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Abstract—This work investigates the use of mixed-norm
regularization for sensor selection in Event-Related Poten-
tial (ERP) based Brain-Computer Interfaces (BCI). The
classification problem is cast as a discriminative optimiza-
tion framework where sensor selection is induced through
the use of mixed-norms. This framework is extended to
the multi-task learning situation where several similar
classification tasks related to different subjects are learned
simultaneously. In this case, multi-task learning helps in
leveraging data scarcity issue yielding to more robust clas-
sifiers. For this purpose, we have introduced a regularizer
that induces both sensor selection and classifier similarities.
The different regularization approaches are compared on
three ERP datasets showing the interest of mixed-norm
regularization in terms of sensor selection. The multi-task
approaches are evaluated when a small number of learning
examples are available yielding to significant performance
improvements especially for subjects performing poorly.

I. INTRODUCTION

Brain Computer Interfaces (BCI) are systems that help

disabled people communicating with their environment

through the use of brain signals [1]. At the present time,

one of the most prominent BCI is based on electroen-

cephalography (EEG) because of its low-cost portability

and its non-invasiveness. Among EEG based BCI, a

paradigm of interest is the one based on event-related

potentials (ERP) which are responses of the brain to

some external stimuli. In this context, the innermost part

of a BCI is the pattern recognition stage which has to

correctly recognize presence of these ERPs. However,

EEG signals are blurred due to the diffusion of the

skull and the skin [2]. Furthermore, EEG recordings

are highly contaminated by noise of biological, instru-

mental and environmental origins. For addressing these

issues, advanced signal processing and machine learning

techniques have been employed to learn ERP patterns

from training EEG signals leading to robust systems able

to recognize presence of these events [3], [4], [5], [6],

This work was partly supported by the FP7-ICT Programme of the
European Community, under the PASCAL2 Network of Excellence,
ICT- 216886, by the French ANR Project ASAP ANR-09-EMER-001,
OpenVibe2, GazeEEg, and the INRIA ARC MABI.

[7]. Note that while some ERPs are used for generating

BCI commands, some others can be used for improving

BCI efficiency. Indeed, recent studies have also tried to

develop algorithms for automated recognition of error-

related potentials [8]. These potentials are responses

elicited when a subject commits an error in a BCI task

or observes an error [9], [10] and thus they can help in

correcting errors or in providing feedbacks to BCI user’s.

In this context of automated recognition of event-related

potentials for BCI systems, reducing the number of

EEG sensors is of primary importance since it helps

in learning robust classifiers by removing irrelevant and

noisy features. Furthermore, by doing so, one also min-

imizes the implementation cost of the BCI (fewer EEG

sensors, setup speed, calibration time). For this purpose,

some studies have proposed to choose relevant sensors

according to prior knowledge of brain functions. For

instance, sensors located above the motor cortex region

are preferred for motor imagery tasks and while for

visual Event Related Potential (ERP), sensors located on

the visual cortex are favored [11]. Recent works have

focused on automatic sensor selection adapted to the

specificity of a subject [12], [13], [4], [14], [15]. For

instance, Rakotomamonjy et al. [16] performed a re-

cursive backward sensor selection using cross-validation

classification performances as an elimination criterion.

This method has proven efficient but computationally

demanding. A quicker way is to rate relevance of sensors

in terms of Signal to Noise Ratio (SNR) [4] and to keep

the most relevant ones. Note that this approach does not

optimize a discrimination criterion, although the final aim

is a classification task. Recently, van Gerven et al. [17]

proposed a graceful approach for embedding sensor se-

lection into a discriminative framework. They performed

sensor selection and learn a decision function by solving

an unique optimization problem. In their framework, a

logistic regression classifier is learned and the group-

lasso, also known as ℓ1 − ℓ2 mixed-norm, is used to

promote sensor selection. They have also investigated

the use of this groupwise regularization for frequency

band selection and their applications to transfer learning.
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The same idea has been explored by Tomioka et al.

[18] which also considered groupwise regularization for

classifying EEG signals. In this work, we go beyond

these studies by providing an in-depth study of the use

of mixed-norms for sensor selection in a single subject

setting and by discussing the utility of mixed-norms

when learning decision functions for multiple subjects

simultaneously.

Our first contribution addresses the problem of robust

sensor selection casted into a discriminative framework.

