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APPENDIX

A. Proof of Lipschitz gradient of the squared Hinge loss

Given the training examples {xi, yi}, the squared Hinge
loss is written as :

J =

n∑
i=1

max(0, 1− yix>i w)2

and its gradient is :

∇wJ = −2
∑
i

xiyimax(0, 1− yix>i w)

The squared Hinge loss is gradient Lipschitz if there
exists a constant L such that:

‖∇J(w1)−∇J(w2)‖2 ≤ L‖w1−w2‖2 ∀w1,w2 ∈ Rd.

The proof essentially relies on showing that
xiyimax(0, 1 − yix

>
i w) is Lipschitz itself i.e there

exists L′ ∈ R such that

‖xiyimax(0, 1− yix>i w1)− xiyimax(0, 1− yix>i w2)‖
≤ L′‖w1 −w2‖

Now let us consider different situations. For a given w1

and w2, if 1− xTi w1 ≤ 0 and 1− xTi w2 ≤ 0, then the
left hand side is equal to 0 and any L′ would satisfy the
inequality. If 1 − xTi w1 ≤ 0 and 1 − xTi w2 ≥ 0, then
the left hand side (lhs) is

lhs = ‖xi‖2(1− x>i w2) (1)
≤ ‖xi‖2(x>i w1 − x>i w2)

≤ ‖xi‖22‖w1 −w2‖2

A similar reasoning yields to the same bound when
1 − xTi w1 ≥ 0 1 − xTi w1 ≤ 0 and 1 − xTi w2 ≥ 0
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and 1 − xTi w2 ≥ 0. Thus, xiyimax(0, 1 − yix>i w) is
Lipschitz with a constant ‖xi‖2. Now, we can conclude
the proof by stating that ∇wJ is Lipschitz as it is a
sum of Lipschitz function and the related constant is∑n
i=1 ‖xi‖22.

B. Lipschitz gradient for the multi-task learning problem

For the multi-task learning problem, we want to prove
that the function
m∑
t=1

n∑
i=1

L(yi,t,x
>
i,twt+bt)+λs

m∑
t=1

‖wt−
1

m

m∑
j=1

wj‖22

is gradient Lipschitz, L(·, ·) being the square Hinge loss.
From the above results, it is easy to show that the
first term is gradient Lipschitz as the sum of gradient
Lipschitz functions.

Now, we also show that the similarity term∑
t

‖wt −
1

m

m∑
j=1

wj‖22

is also gradient Lipschitz.

This term can be expressed as

‖wt −
1

m

m∑
j=1

wj‖22 =
∑
t

〈wt,wt〉 −
1

m

m∑
i,j=1

〈wi,wj〉

= w>Mw

where w> = [w>1 , . . . ,w
>
m] is the vector of all classifier

parameters and M ∈ Rmd×md is the Hessian matrix of
the similarity regularizer of the form

M = I− 1

m

m∑
t=1

Dt

with I the identity matrix and Dt a block matrix with
Dt a (t − 1)-diagonal matrix where each block is an
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identity matrix I with appropriate circular shift. Dt is
thus a (t− 1) row-shifted version of I.

Once we have this formulation, we can use the fact that
a function f is gradient Lipschitz of constant L if the
largest eigenvalue of its Hessian is bounded by L on its
domain [1]. Hence, since we have

‖M‖2 ≤ ‖I‖2 +
1

m

m∑
t=1

‖Dt‖2 = 2

the Hessian matrix of the similarity term 2 · M has
consequently bounded eigenvalues. This concludes the
proof that the function w>Mw is gradient Lipschitz
continuous.

C. Proximal operators

1) `1 norm: the proximal operator of the `1 norm is
defined as :

proxλ‖x‖1(u) = argmin
x

1

2
‖x− u‖22 + λ‖x‖1

and has the following closed-form solution for which
each component is

[proxλ‖x‖1(u)]i = sign(ui)(|ui| − λ)+

2) `1 − `2 norm: the proximal operator of the `1 − `2
norm is defined as :

proxλ∑
g∈G ‖xg‖2(u) = argmin

x

1

2
‖x−u‖22+λ

∑
g∈G
‖xg‖2

the minimization problem can be decomposed into sev-
eral ones since the indices g are separable. Hence, we
can just focus on the problem

min
x

1

2
‖x− u‖22 + λ‖x‖2

which minimizer is{
0 if ‖u‖2 ≤ λ
(1− λ

‖u‖2 )u otherwise
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