping, their
intersection reduces to an interface denoted ΓW . Thus the coupling is no longer ensured
thanks to a partition of the energy technique (i.e. the Arlequin method [3]). In the method
proposed herein, the coupling is provided by integral matching, like in [18]. The displacement
continuity condition on ΓW is enforced in a weak sense, by introducing a Lagrange multiplier
λ ∈ L (where L is the ad-hoc space whose discretization is discussed in section 6) and the
following scalar product:

〈uX − uW ,λ〉Γ =

∫

ΓW

λ (uX − uW ) ds = 0 (5)

The entire three field formulation reads: find (uX ,uW ,λ) ∈ UX × UW × L, such that:

aX(uX ,u⋆
X) + aW (uW ,u⋆

W ) + 〈u⋆
X − u⋆

W ,λ〉Γ + 〈uX − uW ,λ⋆〉Γ = lX(u⋆
X) (6)

Subdomains ΩX and ΩW differ in the description of the displacement fields. Here the same
interpolation as HAX-FEM [31] is used. In the sequel, a brief review of the main aspects is
given.
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3.1 X-FEM domain

On subdomain ΩX a classical X-FEM is used. It relies on a finite element mesh where N is the
set of nodes and {φi}i∈N the finite element shape functions defined on their support. Here,
the region near the crack tip being in the complementary sub-domain ΩW , the discontinuous
enrichment alone is required. It allows for taking into account the displacement jump across
the crack, for the nodes Nc ∈ N whose support is cut. In this domain, the displacement
interpolation reads:

uX(x) =
∑

i∈N

φi(x)qi +
∑

i∈Nc

φi(x)H(x)bi = NT
XUX (7)

Where qi are the regular DOFs. H is the symmetric Heaviside enrichment function and bi its
corresponding DOFs. NX denotes the matrix which collects the values of the interpolation
functions and UX its corresponding DOF vector.

3.2 Analytical patch

On sub-domain ΩW , no finite element mesh is involved. In fact, the interpolation of the
displacement is only defined by a truncated Williams’ expansion (1):

uW (x) =
∑

i=I,II

nmax∑

n=0

an
i Φn

i (r, θ) = NT
W UW (8)

where NW denotes the matrix which collects the values of the interpolation functions and UW

its corresponding DOF vector. Note that the SIFs and higher order terms are special DOFs
of the model and can thus be directly extracted from UW thanks to proportionality relations,
like (3).

3.3 Matching interface

The Lagrange multiplier λ can be discretized either with extended finite elements or with
analytical interpolation functions based on the Williams’ expansion. The interpolation of the
Lagrange multiplier can be written in the general form:

λ(x) =
∑

i

φi(x)li = NT
LΛ (9)

where again NL denotes the matrix which collects the values of the interpolation functions
and Λ the corresponding DOF vector.

3.4 Practical implementation

In practice, Domain Ω is first meshed with standard linear finite element (Tri3 or Quad4).
Then, the elements of ΩX near the crack tip are simply removed from the X-FEM sub-domain
and used to generate the integration support for the analytical patch. The interface ΓW is
then directly endowed with a mesh which is the inner skin mesh of the X-FEM domain. This is
convenient for the computation of the matching operators. Standard extended finite element
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shape functions on the skin elements will be used, in the examples below. This point is further
discussed in Section 5.

For integration, the elements cut by the crack are subdivided into a set of elements whose
boundaries align with the crack geometry, following [23]. Then, standard second order Gauss
Legendre quadrature is used in sub-domain ΩX . However, since discontinuous enrichments
alone are involved, one could have used standard quadrature without splitting the elements
cut, by using an apropriate technique [34]. To ensure that the strain field is adequately
integrated, especially for the singular terms (n=1), in the analytical patch ΩW , higher order
Gauss quadrature is required. In the examples below, fifth order is used (25 Gauss nodes for
Quad4 and 7 Gauss nodes for Tri3). According to our experiments, the effect of higher orders
of quadrature is rather slight on the accuracy of SIFs.

