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Abstract Data manipulated in an enterprise context are tstred data as well as un-
structured data such as emails, documents, sastiabrks, etc. Graphs are a natural way of
representing and modeling such data in a unifiednmea (Structured, semi-structured and
unstructured ones). The main advantage of suctuetste relies in the dynamic aspect and
the capability to represent relations, even mudtiphes, between objects. Recent database
research work shows a growing interest in the defimof graph models and languages to
allow a natural way of handling data appearingthlis chapter, we give a survey of the
main graph database models and the associated guapy languages. We then present an
application using a graph database to extract soetavorks.
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1.1 Introduction

We have now entered the knowledge era, where peaplein a collaborative
way and manipulate structured as well as unstredtaiata. More and more in-
formation about communications among people ardadbla. This mass of infor-
mation should be used in companies to optimizébtisiness process, for example
using information about people to constitute thst lxeam for a particular project.
These tremendous amounts of data need storagenafybsia. This data can re-
sides in multiple locations and may change oveetiMoreover, the data sources
do not have a unified schema or their schemas ¢tdreoontrolled. Current re-
presentation and storage systems are not venyoftexn dealing with dynamic
changes and are not very efficient to manipulatepiex data. Besides, data ma-
nipulation systems cannot easily work with struatwar relational data.

Graphs are a powerful representation formalisnbfh structured and unstruc-
tured data, and can be seen as a unified datasegpiation. Data in multiple do-
mains can be naturally modeled as graphs like Sgensveb (Shadbolet al
2006), images, social networks (¥tial, 2008), bioinformatics, etc. Thus, recent
database research shows a growth of interest iddfieition of graph models and
languages to allow a natural way of handling daj@earing in these applications.
Indeed, Graph database leads to a more naturallimpdgraph structures) and
offers a flexible support for dynamic data (Sociatwork, web, etc...). It also fa-
cilitates data query using graph operations. ERpliraphs and graph operations
allow a user to express a query at a very highl leabstraction. Queries about
paths and shortest path between two nodes arermedoefficiency with graph
database techniques.

In this chapter, we present the main graph databasdels and the associated
graph query languages; we will also discuss twateel models that do not fit
properly as graph database models, but use grégthsxample, for navigation,
for defining views, or as language representatide. discuss in each section the
capacity of these models and query languages sept®r to query communities
data especially information found on social netvgorkhen we show an applica-
tion using a graph database for modeling socialoes.



1.2 Graph database: Models and query languages

1.2.1Brief overview of Graph database models

A graph database is defined (Angttsal. 2008) as a “database where the data
structures for the schema and/or instances are letb@ds a (labeled) (directed)
graph, or generalizations of the graph data stractwhere data manipulation is
expressed by graph-oriented operations and typstrumtors, and has integrity
constraints appropriate for the graph structurldre formally, a graph database
schema is in the form of a grafyy= (N,E,iv,A) where:N is a set of nodes arigl

is a set of edgeg;is an incidence function fronk into NxN ;V is a set of labels

and A is a labeling function frorN O E into V . There is a variety of models for
Graph database (for more details see (Angles &08B)). All these models have
their formal foundation as variations of the basiathematical definition of a
graph. The structure used for modeling entities r@fations influences the way to
query and visualize data. In this section, we mademparison between existing
models to find the more suitable for storing angresenting a Social Network.
We will focus on the representation of entities agldtions in these models. We
present in what follows some models classified ediog to the data structure
used to model entities and relations.

1.2.1.1 Models based on simple node

Data are represented in these models by a (directeddirected) graph with sim-
ple nodes and edges. Most of these models (GOOBsgh et al. 1990), GMOD
(Andries et al. 1992), etc.) represent both schanthinstance database as a la-
beled directed graph. Moreover, LDM (Kuper and Vaté93) represents the
graph schema as a directed graph where leavesespréata and whose internal
nodes represent connections among the data. LDRkanioss consist of two-
column tables, one for each node of the schemadtigsntin these model, are
represented by nodes labeled with type name amdvéth type value or object
identifier (in the case of instance graph). Somel@®have nodes for explicit re-
presentation of tuples and sets (PaMaL (Gemis andd@ens 1993), GDM (Hid-
ders 2003)), and n-ary relations (GDM). Relatigattributes, relations between
entities) are generally represented in these mdaekhe mean of labeled edges.
LDM and PaMaL use tuple nodes to describe a sattobutes which are used to
define an entity. GOOD defines edges to distingbistween mono-valued (func-
tional edge) and multi-valued attributes (nonfumieéil edge). Nevertheless, these
models do not allow the presentation of nestediogia and are not very suited for
modeling complex objects.

1.2.1.2 Models based on complex node
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In these models, the basic structure of a grapdgramd edge) and the presenta-
tion of entities and relations are based on hymgadand hypergraphs). Indeed, a
hypernode is a directed graph in which nodes camsielves be graphs (or hyper-
nodes). Hypernodes (Levene and Poulovassilis, 19€) be used to represent
simple (flat) and complex objects (hierarchicalinpmsite, and cyclic) as well as
mappings and records. A hypergaphs is a generatinidn of graph where the
notion of edge is extended to hyper edge, whichtesl to an arbitrary set of
nodes. The Hypernode Model (Levene and Loizou5188d GGL (Graves et al,
1995) emphasize the use of hypernodes for repiagemésted complex objects.
GROOVY (Levene and Poulovassilis, 1991) is centevadthe use of hyper-
graphs. The hypernode model is characterized mgusésted graphs at the sche-
ma and instance levels. GGL introduces, in aduliteits support for hypernodes
(called Master-nodes), the notion of Master-edgeeiocapsulation of paths. It
uses hypernodes as an abstraction mechanism dogsiat packaging other
graphs as an encapsulated vertex, whereas the mtyemodel additionally uses
hypernodes to represent other abstractions likept®mobjects and relations.
Most models have explicit labels on edges. In thwemode model and
GROOQVY, labeling can be attained by encapsulatidges, that represent the
same relation, within one hypernode (or hyperedgbgled with the relation
name.

1.2.1.3 Discussion

The purpose of this graph database models revieafiigto find the most suited
one to model many complex data objects and th&tioaships, such as social
networks. Social Network is an explicit repres¢ion of relationships between
people, groups, organizations, computers or othéties (Barnes, 1954). As other
networks, it can be represented as a complex gbéphet al. 2008)G = (V, BE),
whereV is the set of nodes representing people Eiglthe set of edge¥/ (x V)
meaning the different kind of relationships amoegpmie.

Indeed, the social network structure can contai@ onmore types of relations,
one or more types or levels of entities and maiybates over the entities. This
structure is dynamic: growth of the volume, chaogettributes and relations.
Then, we have compared the previous graph databadels using some charac-
teristics related to social network: the abilitypiesent dynamic and complex ob-
jects, nested and neighborhood relations and thigyalo give a good visualiza-
tion of social network. We resume the comparisonTable 1.1 where “+”
indicates the graph model support, “-” indicatest tfhe graph model doesn't sup-
port and “+/-" partial support. From this comparisove have concluded that
models based on hypernodes can be very appropoatpresent complex and
dynamic object. Specially, the hypernode model \itishnested graphs can pro-
vide an efficient support to represent every reattvobject as a separated data-
base entity. Moreover, models based on simple gcaphot be suitable for com-
plex networks where entities have many attriburesraultiple relations.



