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Summary. We propose an approach for automatically generating isotropic 2D quadrangle

meshes from arbitrary domains with a fine control over sizing and orientation of the elements.

At the heart of our algorithm is an optimization procedure that, from a coarse initial tiling of

the 2D domain, enforces each of the desirable mesh quality criteria (size, shape, orientation,

degree, regularity) one at a time, in an order designed not to undo previous enhancements. Our

experiments demonstrate how well our resulting quadrangle meshes conform to a wide range

of input sizing and orientation fields.

1 Introduction

Quadrangle meshes are preferred over triangle meshes in a number of applications

related to computer graphics, computer aided geometric design, computational en-

gineering and reverse engineering. However, the automatic generation of isotropic

quadrangle meshes for arbitrary 2D domains is still a scientific challenge due to the

variety of requirements and quality criteria sought after.

The bare minimum requirement we impose that the input domain must be tiled

with only convex quadrangles. We also wish to generate quadrangle meshes for

which, locally, elements i) are well shaped in the sense of being close to squares, ii)

are sized in accordance to an input sizing field, iii) are oriented in accordance to an

input cross field (an orientation field modulo 90 degrees) and iv) have edges aligned

to the domain boundary. A more global requirement practitioners often desire is that

meshes should predominantly be composed of regular vertices, i.e., degree-4 vertices
4 inside the domain and (in general) degree-2 vertices on the domain boundary.

While these quality requirements are widely regarded as desirable, one key mesh-

ing difficulty is that they often conflict with one another: irregular vertices are often

4A degree-k vertex has k adjacent inside cells.
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necessary for non-trivial sizing and cross fields, but they inevitably induce shape dis-

tortion and hence must be avoided whenever possible; a rapidly varying sizing field

naturally induces both shape and orientation distortion; similarly, a rapidly vary-

ing cross field often results in both shape and size distortion. Another key challenge

comes from the fact that some of the requirements or quality criteria, although locally

defined, have global constraints—e.g., the number of edges on the domain boundary

must be even, and the total index of irregular vertices must obey Gauss-Bonnet the-

orem [13].

1.1 Previous Work

The tension between local and global criteria may explain the variety of approaches

proposed so far for the automatic generation of quadrangle meshes. Including meth-

ods devised to generate quadrangle surface tilings, the rich literature on this topic

contains approaches which proceed by quadrangulation [9, 3], square packing [28],

advancing front [22], conversion [8], decimation [18], Morse-Smale complexes

[14, 33, 17], clustering [4, 20], local and global operators [23, 19], whisker weaving

[32], medial axis [24], streamlining [1, 21] and parameterization [25, 29, 7].

Among these approaches, some favor the conformance of the final mesh to an

input cross field either by construction [21], or by solving for the smoothest cross

field given a set of orientation constraints [7]. Conformance to an input sizing field is

either derived from the triangle mesh before conversion [8], or encoded in a density

function before clustering [20]. Mesh regularity is controlled either explicitly by

interactively placing a small number of irregular vertices before parameterization

[29], or indirectly through a smooth cross field [7]. Regularity may be improved

a posteriori through, e.g., grid-preserving operators so as to generate simple base

complexes [6]. Strict local conformance to both sizing and cross fields is notoriously

delicate for most approaches which involve a global variational formulation, and

almost none of the fine-to-coarse approaches based on decimation [18, 23] leads to

meshes that conform to both sizing and cross fields.

1.2 Contribution

In this paper we present a simple and practical isotropic quadrangle meshing algo-

rithm for arbitrary 2D domains. We place a particular emphasis on having the result-

ing mesh conforming to both a sizing and a cross field. Our approach differs from

previous work in that its methodology can be seen as antithetical to (e.g., Delaunay)

refinement algorithms that locally refine a mesh one element at a time until all qual-

ity criteria are met. Rather than continuously fixing the element that most violate

any of the requirements as in the Delaunay refinement strategy, we instead enhance

the mesh by carefully addressing one requirement at a time, in a processing order

designed not to undo previous enhancements. Table 1 describes how each step of the

algorithm improves the various desirable quality criteria for flat 2D meshes.
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Size Shape Orientation Degree Regularity

Initialization (2.2) � •

Relaxation (2.3) ◦ � �

Conforming relaxation (2.4) ◦ ◦ ◦ • •

Local parameterizations (2.5) ◦ ◦ ◦ • �

Barycentric subdivision (2.6) ◦ × ◦ � ◦

Smoothing (2.7) ◦ � ◦ ◦ ◦

.

