Frédérique Carrère
email: frederique.carrere@labri.fr

Balancing weighted strings and trees in linear time

Keywords: weighted string, weighted alphabetic tree, weight-balance, tree-decomposable graph

In the present paper, we address the problem of building a binary tree which leaves carry weights in a given order and which is in some sense balanced. Such a tree is denoted as a balanced alphabetic weighted tree. If the leaves of the tree are labeled with letters, their concatenation (from left to right) gives a weighted string. The tree is balanced if it minimizes the maximum of all root-to-leaf paths weights. The root-to-leaf path weight for a given leaf is the sum of its depth and a function of its weight. There already exist linear algorithms to balance alphabetic weighted trees, using some extra hypothesis on the weights (for example if the number of distinct integer parts of the weights is bounded). The algorithm presented here is an online algorithm, which uses neither sorting nor extra data structures nor extra hypothesis on the weights. It applies to positive weights (either integers or reals). We use this algorithm to balance binary trees representing graphs in linear time.

Introduction

Given a finite set of positive weights w 1 , . . . ,w n (integers or reals), we are interested in algorithms constructing a binary tree which leaves hold the given weights in left-toright order and which is in some sense "balanced" relatively to the weights. In this paper we only deal with binary trees and we refer to a binary tree which leaves hold weights as a weighted tree. We say that a weighted tree is balanced if it minimizes the maximum of all root-to-leaf paths weights, where the path weight is the sum of the length of the path and a function of the leaf weight. In the present article, we choose the binary logarithm for the function. Intuitively a balanced weighted tree is such that the heaviest a leaf is, the smallest is its distance to the root.

Trees play a central role in various fields of Computer Science. A lot of text algorithms use trees (see [START_REF] Crochemore | Text Algorithms[END_REF], [START_REF] Gusfield | Algorithms on Strings, Trees, and Sequences[END_REF] and [START_REF] Lothaire | Combinatorics on Words[END_REF]). Weighted trees appear in the field of data structures (see [START_REF]Handbook on Data Structures and Applications[END_REF]). A wild range of binary search trees are balanced weighted trees, for example BB[α]-trees ([START_REF] Nievergelt | Binary trees of bounded balance[END_REF]), scapegoat trees ([START_REF] Galperin | Scapegoat trees[END_REF]), general-balanced trees ([START_REF] Anderson | General Balanced Trees[END_REF]). Their definitions use different notions of balance and the weights are based either on the size of subtrees or on the number of leaves of subtrees. These weighted trees are used to implement finite sets and finite maps in functional programming languages (Data.Set and Data.Map in Haskell, wttree.scm library in Scheme). In the case of BB[α]-trees, the number of operations (rotations) needed for the insertion of n nodes, starting from the empty tree, is less than c.n, with c equal to [START_REF] Lengauer | Combinatorial algorithms for integrated circuits layout[END_REF].59 when α is equal to 1/3 (but Mehlhorn noticed in [START_REF] Mehlhorn | Sorting and Searching, Data Structures and Algorithms[END_REF] that the experiments suggest a value of c close to one). Our algorithm to build balanced weighted trees is an incremental algorithm. It combines the idea of bottom-up search for the place of insertion, used in scapegoat trees and the technique of double rotation after insertion, used in BB[α]-trees. Following our definition of the balance, it does not require that each node of the resulting tree satisfies a balance criterion. It proceeds by successive insertions starting from the empty tree, but it uses at most one double rotation after each insertion of a node. It applies to any sequence of positive weights, whereas the linear amortized complexity achieved for BB[α]-trees is due to the fact that all the leaves have a weight equal to 1.

Building a balanced weighted tree with weights w 1 , . . . , w n can also be seen as a problem of clustering the nodes such that the clusters have near weights. This problem arises both in the field of information theory and in the field of bioinformatics. Both the well-known Huffman algorithm for lossless data compression (see [START_REF] Huffman | A method for the construction of minimum redundancy codes[END_REF], [START_REF] Salomon | Data Compression, The Complete Reference[END_REF]) and the Neighbor-Joining algorithm which is widely used in genomics (see [START_REF] Nei | The Neighbor-Joining Method: A New Method for Reconstructing Phylogenetic Trees[END_REF], [START_REF] Brodal | Recrafting the neighborjoining method[END_REF]) are based on the principle of joining two nodes which minimize a certain weight. The weight can be a probability in the case of the Huffman coding or a distance in the case of the Neighbor-Joining algorithm. In this paper we are interested in trees such that the order of the leaves is relevant and can not be changed. Such trees are called alphabetic trees. The problem of building balanced alphabetic weighted trees has been investigated both for the optimization of lossless coding (see [START_REF] Drmota | Generalized Shannon Code Minimizes the Maximal Redundancy LATIN'02[END_REF]) and for the optimization of circuits design (see [START_REF] Lengauer | Combinatorial algorithms for integrated circuits layout[END_REF]). Several algorithms adapt the principle of Huffman algorithm to the case of alphabetic trees (see [START_REF] Garsia | A New algorithm for minimal binary search trees[END_REF], [START_REF] Hu | Optimal Integer Alphabetic Trees in Linear Time, ESA[END_REF], [START_REF] Gagie | A New Algorithm for Building Alphabetic Minimax Trees[END_REF]). These algorithms use either sorting or generalize selection and complex extra data structures. They run in linear time when the weights are integers or when the number of distinct integer parts of the weights (real weights) is bounded. Our algorithm uses neither sorting nor extra data structures nor extra hypothesis on the weights. It applies to positive weights (either integers or reals).