Table 1.1Graph database model comparison

Entity Relation Visualization
Complex Dynamic Neste( Neighborhoo

Hypernode + + + + +
Groovy + + + + -
GGL + + + + -
GOOD - + -

GMOD - + - +
PaMaL + + - + +/-
GDM + + - . +
LDM + + - . .

1.2.2 Graph database languages

A query language is a collection of operatorsnference rules which can be
applied to any valid instance of the model datacstire types, following the ob-
jective of manipulating and querying data in theseictures in any desired com-
bination (Codd 1980). In this section, we reviewnsoproposals for graph data-
base query languages found in the literature. Weetrate this study on visual,

semantic, SQL-like and Formal query languages.

id e Lot oo | Vane Sk -}
Name Smith Y P Sara
Yan

Mice o1 s
Supehvised_by

i Supervise dim; = .
Vi o \ @2
© Sm kms Onolgy \ :
L @ Supervised by
g0

Fig.1.1 PHD student and their supervisors (Tables andesponding graph)

0 Yoo Smbh Onology

0 Alm b

For each category, we will run some queries udiegallowing example about a
PhD student database as shown in Fig.1.1. We mallvshow these graph data-

base languages support graph featypth, neighborhood, etc.).

1.2.2.1 Visual query languages

Visual query languages aim at providing tinectionality of textual query lan-
guages to users who are not technical databasetgxpad also to improve the
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productivity of expert database users. In genéh&ise languages allow users to
draw a query as a graph pattern with the helpgrbghical interface. The result is
the collection of all subgraphs of the databasechiag the desired pattern (Blau
et al. 2002), (Cruz et al. 1987), (Cruz et al. 1989

a. G, G+ and GraphLog

G (Cruz et al. 1987) is a visual query languageetham regular expressions that
allow simple formulation of recursive queries. Gables users to pose queries, in-
cluding transitive closure, which is not expressili relational query languages.
A graphical query Q (example Figl.2) is a set bklad directed multi-graphs, in
which the node labels of Q may be either variablesonstants, and the edge la-
bels are regular expressions defined over n-tuplaeariables and constants. A
path is expressed on a G query initially by the mseaf two types of edges:
dashed edges correspond to paths of arbitraryHanghe graph and solid edges
correspond to paths of fixed length. In G, simpd¢hp are traversed using certain
non-Horn clause constructs available in Prologhdlgh, it does not support
cycles, finding the shortest path or calculatingendistance. In addition, G does
not support aggregation functions.

~ Supervised by

/ = Thesis_ topiec .
.;‘
-

Fig. 1.2G query to find student and supervisors and queapl_og query to find all students
working on Ontology

G evolved into a more powerful language called @tug et al. 1989), in
which a query graph remains as the basic buildiogkb A simple query in G+
has two elements, a query graph that specifiesléss of patterns to search, and a
summary graph, which represents how to restrudcheeanswer obtained by the
query graph. G+ provides primitive operators lilepth-first search, shortest path,
transitive closure and connected components. It easily find regular simple
path. The language contains also aggregate operétat allow finding path
length and node degree. The graph-based querydgegG+ provided a starting
point for GraphLog (Consens and Mendelzon 1989apBkog differs from G+
with a more general data model, the use of negatind the computational tra-
ceability. GraphLog queries are graph patterns kvhgk for patterns that must be
present or absent in the database graph. Edgaseiteq represent edges or paths
in the database. Each pattern defines a set ofedews (i.e., a new relation) that
are added to the graph whenever the pattern isdfodin edge used in a query
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graph either represents a base relation or if i&dined in another query graph.
GraphLog supports computing aggregate functionssamamarizing along paths.
Fig.1.2 shows an example of a GraphLog query.

b. Hyperlog

Hyperlog (Levene and Poulovassilis 1991) is a datilee query and update lan-

guage for the Hypernode Model (Fig.1.3).

It viszed schema information, data,

and query output as sets of nested graphs, whitlbeastored, browsed and que-

ried in a uniform way.

\\‘\

/
\_/ /

[ Name

Student ;
Pr Superv1§0r
J"/St-id 7 Integer\ / Name Sl
[ e e
[ Name 7_—» String \ \ ol Student J
L LastName > String \ ’
\Thesis-Topic-\'“) String \ \-/'/

\ ~ /

\Thesis-Topic ‘> Omnln? ,
7\

\\V 4 /stid f \

| Name S Al

| Superwsor 1

" Name

St-id
—> Yan |

| LastName > smith |

" Michel\

Student_2
- . Supervisor_2
> 0z )\ ==

/stid  ~ \ g N
[ Name —> ST |\  /Name  SEIE )\
| Last-Name ‘> James J \
\ \\ stid |
\ Thesns Topic '> omolog/ \ \//

Stude}\Lg
> o3 A
\

|
/

[ n
| LastName - Jones
\

\ Thesis-Topic > graph /
N /

Fig.1.3Hypernode database schema and instance

A hyperlog query consists of a number of graphlsnftlates) which are
matched against the hypernodes and which genaghigal output.

?Student

—=MName

Name \

‘ Last-] Name ‘\ "LastNm%

&

"Supemsor
P N
e ?Name

\ Stid

*Student

b
T
B

F/.

‘Qesm TO]JIC N Ontology /

\

Fig.1.4Template and query with Hyperlog

The user chooses which variables in the queryldhtave their instantiations
output in the query result. Hyperlog programs asmsets of rules. The body of a
rule is composed of a number of queries, which g@yain variables. The head
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of a rule is also a query and indicates the upd@temy) to be undertaken for
each match of the graphs in the body. In ordetlustiate the template and the
query in the Hyperlog query language, we give aangde in Fig.1.4: the tem-
plate can find the students and their supervidgbies;query can find the students
working on Ontology. Hyperlog does not offer a spknotation or expression to
express paths. The existent rules can just finghlsimnes. The absence of aggre-
gation functions explains the absence of answemrguefy about node degree or
path lengths.