Table 1. Each step of the algorithm improves different quality criteria. •: criterion is partially

met; �: criterion is met; ×: criterion may not be preserved; ◦: criterion is preserved.

2 Algorithm

The input of our algorithm is a closed domain, together with a sizing and a cross

field. The sizing field is either user specified or automatically computed as a Lips-

chitz function from the local feature size estimate of the domain boundary [2]. The

cross field is either specified by the user or automatically computed as the smoothest

field that is tangential to the domain boundary [13]. Note that the mixed-integer ap-

proach [7] could also be used. The algorithm mainly proceeds by clustering and

local parameterizations over a fine isotropic background triangle meshM obtained

by Delaunay refinement. We give pseudo-code of the algorithm below, while Figure

1 provides a visual depiction of its main steps.

Algorithm 1: Quadrangle meshing

Input: 2D domain, sizing field, cross field

begin
1. Initialization (2.2)

2. Relaxation (2.3)

3. Conforming relaxation (2.4)

4. Local parameterizations (2.5)

5. Barycentric subdivision (2.6)

6. Smoothing (2.7)
Output: Quadrangle mesh

2.1 Preliminaries

The main steps of the algorithm (from initialization to local parameterizations

through relaxations) act on the background meshM. In the reminder of this paper,

we will make heavy use of the following terms (see Figure 2):

• Tile. A tile is a union of triangles ofM defining a subdomain homeomorphic to

a disk.

• Meta-vertex. A meta-vertex is a vertex ofMwhich is either incident to 3 or more

tiles inside the domain, or incident to 2 or more tiles on the domain boundary, or

incident to a single tile when the vertex is tagged as a corner boundary vertex.
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(a) Input domain (b) Input sizing field (c) Input cross field

(d) Background mesh (e) Initialization (f) Relaxation

(g) Conforming relaxation (h) Local parameterizations (i) Barycentric subdivision

(j) Smoothing (k) Size (l) Orientation

(m) Angles (n) Ratio to desired sizing (o) Angle to desired orientation

Fig. 1. Overview. The algorithm takes as input a closed domain (a), a sizing field (b) and a

cross field (c). It then operates on a triangle background mesh refined according to the sizing

field (d). The initialization clusters background mesh triangles (e) so that the tiling roughly

meets the size and shape criteria; A relaxation (f) then improves the tiling for shape and orien-

tation while preserving size; A conforming relaxation (g) improves the degree of the tiles and

the regularity of the tiling; A series of local parameterizations (h) further improves the degrees

and regularity; Barycentric subdivision (i) generates a pure quadrangle mesh; Smoothing (j)

finally improves the shape of the quadrangles. We depict the conformance to the sizing field

with a color ramp ranging from white to blue (resp. white to red), for elements smaller (resp.

larger) than the specified sizing field (k). We depict the conformance to the cross field with a

color ramp ranging from white to gray (l). Irregular vertices are outlined in red for degree ex-

cess and in blue for degree deficit. We show the distribution of angles, as well as distributions

measuring conformance to sizing and orientation. 1000 quadrangles, total time: 40 s.
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• Meta-edge. A meta-edge connects two meta-vertices through an edge path ofM

such that all edges along the path are incident to 2 tiles in the interior, or 1 tile on

the boundary. A tile is thus surrounded by a cycle of meta-edges.

• Side. A side is a chain of meta-edges around a tile. In particular, assuming a

tile is surrounded by a cycle of at least 4 meta-edges, a subset of four of its

meta-vertices can be chosen to represent quadrangle corners so that the tile has

4 sides. This assignment of sides will be useful in our algorithm since we target

quadrangle elements.

(a) Tiling (b) Meta-vertices (c) Meta-edges (d) Sides (gray)

Fig. 2. Terminology defined in Section 2.1.