Our aim is to balance binary algebraic terms. Every binary term can be seen as a binary tree. In particular we are interested in binary terms representing graphs of bounded tree-width or clique-width ([3], [START_REF] Bodlaender | Discovering treewidth[END_REF], [START_REF] Courcelle | Upper bounds to clique-width of graphs[END_REF], [START_REF] Corneil | Polynomial time recognition algorithm of clique width ≤ 3 graphs[END_REF] and [START_REF] Courcelle | Graph Structure and Monadic Second-Order Logic: A Language-Theoretic Approach[END_REF]). Courcelle and Vanicat in [START_REF] Courcelle | Query efficient implementations of graphs of bounded clique-width[END_REF] give fundamental results concerning queries on graphs of bounded tree-width or cliquewidth, provided that the graphs store small distributed data in their vertices. For these model-checking algorithms it is a crucial point to represent the graphs using binary trees of logarithmic height. In the same article Courcelle and Vanicat give an algorithm to balance a given term t (representing a graph), which runs in time O(|t| log(|t|) where |t| is the size of the term (or tree). In this paper we give a linear algorithm. The entry of the algorithm is the right branch of the tree. We associate a weight with each node of this branch. We get thus a sequence of weights. Therefore a linear algorithm to build a balanced weighted tree for a given sequence of weights is a key tool to build balanced decomposition trees for graphs. Dealing with balanced trees also enables to minimize the size of graph's representation. Meer and Rautenbach in [START_REF] Meer | The OBDD size for graphs of bounded Tree-and Clique-width, IWPEC[END_REF] study the size of ordered BDD for representing the adjacency function of a graph G on n vertices. Their algorithms use balanced tree-width or clique-width terms with depth O(log(n)). The encoding of G's nodes used by the BDD has length O(h log(k)) if the graph has tree-width or cliquewidth k and if h is the depth of the decomposition tree. Balanced terms can also be used to solve constraints satisfaction problems if the constraint graph has bounded tree-width (see [START_REF] Chen | Quantified constraint satisfaction and bounded treewidth[END_REF], [START_REF] Koster | Solving partial constraint satisfaction problems with tree decomposition[END_REF]).

In the present paper we propose a dynamic linear algorithm for balancing alphabetic weighted strings and trees, with positive real weights. The paper is organized as follows.

In the second section, we define the notion of (c, b)-balanced weighted tree, for positive integers c and b and we give a simple inductive algorithm in O(n log(n)) which builds a (2, 2)-balanced weighted tree. In the third section we give a dynamic linear algorithm which builds a (2, 2)-balanced weighted tree for any given sequence of positive weights. In the fourth section we use the linear algorithm to build 4-height-balanced binary trees representing binary terms. This result can apply to algebraic terms representing graphs and can be used for example in the well-known classes of graphs of bounded tree-width or bounded clique-width.

Weighted trees

In the present work, we consider only binary trees. A weighted tree is a tree which leaves hold weights. We consider only non negative weights.

Let t be a binary tree. The root of t is denoted root(t). The size (e.g., the number of nodes) of t is denoted |t|. The height of a node is the length of the longest downward path to a leaf from that node. The height of the root is the height of the tree. It is denoted h(t). The depth of a node is the length of the path from that node to the root, which is called its root path. Every internal node x (e.g., not a leaf) has two child nodes denoted left(x) and right(x). The left-weight of x, denoted w lef t (x), is the weight of its left child. Every node x different from the root is the son of a node y called its parent node and denoted parent(x). The other son of y is the sibling of x. If y is not the root, the parent of y is denoted gparent(x). We denote ggparent(x) the parent of the parent of y, if it exists. Every node x of t is the root of a subtree consisting of the node x itself and all its descendants. This subtree is denoted t↓x. The weight of any subtree of t is the sum of the weights of its leaves.

The following definition generalizes the notion of height-balanced tree. The logarithms are always in base 2. We also define a notion of balance for weighted trees which involves the weights of the leaves. Let c and b be integers, c ≥ 1, b ≥ 0. The idea is that a leaf which weight is greater than w(t)/p for some integer p ≥ 2, must have a depth at most c log(p) + b. Definition 2.2. Let t be a weighted tree with leaves u 1 , u 2 , . . . , u n . Let c and b be integers, c ≥ 1, b ≥ 0. The tree t is (c, b)-balanced if and only if every leaf u i of t (1 ≤ i ≤ n) has a depth at most c log(w(t)/w(u i)) + b.

We shall say that a weighted tree is c-balanced when it is (c, 0)-balanced. We study now some properties of (c, b)-balanced weighted trees. First of all notice that if the weight of each leaf of t is 1, then t is a (c, b)-balanced weighted tree if and only if t is a (c, b)-height-balanced tree.

Recall that the root-to-leaf path weight for a given leaf is the sum of its depth and a function of its weight. Let us choose the function f : x → c log(x). Then the first immediate consequence of the preceding definition is that if t is a (c, b)-balanced weighted tree then the maximum root-to-leaf path weight is bounded by c log(w(t)) + b.

Proposition 2.1. Let t be a weighted tree with leaves u 1 , u 2 . . . , u n . If t is (c, b)-balanced, for some integers c ≥ 1, b ≥ 0, then the maximum root-to-leaf path weight, max{depth

(u i)+ c log(w(u i)), 1 ≤ i ≤ n }, is less than c log(w(t)) + b.
The following property is interesting if we want to substitute a leaf of weight w i with a binary tree of size w i (this is the case in section 4). Proposition 2.2. Let t be a weighted tree with leaves u 1 , u 2 . . . , u n . If t is (c, b)-balanced, for some integers c ≥ 1, b ≥ 0, then substituting any leaf u i of t with an arbitrary (c, b ′)height-balanced tree t i of size w(u i) gives a (c, b + b ′)-height-balanced tree t ′ .

Proof. Let t be a (c, b)-balanced weighted tree with leaves u 1 , u 2 , . . . , u n holding the weights w 1 , w 2 , . . . , w n . By hypothesis every leaf u i (1 ≤ i ≤ n) has a depth at most c log(w(t)/w i) + b. Let t ′ be the tree obtained by substituting each u i , 1 ≤ i ≤ n, with a (c, b ′)-height-balanced tree t i . By hypothesis the size of t i is w i , and the height of t i is at most c log(w i) + b ′ . By definition the height of t is max{ depth(u i), 1 ≤ i ≤ n }. So after the substitution, the height of t ′ is max{ depth

(u i) + h(t i), 1 ≤ i ≤ n }. Thus h(t ′) is bounded by max{c log(w(t)/w i) + b + c log(w i) + b ′ , 1 ≤ i ≤ n}. Recall that w(t)
is the sum of the weights w i , for 1 ≤ i ≤ n. In this case it is the sum of the sizes of the t i 's and it is less than the size of t ′ . So we have h(t

′) ≤ c log(|t ′ |) + b + b ′ and t ′ is (c, b + b ′)-height-balanced.
Let us now state a more technical lemma which is the basic tool for the inductive proves in the following sections. Proposition 2.3. Let t be a weighted tree. Let c and b be integers, c ≥ 1, b ≥ 0. If on every branch of t of length strictly greater than b, there exists a node y and some integers p ≥ 0, r ≥ -b such that If y = u i then by hypothesis (3), the weight w i is less than w(t)/2 p . Thus we have log(w(t)/w i) ≥ p. By hypothesis (1), the depth of