¢. QGRAPH

QGRAPH (Blau et al., 2002) query is a labeled cotex graph in which the
vertices correspond to objects and the edges ks lwith a unique label. The
query specifies the desired structure of verticesedges. It may also place Boo-
lean conditions on the attribute values of matclobgects and links, as well as
global constraints. A query consists of match eediand edges and optional up-
date vertices and edges. The former determine whiblgraphs in the graph data-
base constitute a match for the query. The lag¢erchine modifications made in
the matching subgraphs. A query with both match @pdiate vertices and edges
can be used for attribute calculation and for $tma modification of the data-
base. The query processor first finds the matclimggraphs using the query’s
match elements, and then makes changes to thogeaphis as indicated by the
query’'s update elements.
linkType=Supervised by

e

objType=Student

biType=Supervisor ; X
0 Thesis-topic=Ontology

Fig. 1.5Quries with QGRAPH

objType=Studen

QGRAPH offers a good support to express paths éyrthans of sub-queries,
conditions and annotations on edges and nodes. vwwie does not offer opera-
tor for aggregationFig.1.5 contains two queries: the right query firadlssub-
graphs with a supervised link between a Studentaa&iipervisor; the left one
finds just the students that have the ontologytassik-topic.

d. GOOD and languages based on GOOD
The Good (Gyssenst al. 1990) data transformation language is a datalsase |

guage with graphical syntax and semantics. Therglanguage is used for the
GOOD graph-based data model (Fig.1.6). GOOD quenguage is based on
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graph-pattern matching and allows the user to §pacide insertions and dele-

tions in a graphical way.
©
Last- nams L st-name

W% o_m
Name
T}esmgp&r
Them}p
Supervised_by

Supervised_by

Supervisor '
. ] %ast-namV@
il Supervised_by
\ __/
Thesivtopic. ST (s @

Fig. 1.6 GOOD data model shema and instance

Good contains five operators. Four of them corradpio elementary manipu-
lation of graphs: addition of nodes and edges,tideleof nodes and edges. The
fifth operation called abstraction is used to grawgules on the basis of common
functional or non-functional properties. The spieaifion of all these operations
relies on the notion of pattern to describe subggap an object base instance.
GOOD presents other features like macros (for nsoieeinct expression of fre-
guent operations), computational-completenesseofjtlery language, and simula-
tion of object-oriented characteristics like eneadgson and inheritance.

L. -

TI\esis—topi’c

m o @ 4
m o @
m pname @
Flanae

Fig. 1.7GOOD queries

Simple path can be exprimed by using pattern. MaeaGOOD are not
adapted to find path with no fixed length. Fig.1lldstrates two examples of
GOOD query: First query to find student and theipeyvisor the secand one to
find student working on ontology topic. This langeawas followed by the pro-
posals GMOD (Andries et al. 1992), PaMaL (Gemis &adedaens 1993) and
GOAL (Hidders and Paredaens 1993). These languagessOO0OD principal’s
features and add some new functionality.

1.2.2.2 SQL-like languages
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SQL-like languages are declarative rule query laggs that extend traditional
SQL and propose new SQL-like operators for quergraphs and objects.

a. Lorel

Lorel (Abiteboul et al. 1997) is implemented as theery language of the Lore
prototype database management system at Stanfordp:/lmw-
db.stanford.edu/lore).

It is used for the OEM (Object Exchange Model) datadel (Fig.1.8). A database
conforming to OEM can be thought as a graph wheajecdIDs represent node-
labels and OEM-labels represent edge-labels. Ataijects are leaf nodes where
the OEM-value is the node value. Lorel allows expieg flexible path expres-
sions, which allow querying without precise knovgedf the structure. Path ex-
pressions are built from labels and wildcards (@{holders) using regular expres-
sions, allowing the user to specify rich pattetmat are matched to actual paths in
the graph database. Lorel also includes a denlarapdate language.

Ontologv']c'nes Alain

graph

Fig. 1.80bject Exchange Model (OEM). Schema and instareenixed.

b. GraphDB

Guting (Glting 1994) proposes an explicit model ednGraphDB, which al-
lows simple modeling of graphs in an object oridreé@vironment. A database in
GraphDB is a collection of object classes whereaotisj are composed of identity
and tuple structure; attributes may be data orabbjelued. There are three dif-
ferent kinds of object classes called simple clskek classes, and path classes.
Simple objects are just objects, but also playrtile of nodes in the database
graph. Link objects are objects with additionalidiguished references to source
and target simple objects. Path objects are obyeithsan additional list of refer-
ences to simple and link objects that form a patkrahe database graph.
GraphDB uses graph algorithms in order to implenggaph operations. Shortest
path and cycle both were implemented using the |§dr@thm. Moreover, nodes,
paths and subgraphs are indexed using path classemdex structures like B-
Tree and LSD-Tree. GraphDB allows aggregation lyguaggregate functions.
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c. GOQL

GOQL (Sheng et al. 1999) is an extension of OQliched with constructs to
create, manipulate and query objects of type grppth and edge. GOQL is ap-
plied to graph database that use an object orietdg&imodel. In this data model,
they define similar to GraphDB a special type: nogee, edge type, path type and
graph type. GOQL is capable to query sequencespatits. In addition to the
OQL sequence operators, GOQL uses the temporahtmpemext, until and con-
nected for queries involving the relative orderiafy sequence elements. For
processing, GOQL queries are translated into amabgebased language, O-
Algebra, extended with new operators. O-Algebransobject algebra designed
for processing object-oriented database (OODB)igseiTo deal with GOQL's
extension for path and sequence expressions, Cbrdges extended with three
temporal operators, corresponding to the tempgrafators Next, Connected, and
Until.

d. SOQL

SoQL (SOcial networks Query Language), (Roaed Shmueli 2009) is an
SQL-like language for querying and creating datasotial networks. SoQL
enables the user to retrieve paths to other ppatits in the network, and use a re-
trieved path in order to attempt to create a cotimeavith the participant at the
end of the path. The main element of a SoQL qismeither a path or a group,
with subpaths, subgoups and paths within a grotdipetkin the query. Creation
of new data is also based on the path and grouptstes. Indeed, SoQL presents
four new operators:

-SELECT FROM PATH query which retrieves paths betaetwork partici-
pants, starting at a specific node and satisfyorgltions in the path predicates.

- SELECT FROM GROUP query which retrieves grouppaticipant that sa-
tisfy conditions as a set of nodes.

-The CONNECT USING PATH and CONNECT GROUP commaads pre-
sented. These commands automate the process dihgreannections between
participants.

The language uses Operators which specify conditiona path or a group. It
proposes also aggregation functionalities, as wasllexistential and universal
guantifiers on nodes and edges in a path or a ganghon paths within a defined

group.

e. GraphQL

GraphQL (He and Sindh 2008)a graph query language for graphs with arbi-
trary attributes and sizes. In GraphQL, graphstlaeebasic unit of information.
Then, each operator takes one or more collectibgsaphs as input and generates
a collection of graphs as output. It is based @plgralgebra and the FLWR (For,
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Let, Where, and Return) expressions used in Xq@eeg next section). In the

graph algebra, the selection operator is genethtizggraph pattern matching and
a composition operator is introduced for rewritmgtched graphs using the idea
of neighborhood subgraphs and profiles, refinentdérthe overall search space,
and optimization of the search order.

1.2.2.3 Formal languages

a. LDM

The Logical Database Model (Kuper and Vardi 199®yesents a logic very
much in the spirit of relational tuple calculus,igfhuses fixed sort variables and
atomic formulas to represent queries over a schesirg the power of full first
order languages. Figl.9 presents the LDM schemarastances.