2.2 Initialization

We construct the background mesh M as a 2D constrained Delaunay triangulation

that fits a polyline approximating the domain boundary. We then refineM through

Delaunay refinement [27, 26] until all triangles are both well shaped (isotropic) and

sized in accordance to the input sizing field within a small fraction (by default 0.1).

The initialization step aims at generating a tiling that conforms to the sizing field,

and that roughly meets the shape criterion (see Table 1). First, we proceed by gen-

erating one tile per triangle ofM. We then recursively merge pairs of tiles using a

priority queue of merging operations until the sizing field requirement is met (see

Figure 1(e)). In order to favor isotropic tiles the merging operations are popped out

of the queue in order of decreasing compactness, the latter being defined as the ra-

tio between area and squared perimeter. We have experimented with another score

which favors squares instead of discs but the simpler compactness score is sufficient.

The idea of this step is similar to [16].

2.3 Relaxation

The first relaxation step aims at optimizing the initial tiling for the shape and ori-

entation criteria while preserving the size (see Table 1). Optimization is carried out

through a discrete clustering algorithm which operates over the background mesh so

as to favor squares tiles which are both well sized and well oriented with respect to

the sizing and cross fields ([31]).
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Similar in spirit to [20], we consider the LR∞ metric related to a local Cartesian

coordinate frame R = (u, v) specified by the cross field. We compute an approxi-

mate discrete Voronoi diagram over the background mesh instead of computing the

exact continuous Voronoi diagram [5], so as to deal with a simple triangle labeling

procedure. The LR∞ distance between two points p, q ∈ R2 is defined as:

dR∞(p, q) = max (|(p − q) · u|, |(p − q) · v|) .

Using the continuous formulation the minimized energy is defined as:

G
(

{zi}
N
i=1, {Vi}

N
i=1

)

=

N
∑

i=1

∫

Vi

ρ(x) dR∞(x, zi) dx,

where ρ is a density function defined on the domain: ρ(x) = s(x)−4 (s denotes the

sizing function to be preserved); zi is a point generator and Vi is the Voronoi cell of

zi. Using a discrete formulation [30] now involving the background meshM we con-

sider a set of triangle generators {gi}
N
i=1

, and a tiling {Ti}
N
i=1

. The energy to minimize

is defined as:

H
(

{gi}
N
i=1, {Ti}

N
i=1

)

=

N
∑

i=1



















∑

t j∈Ti

ρ(c(t j))area(t j)d
R
∞(c(t j), c(µ(Ti)))



















,

where c(t) denotes the centroid of triangle t and µ denotes the triangle that contains

the centroid of a tile. Energy H is iteratively minimized by alternating LR∞ discrete

Voronoi partitioning and relocation of the generators to their tile centroids. Algorithm

2 provides a pseudo-code for the relaxation step, where N is the number of tiles and

K is the total number of iterations.

Algorithm 2: Relaxation

Input: Initial triangle generators {g0
i
}N
i=1

and corresponding tiles {T 0
i
}N
i=1

.

begin

while no convergence do

Discrete partitioning
(

{T k
i
}N
i=1

partition associated to {gk
i
}N
i=1

)

Relocate generators to centroids
(

∀i, 1 ≤ i ≤ n, gk+1
i
= Γ(gk

i
)
)

Output: Optimized triangle generators {gK
i }

N
i=1

and corresponding tiles {T K
i }

N
i=1

.

Discrete partitioning is achieved by flooding the domain one triangle at a time

from their generators with a dynamic priority queue [12]. Each tile is initialized to

be its triangle generator, and a priority queue is filled with (up to three) incident

triangles (candidates for flooding) per generator. In order to favor square tiles, the

triangles are popped out of the queue and added to tiles in increasing order of LR∞
distance to their respective triangle generator, where R is the local Cartesian coordi-

nate frame specified by the cross field at the generator centroid.
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Relocation is achieved through computing the (triangle) center of mass of each

tile. In the continuous case the center of mass of a tile does not depend on the metric

chosen to measure the object, and we observe a very similar behavior in our discrete