We broaden the analysis of van Gerven et al. [17]

by considering regularizers which forms are ℓ1 − ℓq
mixed-norms, with (1 ≤ q ≤ 2), as well as adaptive

mixed-norms, so as to promote sparsity among group

of features or sensors. In addition to providing a sparse

and accurate sensor selection, mixed-norm regulariza-

tion has several advantages. First, sensor selection is

casted into an elegant discriminative framework, using

for instance a large margin paradigm, which does not

require any additional hyper-parameter to be optimized.

Secondly, since sensor selection is jointly learned with

the classifier by optimizing an “all-in-one” problem,

selected sensors are directed to the goal of discriminating

relevant EEG patterns. Hence, mixed-norm regularization

helps locating sensors which are relevant for an optimal

classification performance.

A common drawback of all the aforementioned sensor

selection techniques is that selected set of sensors may

vary, more or less substantially, from subject to subject.

This variability increases inversely proportional with the

number of available trials per subject. Hence, in such a

case, selecting a robust subset of sensors may become

a complex problem. Addressing this issue is the point

of our second contribution. We propose a Multi-Task

Learning (MTL) framework that helps in learning robust

classifiers able to cope with the scarcity of learning

examples. MTL is one way of achieving inductive trans-

fer between tasks. The goal of inductive transfer is to

leverage additional sources of information to improve the

performance of learning on the current task. The main

hypothesis underlying MTL is that tasks are related in

some ways. In most cases, this relatedness is translated

into a prior knowledge, e.g a regularization term, that

a machine learning algorithm can take advantage of.

For instance, regularization terms may promote similarity

between all the tasks [19], or enforce classifier param-

eters to lie in a low dimensional linear subspace [20],

or to select jointly the relevant features [21]. MTL has

proved efficient for motor imagery in [22] where several

classifiers were learned simultaneously from several BCI

subject datasets. Our second contribution is thus focused

on the problem of both performing sensor selection

and learning robust classifiers through the use of an

MTL mixed-norm regularization framework. We propose

a novel regularizer which embeds the prior knowledge

we aim at : sensor selection and similarity between

classifiers. By doing so, our goal is then to yield sensor

selection and robust classifiers that are able to overcome

the data scarcity problem by sharing information between

the different classifiers to be learned.

The paper is organized as follows. The first part of

the paper presents the discriminative framework and the

different regularization terms we have considered for

channel selection and multi-task learning. The second

part is devoted to the description of the datasets, the

preprocessing steps applied to each of them and the

results achieved in terms of performances and sensor

selection. For a sake of reproducibility, the code needed

for generating the results in this paper will be available

of the author’s website (http://remi.flamary.com/code/

GSVM.zip).

II. LEARNING FRAMEWORK

In this section, we introduce our mixed-norm regular-

ization framework that can be used to perform sensor

selection in a single task or in a transfer learning setting.

A. Channel selection in a single task learning setting

Typically in BCI problems, one wants to learn a classifier

that is able to predict the class of some EEG trials, from a

set of learning examples. We denoted as {xi, yi}i∈{1...n}

the learning set such that xi ∈ R
d is a trial and yi ∈

{−1, 1} is its corresponding class, usually related to the

absence or presence of an event-related potential. In most

cases, a trial xi is extracted from a multidimensional

signal and thus is characterized by r features for each of

the p sensors, leading to a dimensionality d = r×p. Our

aim is to learn, for a single subject, a linear classifier f
that will predict the class of a trial x ∈ R

d, by looking

at the sign of the function f(·) defined as:

f(x) = xTw + b (1)

with w ∈ R
d the normal vector to the separating

hyperplane and b ∈ R a bias term. Parameters of this

function are learned by solving the optimization problem:

min
w,b

n∑

i

Lo(yi,x
T
i w + b) + λΩ(w) (2)

http://remi.flamary.com/code/GSVM.zip
http://remi.flamary.com/code/GSVM.zip
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where Lo is a loss function that measures the discrepancy

between actual and predicted labels, Ω(·) a regularization

term that expresses some prior knowledge over the

learning problem and λ a parameter that balances both

terms. In this work, we choose Lo to be the squared

hinge loss Lo(y, ŷ) = max(0, 1− yŷ)2, promoting thus

a large margin classifier.

1) Regularization terms: We now discuss different regu-

larization terms that may be used for single task learning

along with their significances in terms of channel selec-

tion.

a) ℓ2 norm: The first regularization term that comes to

mind is the standard squared ℓ2 norm regularization:

Ω2(w) =
1

2
||w||22 (3)

where || · ||2 is the Euclidean norm. This is the com-

mon regularization term used for SVMs and it will be

considered in our experiments as the baseline approach.