1. depth(y) ≤ p × c -r 2. the subtree t↓y is (c, b + r)-balanced 3. w(y) ≤ w(t)/2 p then t is (c, b)-balanced. Proof. Let u i be a leaf of t, 1 ≤ i ≤ n. If u i has
u i is less than p × c -r with -r ≤ b then depth(u i) ≤ p × c + b, which is less than c log(w(t)/w i) + b Consequently t is (c, b)-balanced.
If t satisfies the hypothesis of lemma 2.3 with the values c = 2 and b = 2 and p = 1, then we have the following result:

Corollary 2.4. Let t be a weighted tree. If on every branch of t of length strictly greater than 2, there exists a node y such that:

• depth(y) ≤ 2
• the subtree t↓y is (2, 2)-balanced

• w(y) ≤ w(t)/2 then t is (2, 2)-balanced.
By Lemma 2.3, given a sequence of weights w 1 , w 2 , . . . w n , a straightforward inductive algorithm yields a (2, 2)-balanced weighted tree with leaves holding the weights w 1 , w 2 , . . . , w n .

Corollary 2.5. For every sequence of weights w 1 , w 2 , . . . , w n , one can build in time O(n log(n)) a (2, 2)-balanced weighted tree with leaves w 1 , w 2 , . . . , w n .

Proof. Let w be the sum of the n weights. We use a simple inductive algorithm. The algorithm reads the sequence of weights from left to right, and stops on the smallest index i such that the sum of the weights w 1 , . . . , w i is more than w(t)/2. Then we inductively build a weighted tree denoted f irst which leaves hold the weights w 1 , . . . , w i-1 and a weighted tree denoted last which leaves hold the weights w i+1 , . . . , w n (if i = 1 then f irst is null; if i = p then last is null). We also build a small tree denoted current with only one node with weight w i . If none of this three trees is null, we build the weighted tree with f irst as left son of the root and with a new binary node x as right son of the root. We hang current as left son of x and last as right son of x. If f irst (resp. last) is null we simply build a binary tree with a new root node with sons current and last (resp. with sons f irst and current). We can easily prove Corollary 2.5 by induction on n.

Base Case. If the number of weights is less than 3, the depth of each leaf in the weighted tree is at most 2. So the weighted tree is trivially (2, 2)-balanced.

Induction Hypothesis. Let m < n, for any sequence of m weights the algorithm build a (2, 2)-balanced weighted tree.

Induction

Step. Let i be the smallest index i such that the sum of the weights w 1 , . . . , w i is more than w(t)/2. Then clearly the sum of the weights w 1 , . . ., w i-1 is less than w(t)/2. Similarly the sum of the weights w i+1 , . . . , w n is less than w(t)/2. By Induction Hypothesis the algorithm build two (2, 2)-weight-balanced trees f irst and last for the sequences (w 1 , . . . , w i-1) and (w i+1 , . . . , w n). Consequently, if new node(t 1 , t 2) is a function which creates a new binary node with sons root(t 1) and root(t Example 2.1. let s be the word abccc. Assume that each occurrence of a letter has weight 1, then the weight of s is 5 Let u 1 = a, u 2 = b, u 3 = ccc be three factors of s. The weights of the factors are respectively w 1 = 1, w 2 = 1 and w 3 = 3. The smallest index i such that the sum w 1 + . . . + w i is less than w(s)/2 is 3. Hence we build the weighted tree f irst with leaves u 1 = a, u 2 = b and the weighted tree last is null. Then the root of the weighted tree has f irst as left son and a tree with a unique node label u 3 as right son. We obtain the weighted tree of figure 1. ccurrence of a letter has weight 1, then the weight of s is 11 Let u 1 = ab, u 2 = a, u 3 ccc, u 4 = aa, u 5 = bab be five factors of s. The weights of the factors are respectively w 1 = 2, w 2 = 1, w 3 = 3, w 4 = 2, w 5 = 3. The smallest index i such that the sum w 1 + . . . + w i is less than w(s)/2 is 3. Hence we build the weighted tree f irst with leaves u 1 = ab, u 2 = a and the weighted tree last with leaves u 4 = aa, u 5 = bab. We obtain the weighted tree of figure 2. Example 2.2. let s be the word abacccaabab. Assume that each occurrence of a letter has weight 1, then the weight of s is 11 Let u 1 = ab, u 2 = a, u 3 ccc, u 4 = aa, u 5 = bab be five factors of s. The weights of the factors are respectively w 1 = 2, w 2 = 1, w 3 = 3, w 4 = 2, w 5 = 3. The smallest index i such that the sum w 1 + . . . + w i is less than w(s)/2 is 3. Hence we build the weighted tree f irst with leaves u 1 = ab, u 2 = a and the weighted tree last with leaves u 4 = aa, u 5 = bab. We obtain the weighted tree of figure 2.

bab aa a ccc ab

A linear algorithm to balance weighted trees.

In this paragraph we use the notion of weight-balance of a node in a tree which is used for scapegoat trees (see [START_REF] Galperin | Scapegoat trees[END_REF]).

Let t be a weighted tree. Let x be a node of t. The weight-balance of x is the ratio w(right(x))/w(left(x)). Starting from a one node tree and applying a bottom-up schema of insertion from the rightmost leaf, we can build a (2, 2)-balanced weighted tree for any sequence of weights.

Theorem 1. For every sequence of weights w 1 , w 2 , . . . , w n , one can build in time O(n) a (2, 2)-balanced weighted tree with leaves w 1 , w 2 , . . . , w n .

Proof of Theorem 1. The balanced weighted tree is build by insertion starting from a one node tree as follows:

• create a leaf tree node t 1 holding the weight w 1 .

• Assume that we have built a balanced tree t i-1 for the weights w 1 . . . w i-1 , climb up from the rightmost leaf to the root, searching a point of insertion for a new node u i holding the weight w i .

• The point of insertion is the first node satisfying some conditions on its weight and the weights of its parent and great-parent. This node is called the weight-sibling of u i .