X
/ I(Name) I(Last_Name) I(Thesis_topic)
Students \xp('lwi.\ol' Val(J) 1 | Val(J) 1 | Val(Jl)
X X

Yan Smith 7 Ontology
: / lv\“‘lmi'\’ i
Namg/ LastgName \g ime
Lopic

[

Sara James 8 graph
Alain Jones

I(Student)
I | Val(J)
9 | (1,4,7)
10 | (2,5,7)
11 | (3,6,8

W =N

o

Fig.1. 9Logical Data Model, The schema (on the left) aad pf instances (on the right)

The result of a query is another LDM schema cadjedry schema which con-
sists of those objects over a valid instance thasfy the query formula. In addi-
tion the model presents an alternative algebraieryqlanguage proven to be
equivalent to the logical one.

b. Gram

Gram (Amann and Scholl 1992) is an algebraic lagguzased on regular ex-
pression and supporting a restricted form of réonrs

Student_1Supervised-by, Supervisor 1

S Supervisor N .
Student Supervisadby  SUp rdl 1y |

Wame|

\ I
\ Michel

Name

Smit’h Or:tolog_y

¥ E ™ W Yan §
NAME LAST-NAME THESIS- NAME 5up=ms€u‘<vf
TOPIC Sara_ \ C——

e i o & N \
Le¢ .— Supervisor_2” Alain  Jones  graph

Fig.1. 10Gram Data Model, the schema (on the left) andribances (on the right)
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Fig.1.10 shows the data model used by Gram. Regujaressions over data
types are used to select walks (paths) in a giapises a data model where walks
are the basic objects. A walk expression is a e¥gekpression without union,
whose language contains only alternating sequesfoesde and edge types, start-
ing and ending with a node type. The query languadsed on hyperwalk alge-
bra with operations closed under the set of hyplsva
This hyperwalk facilitates the query of paths aoditd adjacent node and edge.
A Gram query example is presented on Fig.1.11.

Student Supervised-by -, Superwvisor

I(Student supervized by SUPErvisor)

Fig.1. 11Gram query to find student and their supervisors

c. G-Log

G-Log (Paredaenst al. 1995) is a declarative, nondeterministic complate
guage for complex objects with identity.

Supervised_by
. o
e 4 qlll-utﬁlbqlalpiﬂﬁib
- - \ e x Ontalegy
L “Thesis Topic Name

Spenlsd by Spmm“a)

‘
Superv‘isur

Marte™ i hasisTapic

LestiName \\,ﬂe¢ ¢

Fig.1. 12G-Log Data Model: The schema (on the left) anditstances (on the right)

The data model of G-Log is (up to some minor de}dihe same as that of
GOOD (Fig.1.12). The main difference between G-lasgl GOOD is that the
former is a declarative language, and that therlastimperative. In G-Log, the
basic entity of a program is a rule. Rules in G-lazg graph-based and are built
up from colored patterns. A G-Log program is dedi@es a sequence of sets of G-
Log rules.

d. HNQL

HyperNode Query Language (HNQL) is a query and tegpdenguage for the
hypernode model (Levene and Loizou 1995). HNQL =tie®f a basic set of op-
erators for declarative querying and updating gbempodes. In addition to the
standard deterministic operators, HNQL providesssEwnon-deterministic opera-
tors, which arbitrarily choose a member from a d4éNQL is further extended in
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a procedural style by adding to the said set ofaipes an assignment construct, a
sequential composition construct, a conditionalstrautt for making inferences
and, finally, loop and while loop constructs fooypiding iteration (or equivalently
recursion) facilities.

1.2.2.4 Semantic languages

A semantic query language is a query language whidefined for querying a
semantic data model.

Superised. by

7 N,
\

Works-On 88
same Bt

Works_On_same opc

Fig. 1.130ntology describing the graph (Left) and the Ratte extract students working on
same topic (Right)

The semantic query language presented in (Kalpad6)2provides a founda-
tion for extracting information from the semantiaph where the possible struc-
ture of the graph is described by ontology (Fig) that defines the vertex types,
the edge types and how edges may interconnectesrtd form a directed graph.
It uses a query with a specific format containingdtion which specifies patterns
and conditions for matching graphs in the databiigd..13 shows an example of
pattern used by kalpan query language.

1.2.2.5 Discussion

Querying social networks turns out to be a nonatitask due to the intrinsic
complexity of the networked data. Also these kinfigjuerying focus on special
type of information. Moreover, information neederfr a community or a social
network are diverse and can be categorized in yest (1) values or measures
like the centrality, diameter, etc; (2) informatiabout attributes relations and data
management on social networks. In this sectionpresent a comparison of the
previous graph database languages and we discubsyifare well adapted to
query a social network. The existing graph quangliages cannot extract all the
characteristics of a social network even those giesi for social networks
(e.g.SoQL). We resume the main characteristich®fptrevious languages on the
following tables (Table 1.2 and Table 1.3). We fujt where the language pro-
poses an explicit definition for the charactersti¢) if not and (+/-) where it try
to define it indirectly.
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Table 1.2Graph query languages-1-

G G+ Graph- Hyperlog QGraph GOOD Kalpan HNQL
Log
Basic Unit nodes/ nodes/ Hypernodenodes/ nodes/ nodes/ Hypernode
edges  edges edges edges edges
Data Model graph graph Hypernodgaph GOOD Semantic Hypernode
graph
Language style Graphicabraphical Graphical Graphic@raphical semantic formal
Pattern + + Rules + + + -
Update query + + + + + -
Implementation  + + + - + -
Path +/- + +/- +/- +- + +/-
Neighborhoo - + +/- - +/- + +/-
Diameter - + - - - - -
Distance - + - - -

between nodes

These two tables show that:

« Many query languages use pattern to facilitatertf@mation search process
especially graphical languages like Good, Qgraptet&

* Almost languages provide operator or techniqudstbpath. Nevertheless,
graphical languages do not determine path by dopetation.

* The neighborhood characteristic is not well proeddsy existing languages.

» Graph characteristics based on calculation likendiar or distances between
nodes are only treated by G+ and GraphLog.

In practice, users prefer graphical languages Isecdlbey are easy to use.
Moreover, graphical query languages for graph méatsd of operation to obtain
information about communities. Languages designad sbcial network like
SOQL are based on SQL and can be applied onlymplsigraphs.

Table 1.3Graph query languages-2-

Lorel GOQL SOQL GraphDEsraphQLLDM Gram G-Log

Basic Unit Object nodesGroup/ nodes/ graph tuple nodes/ nodes/
edges path edges edges edges

Data Model OEM graph graph graph graphLDM Gram G-Log

Query style SQL- SQL- SQL-like SQL-like SQL-like formal formal formal

like like

Pattern - - + + + - - +

Update query + - + + - - - -

Implementation  + + + + - - + -
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Path + + + + + - + +/-
Neighborhood +/- +/- +/- +/- + - +/- +/-
Diameter - - +/- - - - - -
Distance between+/- - + - - - - -
nodes

1.3Related Data Model

1.3.1 RDF query languages

RDF (Miller et al., 2004) is a knowledge represéntalanguage dedicated to the
annotation of documents and more generally of nessuwithin the framework of
the Semantic Web. By definition, an RDF graph (i€yet al., 2004) is a set of
RDF triples. An RDF triple is a triples, p, o)f (1 0 B)* | *x (1 U BU L) where

I, B, andL are sets that represent (IRIs), Blank nodes, ateddls, respectively).
In this triple,sis the subjectp the predicate, andlthe object.