setup. After the k-th iteration, for each tile T k
i
, we choose to find the triangle that

minimizes the following energy:

f (t) =
∑

t j∈T
k
i

ρ(c(t j)) area(t j) ||c(t j) − c(t)||22,

where t ∈ T k
i
. We denote by Γ : gk

i
7→ gk+1

i
the operation that computes the triangle

centroid of the tile T k
i

associated to gk
i
. In such discrete algorithm convergence is

reached when ∀i, 1 ≤ i ≤ N, Γ(gk
i
) = gk

i
. As convergence for the LR∞ metric on

arbitrary domains is not guaranteed, we also specify a maximum number of iterations

(by default set to 50). Figure 3 depicts some iterations.

(a) Initial tiling (b) 1 iteration (c) 5 iterations (d) 10 iterations (e) Converged

Fig. 3. Discrete LR∞ iterations with a non-uniform sizing field (the cross field is shown).

As expected, the relaxation leads to a tiling of the domain with mostly square tiles

which are well oriented and well sized (similar in spirit to a square packing approach

[28]), even if a varying sizing field inevitably implies shape distortion. We further

observe in Figure 4 that although well shaped, the tiles are generally not conforming

(see the many T-junctions), hence most of them would generate degree-6 polygons

and the final mesh would contain many irregular vertices (generally of degree 3).

We describe next a conforming relaxation procedure which aims at generating quasi

2-conforming configurations.

2.4 Conforming Relaxation

A closer look at Figure 4 reveals that the tiling is in general already conforming

in one direction. We call this configuration 1-conforming. This is explained by the

fact that a general tiling of the plane with equally sized square tiles is 1-conforming

(see Figure 5, left). Our goal is to further relax the tiling so as to obtain quasi 2-

conforming configurations (5, middle).

An intuitive understanding of the conforming relaxation procedure can be gath-

ered by looking at Figure 5(left) and realizing that we could shift the three square

columns vertically as little as possible so as to tend toward a perfect 2-conforming

configuration. In order to obtain the aforementioned shift, we propose to simply shift

the centroid during the relocation of a relaxation iteration. The only remaining tech-

nicality now resides in the way to compute the shift. Although simple at first glance,
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Fig. 4. After relaxation, for uniform (top) and non-uniform (bottom) sizing field. Tiles are in

general conforming to one direction of the local cross field. The black lines depict some local

conforming directions.

(a) 1-conforming (b) Quasi 2-conforming (c) 2-conforming

Fig. 5. Tiling with squares. Left: general configuration after relaxation. Middle: general con-

figuration after conforming relaxation. Right: ideal configuration sought after.

recovering the local 1-conforming direction (vertical or horizontal) is already non

trivial, and so is finding the shift magnitude and orientation (see Figure 6). In addi-

tion, both size and cross fields vary over the domain, requiring not just shifting the

tiles but also sacrificing aspect ratio to reach conforming.

Fig. 6. Shifting centroids. We depict examples of shifts with increasing ambiguity. A tile which

is already quadrangle is not shifted (left). A tile with one side split into two meta-edges (middle

left), the chosen quadrangle corners are depicted in black. A tile with two parallel sides split

(middle). A tile with three sides split (middle right). Another ambiguous case (right).

Tiles which are already quadrangles or triangles (with 4 or 3 meta-vertices) are
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not shifted. While we assume that after relaxation all tiles are

squares (geometry-wise), in general they are degree-6 tiles (see

Figure 5(a)). We thus first need to choose which four of its meta-

vertices form a square locally aligned to the cross field. We first

compute the triangle centroid of the tile as during relaxation (see

2.3). Its cross (given by the input cross field) is now taken as lo-

cal Cartesian coordinate frame R = (u, v). Denote by v1, . . . , vp

(p > 4) the meta-vertices of the tile, ordered by circulating along the tile boundary.