• Assume that v is the weight-sibling of u i and s is the parent of v in t i-1 . To insert u as sibling of v and keep the tree binary, we need to insert also another node c which becomes the new parent of both v and u i in t i . We insert c as right son of sand v becomes the left son of c (see figure 3). Notice that the node s, which was the parent of v in t i-1 , becomes the great parent of v in t i . If we do not modify the subtree t↓c after the insertion, we build a (3, 2)-balanced weighted tree. If we perform in some cases either a double rotation at c (see figure 5) or a left rotation at v (see figure 4) after the insertion, we can build a (2, 2)balanced weighted tree.

Let t be a weighted tree. Let u be a weighted node not in t.

Definition 3.1. The node v is a weight-sibling of the node u (u not in t) if and only if v belongs to the right branch of t, depth t (v) ≥ 1 and inserting u as sibling of v in t, gives a new tree t ′ such that:

• if depth t ′ (v) = 2 then gparent t ′ (v) has weight-balance less than 1.

• if depth t ′ (v) ≥ 3 then gparent t ′ (v) and ggparent t ′ (v) have weight-balance less than 1. The linear algorithm to build the balanced weighted tree t can be decomposed in four functions:

• the function buildBalancedTree(u 1 , u 2 , . . . , u n) builds the tree t by a sequence of insertions: each u i is inserted in t i-1 and t n = t (see algorithm 1).

• The function findWeightSibling(t i-1 , p, u i) looks for the point of insertion of u i on the right branch of t i-1 , using a pointer p which moves bottom up from the right leaf of t i-1 to its root (see algorithm 2).

• The function isWeightSibling(p, u i) performs the tests on the weights: v being the node pointed by p, the function tests if the weight-balance of the nodes gparent ti (v) and ggparent ti (v) (respectively s and s ′ on figure 3) will be less than one after the insertion of u i (see algorithm 3).

• The function insert(t, u i , p) performs the insertion of the leaf u i in t as sibling of the node v pointed by p. This means that the function inserts both u i and a new node c, which gets v and u i as sons. If neither v nor its right son v r are leaves and if the weight-balance of v is strictly greater than 1, then the function also performs either a simple or a double rotation (see algorithm 4). It performs a double rotation of the subtree rooted at c (see figure 5), if this double rotation gives a new subtree which root has weight-balance less than one, that is if the sum of the weights w(right(v r)) + w(u i) is less than the sum of the weights w(left(v r)) + w(left(v)) (see figure 5). Otherwise the function performs a left rotation at v (see figure 4) such that c gets a new left son, v r , which has a weight-balance less than one.

Claim 2. The complexity of buildBalancedTree(u

1 . . . u n) is O(n).
To compute the amortized complexity, we charge a fix amount of credits for each elementary operation. If an operation is cheap and if we have charge more than necessary, we save up credits for later use. If an operation is expensive, which appends only occasionally, we use the credits saved to pay for it. Let i, 1 ≤ i ≤ n -1. Assume that:

• we have built a balanced tree t i-1 for the weights w 1 . . . w i-1 ,

• we have charged 5i -5 credits to construct t i-1 , Algorithm 1 buildBalancedTree(u 1 . . . u p) Require: A list of weighted nodes u 1 , u 2 , . . . u n . Ensure: A (3, 2)-balanced weighted tree t.

1: t = u 1 2: p = u 1 3: for i = 2 to n do 4:
/* move the pointer p bottom up from u i-1 */ 5:

f indW eightSibling(t, p, u i)

6:
/* after the insertion, p moves on u i */ 7:

t = insert(t, u i , p) 8: end for 9: return t Algorithm 2 findWeightSibling(t i-1 , p, u i) Require: A weighted tree t i-1 , a pointer p on its right leaf u i-1 , a weighted node u i . Ensure: A pointer on an ancestor of u i-1 , which is a weight -sibling of u i . if isW eithSibling(p, u i) then 1: q = parent(p) 2: qBalance = (w(p) + w(u i)) / w(left(q)) 3: if parent(q) == null then rBalance = (w(left(q)) + w(p) + w(u i)) / w(left(r))

8:

return (qBalance ≤ 1 and rBalance ≤ 1) 9: end if

• at this step we have at least k credits saved on an account, where k is the depth of u i-1 , Algorithm 4 insert(t, p, u i) Require: A leaf u i to insert at the position pointed by p . Ensure: A new tree t i with the pointer p on its rightmost leaf u i .

1: q = parent(p) c → lef t = lef t rotation(p)

13:

end if 14: end if 15: p = u i 16: if q <> null then We want to charge 5 credits to construct t i from t i-1 . We work on the rightmost branch of t i-1 , with a pointer p on its leaf u i-1 . Let u i be the new leaf node holding the weight w i . To add u i in t i-1 we move p towards the root until we find a weight-sibling of u i . There are three cases:

• If u i-1 is a weight-sibling of u i , we insert u i as sibling of u i-1 and move the pointer p to u i . The cost of the test is 2 credits (we look at the weight of gparent(u i-1)), the cost of the insertion is 1 credit and the excess 2 credits are saved into an account.

• If the weight-sibling of u i is a proper ancestor x of u i-1 with depth(x) = k ′ , k ′ < k, we move from u i-1 to x and insert u i as sibling of x. The cost of the move is k -k ′ credits, the cost of the test is 2 credits (we look at the weight of gparent(x)), the cost of the insertion is 1 credit, so the total cost is k -k ′ + 3 credits.

• Suppose we move from u i-1 to the root and insert u i as sibling of the root. The cost of the move and the insertion is k + 1 credits.

In each case we have at least k ′ + 2 credits saved on an account, where k ′ + 2 is the depth of u i on the rightmost branch of t i (recall that we insert both u i and a node c, parent of u i).

Claim 3. We claim that the tree t = linBalance(u 1 . . . u p) is (2, 2)-weight-balanced.

u i t B A C B C A u i t c v v r v ℓ w(v ℓ) v ′ v ′ v r w(v ℓ) v ′′ v ℓ v c left rotation w(v ′′) w(v ′) w(v ′′) v ′′ w(v ′)
Figure 4: Left rotation at v, after inserting u i in t i-1 .

A B v ′ w(v ℓ) v ℓ v w(v ′) u i t B C A t c v v r w(v ℓ) v ′ v ′′ w(v ′′) w(v ′) double rotation v ℓ c u i v r v ′′ C w(v ′′)
Figure 5: Double rotation at c, after inserting u i in t i-1 .