With such a discretization of (6), one can obtain the following algebraic problem: find UX ,
UW , Λ, such that: 


KX 0 CT

X

0 KW −CT
W

CX −CW 0







UX

UW

Λ


 =




Fd

0
0


 (10)

where KX (resp. KW ) is the stiffness matrix of subdomain ΩX (resp. ΩW ). Fd is the
generalized force vector and Ci denoted the integral of the cross product of the non conforming
shape functions NL and Ni, which are known as the mortar projector [4, 2]; they are defined
by:

Ki =

∫

Ωi

ε(NT
i ) : Cε(Ni)dΩ ∀ i = X,W (11)

Ci =

∫

ΓW

NT
i NL ds ∀ i = X,W (12)

Fd =

∫

∂2ΩX

NT
Xfd ds (13)

With such a formulation, the method presents some similarities with the Hybrid Crack
Element (HCE) proposed in [15]. However, besides the fact that here, no special mesh is
required a priori, the rigid body modes that are excluded in the formulation of the HCE,
need a least square treatment to be recovered a posteriori, in order to determine the complete
displacement field [38], which is not the case in the proposed approach. This is made possible
at the expense of integrals in the volume of the analytical model.

4 Numerical examples

Two classical benchmarks are studied to demonstrate the efficiency of the proposed monoscale
method to estimate directly SIFs and higher order terms. First, an edge-cracked plate in
remote tension (ECPT) is used to compare the efficiency of the method with that of [31].
Then a wedge splitting specimen (WS), case for which an in-depth study is provided by [14],
shows that the method is also appropriate for the accurate estimation of higher order terms of
the Williams’ expansion. This last example investigates also the case of unstructured meshes.
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a
L

σ

(a) geometry and
loading

(b) mesh and patch
for rW =2

(c) mesh and patch
for rW = 8

(d) vertical displacement
in µm (ampl. fact. ×1000)

Figure 2: Edge cracked plate under remote tension

4.1 Edge-cracked plate under remote tension

Let us consider an edge-cracked plate, as shown in Figure 2(a), subjected to a uniform tensile
stress σ = 10MPa. The plate has a length L = 17mm, width w = 7mm and the length of
the crack is a = 3.5mm. The structure is considered to be in plane strain conditions, with a
Poisson’s ratio equal to ν = 0.3 and Young’s modulus E = 200GPa. The mesh of subdomain
ΩX is regular and made of 49 × 119 bilinear quadrangular elements with the aforementioned
Gauss-Legendre quadrature scheme. The size of ΩW is parametrized by a radius RW = h rW

(h being the average element size of the mesh of ΩX). The mesh, the patch and the crack are
plotted on Figure 2(b) (resp. Figure 2(c)) for rW = 2 (resp. rW = 8). Figure 2(d) shows the
vertical displacement field for rW = 2 in the deformed domain. For such a problem, the value
of KI can be accurately approximated by the one that holds for an infinite plate, corrected by
a factor depending on the ratio a/w [6]. In the sequel the value KI0 = 2.9637MPa

√
m is used

as the reference.
For different values of the order of truncation nmax of the williams’ expansion, the normalized

value of KI is plotted as a function of the size of the analytical patch rW on Figure 3(a) for the
Arlequin matching (from [31]) and on Figure 3(b) for the integral matching proposed herein. A
comparable level of accuracy is obtained and the dependence on the size of the patch observed
for nmax = 2 vanishes similarly when higher order terms are taken into account.

Remark. When rW = 1 the value of KI seems to be less accurate. This is because the
patch is glued to a linear element whose kinematic description is too poor. This is not the case
with the Arlequin matching since, even when rinner = 1, the patch overlaps a least 2 layers of
nodes.

Again, for different values of nmax, the effect of the mesh size h on the accuracy of KI is
shown Figure 4(a) for the Arlequin matching with rinner = 1 and router = 2 and Figure 4(b)
for the integral matching with rW = 2.
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(a) Arlequin Matching with loverlap = 1
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Figure 3: Normalized KI as function of the size of the patch for different values of nmax.

(a) Arlequin Matching with rinner = 1 and
router = 2
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Figure 4: Relative error on KIO as function of the mesh size for different values of nmax.
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For both methods, the convergence rates are between 1.5 and 1.25. With Arlequin, the
matching is performed in the overlapping zone, namely between r = 1 and r = 2, whereas for
integral matching r = 2. It explains that the accuracy of the SIF on Figure 4(b) is slightly
better than that of Figure 4(a).