To decide which of the meta-vertices are chosen as (ordered) corners c1, c2, c3, c4 we

maximize through dynamic programming the alignment of the sides (see 2.1) with

the axes of R through maximization of the following energy:

E = max
a⊂{u,v}

{c1,c2,c3,c4}⊂{v1,...,vp}

[

min
(

|(c2 − c1) · a|, |(c3 − c2) · a90|, |(c4 − c3) · a|, |(c1 − c4) · a90|
)]

,

where a90 denotes vector a (which stands for u or v) rotated by 90 degrees.

In addition to assigning corners, the maximum of E for each side provides a

local reference direction of the cross field (u or v). For each meta-edge, we then

compute the length of its projection on its reference direction (u or v). Among

all meta-edges, we then select only the ones with exactly one end

meta-vertex coinciding to a corner meta-vertex, and pick the longest

one, denoted by e. We then shift the centroid along a line parallel

to a, in the opposite direction to the corner meta-vertex of e. The

magnitude of the shift is chosen as a fraction (0.2 in our experi-

ments) of the length of the projection of e (see inset). The number

of iterations of conforming relaxations is a user-specified parameter (set to 20 for

all examples shown). Figure 7 depicts how such conforming relaxation brings some

initial 1-conforming configurations to quasi 2-conforming configurations. The latter

can be fixed by a series of local parameterizations which we describe next.

2.5 Local parameterizations

The previous conforming relaxation step favored quasi-2-conforming configurations

(Figure 5(b)) that we wish to turn into 2-conforming configurations (Figure 5(c)) so

as to improve both degree and regularity criteria (see Table 1) while not negatively

affecting the previous efforts made by previous steps.

Figure 7 reveals that the many quasi-2-conforming configurations exhibit similar

topological arrangements of the tiles. We call butterfly a set of four tiles incident to

a short meta-edge connecting two degree-3 meta-vertices (see Figure 8). Inspired by

[23] we remove many of these butterfly configurations through local parameteriza-

tions on square domains, which merge 2 degree-3 meta-vertices into one degree-4

meta-vertex.

For each butterfly, we consider the union of its four tiles A, B,C,D as a sub-

domain ΩABCD, and first perform a classification of its meta-vertices as depicted in
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Fig. 7. Conforming relaxation with uniform sizing (left) and non-uniform sizing (right). From

top to bottom: initial, 1 iteration, 5 iterations and 10 iterations. In order to bring some initial

1-conforming configurations to quasi 2-conforming configurations, centroids of two adjacent

tiles are locally shifted, which can induce size distortion.

Fig. 8. Butterfly configuration. Left: a short meta-edge connects two degree-3 meta-vertices

(outlined in black) which share four tiles. Middle left: among all meta-vertices of the four-tile

subdomain we identify two inner meta-vertices (black), 4 interface meta-vertices separating

the four tiles A, B,C,D pairwise (red), four corner meta-vertices (white) and the remaining

meta-vertices (yellow). Middle right and right: the four tiles parameterized on a square. The

parameterization preserves the topology of the interfaces on the boundary of the four tile

subdomain. Some tiles may be smaller in parameter space so as to better fit the sizing field.



Isotropic 2D Quadrangle Meshing 11

Figure 8. While the inner (black) and interface (red) meta-vertices can be easily clas-

sified from topological (adjacency) relationships between the tiles, distinguishing the

four corners among the other meta-vertices (possibly many for rapidly varying sizing

fields) requires incorporating a geometric criterion related to the local orientation of

the tiles.

Contrary to the way we choose the corners for the conforming relaxation step,

the orientation is, this time, not given by the cross field but instead depends on the

relaxed four tiles (the rationale being, once again, to avoid undoing the previous en-

hancements). Denote by VAB,VBC ,VCD,VDA the four interface meta-vertices. We es-

timate a reference Cartesian frame by fitting two lines through principal component

analysis to the segment sets ([VAB,VB], [VCD,VD]) and ([VDA,VD], [VBC ,VB]) [11].

Among these two lines the most reliable one (i.e., the line with minimum variance

in the orthogonal direction) is chosen as reference direction. To select four corners

among the meta-vertices we again resort to a dynamic programming approach simi-

lar to the one used in Section 2.4.