We prove that for every node x of t the subtree t↓x is (2, 2)-weight-balanced. The proof is done by induction on the size of t↓x.

Base Case. If |t↓x| ≤ 5 then h(t↓x) ≤ 2 the condition of (2, 2)-balance is trivially satisfied.

Let m be an integer such that m ≤ h(t).

Induction Hypothesis. Every subtree of t of size strictly less than m is (2, 2)balanced.

Induction

Step. Let x be a node of t such that |t↓x| = m.

Recall that the weight of t↓x is w(x). By Corollary 2.4 with c = 2 and b = 2, it is sufficient to prove that on every branch of t↓x of length at least 3, there exists a node y such that depth t↓x (y) ≤ 2 and w(y) ≤ w(x)/2. By inductive hypothesis the subtree t↓y is (2, 2)-balanced. Then the tree t↓x is (2, 2)-balanced. We need some preliminary lemmas to prove the existence of such a node y on every branch of t↓x of length at least 3. We first focus on the right branch of t↓x. Let x 1 be the right son of x. The following lemma and corollary prove that both sons of x 1 have a weight less than half the weight of x (see figure 6).

Lemma 4. Let x be a node of t such that the length of the right branch of t↓x is at least 2. Let x 1 = right(x) and x 2 = right(x 1), then we have:

1. w lef t (x 1) ≤ w lef t (x),

2.

w lef t (x 2) ≤ w lef t (x)/2, 3.

w(x 2) ≤ w lef t (x) + w lef t (x 1).

Before proving lemma 4, we can state the following corollary:

Corollary 5. Let x be a node of t such that the length of the right branch of t↓x is at least 2. Let x 1 = right(x) and x 2 = right(x 1). We have w lef t (x 1), w(x 2) ≤ w(x)/2.

Let A and B be the left and right members of inequalities (1) (resp. (3)) of Lemma 4. Note that A and B are positive numbers such that A + B ≤ w(x) and A ≤ B then one has A ≤ w(x)/2. Hence the corollary holds.

Proof of Lemma 4. 1) Let x, x 1 , x 2 be as stated in the lemma. Let u ℓ be the leftmost leaf of t↓x 2 (if x 2 is a leaf then u ℓ is x 2). There are three cases.

Case 1. Assume that the leaf u ℓ is inserted in t ℓ-1 without rotation. Then the node left(x 1) is a weight-sibling of u ℓ and by definition 3.1 the weight-balance of x, which is the great parent of left(x 1), is less than 1 in t ℓ . So we have w(u ℓ) + w lef t (x 1) ≤ w lef t (x).

Case 2. Assume that after the insertion of u ℓ we performed a left rotation in the left subtree of x 1 (see figure 4 with c = x 1). Then we know that before the rotation the weight-balance of x was less than 1 and the rotation in the left subtree of x 1 does not change the weight-balance of x.

Case 3. Assume that after the insertion of u ℓ , we performed a double rotation which result is t↓x (see figure 5). By hypothesis, a double rotation occurs only if it gives a subtree which root x has weigh-balance less than 1. This implies that w lef t (x 1)+w(u ℓ) ≤ w lef t (x).

Thus in the three cases, the first statement of the lemma holds.

Proof of Lemma 4. 2) Let u j be the leftmost leaf of t↓right(x 2). There are three cases.

Case 1. Assume that the leaf u j is inserted in t j-1 without rotation. Then the node left(x 2) is a weight-sibling of u j and by definition 3.1 the nodes x 1 and x, which are respectively the great parent and the great great parent of left(x 2), have a weight-balance less than 1 in t j . This gives the two following inequalities: w(u j) + w lef t (x 2) ≤ w lef t (x 1) and w(u j) + w lef t (x 2) + w lef t (x 1) ≤ w lef t (x).

Adding this two inequalities we also get that w(u j) + w lef t (x 2) ≤ w lef t (x)/2.

Case 2. Assume that after the insertion of u j we performed a left rotation in the left subtree of x 2 (see figure 4 with c = x 2). Then we know that before the rotation the weight-balance of x 1 and x was less than 1 and the rotation in the left subtree of x 2 does not change the weight-balance of x 1 and x.

Case 3. Assume that after the insertion of u j we performed a double rotation which result is t↓x 1 (see figure 5). By hypothesis, a double rotation occurs only if it gives a subtree which root x 1 has weigh-balance less than This implies that w lef t (x 2)+w(u j) ≤ w lef t (x 1). On the other hand, the weight-balance of x is not changed by the double rotation and we know that it is less than 1. So we also have w(u j)+w lef t (x 2)+w lef t (x 1) ≤ w lef t (x). The two inequalities give the result, as in case [START_REF] Anderson | General Balanced Trees[END_REF].

Thus in the three cases, the second statement of the lemma holds.

Proof of Lemma 4. 3) If x 2 is a leaf, we proved (see Proof of lemma 4 (1)) that w(x 2) + w lef t (x 1) ≤ w lef t (x). Thus the third part of the lemma holds. Otherwise let x, x 1 , x 2 , . . . , x m and u be the nodes on the right branch of t↓x, where u is the leaf. Note that the weight w(x 2) is the sum of the left weights on the right branch of t↓x 2 , that is w lef t (x 2) + . . . + w lef t (x m) + w(u). From Lemma 4 (2) it follows that for every i, 2 ≤ i ≤ m -1, we have w lef t (x i) ≤ w lef t (x i-2)/2. Using this inequality we can get the following result:

• if i is even, i = 2p, then for every k, 1 ≤ k ≤ p, we have:

w lef t (x i) ≤ 1 2 w lef t (x i-2) . . . ≤ 1 2 k w lef t (x i-2k) . . . ≤ 1 2 p w lef t (x 0),
• if i is odd, i = 2p + 1, then for every k, 1 ≤ k ≤ p, we have:

w lef t (x i) ≤ 1 2 w lef t (x i-2) . . . ≤ 1 2 k w lef t (x i-2k) . . . ≤ 1 2 p w lef t (x 1
). Since gparent(x m) and ggparent(x m) have weight-balance less than 1, we also get that w lef t (x m)+w(u) ≤ w lef t (x m-2)/2. From this inequality we deduce the following result:

• if m is even, m = 2p, then we have w lef t (x m) + w(u) ≤ 1 2 p w lef t (x 0),
• if m is odd, m = 2p + 1, then we have w lef t (x m) + w(u) ≤ 1 2 p w lef t (x 1). As the weight of x 2 is the sum of the left-weights on the right branch of t ↓ x 2 , we obtain the following result:

w(x 2) = i=m i=2 w lef t (x i) + w(u) = i=m-1 i=2 w lef t (x i) + w lef t (x m) + w(u) ≤ (w lef t (x 0) + w lef t (x 1)) (1 2 + 1 4 . . . + 1 2 p) ≤ w lef t (x 0) + w lef t (x 1).
Thus the lemma 4 holds.