RDF models information with graph-like structurehere basic notions of graph
theory like node, edge, path, neighborhood, coiviggtdistance, degree, and so
on play a central role. RDF has been used for ptegecommunities and social
network (e.g FOAF, RELATIONSHIP, etc). RDF can be a good support to mod-
el social network although its query languages dioaffer an efficient support to
query this kind of data. Indeed, several langudgesjuerying RDF documents
have been proposed, some in the tradition of databaery languages (i.e. SQL,
OQL): RQL (Karvounarakis et al, 2002), SeRQL (Brste& et al, 2003), RDQL
(Seaborne, 2004) SPARQL (Perez et al, 20@&hers more closely inspired by
rule languages: Triple (Sintek et al, 2002), V&rsi8 and RxPath The currently
available query languages for RDF support a widetyaof operations. However,
several important features are not well supportedeven not supported at all.
RDF query languages support only querying for pasteof paths which are li-
mited in length and form. Nevertheless, RDF allog@resenting irregular and in-
complete information (e.g the use of blank nodeyni-the original approach just
Versa and SeRQL provide built in means for deatlitith incomplete information.
For example, the SeRQL language provides so-calfgibnal path expressions

1 http://www.foaf-project.org/

2 http://vocab.org/relationship/.html

3 http://wiki.xmlI3k.org/Versa
4 http://rx4rdf.liminalzone.org/ RxPathSpec
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(denoted by square brackets) to match paths whesemce is irregular. Usually,
such optional path expressions can be simulate]ahguage provides set union
and negation. Others works on RDF query languagesotextend the original
languages to improve path expressiveness. For mgam (Alkhateeb et al,
2009), they allow to query an RDF knowledge basagugraph patterns whose
predicates are regular expressions. In RDF*PAB and Graph Pdththey try to
use specifications similar to those in XPATH to qupaths in RDF. Moreover,
RDF query languages are not well adapted to quetly with unknown length or
including multiples propriety on RDF graph. Neighb@ods retrieving cannot be
well done for languages that do not have a uniaratpr. Many of the existing
proposals support very little functionality for gimng and aggregation. Moreo-
ver, Aggregated functions like COUNT, MIN, MAX ajpgd to paths could be
used to answer queries in order to analyze d&@ fftie degree of a node, the dis-
tance between nodes, and the diameter of a gréfintan find exceptions in Ver-
sa, RQL and N3which support count functionality Aggation in path and nodes
are not explicitly treated by any languages whielechto be considered as a re-
quirement

1.3.2 XML query languages

The Extensible Markup Language (XML) is a subseSGML. XML data are
labeled ordered trees (with labels on nodes), wimteenal nodes define the struc-
ture and leaves the data (scheme and data are .miXé&tlL additionally provides
a referencing mechanism among elements that akiwglating arbitrary graphs.
In this sense XML can simulate semi-structured .datso, many new extension
of XML are designed to represent graphs like GMigaghML, XGML and etc.

Current query languages (Bonifati et al, 2000)XML do not support the ma-
jority features for graph-structured XML documette principal feature sup-
ported is path. For example, XPatlses path expressions to select nodes or node-
sets in an XML document. Also, the set of axesriefiin XPath is clearly de-
signed to allow the set of graph traversal openatithat are seen to be atomic in
XML document trees. An XPath axis is fundamentallynapping from nodes to
nodesets and defines a way of traversing the wyidgrgraph. Each axis encapsu-
lates two things: a type of edge to follow (eg.lathis. attribute) and whether to
follow it transitively (e.g. child vs. descendamyso, XQuery uses XPath to ex-
press complex path and supports flexible query séing In XML-QL (Deutsch
et al,1999), path expressions are admitted withenthg specification and they
permit the alternation, concatenation and Kleene-sperators, similar to those
used in regular expressions. In XML-GL (Ceri et1899), the only path expres-

5 http://infomesh.net/2003/rdfpath

6 http://www.langdale.com.au/GraphPath/
7 http://www.w3.0rg/TR/xpath

8 http://www.w3.org/TR/xquery/
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sions supported are arbitrary containment, by meéaswildcard* as edge label;
this allows traversing the XML-GL graph reaching @lement at any level of
depth. However, Current query languages for XML designed for tree-
structured XML data and do not support the matcloihgchema in form of gener-
al graph. Even though XPath can express a nodemuittiple parents by multiple
constraints with axis “parent”, it cannot expresgaph with cycles. While XML
won't allow multiple parents, there's nothing in Xy (or in particular, XPath)
which precludes a traversal from parent to child ifferent parent. This insuffi-
ciency does not allow the presentation and theyqoieall kind of graphs specially
those on social network.

1.4 Social network Extraction from relational database using a
graph database

Social Network is an explicit representation ofatelnships between people,
groups, organizations, computers or other entied it is modeled by a graph
(see section 1.2.1.3). There are many ways to mlatagbocial Network. The ap-
proaches presented in the literature for SocialMdgt extraction use a specific
type of data source to extract people and relatiomeng them (Kirchhoff et al.
2008). Most of these data sources come from the.\Melvever, some problems
related to the extraction of Social Network fromrivas information sources
available on the World Wide Web still remains. Ei@ general problem is the
identification of people because of different nagngtandards or same names as-
signed to different persons. The social context thedtype of social interactions
among people within these information sources rieee carefully analyzed in
order to obtain a meaningful understanding of theeulying Social Network
structure. Moreover, data from the web are oftenwell reliable because anyone
can add information; also in some case we canrsityezollect information from
the web due to privacy issues.

Nevertheless, in the context of business, imporapertise information about
people is not stored on the Web. Such informatsostored in files, databases and
especially relational databases. Relational datalza rich source of data, but it
is not well adapted to store and manipulate sowalvork data. Indeed, the rela-
tional model was directed to simple record-typeadatth a structure known in
advance. The schema is fixed and extensibilitydgfecult task. Thus, they might
require very sophisticated and expensive operatisunsh as renormalization, re-
indexing etc., which may not be performed autonadliic Schema renormalization
in such cases is neither desirable nor easy toTdee standard query and trans-
formation language for the relational database @ Svhich does not support
paths, neighborhoods and queries that address cidritye(an exception is transi-
tivity). These graph features will facilitate thppdication of social network analy-
sis algorithm. Also, it will allow to response gigsr such as who owns the infor-
mation, who has the leadership, who is an expeat jparticular domain and etc.
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Such information is very important for business leagpions. Then, enterprises
need to extract their Social Network from the eriptrelational database to store,
update and retrieve information in a simple waygephs. On the other hand, ex-
tracting social network from relational databasenas just a translation of rela-
tional database into a simple graph structure.r€balting Social Network should
contain detailed information about people and thelations. As we have shown
in the previous section Graph database can be d gegaresentation for social
networks and facilitate its querying. There are ynapproaches that transform re-
lational databases to other structure having gtigehfeatures like RDF, XML or
even ontology, but not into a graph databas&éen, in this section, we will
present our approach to transform a relationalbdes& to a social network using a
graph database.