Our goal is to parameterize ΩABCD on a square domain and to label its triangles

(again with labels A,B,D,C) such that i) the chosen corner meta-vertices coincide

with the corners of the square, ii) the interfaces at the boundary of ΩABCD are pre-

served, iii) the two inner meta-vertices are merged into a degree-4 vertex and iv)

ΩABCD is partitioned with 4 tiles with a disk topology. Call φ the parameterization

that maps ΩABCD on the square domain. We first constrain the whole boundary of

φ(ΩABCD) so as to respect the chosen corners and using an arc-length parameteriza-

tion in-between these corners. We then parameterizeΩABCD using the mean value co-

ordinate approach [15] and compute, in parameter space, the intersection point φ(v∗)

between the two line segments (φ(VAB)φ(VCD)) and (φ(VBC)φ(VDA)). The nearest ver-

tex (of degree at least 4) from φ(v∗) is then chosen as inner vertex, which means that

the issuing vertex v∗ will be the center degree-4 meta-vertex. While simple at first

glance once the inner and boundary vertices are decided upon, a naive triangle la-

beling step based on localization within quadrilaterals in parameter space can lead

to improper topological partitioning. For this reason we trace four edge paths from

φ(v∗) to φ(VAB), φ(VBC), φ(VCD), φ(VDA) in order of increasing length (shorter seg-

ments first) so as to determine proper interfaces between the triangle labels. These

edge paths are constrained not to intersect except at the inner vertex and to connect no

other boundary vertices than their target vertex VAB,VBC ,VCD,VDA. Upon successful

completion the triangles of ΩABCD are labeled, and this ends the butterfly removal

procedure.

To avoid distorting the shape and orientation of the final mesh, we only remove

butterflies whose inner meta-edge length is smaller than a fraction of the local sizing

field (0.5 in our experiments). We use a dynamic priority queue to gracefully deal

with butterflies in order of increasing inner meta-edge length. Figure 9 depicts how

local parameterizations improve degree and regularity criteria for both uniform and

non-uniform sizing field cases.
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Fig. 9. Local parameterizations. Uniform sizing field (top left and top right) and non-uniform

sizing field (bottom left and bottom right) before (left) and after (right) local parameterizations.

The cross field is shown.

2.6 Barycentric Subdivision

After conforming relaxation there is no guarantee that all tiles are quadrangles. Ex-

perimentally we obtain an order of 75% quadrangles for uniform sizing and of 60%

quadrangles for non-uniform sizing. We thus resort to barycentric subdivision (see

Figure 1(i)) in order to meet the degree criterion (Table 1). The edge lengths of the

quadrangles are reduced by a factor of two compared to the mesh before barycen-

tric subdivision. This factor is taken into account during all previous steps of the

algorithm.

2.7 Smoothing

Near T-junctions the previous barycentric subdivision step generates highly distorted

quadrangles. We thus resort to a few iterations of Laplacian smoothing (see Figures

1(j) and 10) so as to enhance the shape criterion.

(a) Before smoothing (b) After smoothing (c) Angle distributions

Fig. 10. Smoothing. Mesh before (a) and after smoothing (b). We compare the distribution of

angles before (blue) and after (red) smoothing.
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3 Results

Our algorithm is implemented in C++ using the CGAL library [10]. All examples

were computed on a 2.40GHz PC with a single thread. Each of our figures highlights

irregular vertices in blue for degree deficit, and in red for degree excess. To depict

conformance to the input cross field we use a color ramp ranging from white to

gray, where white means perfect conformance and gray means 45 degree distortion.

To depict conformance to the input sizing field we use a color ramp ranging from

white to blue (resp. red) for tiles smaller (resp. larger) than targeted. We also depict

distributions of angles, conformance to sizing, and conformance to cross field.

We ran a large number of examples of various size and complexity in order to

assess our results and compare them to state-of-the-art methods. Figure 11 depicts

how a final quadrangle mesh conforms to both size and orientation on a geographic

map. The input sizing field is set to be the largest 1-Lipschitz function constrained

to match the local feature size estimate of the input domain boundary [2]. The cross

field is set to be the smoothest cross field constrained to be tangential to the input do-

main boundary. The distribution of angles is shown, with over 80% of angles within

the interval [75 − 105]. The algorithm takes 350 seconds, with two third of the time

spent on local parameterizations. The peak memory usage is 200 MBytes.