This example shows that the proposed hybrid analytical and extended finite element with
a non-overlapping integral matching is almost as efficient as the one with Arlequin matching
initially proposed in [31] for the estimation of the stress intensity factor. Besides the fact that
no overlap is involved, the advantage of integral matching is that the method is now more
likely to fit into the framework of multigrid methods, as it is done in Section 5 of this paper.

4.2 Wedge Splitting Specimen

In the previous example, only the accuracy of the first order coefficient n = 1 was discussed.
In order to see the capabilities of this method to estimate the higher order coefficients an, we
consider a wedge splitting specimen as shown in Figure 5(a). It consists of a square domain
with a groove in which a splitting force is applied by the wedge. The force is assumed to be
a distributed load p = 1MPa within the groove. The specimen is supported on a two line
support. The crack is localized at the bottom of the groove and its length c varies from 4 to
64mm. The Young’s modulus E is set at 100GPa and Poisson’s ratio ν at 0.25. A state of
plane stress is considered.

The domain is first meshed by an unstructured grid with linear Tri3. The reduced order
model expressed by the Williams’ expansion ΩW is defined in the region occupied by rW = 3
layers of elements around the crack, the remainder defining ΩX . This modeling and its solution
is shown in Figure 5(b), 5(c) and 5(d) for a crack of length c = 4mm, c = 40mm and c = 64mm,
respectively. The analytical patch is in grey and the Von-Mises stress field is plotted on the
deformed structure. Note that one unique and rather coarse mesh was used for the different
crack lenghts.

In [14], this problem was solved with a high order HCE (up to 39 terms of the Williams’
expansion) together with a relatively fine structured discretization of the remainder of the
body. Accurate analytical expression were obtained by fitting the computed SIF, T -stress
and the third to fifth coefficients. For different values of the crack length c, the problem is
now solved with the proposed method for nmax = 9. The computed normalized coefficients
{an

I (c)/an
I (64mm)}1≤n≤5 are plotted on Figure 6 and compared to those obtained with HCE

as well as their polynomial extrapolation [14]. One can observe an excellent agreement (≈ 1%)
between the results obtained with high order HCE and those computed here with a unique
and rather coarse unstructured mesh.

This example shows that, besides the good estimation of the stress intensity factors, the
proposed technique also yields accurate high order terms of the crack tip asymptotic fields.
In addition, this technique seems well suited for crack propagation without remeshing and its
robustness allows us to consider arbitrary meshes.

The aim of the first part of this work was to propose a simplified alternative method, making
sure it is as accurate as HAX-FEM. We showed that the non-overlapping approach actually
has the same efficiency that the original HAX-FEM. The method is simpler to implement,
since there is no overlap. Moreover, the choice of two parameters related to the overlap are
avoided (the size of the overlap, and the energy weighting function) which makes it easier to
use. In the following section, we will see that, in addition, the proposed formulation is more
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30

p

(a) geometry (mm) and loading (b) mesh and patch for c =
4mm

(c) mesh and patch for c = 40mm (d) mesh and patch for c = 64mm (e)

Figure 5: Wedge splitting specimen with distributed load and two line supports. (a) Problem
definition, (b,c,d) Von Mises Stress solution (in MPa) for different crack length and (e) the
common colorbar. (ampl. fact. ×1000)

likely to be integrated in a multigrid framework.

5 Multiscale formulation

The efficiency of this method rests on the Williams’ expansion which is only valid if the crack
is straight, at least in the analytical patch. Therefore, the initial mesh needs to be locally
refined, enough to legitimate this assumption. Besides, even with a straight crack, the FE
convergence study of the previous section shows that the mesh needs to be refined if one
wants to get an accurate determination of the SIF. In this case, it was shown in [27] that a
localized refinement is enough. Despite the fact that a refinement step can be difficult and
time consuming, it leads to a larger system whose resolution cost can become prohibitive for
some complex problems and especially for 3D problems. In the sequel, we devise a concurrent
multigrid method, inspired from [27], able to bridge the scale of the structure to that of the
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Figure 6: Accuracy of the computed high order terms an
I /an

I (64mm)

singularity at the crack tip and to yield generalized SIF such as the method of the previous
section.