Intuitively, this regularizer tends to downweight the am-

plitude of each component of w leading to a better

control of the margin width of our large-margin classifier

and thus it helps in reducing overfitting.

b) ℓ1 norm: When only few of the features are discrim-

inative for a classification task, a common way to select

the relevant ones is to use an ℓ1 norm of the form

Ω1(w) =

d∑

i=1

|wi| (4)

as a regularizer [23]. Owing to its mathematical prop-

erties (non-differentiability at 0), unlike the ℓ2 norm,

this regularization term promotes sparsity, which means

that at optimality of problem (2), some components

of w are exactly 0. In a Bayesian framework, the ℓ1
norm is related to the use of prior on w that forces its

component to vanish [17]. This is typically obtained by

means of Laplacian prior over the weight. However, ℓ1
norm ignores the structure of the features (which may

be grouped by sensors) since each component of w

is treated independently to the others yielding thus to

feature selection but not to sensor selection.

c) ℓ1 − ℓq mixed-norm: A way to take into account the

fact that features are structured in some ways, is to use

a mixed-norm that will group them and regularize them

together. Here, we consider mixed-norm of the form

Ω1−q(w) =
∑

g∈G

||wg||q (5)

with 1 ≤ q ≤ 2 and G being a partition of the set

{1, · · · , d}. Intuitively, this ℓ1 − ℓq mixed-norm can be

Fig. 1. Examples of feature grouping for (top) single task and (bottom)
multiple task learning.

interpreted as an ℓ1 norm applied to the vector containing

the ℓq norm of each group of features. It promotes

sparsity on each wg norm and consequently on the wg

components as well. For our BCI problem, a natural

choice for G is to group the features by sensors yielding

thus to p groups (one per sensor) of r features as reported

in Figure 1. Note that unlike the ℓ1−ℓ2 norm as used by

van Gerven et al. [17] and Tomioka et al. [18], the use of

an inner ℓq norm leads to more flexibility as it spans from

the ℓ1 − ℓ1 (equivalent to the ℓ1-norm and leading thus

to unstructured feature selection) to the ℓ1 − ℓ2 which

strongly ties together the components of a group.

d) Adaptive ℓ1 − ℓq: The ℓ1 and ℓ1 − ℓq norms de-

scribed above, are well-known to lead to grouped feature

selection. However, they are also known, to lead to

poor statistical properties (at least when used with a

square loss function) [24]. For instance, they are known

to have consistency issue in the sense that, even with

an arbitrarily large number of training examples, these

norms may be unable to select the true subset of features.

In practice, this means that when used in Equation (2),

the optimal weight vector w will tend to over-estimate

the number of relevant sensors. These issues can be

addressed by considering an adaptive ℓ1−ℓq mixed-norm

of the form [25], [24]:

Ωa:1−q(w) =
∑

g∈G

βg||wg||q (6)

where the weights βg are selected so as to enhance the

sparsity pattern of w. In our experiments, we obtain

them by first solving the ℓ1 − ℓq problem with βg = 1,

which outputs an optimal parameter w∗, and by finally

defining βg = 1/||w∗
g ||q . Then, solving the weighted

ℓ1−ℓq problem yields an optimal solution with increased

sparsity pattern compared to w∗ since the βg augments

the penalization of groups with norm ‖w∗
g‖q smaller than

1.



4

2) Algorithms: Let us now discuss how problem (2) is

solved when one of these regularizers is in play.

Using the ℓ2 norm regularization makes the problem

differentiable. Hence a first or second-order descent

based algorithm can be considered [26].

Because the other regularizers are not differentiable, we

have deployed an algorithm [27] tailored for minimizing

objective function of the form f1(w) + f2(w) with f1
being a smooth and differentiable convex function with

Lipschitz constant L and f2 a continuous and convex

non-differentiable function having a simple proximal op-

erator, i.e. a closed-form or an easy-to-compute solution

of the problem:

proxf2
(v) := argmin

u

1

2
‖v − u‖22 + f2(u) (7)

Such an algorithm, known as forward-backward splitting

[27] is simply based on the following iterative approach,

wk+1 = prox 1

γ
f2
(wk − γ∇wf1(w

k)) (8)

with γ being a stepsize in the gradient descent. This

algorithm can be easily derived by considering, instead of

directly minimizing f1(w) + f2(w), an iterative scheme

which at each iteration replace f1 with a quadratic ap-

proximation of f1(·) in the neighborhood of wk. Hence,

wk+1 is the minimizer of :

f1(w
k)+〈∇wf1(w

k),w−wk〉+
γ

2
‖w−wk‖22+f2(w)

which closed-form is given in Equation (8). This al-

gorithm is known to converge towards a minimizer of

f1(w) + f2(w) under some weak conditions on the

stepsize [27], which is satisfied by choosing for instance

γ = 1

L
. We can note that the algorithm defined in

Equation (8) has the same flavor as a projected gra-

dient algorithm which first, takes a gradient step, and

then “projects” back the solution owing to the proximal

operator. More details can also be found in [28].