It remains to consider the left branch of t↓x. Let y 1 be the left son of x, the following lemma proves that both sons of y 1 have a weight less than half the weight of x (see figure 6). Lemma 6. Let x be a node of t such that the length of the left branch of t↓x is at least 2. Let y 1 = left(x), we have w lef t (y 1) ≤ w(x)/2 . Let y 2 = right(y 1) and assume that y 2 is not a leaf, then we have w(y 2) ≤ w(x)/2 .

Proof of Lemma 6. Let x 1 = right(x). Let u i be the leftmost leaf of t↓x 1 . There are three cases.

Case 1. Assume that the leaf u i is inserted in t i-1 without rotation. As u i is not inserted in t↓y 1 , we can deduce that none of the nodes on the right branch of t↓y 1 is a weight-sibling of u i . In particular y 2 is not a weight-sibling of u i . To apply the definition of weight-sibling we must know the depth of y 2 in t i . Suppose that the node x is the right son of a node s in t. Then the depth of y 2 in t i is at least 3. By the algorithm of insertion, the node left(x) is a weight-sibling of u i . This implies that the node s, which is the great parent of left(x), has a weightbalance less than 1. The node s is also the great great parent of y 2 . On the other hand, recall that y 2 is not a weight-sibling of u i . Then necessarily (see Definition 3.1), the great parent of y 2 , namely y 1 , has a weight-balance strictly greater than 1. This gives w lef t (y 1) < w(u i)+w(y 2) . Since we also trivially have w lef t (y 1)+w(y 2)+w(u i) ≤ w(x) , adding these two inequalities we get that w lef t (y 1) ≤ w(x)/2 . So the first inequality of the lemma holds. Suppose that x is the left son of a node s in t. This means that x belongs to the left branch of t. Necessarily y 1 was the root of t i-1 and the tree t i has been constructed by adding a new root x with left son y 1 and right son u i . Then the depth of y 2 in t i is 2. Recall that y 2 is not a weight-sibling of u i . Then by Definition 3.1 the weight-balance of the great parent of y 2 , which is y 1 , is greater than 1. This gives w lef t (y 1) < w(u i) + w(y 2) . Since we also trivially have w lef t (y 1) + w(y 2) + w(u i) ≤ w(x), adding these two inequalities we get that w lef t (y 1) ≤ w(x)/2 . So the first inequality of the lemma holds. On the other hand, the fact that we perform no rotation after the insertion, assuming that y 2 is not a leaf, implies that the weight-balance of y 1 is less than 1. This means that w(y 2) ≤ w lef t (y 1). Since we trivially have that w(y 2) + w lef t (y 1) ≤ w(x), it follows that w(y 2) ≤ w(x)/2. So the second inequality of the lemma holds.

Case 2. Assume that after the insertion of u i we performed a left rotation which result is the subtree t↓y 1 (see figure 4). This implies that z 1 is not a leaf. Let A = w(left(z 1)), B = w(right(z 1)) and C = w(y 2). The fact that we do not perform a double rotation implies that C+w(u i) > A+B (see algorithm 4). Since we trivially have A+B+C+w(u i) ≤ w(x), it follows that A + B ≤ w(x)/2, that is w(left(y 1)) ≤ w(x)/2. On the other hand, by Lemma 4 (3) applied to the subtree t↓left(x)) before the rotation, we know that C ≤ A + B. Since we trivially have A + B + C ≤ w(x), it follows that C ≤ w(x)/2, that is w(y 2) ≤ w(x)/2. Case 3. Assume that after the insertion of u i we performed a double rotation which result is the subtree t↓x (see figure 5). Let u ℓ be the leftmost leaf of t↓x 2 . Let A = w(z 1), B = w(y 2) and C = w(left(x 1)). By Lemma 4 (1) applied to the subtree t↓left(x)) before the rotation, we know that B ≤ A. Since we trivially have A + B ≤ w(x), it follows that B ≤ w(x)/2, that is w(y 2) ≤ w(x)/2. On the other hand, the proof of case (1) applied to t↓x before the double rotation gives that A ≤ w(x)/2, that is w lef t (y 1) ≤ w(x)/2.

Thus in the three cases the lemma holds. In conclusion, on every branch of t↓x of length at least 3, there exists a node, namely left(x 1) or x 2 or left(y 1) or y 2 , which depth is less than 2, which weight is less than w(x)/2, and which is the root of a (2, 2)-balanced subtree (by inductive hypothesis). So by Corollary 2.4 (with c = 2 and b = 2) the tree t↓x is (2, 2)-balanced. This is true for any node x of t, including the root. Consequently the tree t is (2, 2)balanced.

Application to terms.

Let F be a set of binary operation symbols. Let C be a set of constants symbols. The set T (F, C) is the set of terms over the signature (F, C). There is a classical bijection between the terms of T (F, C) and the binary trees with labels of internal nodes in F and labels of leaves in C and we shall identify terms and trees. tree using two runs along the rightmost branch. If a 1 , a 2 , . . ., a k are the nodes of the rightmost branch of t, we first balance the left subtree hanging on a node a i , for any i, 1 ≤ i ≤ k -2. The subtree hanging on a k-1 is a small subtree t k-1 of size 3, which is trivially 4-height-balanced. Thus we obtain a sequence of 4-height-balanced subtrees T 1 , T 2 , . . ., T k-2 , t k-1 , which respective sizes are s(T 1), s(T 2), . . ., s(T k-2), |t k-1 |. Then we use Algorithm of Section 3 to build in linear time a balanced weighted tree t 0 with leaves holding the weights s(T 1) + 1, s(T 2) + 1, . . ., s(T k-2) + 1, |t k-1 | + 1 (we add 1 to |t k-1 | for some technical reason) . The final step of the algorithm consists in labeling internal nodes of t 0 with the substitution operator • and hanging on the leaves of t 0 the subtrees a 1 (T 1 , u), . . ., a k-2 (T k-2 , u) and t k-1 . At the end we get a 4-height-balanced binary tree, that is a tree t which height is less than 4 times the logarithm of its size s(t). The proof of the theorem is done by induction on the size of t.