The basic idea of multigrid methods [5, 25] is that for iterative solvers such as Jacobi, Gauss-
Seidel or some Krylov solvers, the high frequency part of the solution is accurately computed
after few iterations on a fine grid, whereas it would take a large number of iterations to
compute the remaining smooth part of the solution properly on this given grid. This is called
the error smoothing property. To avoid this drawback, multigrid methods involve resolutions
on a hierarchy of grids with a decreasing fineness with possible different sizes (if localized).
Therefore, the smoothed residual is transferred (restriction operation) to the coarser grids
which are able to compute rapidly the low frequency part of the solution. This process is
completed until the mesh is coarse enough to use a direct solver. Then, the solution on the
finer grids are successively improved with the smooth corrections (prolongation operation), in
order to accelerate the convergence of the iterative algorithm on the finest grid. This scheme,
called the multigrid cycle, is completed once per iteration until convergence. A prolongation
operator P (resp. restriction R) is introduced to transfer the displacement (resp. residual)
from the coarse mesh to the fine (resp. fine to coarse). Their definition allows us to handle
naturally the mesh incompatibilities.

ud/∂1Ω

Fd/∂2Ω

M0
X Mi

X MW
equivalent
model

Figure 7: DEK-FEM : hierarchy of X-FEM grids Mi
X and analytical model MW . The equiv-

alent model corresponds to the substitution of the finers models in the coarser one.
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In the following, the domain Ω is endowed with a series of localized meshes of different grid
sizes (Figure 7). For this, an initial coarse mesh M0

X of the whole domain is set up and then,
localized meshes Mi

X including the crack tip are recursively generated. Here, the refinement is
performed by splitting the elements, so that the grids are nested. The ratio of fineness between
two consecutive grids is set to 2 which seems to be optimal [21]. Once again, three kinds of
models are involved. The last and smaller grid is the integration support of the analytical
reduced order model expressed in the Williams’ formalism MW . On the remaining grids Mi

X ,
a full X-FEM model with jump and classical singular enrichments [23] is used. Following [27],
the grids whose elements are larger than the size of the crack use standard FEM only. After
convergence, the solution of the multigrid algorithm corresponds to the substitution of the
solution of the finer models in the solution of the coarser models, as shown in Figure 7.

The multigrid methods can differ in the definition of the intergrid operations depending
on the models used on the different levels. Here, because of the two models, two different
strategies are required to link one model to another. First, between two X-FEM grids Mi

X ,
Mi+1

X , the localized multigrid method dedicated to X-FEM (denoted LMG-X-FEM) proposed
by Rannou et al. [27] will be used. It is briefly reviewed in Section 5.1. Secondly, a multigrid-
like algorithm is being devised between the last X-FEM grid and the analytical patch MW in
Section 5.2.

5.1 Multigrid algorithm between X-FEM grids

Between X-FEM grids, one uses the LMG-X-FEM which was recently proposed [27] to handle
X-FEM models in a localized multigrid framework. A brief review of the mains aspects of this
method is given in this paragraph, for further details, see [27].

Subscript ¤X is omitted in this section, since all the quantities refer to X-FEM models. For
the sake of simplicity, let us consider a two-level LMG algorithm defined on the grids of Figure

8, made of one coarse mesh MAB
and one fine mesh MB localized around the crack. The

ud/∂1Ω

Fd/∂2Ω

MAB MA

MB

ΓB

MB

Figure 8: Grid hierarchy: Coarse mesh MAB
and local fine mesh MB

coarse mesh is viewed as the sum of two sub-meshes MB
the part of the mesh overlapped by

the fine mesh and MA
its complementary part. ΓB defines the interface between these two

domains. In the sequel, the quantities ¤
AB

, ¤
A
, ¤

B
and ¤

B are respectively the discretization

of ¤ on the meshes MAB
, MA

, MB
, MB .

The prolongation P (and restriction R = PT ) operator is computed thanks to the collocation
method given in [27] which is proved to be accurate enough. One iteration of LMG-X-FEM is
given in Algorithm 1. It is made of three sub-stages: (1) the coarse problem whose right-hand-
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Algorithm 1 The two-level LMG-X-FEM

1: Initialization: U
B0

= 0, UB0
= 0, k = 0

2: while η > tol. do

3: Coarse problem:

K
AB

U
k+1

= F
AB − PT KBUBk

+ K
B
UB

k
(14)

4: Correction: UBk
= UBk

+ P(U
Bk+1

− U
Bk

)
5: Fine problem:

KBUBk+1
= FB

ext with UBk+1|ΓB
= P U

k+1|ΓB
(15)