For our problem (2), we choose f1(w) to be the squared

hinge loss and f2(w) the non-smooth regularizer. The

square hinge loss is indeed gradient Lipschitz with a

constant L being 2
∑

i=1
‖xi‖

2
2. Proof of this statement

is available in the supplementary material [29]. Proximal

operators of the ℓ1 and the ℓ1−ℓ2 regularization term can

be easily shown to be the soft-thresholding and the block-

soft thresholding operator [23]. The general ℓ1−ℓq norm

does not admit a closed-form solution, but its proximal

operator can be simply computed by means of an iterative

algorithm [21]. More details on these proximal operators

are also available in [29]

B. Channel selection and transfer learning in multiple

task setting

We now address the problem of channel selection in

cases where training examples for several subjects are at

our disposal. We have claimed that in such a situation, it

would be beneficial to learn the decision function related

to all subjects simultaneously, while inducing selected

channels to be alike for all subjects, as well as inducing

decision function parameters to be related in some sense.

These two hypotheses make reasonable sense since brain

regions related to the appearance of a given ERP are ex-

pected to be somewhat location-invariant across subjects.

For solving this problem, we apply a machine learning

paradigm, known as multi-task learning, where in our

case, each task is related to the decision function of a

given subject and where the regularizer should reflect

the above-described prior knowledge on the problem.

Given m subjects, the resulting optimization problem

boils down to be

min
W,b

m∑

t

nt∑

i=1

L(yi,t,x
T
i,twt + bt) + Ωmtl(W) (9)

with {xi,t, yi,t}i∈{1...nt} being the training examples

related to each task t ∈ 1 . . .m, (wt,bt) being the classi-

fier parameters for task t and W = [w1 . . .wm] ∈ R
d×m

being a matrix concatenating all vectors {wt}. Note

that the multi-task learning framework applied to single

EEG trial classification have already been investigated by

van Gerven et al. [17]. The main contribution we bring

compared to their works is the use of regularizer that

explicitly induces all subject classifiers to be similar to

an average one, in addition to a regularizer that enforces

selected channels to be the same for all subjects. The

intuition behind this point is : we believe that since the

classification tasks we are dealing with, are similar for

all subjects and all related to the same BCI paradigm,

selected channels and classifier parameters should not

differ that much from subject to subject. We also think

that inducing task parameters to be similar may be more

important than enforcing selected channels to be similar

when the number of training examples is small since it

helps in reducing overfitting. For this purpose, we have

proposed a novel regularization term of the form :

Ωmtl(W) = λr

∑

g∈G′

||Wg||2 + λs

m∑

t=1

||wt − ŵ||22 (10)

where ŵ = 1

m

∑
t wt is the average classifier across

tasks and G′ contains non-overlapping groups of compo-

nents from matrix W. The first term in Equation (10) is a

mixed-norm term that promotes group regularization. In
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this work, we defined groups in G′ based on the sensors,

which means that all the features across subject related

to a given sensor are in the same group g, leading to p
groups of r × m feature, as depicted in Figure 1. The

second term is a similarity promoting term as introduced

in Evgeniou et al. [19]. It can be interpreted as a term

enforcing the minimization of the classifier’s parameter

variance. In other words, it promotes classifiers to be

similar to the average one, and it helps improving per-

formances when the number of learning examples for

each task is limited, by reducing over-fitting. Note that

λr and λs respectively control the sparsity induced by

the first term and the similarity induced by the second

one. Hence, when setting λs = 0, the regularizer given

in Equation (10) boils down to be similar to the one

used by van Gerven et al. [17]. Note that in practice λr

and λs are selected by means of a nested cross-validation

which aims at classification accuracy. Thus, it may occur

that classifier similarity is preferred over sensor selection

leading to robust classifiers which still use most of the

sensors.

Similarly to the single task optimization framework given

in Equation (2), the objective function for problem (9)

can be expressed as a sum of gradient Lipschitz continu-

ous term f1(W) =
∑m,n

t,i L(·)+λs

∑m

t=1
||wt−ŵ||22 and

a non-differentiable term f2(W) = λr

∑
g∈G′ ||Wg||2

having a closed-form proximal operator [29]. Hence,

we have again considered a forward-backward splitting

algorithm which iterates are given in Equation (8).