Figure 12 depicts an example with a constant cross field combined with a rapidly

varying sizing field. Irregular vertices inevitably appear between dense and sparse

mesh areas, and the orientation is partially distorted. Figure 13 shows a trivial do-

main example with a constant cross field and compares uniform vs. non-uniform

sizing. Figure 14 depicts examples of uniform sizing and varying cross fields set to

be smooth and tangential to the input domain boundary.

Figure 15 compares our results with [7] using a uniform sizing as this method

is not primarily aimed at handling rapidly varying sizing fields. Our approach better

preserves orientations near the domain boundary at the price of a larger number of

irregular vertices.

We do not provide direct control over the final number of vertices of the final

mesh as it depends on both the input sizing field and the number of degree-4 tiles

after local parameterizations (experimentally near 70%). The efficiency of the al-

gorithm can be improved by accelerating the relaxation step [30] and by numerical

optimizations during the local parameterizations.
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(a) Output mesh (b) Irregular vertices

(c) Conformance to sizing field (d) Conformance to cross field

(e) Close-up (f) Size (g) Orientation

(h) Angles (i) Ratio to desired sizing (j) Angle to desired orienta-

tion

Fig. 11. France. The final mesh (a) contains 77% regular vertices (b). It conforms to the sizing

field (c) as well as to the cross field (d). The close-up depicts an area where size and orientation

vary rapidly. 4500 quadrangles, total time: 300 s.
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(a) Output mesh and irregular vertices

(b) Conformance to sizing field

(c) Conformance to cross field

Fig. 12. Non-uniform sizing field defined as h(x) = 0.01
(

2 + sin
(

6xπ − π
2

))

, 0 < x < 1. Total

time: 480 s.

(a) Uniform sizing (b) Size (c) Orientation

(d) Non-uniform sizing (e) Size (f) Orientation

Fig. 13. Uniform vs. non-uniform sizing. The cross field is constant and axis-aligned. Total

time: 30 s. and 60 s.
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(a) Disc (b) Free form

Fig. 14. Non-uniform cross fields. Sizing fields are uniform. Total time: 45 s. and 450 s.

(a) France [7] (b) France (c) Corsica [7] (d) Corsica

(e) Freeform [7] (f) Freeform

Fig. 15. Comparison with Bommes et al. [7]. The cross field is set to be tangential to the input

domain boundary. The meshes produced by [7] are more regular at the price of increased

shearing distortion.

4 Conclusion

We proposed a principled approach for the automatic generation of quadrangle

meshes from arbitrary 2D domains. The main methodology consists of enhancing a

rough initial tiling by carefully addressing one meshing requirement at a time (size,

shape, orientation, degree, regularity) in an order designed not to undo previous en-

hancements. While other similar approaches (such as [28]) only show examples on

simple domains and smooth cross fields, our experiments confirm that the output

quadrangles meshes conform both to the input sizing and cross fields, even on com-

plex domains and for rapidly changing fields.

Size and orientation conformance comes at the price of a larger number of irreg-

ular vertices. For applications requiring coarse base complexes, we could potentially

improve our approach by allowing the user to trade conformance to input fields for
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increased regularity. We also wish to improve the conforming step by resorting to

a different strategy when it fails locally, and the parameterization step by making it

more general for an arbitrary set of tiles clustered around a target irregular vertex.

Our approach is primarily based on relaxation and local parameterizations. Be-

cause the main steps of the algorithm only deal with labeling the triangles of a back-

ground triangle mesh, our implementation is simple and reliable, and is less prone to

numerical robustness issues. Resorting to local parameterizations on trivial convex

domains such as [23] provides us with scalability and robustness. For these reasons

our approach could be extended to reliable quadrangle surface remeshing (includ-

ing anisotropic quadrangle surface remeshing). Most of the main steps also seem to

generalize to hexahedron domain tiling, except for the barycentric subdivision step.

As future work we plan to alleviate this problem so as to extend the main principles

behind our approach for hexahedron domain tiling.
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