6: Convergence test: η = ‖UBk+1 − UBk‖/‖UBk+1‖
7: k=k+1
8: end while

side involves the loading F
AB

and two additional terms whose role is to inactivate the coarse

stiffness K
B
U

Bk
and replace it by the restriction of the fine KBUBk

. This problem is solved

until convergence and yields U
k+1

. (2) The fine iterate Uk is improved by the prolongation of
the coarse correction. (3) This corrected solution is then smoothed by few iterations (usually
less than five) of the iterative solver on the fine problem defined on ΩW with the coarse

displacement U
AB

prescribed on its boundary ΓB. In the examples below the solver used is a
Conjugate Gradient possibly preconditioned by an incomplete Cholesky factorization.

Using a larger sequence of grids increases the efficiency of the multigrid algorithm. In this
case, the coarse problem is no longer solved by a direct solver, but by a recursive call to the
multigrid algorithm. The number of multigrid sub-cycles for each stage is taken to γX = 1 for
the X-FEM models.

5.2 Multigrid sub-cycle between HAX-FEM and X-FEM

Let us focus on the last X-FEM grid MAB
X and the analytical patch MW of Figure 9. MA

X

MAB
X MA

X

MB
X

◗
◗◗s

MW

Figure 9: Grid hierarchy: Finest mesh MAB and analytical patch MW

defines the part of MAB
X that is not overlapped by MW and MB

X the remainder. In this
section, the quantities ¤

AB
X , ¤

A
X , ¤

B
X and ¤W are respectively the discretization of ¤ on the
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meshes MAB
X , MA

X , MB
X , MW . In opposition with Section 3, the FE and analytical models

are now overlapping in order to have a complete description on MAB
X , i.e. even in the vicinity

of the crack tip. This is necessary for the use of the LMG-X-FEM with the remaining coarse
X-FEM grids. However, these two models are still matched on the boundary ΓW alone, in
order to make the solution on MA

X∪MW be exactly equal to that of the non-overlapping HAX-
FEM presented in Section 3. This solver has also to yield an approximate X-FEM description
defined under the patch, in the overlapped region MB

X .
HAX-FEM formulation (eq. 10) is split into the following two coupled problems defined on

the part MA
X of the coarse mesh and on the analytical patch MW , respectively:

KA
XUA

X = Fd − CT
XΛ (16)[

KW −CT
W

−CW 0

] [
UW

Λ

]
=

[
0

−CXUA
X

]
(17)

In order to involve a problem on the whole domain MAB
X , the coarse traction KB

XUB
X is

added to each side of (16) which gives:

KAB
X UAB

X = Fd − CT
XΛ + KB

XUB
X (18)

indeed, since ΓW belongs to both MA
X and MB

X , and UA
X |ΓW

= UB
X |ΓW

, one has:

KA
XUA

X + KB
XUB

X = KAB
X UAB

X and also CXUA
X = CXUB

X = CXUAB
X

Associating a residual to problems (17) and (18) allows us to formulate them in an iterative
form which is usually done in the multigrid framework. Moreover, one uses the classical
multigrid assumption which consists in neglecting the high frequency unknown of the fine
mesh ∆Uk+1

W = Uk+1

W − Uk
W in the coarse problem (18). The corresponding problems are

reported in Algorithm 2.

Algorithm 2 The localized multigrid-like algorithm between ΩX and ΩW

1: Initialization: UB
X

0
= 0, U0

W = 0, Λ0 = 0,k = 0
2: while η > tol. do

3: X-FEM problem:

KAB
X UAB

X

k+1
= FAB

d − CT
XΛk + KB

XUB
X

k
(19)

4: Analytical problem:

[
KW −CT

W

−CW 0

] [
Uk+1

W

Λk+1

]
=

[
0

CXUAB
X

k+1

]
(20)

5: Convergence test: η = ‖Uk+1

W − Uk
W ‖/‖Uk+1

W ‖
6: k=k+1
7: end while

Remark 1. Problem (20) defined on the analytical patch leads to the resolution of a system
of fixed and small dimension (usually few tens). As a result, this problem can be solved with
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a direct solver, and no correction stage is required in this algorithm as it was the case for
Algorithm 1.