Base Case. If |t| ≤ 5, then the height of t is 2 and t is clearly 4-height-balanced, then t is equal to t (and s(t) is equal to |t|). Induction Hypothesis. For every tree t ′ of size m strictly less than |t|, one can build in time O(m) an equivalent tree t ′ in T (F, C) such that the height of t ′ is less than 4 log(s(t ′)).

Induction

Step. Let a 1 , a 2 , . . . a k be the nodes on the rightmost branch of t, from the root to the leaf. If k is less than 3, since we assume that for any node x of t, the size of t↓left(x) is less than the size of t↓right(x), we necessarily have a tree t of size at most 7 and the result is trivial. Let k be at least 4. Assume that for all i, 1 ≤ i ≤ k -2, we cut the right branch of t between each pair of consecutive nodes, a i and a i+1 . Then we get the contexts a 1 (t↓left(a 1), u) , a 2 (t↓left(a 2), u) ,. . ., a k-2 (t↓left(a k-2), u) . The subtrees t↓left(a 1) , t↓left(a 2) , . . ., t↓left(a k-2) have a size strictly less than |t|. By induction hypothesis one can build equivalent well-formed trees T 1 , T 2 , . . ., T k-2 in T (F, C) such that for any i, 1 ≤ i ≤ k -2, the height of T i is less than 4 log(s(T i)). Thus for any i, 1 ≤ i ≤ k -2, the context a i (t↓left(a i), u) , is equivalent to the extended contexts a i (T i , u) , where T i is a 4-height-balanced binary tree. Each T i , 1 ≤ i ≤ k -2, can be constructed in time O(|t↓left(a i)|). So we can build the sequence T 1 , . . ., T k-2 , in time O(n). The last subtree t k-1 is a small 4-height-balanced tree with 3 nodes. Let us consider now the nodes a 1 , a 2 , . . . a k-2 and a k-1 as weighted nodes with respective weights w 1 = s(T 1) + 1, w 2 = s(T 2) + 1, . . ., w k-2 = s(T k-2) + 1 and w k-1 = |t↓a k-1 | + 1. We use the linear algorithm of section 3 applied to the nodes a 1 , a 2 ,. . ., a k-1 , holding the weights w 1 ,w 2 ,. . .,w k-1 to build a weighted tree. The sequence of weights w 1 , w 2 . . . w k-1 , satisfies the following assertion. Claim 8. For any i, 1 ≤ i ≤ k -2, w i is less than j=k-1 j=i+1 w j . Recall that we assume that for any node x of t, the size of t↓left(x) is less than the size of t↓right(x). Thus for any i, 1 ≤ i ≤ k -2, the size |t↓left(a i)| is less than j=k-2 j=i+1 (|t↓left(a j)| + 1) + |t↓a k-1 |. Then it follows that for any i, 1 ≤ i ≤ k -2, the weight of a i , s(T i) + 1, which is also equal to |t↓left(a i)| + 1 (by the definition of s), is less than j=k-2 j=i+1 w j + w k-1 .

Let t 0 be the tree obtained by the linear algorithm of section 3 applied to the nodes a 1 , a 2 ,. . ., a k-1 , holding the weights w 1 , w 2 , . . ., w k-1 . The tree t 0 is (2, 2)-balanced. If we hang on each leaf a i a subtree which is itself (2, 2)-balanced, then by Lemma 2.2 we get a (2, 4)-balanced tree and the induction failed. Therefore we first need to prove that t 0 is a (4, 0)-balanced weighted tree.

Claim 9. The tree t 0 is a 4-balanced weighted tree.

By definition of a (2, 2)-balanced weighted tree, any leaf a i , 1 ≤ i ≤ k-1, of t 0 has a depth smaller than 2 log(w(t 0)/w(a i)) + 2 . From Claim 8 we can deduce that for any i, 1 ≤ i ≤ k -2, w(a i) is smaller than w(t 0)/2. This implies that log(w(t 0)/w(a i)) is greater than 1. Thus for any i, 1 ≤ i ≤ k -2, 2 log(w(t 0)/w(a i)) + 2 is smaller than 4 log(w(t 0)/w(a i)) . For the last leaf a k-1 with weight 4, either the tree t is small or w(a k-1) is less than w(t 0)/2. In both case the depth of a k-1 is less than 4 log(w(t 0)/w(a k-1)) . So t 0 is 4-balanced.

We build the 4-height-balanced tree t equivalent to t by replacing for any i, 1 ≤ i ≤ k -2, the leaf a i of t 0 with the subtree a i (T i , u) and the node a k-1 with t k-1 (a 4-height-balanced subtree of size 3). We denote the substitution as follows: t = t 0 [a 1 := a 1 (T 1 , u), . . . , a k-2 := a k-2 (T k-2 , u) , a k-1 := t k-1]. By hypothesis, for any i, 1 ≤ i ≤ k -2, the tree T i is a 4-height-balanced tree and the tree t k-1 is a 4-height-balanced tree of size 3. By Claim 9 the tree t 0 is a 4-balanced weighted tree. Then by Lemma 2.2 we obtain a tree t which is 4-height-balanced and this proves the theorem. We conjecture that using the fact that we deal here with trees representing terms (internal nodes are labeled with the substitution operator), we can improve the algorithm of Section 3 to build a (3, 0)-balanced weighted tree t ′ 0 . This would lead to a 3-height balanced binary tree t.

Conclusion

In this paper we give a linear algorithm to build a (2, 2)-balanced weighted tree for a given sequence of weights. This algorithm handles strictly positive weights (integers or reals). It is an online algorithm. Furthermore it does not need any additional storage and the weights do not need to be sorted. This algorithm can be used for weighted strings, where the letters of the strings carry weights. It builds in linear time a balanced weighted tree which leaves are either the letters or some given factors of the initial string. We obtain in linear time a tree which is in most of the cases the well-known Huffman tree.