1.5.1 Converting relational database into hypernodigtabase

Having a graph database instead of relational datalwill provide a more
clear view of existents entities in the initial aladse. Indeed, all these entities will
be presented on the form of nodes and the relatietvgeen them will be outlined
which facilitate in further steps the selectiortlod desired entities. Also, nodes in
graph database can encapsulate all the attribugatdfes in the same node and
give us a simple graph of entities. From this grapéntities, a social network can
be extracted. Using the comparison between exigfiagh database models (Ta-
blel.1), we have chosen to work with the hypernoaelel (Levene and Loizou
1995)because the hypernode database with its ngeaptis can provide an effi-
cient support to represent every real-world objech separated database entity.

The relational database transformation into a grdglabase includes schema
translation and data conversion (Maatuk et al. 200Be schema translation can
turn the source schema into the target schema fyiag a set of mapping rules.
In our work, we propose a translation process whlicectly transforms the rela-
tional schema into a hypernode schema. Data Cdowgpsocess of converts data
from the source to the target database based drathe@ated schema. Data stored
as tuples (Rows) in relational database are cosderito nodes and edges in
graph database. This involves unloading and resitting relational data, and then
reloading them into a target database in orderojoulate the schema generated
during the translation process. In what follows,witt detail these two steps.

1.4.1.1 Schema Translation

The first step consists in extracting the relatiot@abase schema using the
schema metadata of the relational database managesystem (information
about tables and columns) which is extracted uSiQd. queriesThe idea is to
identify the primary key, composite key(s) and fgrekey(s) of each relation.
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This information is then used to design the neveswh (hypernodes and relations
within and between them). This process is perfortmethe following steps.

Stepl: Relational schema extractionin this step, information from the relational
database is extracted using SQL queries. In ouroaph a relational schema is

represented as a set of relations (tablgBR¥TR=(r,,A ,prF>}, where:

* r,denotes the name oR.

» A denotes a set of attributes TR and gives information about each attribute
integrity constraintsA :={ a\a :=<g, t, ce, cp, n, "}, where g is an attribute
name is its type ce mentions ifa is a foreign key or notp mentions ifais a
primary key or notn mentions ifa can be null or not andlis a default value if
one is available.

* Ky denotes a set of key @R and gives information about each Key integrity
constraintsK, e :={ 5| B = <kr, ce, cp, re #>}, where: Srepresents a key
(an attribute which can be a key or a part of amusad key)kr is the name of
a key attributeceindicates if £ is a foreign key or notp indicates if S8 is

a primary key or notie is the relation that contains the exported priniay,
f, is the attribute name of the foreign key.

Dir_id  lab_id# | Dir lastname  Dir_name Lab_id S Thh qinses
27 12 1 ST STE— Eoitan 12 INSA Lyuln.= France
g 12 Teati Weber 16 MAS Paris_ France
sUid | Stimime | 66 lastadme. | DN ide
th_id Th_name Dir_id# Topic 03. e — Ali 38
102 logic 38 Electronic 05 jack Picire 27
106 Fuuy set 27 Comput:cr 12 ven vang 38
107 integral 38 Electronic
St_id# th_id& supported
03 102 False
05 106 True
12 107 False

Fig. 1.14Relational database schema (primary key is undetland foreign key is marked by “#”

This schema provides an image of metadata obtdnoed an existing relational
database and provides more information than ativadi schema. Indeed, it gives
information about primary and foreign keys to faate relations extraction in fur-
ther steps. For example for the Tabléhésis (database in Fig.1.14), the relation
Thesis (th_id,Th_name, Topicjvas extracted. Once the schema is extracted, we
can generate the corresponding hypernode scheema?st

Step 2: Mapping the relational schema to the hypemde schemaWe use on
this step a hypernode schema which is an extemgite original one.

A hypernode is defined (Levene and Loizou 199%by (N, E), whereN is a
finite set of nodes containing primitive nodes dadher hypernodes, arid is a
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set of edges between memberdNpoSuch thatN [0 A O L (whereA is the set of
atomic values ant the set of labels) artd (1 (N x N).

A Hypernode databasélD) is a finite set of hypernodes which satisfiessthe
following conditions:

(1) The hypernode label is uniqueHiD.

(2) O H alabel in the label set 6fD, ChC1HD whose defining label is H.

The Hypernode model does not use labeled edgesask of representing rela-
tions (and their names) can be attained by encajisgledges, that represent the
same relation (same label edges), within one hypkriabeled with the relation-
name. However, the traditional presentation ofaatetwork is labeled node at-
tached with explicit labeled edge. Then, we extéme HD to LHD (Labeled
hypernode database) by adding explicit labels gesed HD= HSO ES where:

(1) HSis a finite set of hypernode.

(2) ESis a set of edge wheES 0 (HS* HS and e [0 ES e has a label.

In this step, we use a hypernode database sctemaosed by the union of two
sets: {H \H=(h,,NN}O{R, \Ry, :=(r,hg,hg)}

The first one is the set of hypernodes where:

. h, denotes the name bff

. Nh denotes a set of nodi :={ n\n :=<n,, t, ce, cp} where n is the node
name,t is the typegce mentions if the nodes contains a foreign key lfim t
relational schema n is a foreign key) aqpdmentions if the nodes contains
a primary key.

The second one is the set of relations where:

. r denotes the name Bf
. hs denotes the hypernode source name
. hy denotes the hypernode destination name

To extract this schema, we start by identifying ttigpernodes then their relations.

Hypernode identificationJsing the relational schema, we create from edule ta
OTR anew hyprnodeh. h owns the same characteristicstofame name and
attributes. Indeed, each attribute a from the tattels transformed into a node n
in h where n contains all the characteristics @fiame, type, etc)If the attribute
is a foreign key, its type is changed to be theaalfrthe exported relation.

Relation identification. In order to identify the relations between the iifead
hypernodes, the nodes $#t of each hypernode is analyzed. For each node, we
verify if it contains a foreign key in order to sefa existent dependency with other
hypernodes. We have identified four relation types:

* “IS-A" relation: ifh has only one node,;and no morethat contains a key
which is primary (a simple one) and foreign keyrth shares the relation
“IS-A” with the hypernode mentioned in thg; type; e.g. the hypernode
“Foreign_Student” contains the node “ST_id” whishai primary key and a
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foreign key, then “Foreign_Student” shares theti@ia“lS-A” with “Stu-
dent.”

+ “Part_of ” relation : if h has more than one nodey thatcontains a key
which is primary and foreign key, then h shar&aa-of relation with each
hypernode mentioned in ting type. e.g. Studeritand “Thesi$ are “Part-
of” the hypernode Thesis_hasStudénbecause Thesis_hasStudeénton-
tains the nodesSt-id’ with type “Student’and ‘“Th-id’ with type “Thesis.

« Rrrelation: this kind of relation is a particulaase of the'Part_of” rela-
tion. When the hypernode is composed only with nodeishwtontain a
key which is primary and foreign key, then we deldtis hypernode and
we use its name to build relations between the imgukes mentioned in the
Nt type. e.g. the hypernod&Hesis_hasLdbis deleted and is transformed
into a relation betweerThesi$ and “Laboratory’.