Remark 2. Similarly to [9], this algorithm is a non-intrusive version of the non-overlapping
HAX-FEM, since it is entirely based upon standard X-FE computations on the coarse mesh.
Indeed, it involves a set of resolutions on MAB

X with an additional loading on the interface
ΓW only. This step could thus be solved using an existing black-box software in association
with a separate piece of code, which may contain the analytical modeling and the intergrids
operations.

5.2.1 Choice of the space of the Lagrange multiplier.

It is possible, for the space of Lagrange multipliers λ to rest on the finite element description
which characterizes interface Γ. In this case, the interpolation reads:

λ(x) =
∑

i∈NΓ

φi(x)lri +
∑

i∈NΓ∩Nc

φi(x)H(x)lhi (21)

where NΓ is the set of nodes of the mesh of Γ. In 2D, the number of DOF associated with
this interpolation of λ is equal to ndof = 2NΓ + 2. Generally, this number is greater than
the number of DOF of the analytical model. In such a case, even though this interpolation
does not cause any problems with the monoscale formulation, problem (20) becomes ill-posed,
because over-constrained. To be solved, this problem has to be reformulated in a least square
sense, as follows:

[
KW −CT

W CW

−CT
W CW 0

] [
UW

Λ̃

]
=

[
0

CT
W CXUAB

X

]
(22)

Used in Alg. 2, this least-square resolution introduces numerical errors that affect the
accuracy of the solution. In fact, regarding the size of the space of the analytical solution, this
discretization of λ is too rich and unadapted.

Another interpolation based on the analytical model is thus proposed to overcome this
problem. It consists in the trace on Γ of the normal stress fields Ψ · n associated with the
displacement modes of the Williams’ expansion (2). In order to ensure the equilibrium of
ΩW , the three additional functions Φ0

I , Φ0
II and Φ2

II are used to force λ to be resultant and
moment free. If nΓ denotes the unit outward normal to Γ, then the interpolation reads:

λ(x) =
∑

i=I,II

nmax∑

n=1

Ψn
i (x) · nΓ lwi + Φ0

Ir
x + Φ0

IIr
y + Φ2

IIm (23)

Note that Ψ0
I , Ψ0

II and Ψ2
II are zero since they correspond to rigid body modes. Therefore,

with this interpolation of λ, the number of DOF is exactly equal to the number of DOF of the
analytical model and therefore, problem (20) is well posed. In the sequel, this description will
be used since it is more physically sound.

5.2.2 Analogy with Alg. 1.

An analogy can be established between Alg. 1 and Alg. 2. On ΓW , the non-matching
interpolations are such that:

CXUX = CW UW
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Therefore, if CW is square and invertible (if not, a least-square operator should be introduced),

a prolongation-like operator P̃ can be defined on ΓW by:

UW = C−1

W CXUX = P̃UX

Since the crack faces are traction free, and since the volumic forces are supposed to be zero,
then the term KW Uk

W is localized on ΓW and is equal to:

KW Uk
W = CT

W Λk and then Λk = C−T
W KW Uk

W (24)

The term CT
XΛk could then be written differently:

CT
XΛk = CT

XC−T
W KW Uk

W = P̃T KW Uk
W

and therefore the coarse X-FEM problem of Alg. 2 (19) can be written:

KAB
X UAB

X

k+1
= FAB

d − P̃T KW Uk
W + KB

XUB
X

k

which shows that Alg. 2 and Alg. 1 are written in the same framework.
Therefore, DEK-FEM, which is the combination of these two multigrid techniques, is straight-

forward and can be seen as a three-scale multigrid algorithm. Even written in the same form,
these algorithms are of different nature, and can thus have different convergence rate. The
resulting convergence rate of DEK-FEM may be that of the slower. For this reason, a more
complex “W”-cycle is considered. The ratio of the number of sub-cycles of type Alg. 2 (γW )

few iterations
full resolution

}
Alg. 1

}
Alg. 2

Figure 10: DEK-FEM elementary multigrid cycle parametrized by γW = 3 and γX = 1

to that of Alg. 1 (γX) can be different from 1 and will be used to balance the convergence
rates in order to optimize the efficiency of the overall solver DEK-FEM. An example of the
corresponding elementary multigrid “W”-cycle is represented on Figure 10 for γW = 3 and
γX = 1. The effect of this parameter is examplifyed in the following section.