We can also use our linear algorithm to balance trees representing graphs. In particular, we consider the classes of graphs of bounded clique-width or bounded tree-width, which are widely studied. A graph in one of these classes is represented by a term (or a tree). Using the linear algorithm which builds balanced weighted trees, we are able to balance the decomposition trees of such graphs (on a signature containing a new function symbol and a new constant symbol to deal with contexts). Using balanced decomposition trees yields more compact representations of the graphs and dealing with these balanced

Definition 2 . 1 .

 21 Let t be a tree. Let c and b be integers, c ≥ 1, b ≥ 0. The tree t is (c, b)-height-balanced if and only if h(t) ≤ c log(|t|) + b.

 a depth less than b then the property depth(u i) ≤ c log(w(y)/w i) + b is trivially true. Otherwise, by hypothesis there exists an ancestor y of u i at depth at most p × c -r such that t↓y is (c, b + r)-balanced and w(y) ≤ w(t)/2 p . If y is a proper ancestor of u i then, by hypothesis (2) the depth of the leaf u i in the subtree t↓y is less than c log(w(y)/w i) + b + r. It follows that the depth of u i in t is bounded by depth(y) + c log(w(y)/w i) + b + r. Hence, by hypothesis (1) and(3), we have depth(u i) ≤ p × c -r + c log(1/2 p * w(t)/w i) + b + r. This gives the result.

Figure 1 :

 1 Figure 1: The weighted tree of Example1.

Figure 2 :

 2 Figure 2: The weighted tree of Example2.

Figure 3 :

 3 Figure 3: The insertion of a new right leaf u i in t i-1 .

1 : 5 :

 15 weight = w(u i-1) 2: height = 0 3: while parent(p) <> null do 4: height = height + 1 parentW eight = weight + w(left(parent(p))) 6:

 weight = parentW eight 11: end while Algorithm 3 isWeightSibling(p, u i) Require: A pointer p on the right branch of t i-1 , a weighted node u i . Ensure: True iff p points on a weight -sibling of u i .

2 :C

 2 c = new node(p, u i) 3: pBalance = w(right(p)) / w(left(p)) 4: if ! leaf (p) and ! leaf (right(p)) and pBalance > 1 then = w(right(v r)) 9: if C + w(u i) ≤ A + B then 10: c = double rotation(c)

Figure 6 :

 6 Figure 6: A subtree t↓x of t.

 abba de 2 baca 4

Figure 7 :

 7 Figure 7: Insertion of a new factor u 6 .

Figure 8 :

 8 Figure 8: Insertion of a new factor u 7 .

Example 3 . 1 .

 31 let s be the word abbacadabacdecbadabeded. Assume that each occurrence of a letter has weight 1, then the weight of s is 23. Let u 1 = abba, u 2 = ca, u 3 = d, u 4 = a, u 5 = bac, u 6 = de, u 7 = cb, u 8 = ad, u 9 = a, u 10 = b, u 11 = ed, u 12 = ed be twelve factors of s. The weights of the factors are respectively w 1 = 4, w 2 = 2, w 3 = 1, w 4 = 1, w 5 = 3, w 6 = 2, w 7 = 2, w 8 = 2, w 9 = 1, w 10 = 1, w 12 = 2, w 12 = 2. Assuming that we have build a balanced tree for u 1 , u 2 , u 3 , u 4 , u 5 , we show in figures 7 and 8 the insertion of u 6 and u 7 , then in figures 9, 10 and 11 we show the insertion of u 10 , u 11 , u 12 .

 abba

Figure 9 :

 9 Figure 9: Insertion of a new factor u 10 .

Figure 10 :

 10 Figure 10: Insertion of a new factor u 11 .

Figure 11 :

 11 Figure 11: Insertion of a new factor u 12 .

Let t be a tree in T (F, C). Let x be a node of t. The context of x in t is the tree obtained by replacing x in t with a node labeled by a special symbol u not in C, which has no successor (all the descendants of x are deleted). If x is the root of t, the context of x is the trivial context reduced to one node u. The contexts are trees in T (F, C ∪ {u}), containing a unique occurrence of the constant u. The notions of depth, height, size, defined for trees are defined similarly for contexts. The set Ctxt(F, C) denotes the set of all the contexts.

Let t be a tree in T (F, C), we define c • t = c [u := t] as the tree of T (F, C) obtained by replacing u with the tree t in the context c. Let c ′ be a context in Ctxt(F, C), we define c • c ′ = c[u := c ′] as the context obtained by replacing u with the context c ′ in c. Note that for any tree t and any contexts c and c ′ , if f belongs to F then f (c, t) and f (t, c) are contexts (they contain a unique occurrence of u), but f (c, c ′) is not a context (it contains two occurrences of u). Using these new function symbol • and this new constant symbol u, we can build a new class of terms.

The set of well-formed trees T (F, C) is the subset of T (F ∪ {•}, C ∪ {u}) generated by the following grammar with axiom S: S

by the preceding rules with axiom X. Notice that the symbol u may occur more than one time in an extended context.

We define an equivalence relation on well-formed trees and extended contexts. Two well-formed trees (resp. two extended contexts) are equivalent if and only if carrying out (in any order) all the substitutions denoted by • in these two well-formed trees (resp. extended contexts) gives the same tree of T (F, C) (resp. the same context of Ctxt(F, C)).

Theorem 7. For every tree in T (F, C) of size n, one can build in time O(n) an equivalent tree in T (F, C) which is 4-height-balanced.

We can assume without loss of generality that every tree t in T (F, C) is such that for any node x of t, the size of t↓left(x) is less than the size of t↓right(x). If the symbols of F represent commutative functions this can always be achieve. Otherwise we apply the algorithm as if the functions were commutative and in the resulting tree we proceed to the permutations of the left and right sons when necessary.

Proof of Theorem 7. Actually we prove a stronger result. For any tree t in T (F, C), let us use a different definition of the size. We define s(t) as the number of nodes of t which belong to F ∪ C (i.e. which are different from the two symbols • and u). Then we clearly have that if a well-formed tree t is equivalent to a tree t in T (F, C), then it has a size s(t) which is equal to |t|. We define similarly the size s(c) of an extended context c in Ctxt(F, C). We prove that for every tree t in T (F, C) of size n, one can build in time O(n) an equivalent tree t in T (F, C) such that the height of t is less than 4 log(s(t)).

To achieve a complexity in O(n) we cannot go down and up along the rightmost branch of the tree as often as we would do with an inductive algorithm. We can use at most a fix number of runs along the righmost branch. Therefore we balance the