III. NUMERICAL EXPERIMENTS

We now present how these novel approaches perform on

different BCI problems. Before delving into the details of

the results, we introduce the simulated and real datasets.

A. Experimental Data

We have first evaluated the proposed approaches on a

simple simulated P300 dataset which is generated as fol-

lows. A P300 wave is extracted using the grand average

of a single subject data from the EPFL dataset described

in the following. We generate 11000 simulated examples

with 8 discriminative channels containing the P300 out

of 16 channels for positive examples. A Gaussian noise

of standard deviation 0.2 is added to all signals making

the dataset more realistic. 1000 of these examples have

been used for training.

The first real P300 dataset we used is the EPFL

dataset that is based on eight subjects performing P300

related tasks [30]. The subjects were asked to focus on

one of the 3×2=6 images on the screen while the images

are flashed randomly. The EEG signals were acquired

from 32 channels, sampled at 1024 Hz and 4 recording

sessions per subject have been realized. Signals are pre-

processed exactly according to the steps described in

[30] : a [1, 8] Hz bandpass Butterworth filter of order

3 is applied to all signals followed by a downsampling.

Hence, for each trial (training example), we have 8 time-

sample features per channel corresponding to a 1000 ms

time-window after stimulus, which leads to 256 features

for all channels (32×8=256 features). On the overall, the

training set of a given subject is composed of about 3000

trials.

Another P300 dataset, this one recorded by the

Neuroimaging Laboratory of Universidad Autónoma

Metropolitana (UAM, Mexico) [31], has also been uti-

lized. The data have been obtained from 30 subjects per-

forming P300 spelling tasks on a 6×6 virtual keyboard.

Signals are recorded over 10 channels leading thus to

a very challenging dataset for sensor selection, as there

are just few sensors left to select. For this dataset, we

only use the first 3 sessions in order to have the same

number of trials for all subjects (≈4000 samples). The

EEG signals have been pre-processed according to the

following steps : a [2, 20] Hz Chebychef bandpass filter

of order 5 is first applied followed by a decimation,

resulting in a post-stimulus time-window of 31 samples

per channels. Hence, each trial is composed of 310
(10×31) features .

We have also studied the effectiveness of our methods

on an Error Related Potential (ErrP) dataset that has

been recorded in the GIPSA Lab. The subjects were

asked to memorize the position of 2 to 9 digits and

to remind the position of one of these digits, operation

has been repeated 72 times for each subject. The signal

following the visualization of the result (correct/error on

the memorized position) was recorded from 31 electrodes

and sampled at 512 Hz. Similarly to Jrad et al. [15], a

[1, 10] Hz Butterworth filter of order 4 and a downsam-

pling has been applied to all channel signals. Finally, a

time window of 1000ms is considered as a trial (training

example) whose dimensionality is 16× 31 = 496.

B. Evaluation criterion, methods and experimental pro-

tocol

We have compared several regularizers that induce fea-

ture/channel selection embedded in the learning algo-

rithm, in a single subject learning setting as defined in
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Equation (2). Because ERP classification datasets are

highly imbalanced, we use the Area Under the Roc

Curve (AUC) as a performance measure. This measure

is an estimate of the probability for a positive class to

have a higher score than a negative class. Our baseline

algorithm is an SVM, which uses an ℓ2 regularizer

and thus does not perform any selection. Using an

ℓ1 regularizer yields a classifier which embeds feature

selection, denoted as SVM-1 in the sequel. Three mixed-

norm regularizers inducing channel selection have also

been considered : an ℓ1 − ℓ2 denoted as GSVM-2, and

ℓ1 − ℓq referred as GSVM-q, with q being selected in

the set {1, 1.2, . . . , 1.8, 2}) by a nested cross-validation

stage, and adaptive ℓ1 − ℓq norm, with q = 2 denoted as

GSVM-a.

For the multi-task learning setting, two MTL methods

were compared to two baseline approaches which use

all features, namely a method that treats each tasks

separately by learning one SVM per task (SVM), and

a method denoted as SVM-Full, which on the contrary

learns an unique SVM from all subject datasets. The

two MTL methods are respectively a MTL as described

in Equation (9), denoted as MGSVM-2s and the same

MTL but without similarity-promoting regularization

term, which actually means that we set λs = 0, indicated

as MGSVM-2. For these approaches, performances are

evaluated as the average AUC of the decision functions

over all the subjects.