6 Numerical example

In this section, an example already proposed in [20], is used to study the efficiency of DEK-
FEM. Let us consider the edge-craked plate shown in Figure 11(a), subjected to a uniform
shear stress τ = 1MPa. The plate has a length L = 16mm, width w = 7mm and the length of
the crack is a = 3.5mm. The structure is considered to be in plane strain conditions, with a
Poisson’s ratio equal to ν = 0.3 and Young’s modulus E = 100GPa.

Four localized hierarchical meshes made of bilinear Quad4 elements are built. The analytical
patch is defined by a set of elements of the finest mesh in the vicinity of the crack tip. The
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L

τ

(a) geometry and
loading

(b) 4 grids and a patch
(ampl. fact. ×1000)

(c) Vertical displacement map in
µm (ampl. fact. ×1000)

Figure 11: Edge cracked plate under shear

X-FEM meshes, the patch and the crack are plotted on Figure 11(b). Figure 11(c) shows the
vertical displacement field in the deformed domain. The plane strain solution of Wilson [36]
provides the reference values of the SIF: KI = 34 MPa

√
m and KII = 4.55 MPa

√
m.

First, the 4 X-FEM grids are considered alone to review some properties of LMG-X-FEM.
The problem is solved with Alg 1 and the evolution over iterations of the convergence indicator
η (defined Alg. 1) for each grid is reported on Figure 12(a). One can observe that after only
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(a) convergence of Alg.1 with 4 grids
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(b) convergence of Alg.2 (1 grid + the patch)

Figure 12: convergence of multigrid Algorithms 1 and 2

15 multigrid iterations, the indicator η of the 4 grids are below 10−12. The fact that the curves
of each grid are similar seems to show that all the grids have the same convergence and that
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their indicator η are equivalent. Further remarks and properties of this algorithm are given in
[27].

Now, Alg. 2 is studied using this example. For this, the coarsest mesh is used alone and the
analytical reduced order model is defined in one layer of elements around the crack tip. The
problem is successively solved by the direct monoscale method presented in Section 3 whose
solution (Uref

X ,Uref
W ) will stand as a reference, and by the iterative multiscale Algorithm 2.

The following exact error indicator can be then introduced to quantify the convergence of the
SIF and higher order terms of the Williams’ expansion:

ηexact =
‖Uk

W − U
ref
W ‖

‖Uref
W ‖

This exact measure of the error is plotted over the iterations on Figure 12(b) along with the
indicators of the coarse grid ηX and of the analytical model ηW . One can first observe that the
exact error goes to zero, which means that Alg. 2 yields exactly the solutions of the monoscale
solution. One can also see that the curves of ηX and ηW are similar and also similar to the
exact error ηexact. Therefore, the convergence indicator of each grid can be considered as a
reliable error indicator. In the sequel, the indicator η of the coarsest grid alone will be used
as convergence indicator.

(a) CPU time and number of iterations needed to
reach an error of 10−12 for different values of rγ
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(b) Convergence of DEK-FEM for different values
of rγ

Figure 13: Effect of the ratio rγ on the behavior of the algorithm.

A 5-level DEK-FEM (4 X-FEM grids plus the analytical domain) is now used to solve this
problem. Even though the convergence of Alg. 2 is linear and quite fast, it is approximately
4 times slower than Alg. 1. Therefore the multigrid solver resulting from the combination of
these two algorithms should suffer from this unbalance, if a classical “V”-cycle is used.

In order to highlight this phenomenon, the number of global multigrid iterations needed
to reach an error below 10−12 and the corresponding CPU time are plotted on Figure 13(a)
for different values of rγ = γW /γX . One can observe that when the patch is added at the
top of the hierarchy of grids with a naive choice of rγ = 1, an error below 10−12 is reached
within 94 iterations (Fig. 13(b)) whereas it took only 15 iterations without the analytical
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model (Fig. 12(a)). Using a more complex subcycle arrangement (rγ 6= 1), the number of
iterations reduces rapidly when the ratio of sub-cycles rγ increases. For rγ ≥ 6, it stabilizes
at an asymptotic value (16 iterations) for which the convergence rate is equal to that of the
LMG-X-FEM. For example, the evolution of the convergence indicator η over the iterations
is plotted on Figure 13(b) for rγ = 1 and rγ = 6. This sub-cycling requires some resolutions
of a very small system on the patch (12×12 in this example), so the extra cost is negligible.
Thus, for substantially the same computational cost as LMG-X-FEM, DEK-FEM provides, in
addition, accurate estimations of the generalized stress intensity factors directly.