« " relation: ifh contains a node which contains a foreign kelias a rela-
tion with the hypernode mentioned in the type @&f tlode. In this case, we
are not able to give a name to this relation.

Considering the initial database, Fig 1.15 showes#sulting Hypernode schema.

Director_thesis

Dir-id

Dir_lastn@nm
DDDDDDDD

St_id 7 Student

Country ™ giring

t_lastname~ >

tring
Dir_id Director_thesi:

Thesis_hasLab
Thesis

String
Topic Ty String
el Director_thesi:

Fig.1.15Hypernode database schema

1.4.1.2 Data conversion

In order to instantiated the hypernode databasensatalready identified, Data
conversion is performed in three steps. Firstrélational database Table’ tuples
are extracted. Second, these data are convertettith the target format. Then,
for each hypernode in the hypernode database, af g&ttances hypernodd! is
extracted from the relational tuples.

The set of instances hypernddkis defined byHI ={H; \H .:(hhi,Nhi)}where:

* Hjdenotes the instance hypernode

* hdenotes the hypernode source name.
* h;denotes the name of.H
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* N, denotes a set of nodBlg :={ n\n; :=< n,, t, val>} where n, is the node
namet is the type, andal mentions the node value.

Diroctor_thesis_2

Dir-id o
Dir_lastrés Jean
B X eber
Lab_id aboratory 1
S~ Laboratory_2

Laboratory 2 Thesis_hastal

Topio EiSotronic
Dir-id ~ Director_hesis,

Dir_lastname
Dir-nam

Lab_id

Fig. 1. 16Part of the Hypernode database instance

For each relation in theHD, a set of instance relatiofd is extracted using
the value of keys on the relational tabléd.is defined byRE={ ri\r; :=<r, hg, hy
>} where:

» rdenotes the relation which is intanciated by r
» hgdenotes the hypernode instance source.
* hgydenotes the hypernode instance destination.

Finally, transformed data are loaded into D schema. An excerpt of the
HD is shown in Fig.1.16.

1.5.2 Social network extraction

Using the result Hypernode database from the pusvitep, the social network
is extracted. This phase passes through two stgp&ntities (people) identifica-
tion and (2) Detection of relations among people.

The social network is defined b$N= (ESN, RSNwhere:

« ESNis a finite set of entity sucdBSN:={ e\ e [JHI, e :=< h, g No>} where h is
the hypernode which represesi®, is €'s name and\, is the set o€'s node.

* RSNis a finite set of the relations between entitisshsRSN= {rq\ rsy=<n,q,
e>}wheren s the relation name; @and g L1 ESN

In what fallows, we will describe the two step létsocial network extraction.
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1.4.2.1 Entities identification

Entities identification is the process to identifypernodes that contain entities
which compose the social network. In this stepdescribe the process to identi-
fy people. The hypernode database schema is usedréaxt candidate hypernodes
(hypernodes which may be contain persons). Thenhttpernodes instances are
used to deeply analyze the candidate hypernodesdatett those containing
people.
Candidate hypernodes detectionA person has a number of characteristics like
name, surname, birthday, address, email, etc. Safntkese characteristics are
used when designing databases containing persoasdliéct these characteris-
tics from various ontologies such FOAF ontology gmdson ontology (schema-
Welf) and we manually build a person ontology (PO) aiming all these charac-
teristics and their synonyms (collected from WortjNeJsing the person
ontology, the set of nodes related to each hyperimotheLHD is analyzed.

«If the node’s name is one of the PO concepts, tleber of characteristics for

this hypernode is incremented.

«If the number of characteristics for the hypernedd and one of them con-

tains a name, the hypernoldés a candidate to contain persons.
Candidate hypernodes AnalysisEach candidate hypernode has a set of instance
hypernodedy. In order to analyze the name found in each imgsithypernode
(we take just the 10 first entities), the nameeisdsto the web search engine (Bing

API). The top 10 returned documents is downloadsd garsed using DOWP.
Each document is analyzed using the NER (NamedyeR&cognition) proposed

by Stanford-1 and which put three kinds of tags (Person, locatioorganization).
We give for each document a rank If the name is tagged in the document by
Person, the document is ranked rdy1 elserd=0. The average assigned to the
name found in the hypernode instamcéavghi) counts how many times is consi-
dered as a person name in the documents (whefaghef this name is Person)
avghi Y
number _ documents (11)
The average assigned to the hypernode (avgH) eddsuthe average where the
names found in its hypernode instances are comgsidas a person name:
anH= 2 avghi (12)
number hi

In order to identify persons, we use the NER pregddsy standford: in which
precision is in the average of 90%to find Persdities; so, a hypernode is consi-
dered as representative of a person if more th&a 6Dits instances contains a
person name (we take only 60% as a threshold dyeadislems such as wrong
written name use of abbreviations, etc. which desgehe precision of NER).

9 http://ebiquity.umbc.edu/ontology/person.owl
10 http://www.w3.0rg/DOM/
1 http://nip.stanford.edu/ner/index.shtml
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1.4.2.2 Building relations

After the identification of the entities SEEN,we use the existent relations in the
hypernode database (the relations which slEB8l elements with other hyper-
nodes or among them) to find the set of relatiRBH

In order to facilitate this step, we have desigaeskt of patterns to apply this
kind of transformation to all the relation on thgpbrnode database. The pattern
will enumerate all the existent relations betweerspns only by using the hyper-
node database schema. After the relation pattemtifecation, we will search the
correspondent relations on the instances database.

A pattern relatiorPr is defined byPr=<nPr, hp, hp, h,> such asiPr is the name

of the relation, hpand hp the hypernodes which share the relation hypernodes

which represent people);,ta mediator for this relation (the hypernode used t

identify the relation).

For each relation R set ofLHD relations, we check these conditions:

1. If R;:=<"IS-A”,h ,hg> where h,or hy O ESNthen Qor hyis added t&ESN
The relation “IS-A” allows to find hidden entitieghich are not identified in
the previous step. In the relation constructioncpss, we start by analyzing
this kind of relation to find in the next steps ttedations related to the new
discovered entity.

2. If Ry:i=<r,hg, hg> where hyand hy 0 ESN then two patterns are identified:

2.1 Pr:=<r, hg, hg,null>, if two entities (hand h) are already connected in the
LHD, we will search if their instancesdhnd ky )are connected, too.

2.2 Pry=<Same_hd.name, hipg, hy > where hg hs , hg= hs and il=j. Pg
represents the relations between the instanceswifiibh can be connected
with the same instance of.h

3. If Rp:=<r hghg> where h, DESN and hy JESNthen:

3.1 If r I= “Part-of” then pattern Riis extracted :Rr=<Same_fname, hphp,
hs > where hg hs , hg= hs and il=j. we search the, instances which are
connected with the same instance of h

3.2 If r = “Part-of” then the hypernodes which are “Paf’ hy are researched:
Firstly, for each }ﬂ{h\h has the relation R=<"Part-of", hj, hs>}, a new
node is added to sltontaining the name of; kthen the pattern Ris ex-
tracted. Pr=<Same_jiname, hphp, h > where hp= h, , hp= h. Py
represents the relations between the instancestbbéthshare the same value
of h

4. If Ry:=<r hg,hy> where h, HESN and hy DESNthen:

4.1 a new node ongltontaining the name ofjts added.