The experimental setup is described in the following. For

each subject, the dataset is randomly split into a training

set of n = 1000 trials and a test set containing the rest

of the trials. The regularization parameter λ has been

selected from a log-spaced grid ([10−3, 101]) according

to a nested 3-fold cross-validation step on the training

set. When necessary, the selection of q is also included

in this CV procedure. Finally, the selected value of λ is

used to learn a classifier on the training examples and

performances are evaluated on the independent test set.

We run this procedure 10 times for every subject and

report average performances. A Wilcoxon signed-rank

test, which takes ties into account is used to evaluate

the statistical difference of the mean performances of all

methods compared to the baseline SVM. We believe that

such a test is more appropriate for comparing methods

than merely looking at the standard deviation due to the

high inter-subject variability in BCI problems.

Methods Avg AUC AUC p-val Avg Sel F-measure

SVM 79.79 - 100.00 66.67
GSVM-1 79.32 0.027 98.75 67.25
GSVM-2 80.96 0.004 62.50 89.72
GSVM-p 80.74 0.020 63.12 89.40
GSVM-a 80.51 0.014 45.62 93.98

TABLE I
PERFORMANCE RESULTS ON THE SIMULATED DATASET : THE

AVERAGE PERFORMANCE IN AUC (IN %), THE AVERAGE PERCENT

OF SELECTED SENSORS (SEL) AND THE F-MEASURE OF THE

SELECTED CHANNELS (IN %). BEST RESULTS FOR EACH

PERFORMANCE MEASURE ARE IN BOLD. THE P-VALUE REFERS TO

THE ONE OF A WILCOXON SIGNRANK TEST WITH SVM AS A

BASELINE.

C. Results and discussions

We now present the results we achieved on the above-

described datasets.

1) Simulated dataset: Averaged (over 10 runs) perfor-

mances of the different regularizers on the simulated

dataset are reported in Table I through AUC, sensor se-

lection rate and F-measure. This latter criterion measures

the relevance of the selected channels compared to the

true relevant ones. F-measure is formally defined as

F-measure = 2
|C ∩ C∗|

|C∗|+ |C|

where C and C∗ are respectively the set of selected

channels and true relevant channels and | · | here denotes

the cardinality of a set. Note that if the selected channels

are all the relevant ones, then the F-measure is equal

to one. Most of the approaches provide similar AUC

performances. We can although highlight that group-

regularization approaches (GSVM-2,GSVM-p, GSVM-

a) drastically reduce the number of selected channels

since only 62% and 45% of the sensors are selected. A

clear advantage goes to the adaptive regularization that

is both sparser and is more capable of retrieving the true

relevant channels.

2) P300 Datasets: Results for these datasets are reported

in Table II. For the EPFL dataset, all methods achieve

performances that are not statistically different. However,

we note that GSVM-2 leads to sensor selection (80% of

sensor selected) while GSVM-a yields to classifiers that,

on average, use 26% of the sensors at the cost of a slight

loss in performances (1.5% AUC).

Results for the UAM dataset follow the same trend

in term of sensor selection but we also observe that

the mixed-norm regularizers yield to increased perfor-

mances. GSVM-2 performs statistically better than SVM

although most of the sensors (9 out of 10) have been
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Datasets EPFL Dataset (8 Sub., 32 Ch.) UAM Dataset (30 Sub., 10 Ch.) ErrP Dataset (8 Sub., 32 Ch)

Methods Avg AUC Avg Sel p-value Avg AUC Avg Sel p-value Avg AUC Avg Sel p-value

SVM 80.35 100.00 - 84.47 100.00 - 76.96 100.00 -
SVM-1 79.88 87.66 0.15 84.45 96.27 0.5577 68.84 45.85 0.3125
GSVM-2 80.53 78.24 0.31 84.94 88.77 0.0001 77.29 29.84 0.5469
GSVM-p 80.38 77.81 0.74 84.94 90.80 0.0001 76.84 37.18 0.7422
GSVM-a 79.01 26.60 0.01 84.12 45.07 0.1109 67.25 7.14 0.1484

TABLE II
PERFORMANCE RESULTS FOR THE 3 DATASETS THE AVERAGE PERFORMANCE (OVER SUBJECTS) IN AUC (IN %), THE AVERAGE PERCENT

OF SELECTED SENSORS (SEL) AND THE P-VALUE OF THE WILCOXON SIGNRANK TEST FOR THE AUC WHEN COMPARED TO THE BASELINE

SVM’S ONE. BEST PERFORMING ALGORITHMS FOR EACH PERFORMANCE MEASURE ARE IN BOLD.
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Fig. 2. Selected sensors for the EPFL dataset. The line width of the
circle is proportional to the number of times the sensor is selected for
different splits. No circle means that the sensor has never been selected.

kept in the model. This shows that even if few channels

have been removed, the group-regularization improves

performances by bringing sensor prior knowledge to the

problem. We also notice that GSVM-a performance is

statistically equivalent to the baseline SVM one while

using only half of the sensors and GSVM-p consistently

gives similar results to GSVM-2.