Regarding computational cost, the CPU time reduces in the same way and increases again
linearly, because the number of sub-cycles increases and the number of global iterations sta-
bilizes. The parameter rγ is used to balance the different convergence rates of Alg. 1 and
2. It seems that for this example, an optimal value of rγ would be around 6 or 7 for which
the resolution time is more than 60% faster than the naive approach rγ = 1, which represents
significant savings. When rγ is smaller (resp. greater) than this optimal value, Alg. 2 (resp.
Alg. 1) slows down the global algorithm. More generally, since the slope is steeper for the low
values of rγ , one should prefer to use larger numbers of sub-cycles to reduce computational
time.
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(a) Accuracy of the mixed modes stress intensity
factors for different grid numbers

(b) Size of the patch vs size of one element
of the initial mesh for 6 grids

Figure 14: Effect of the patch size on the algorithm.

With a fixed coarse mesh, for rW = 3, and for different grid numbers, Figure 14(a) shows
the accuracy of the computed mixed modes SIF. One can observe that the level of accuracy of
mode I and II is similar, and that they are slightly improved when the grid number increases.
The size of the analytical patch can therefore be very small without affecting the SIF accuracy.
For example, in Figure 14, the size of the patch is divided by 16 when the number of grids
goes from 2 to 6, without the quality of SIF is affected. In this example, we are thus able to
consider a patch whose size is 8 times smaller than the size of the element of the initial mesh
as shown Figure 14(b)
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7 Conclusion

An efficient and accurate concurrent multigrid method for the direct extraction of generalized
stress intensity factors is proposed in the present paper. First, a non-overlapping integral
matching is employed between a X-FEM model and a localized analytical reduced order model
expressed by the Williams’ expansion to estimate accurately SIFs with a monoscale method.
Secondly, we propose and combine with this method a localized multigrid solver that bridges
gradually the scale of the singularity at the crack tip to that of the structure. The global
algorithm uses a hierarchy of localized FEM/X-FEM grids, plus an additional analytical model
around the crack tip. The localized multigrid method introduced in [27] is used to handle the
FEM/X-FEM grids and a multigrid-like algorithm is proposed in a similar manner, to combine
the last X-FEM grid and the analytical patch. Despite the ease of use (arbitrary meshes, no
overlap, non-intrusiveness... ), three classical tests cases illustrate the ability of the method
to provide accurate mixed mode stress intensity factors and also higher order coefficients of
the elastic crack tip asymptotic fields directly, as additional degrees of freedom. In addition,
some parameters of the method, among which the size of the patch, the space of Lagrange
multipliers, the multigrid subcycles arrangement, have been discussed with the support of
examples.

The main short-term perspective, concerns the extension of this work to 2D crack propaga-
tion and particularly in the case of non-rectilinear crack (curvilinear cracks, kinks...). HAX-
FEM was shown to be accurate and efficient to simulate a curvilinear crack propagation in
[32], so the extention of DEK-FEM should be straightforward. Two approaches are possible.
Either we choose to reduce the size of the patch, and for that, the multigrid will be a major
asset, or one can also choose to adapt the analytical modes to take into account the real crack
shape. For the first approach, an adaptive refinement method could be developed to generate
the optimal hierarchy of grids along with the optimal patch size automatically. Another pos-
sible extension of this work is the simulation of dynamic crack propagation. Dynamic stress
factors will be extracted in the same way that the static case, up to a multiplicative factor
that depends on the crack velocity (see [30]). We will need to define a projection to transfer
kinematic fields from patch to the X-FEM grid (and vice-versa) during the propagation.

Apart from the difficulty of the third dimension and aside from the need to introduce the
mode III in the analytical model, the extension to 3D is not straightforward. The work done
in plane in 2D will be conducted in each plane orthogonal to the crack front. But the 3D mesh
nodes are not aligned in these planes. To manage this difficulty, we can build on the work
done by Rannou [28] on level sets handling. The idea is to build, at each step of propagation,
a 1D finite element interpolation of the generalized SIF along the crack front. Finally, such a
method can also be extended to cohesive cracks or other enhanced model of propagation.
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