4.2 if hghas relations with other entities then for eaclected relations, a
pattern Py is extracted as Br<Same_hs.name,hpp, hy > where
hp,=hq and hpD {e\e has relation withdh

By applying these patterns to our example, we edead the relations between the

detected entitieStudentandDirector_thesis
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-From the relation, R<"IS-A", Foreign-StudentStudert, we detect a new enti-
ty “Foreign-Student'whichis added to the set of entitiESN

-From the relation R:=<"",Student, Director_thesis >, we identify twatperns :

- Pri:<™,Student, Director_thesis, null>Studentand Director_thesisshare the

relation R:=<",Student, Director_thesis sthen eactStudentand Director_thesis

instance can have these relations if they haveaheid Dir value (Fig.1.17).

Student_1 Director_thesis_2

—

St_id 03
St_name ohsen

— )
Dir-id_——— 38
Dir_lastname—— Jean
Dir-name Weber
Lab_id aboratory_1

t_lastname Ali

Dir-id” Director_thesis,

Fig 1.17Instance of the relation between Student and Rirethesis

- Pr;=<Same__ Director_thesis, Studer@tudent Director_thesis >: two stu-
dents may have the sab@ector_thesigsame value dDir-id) (Fig1.16).

Student_3

Student_1

e
Same_Director_meﬁs

stid™ V2

St_name Yen

t_IastnameAang
Dir-id™ 'Director._thesis_2

stid” o3

SLname/—%ohsen

St_lastname Ali

Dir-id”_ Director_thesis_2

Figl.16 Relation among Student instances
-From the relation R:=<"", Director_thesis, Laboratory>, we identifyetpattern:

-Pr;;=<Same_Laboratory,Director_thgsBirector_thesis Laboratory >: using
the value of the foreign key.ab idin each hyeprnode instance of the enbiy
rector_thesis, we will link those having the sanadug ofLab_id by the relation
Same_Laboratory(Fig1.17)

Director_thesis_2 Director_thesis_1

D o7
Dir_lastname Norman
Dir-nam ochan

— —Same Laborato
Dir-id 38
Dir_lastna Jean

Dir-name /\K{eber
Lab_id aboratory_1

Lab_id Laboratory_

Figl. 17Relation betweebirector_thesisnstances

-From the relation R:=<"Part-of”,Student, thesis_hasStudent>

- Thesis_hasStudeshares two relations “Part-of” witbtudentandThesis We
add a new node on the hyperndtedent n<Thesis, Thesis>| corresponding to
his Thesis. Then, we can apply the patteg(Pigl.18).

Student_1

St_id = o=
St_nam@$ e Oh S SN

St_lastname Ali

Dir—i(/ni&e::tor_thesis_z
Thesis

Thesis__1

Fig1.18 Adding the node thesis on tB¢udenthypernode
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-Pr;=<Same_Thesis, StudgnStudent Thesis_hasStudent, by this pattern
we search all the student which shares the samsestimt found in our data).
-From the relation R:=<"", Thesis, Director_thesis >, there are no iifead pat-
tern becausélhesisis not related to other entities
After identifying relations and entities, the firmdcial network is obtained by ap-
plying all the previous detection (people and thelations) and giving as tag for
each hypernode his type and the name of the cameégpg person (see Fig.1.19)

Director_thesis_Weber Jean

Dir-id 38
Lab_id aboratory_1

ThesisQThesisJ
Thesis_3
Student_Mohsen Ali
st_id%\’gg
18-A /{Z X
Country gypt
Dir-ia”” Director thesis_2
Thesis” " Thesis_1

A==
)_| aboratory_1

Thesis_2

Student_Jack Pierrp

St_id

& Aos
Dir-id ADirector_thesisJ

Thesis~ ¥ Thesis_2

oreign_Student
Countr hina
Dir-id” " Director_thesis_2
Thesis” " Thesis_3

Fig.1.19Corresponding Social Network

1.5.3Implementation and evaluation

In order to demonstrate the effectiveness and #ielity of the proposed ap-
proach, a prototype has been developed. The ppsotyas implemented using
Java and PostgreSQL. We have visualized the odfiabase and the social net-
work using SNA? (Fig1.20).

The Hypernode database will be stored in an adagatabase management sys-
tem which also allows the storage of voluminous glex graphs.

We experimented (for more details see (Soussi, &0dl0)) the process using the
data of a database containing information about Bthibents (Administrative and
technical information) and also information aboatoas surrounding them. This
database contains 1788 students (+ 80 studentgepe). To evaluate scalability
and performance of our method for converting refel database into hypernode
database, a set of SQL queries has been desigraukéove any differences be-
tween the source relational database and the hygerdatabase. After comparing

12 http:/www.sapweb20.com/blog/2009/03/sap-enteessiscial-networking-prototype/
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the results between the two databases, the hypesatma is generated without
loss or redundancy of data. This proves the caresst of this conversion.

We have used the same method to evaluate the draxetfon into a social
network. For each entitg :=<h,e,, No> , we verify that: (1) the same attributes
appear in the relational database and in the soe@lork, and (2) we find the
same relations. For example, in order to verifyitgst attributes:Select * from
h.name where gname=n.val;, (ny is the first node on the's node set, and is
usually corresponding to the primary key or a pduthe primary key on the rela-
tional database). For example for the entiStudent Mohsen_Ali"the corres-
pondent query use&elect * from Student where St_id=03
The results obtained from these queries shows dheatness of the transforma-
tion approach. Our approach can transform a relakidatabase into a graph from
a social network perspective without lost of infatian.

otu_disctourdothe
ses_645.

direcleurdethe. etu_directeurdethe
Ses 642

tudiants_9. etudianis_10 stu_directsurdsthe stu_sracteurdethe
ses_1083

Fig. 1. 20SNA visualization

Conclusion

In this chapter, we have presented the main grapdibdse models and the as-
sociated graph query languages. Graph databaselsnoah model communities
(social networks) and their activities even they aomplex and dynamic (using
model based on complex node). Even, Graph quegukages are the most suited
guery languages to query communities (e.g. bdten RDF query languages) but
they are not well adapted to extract informationutlhcommunities because they
do not use social network analyze methods or mbshem do not offer tech-
nigues to extract information about path and neaghbod. We have also pre-
sented a social network extraction method fronticeial database which is based
on (1) a transformation of the relational databiase a hypernode database and
(2) a social network extraction from the hypernod@¢abase. In our future work,
we will focus on how to improve the extraction nwthby the use of ontologies
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describing the relations between entities in tHatimal database. Then, we will
try to define a storage system based on the hydernwodel and a graph query
language more adapted to the social network streiciWe will also work on ge-
neric transformation rules according to differeséens’ point of view and graphs
merging.
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