To summarize, concerning the performances of the dif-

ferent mixed-norm regularization, we outline that on one

hand, GSVM-2 is at worst, equivalent to the baseline

SVM while achieving sensor selection and on the other

hand GSVM-a yields to a substantial channel selection

at the expense of slight loss of performances.

A visualization of the electrodes selected by GSVM-a

can be seen in Figure 2 for the EPFL dataset and in

Figure 3 for the UAM dataset. Interestingly, we observe

that for the EPFL dataset, the selected channels are

highly dependent on the subject. The most recurring

ones are : FC1 C3 T7 CP5 P3 PO3 PO4 Pz and the

electrodes located above visual cortex O1,Oz and O2.

We see sensors from the occipital area that are known to

Fz

C3 Cz C4

P3 Pz P4

PO7 PO8
Oz

Subject 7

Fz

C3 Cz C4

P3 Pz P4

PO7 PO8
Oz

Subject 20

Fz

C3 Cz C4

P3 Pz P4

PO7 PO8
Oz

Subject 6

Fz

C3 Cz C4

P3 Pz P4

PO7 PO8
Oz

Subject 24

Fz

C3 Cz C4

P3 Pz P4

PO7 PO8
Oz

Subject 25

Fz

C3 Cz C4

P3 Pz P4

PO7 PO8
Oz

Average

Fig. 3. Selected sensors for the UAM dataset. The line width of the
circle is proportional to the number of times the sensor is selected for
different splits. No circle means that the sensor has never been selected.

be relevant [11] for P300 recognition, but sensors such as

T7 and C3, from other brain regions are also frequently

selected. These results are however consistent with those

presented in the recent literature [4], [16].

The UAM dataset uses only 10 electrodes that are already

known to perform well in P300 recognition problem,

but we can see from Figure 3 that the adaptive mixed-

norm regularizer further selects some sensors that are

essentially located in the occipital region. Note that

despite the good average performances reported in Ta-

ble II, some subjects in this dataset achieve very poor

performances, of about 50 % of AUC, regardless of

the considered method. Selected channels for one of

these subjects (Subject 25) are depicted in Figure 3 and

interestingly, they strongly differ from those of other

subjects providing rationales for the poor AUC.

We have also investigated the impact of sparsity on the

overall performance of the classifiers. To this aim, we

have plotted the average performance of the different

classifiers as a function of the number of selected sensors.

These plots are depicted in Figure 4 for the EPFL dataset
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Fig. 4. Performance vs sensor selection visualisation for the EPFL
dataset. The large marker corresponds to the best model along the
regularization path.
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Fig. 5. Performance vs sensor selection visualisation for the UAM
dataset. The large marker corresponds to the best model along the
regularization path.

and on Figure 5 for the UAM dataset. For both datasets,

GSVM-a frequently achieves a better AUC for a given

level of sparsity. For most of the subjects, GSVM-a

performs as well as SVM but using far less sensors. A

rationale may be that, in addition to selecting the relevant

sensors, GSVM-a may provide a better estimation of the

classifier parameters leading to better performances for a

fixed number of sensors. As a summary, we suggest thus

the use of an adaptive mixed-norm regularizer instead of

an ℓ1− ℓ2 mixed-norm as in van Gerven et al. [17]when

sparsity and channel selection is of primary importance.

3) ErrP Dataset: The ErrP dataset differs from the oth-

ers as its number of examples is small (72 examples per

subject). The same experimental protocol as above has

been used for evaluating the methods but only 57 exam-

ples out of 72 have been retained for validation/training.

Classification performances are reported on Table II.

For this dataset, the best performances are achieved by

GSVM-2 but the Wilcoxon test shows that all methods

are actually statistically equivalent. Interestingly, many

channels of this dataset seem to be irrelevant for the
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Fig. 6. Selected Sensors for the ERP dataset. The line width of the
circle is proportional to the number of times the sensor is selected. No
circle means that the sensor has never been selected.

classification task. Indeed, GSVM-2 selects only 30% of

them while GSVM-a uses only 7% of the channels at the

cost of 10% AUC loss. We believe that this loss is essen-

tially caused by the aggressive regularization of GSVM-a

and the difficulty to select the regularization parameter λ
using only a subset of the 57 training examples. Channels

selected by GSVM-2 can be visualized on Figure 6.

Despite the high variance in terms of selected sensors,

probably due to the small number of examples, sensors

in the central area seem to be the most selected one,

which is consistent with previous results in ErrP [32].

4) Multi-task Learning: We now evaluate the impact

of the approach we proposed in Equation (9) and (10)

on the P300 datasets. We expect that since multi-task

learning allows to transfer some information between the

different classification tasks, it will help in leveraging

classification performances especially when the number

of training examples available is small. Note that the

ErrP dataset has not been tested in this MTL framework,

because the above-described results suggest an important

variance in the selected channels for all subjects. Hence,

we believe that this learning problem does not fit into

the prior knowledge considered through Equation (10).

We have followed the same experimental protocol as for

the single task learning described except that training

and test sets have been formed as follows. We first

create training and test examples for a given subject by

randomly splitting all examples of that subject, and then

gather all subject’s training/test sets to form the multi-

task learning training/test sets. Hence, all the subjects are

equally represented in these sets. A 3-fold nested cross-

validation method is performed in order to automatically

select the regularization terms (λr and λs).
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Fig. 7. Multi-task learning performances (AUC) for the EPFL (left
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Performances of the different methods have been eval-

uated for increasing number of training examples per

subject and are reported in Figure 7. We can first see

that for the EPFL dataset, MGSVM-2 and MGSVM-2s

yield a slight but consistent improvement over the single-

task classifiers (SVM-Full being a single classifier trained

on all subject’s examples and SVM being the average

performances of subject-specific classifiers). The poor

performances of the SVM-Full approach is probably due

to the high inter-subject variability in this dataset, which

includes impaired patients.

For the UAM dataset, results are quite different since

the SVM-Full and MGSVM-2s shows a significant im-

provement over the single-task learning. We also note

that, when only the joint channel selection regularizer

is in play (MGSVM-2), multi-task learning leads to

poorer performance than the SVM-Full for a number of

trials lower than 500. We justify this by the difficulty

of achieving appropriate channel selection based only

on few training examples, as confirmed by the perfor-

mance of GSVM-2. From Figure 8, we can see that

the good performance of MGSVM-2s is the outcome

of performance improvement of about 10% AUC over

SVM, achieved on some subjects that perform poorly.

More importantly, while performances of these subjects

are significantly increased, those that performs well still

achieve good AUC scores. In addition, we emphasize that

these improvements are essentially due to the similarity-

inducing regularizer.

For both datasets, the MTL approach MGSVM-2s is con-

sistently better than those of other single-task approaches

thanks to the regularization parameters λr and λs that

can adapt to the inter-subject similarity (weak similarity

for EPFL and strong similarity for UAM). These are

interesting results showing that multi-task learning can

be a way to handle the problem related to some subjects

that achieve poor performances. Moreover, results also

indicate that multi-task learn can be useful for drastically

shortening the calibration time. For instance, for the

UAM dataset, 80% AUC was achieved using only 100

training examples (less than 1 minute of training example

recordings). Note that the validation procedure tends to

maximize performances, and does not lead to sparse

classifiers for MTL approaches. As shown in Figures 2

and 3, the relevant sensors are quite different between

subjects thus a joint sensor selection can lead to a slight

loss of performances, which favors the CV procedure to

select non-sparse classifiers.

IV. CONCLUSION

In this work, we have investigated the use of mixed-norm

regularizers for discriminating Event-Related Potentials

in BCI. We have extended the discriminative framework

of van Gerven et al. [17] by studying general mixed-

norms and proposed the use of the adaptive mixed-

norms as sparsity-inducing regularizers. This discrimi-

native framework has been broadened to the multi-task

learning framework where classifiers related to different

subjects are jointly trained. For this framework, we have

introduced a novel regularizer that induces channel se-

lection and classifier similarities. The different proposed

approaches were tested on three different datasets involv-

ing a substantial number of subjects. Results from these

experiments have highlighted that the ℓ1− ℓ2 regularizer

has proven interesting for improving classification perfor-

mance whereas adaptive mixed-norm is the regularizer to

be considered when sensor selection is the primary ob-

jective. Regarding the multi-task learning framework, our

most interesting findings is that this learning framework

allows, by learning more robust classifiers, significant

performance improvement on some subjects that perform

poorly in a single-task learning context.
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