
HAL Id: hal-00708222
https://hal.science/hal-00708222

Submitted on 14 Jun 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Graph Database for Collaborative Communities
Rania Soussi, Marie-Aude Aufaure, Hajer Baazaoui

To cite this version:
Rania Soussi, Marie-Aude Aufaure, Hajer Baazaoui. Graph Database for Collaborative Communities.
Community-Built Databases, Springer, pp.205-234, 2011. �hal-00708222�

https://hal.science/hal-00708222
https://hal.archives-ouvertes.fr

Graph Database For collaborative Communities

Rania Soussi1, 2
, Marie-Aude Aufaure1, Hajer

Baazaoui2

1Ecole Centrale Paris, Applied Mathematics & Systems Laboratory (MAS),
SAP Business Objects Academic Chair in Business Intelligence

2Riadi-GDL Laboratory, ENSI – Manouba University, Tunis

Abstract Data manipulated in an enterprise context are structured data as well as un-

structured data such as emails, documents, social networks, etc. Graphs are a natural way of
representing and modeling such data in a unified manner (Structured, semi-structured and
unstructured ones). The main advantage of such a structure relies in the dynamic aspect and
the capability to represent relations, even multiple ones, between objects. Recent database
research work shows a growing interest in the definition of graph models and languages to
allow a natural way of handling data appearing. In this chapter, we give a survey of the
main graph database models and the associated graph query languages. We then present an
application using a graph database to extract social networks.

Graph Database For collaborative Communities ... 1

1.1 Introduction ... 2
1.2 Graph database: Models and query languages ... 3

1.2.1Brief overview of Graph database models .. 3

1.2.1.1 Models based on simple node ... 3

1.2.1.2 Models based on complex node .. 3

1.2.1.3 Discussion ... 4

1.2.2 Graph database languages .. 5

1.2.2.1 Visual query languages ... 5

1.2.2.2 SQL-like languages... 9

1.2.2.3 Formal languages .. 11

1.2.2.4 Semantic languages... 14

1.2.2.5 Discussion ... 14

1.3Related Data Model .. 16
1.3.1 RDF query languages ... 16

1.3.2 XML query languages .. 16

1.4 Social network Extraction from relational database using a graph database18

1.5.1 Converting relational database into hypernode database.................... 19

1.4.1.1 Schema Translation... 19

1.4.1.2 Data conversion .. 22

1.5.2 Social network extraction ... 23

1.4.2.1 Entities identification .. 24

1.4.2.2 Building relation ... 25

2

1.5.3Implementation and evaluation ... 27

Conclusion ... 28
References.. 29

1.1 Introduction

We have now entered the knowledge era, where people work in a collaborative
way and manipulate structured as well as unstructured data. More and more in-
formation about communications among people are available. This mass of infor-
mation should be used in companies to optimize the business process, for example
using information about people to constitute the best team for a particular project.
These tremendous amounts of data need storage and analysis. This data can re-
sides in multiple locations and may change over time. Moreover, the data sources
do not have a unified schema or their schemas cannot be controlled. Current re-
presentation and storage systems are not very flexible in dealing with dynamic
changes and are not very efficient to manipulate complex data. Besides, data ma-
nipulation systems cannot easily work with structural or relational data.

 Graphs are a powerful representation formalism for both structured and unstruc-
tured data, and can be seen as a unified data representation. Data in multiple do-
mains can be naturally modeled as graphs like Semantic Web (Shadbolt et al.
2006), images, social networks (Xu et al., 2008), bioinformatics, etc. Thus, recent
database research shows a growth of interest in the definition of graph models and
languages to allow a natural way of handling data appearing in these applications.
Indeed, Graph database leads to a more natural modeling (graph structures) and
offers a flexible support for dynamic data (Social network, web, etc...). It also fa-
cilitates data query using graph operations. Explicit graphs and graph operations
allow a user to express a query at a very high level of abstraction. Queries about
paths and shortest path between two nodes are performed efficiency with graph
database techniques.
In this chapter, we present the main graph database models and the associated
graph query languages; we will also discuss two related models that do not fit
properly as graph database models, but use graphs, for example, for navigation,
for defining views, or as language representation. We discuss in each section the
capacity of these models and query languages to present or to query communities
data especially information found on social networks. Then we show an applica-
tion using a graph database for modeling social networks.

3

1.2 Graph database: Models and query languages

1.2.1Brief overview of Graph database models

 A graph database is defined (Angles et al. 2008) as a “database where the data
structures for the schema and/or instances are modeled as a (labeled) (directed)
graph, or generalizations of the graph data structure, where data manipulation is
expressed by graph-oriented operations and type constructors, and has integrity
constraints appropriate for the graph structure.” More formally, a graph database
schema is in the form of a graph Gdb=),,,(λψEN where: N is a set of nodes and E
is a set of edges;ψ is an incidence function from E into NN × ;V is a set of labels
and λ is a labeling function from EN ∪ into V . There is a variety of models for
Graph database (for more details see (Angles et al. 2008)). All these models have
their formal foundation as variations of the basic mathematical definition of a
graph. The structure used for modeling entities and relations influences the way to
query and visualize data. In this section, we made a comparison between existing
models to find the more suitable for storing and representing a Social Network.
We will focus on the representation of entities and relations in these models. We
present in what follows some models classified according to the data structure
used to model entities and relations.

1.2.1.1 Models based on simple node

Data are represented in these models by a (directed or undirected) graph with sim-
ple nodes and edges. Most of these models (GOOD (Gyssens et al. 1990), GMOD
(Andries et al. 1992), etc.) represent both schema and instance database as a la-
beled directed graph. Moreover, LDM (Kuper and Vardi 1993) represents the
graph schema as a directed graph where leaves represent data and whose internal
nodes represent connections among the data. LDM instances consist of two-
column tables, one for each node of the schema. Entities, in these model, are
represented by nodes labeled with type name and also with type value or object
identifier (in the case of instance graph). Some models have nodes for explicit re-
presentation of tuples and sets (PaMaL (Gemis and Paredaens 1993), GDM (Hid-
ders 2003)), and n-ary relations (GDM). Relations (attributes, relations between
entities) are generally represented in these models by the mean of labeled edges.
LDM and PaMaL use tuple nodes to describe a set of attributes which are used to
define an entity. GOOD defines edges to distinguish between mono-valued (func-
tional edge) and multi-valued attributes (nonfunctional edge). Nevertheless, these
models do not allow the presentation of nested relations and are not very suited for
modeling complex objects.

1.2.1.2 Models based on complex node

4

In these models, the basic structure of a graph (node and edge) and the presenta-
tion of entities and relations are based on hypernodes (and hypergraphs). Indeed, a
hypernode is a directed graph in which nodes can themselves be graphs (or hyper-
nodes). Hypernodes (Levene and Poulovassilis, 1990) can be used to represent
simple (flat) and complex objects (hierarchical, composite, and cyclic) as well as
mappings and records. A hypergaphs is a generalized notion of graph where the
notion of edge is extended to hyper edge, which relates to an arbitrary set of
nodes. The Hypernode Model (Levene and Loizou, 1995) and GGL (Graves et al,
1995) emphasize the use of hypernodes for representing nested complex objects.
GROOVY (Levene and Poulovassilis, 1991) is centered on the use of hyper-
graphs. The hypernode model is characterized by using nested graphs at the sche-
ma and instance levels. GGL introduces, in addition to its support for hypernodes
(called Master-nodes), the notion of Master-edge for encapsulation of paths. It
uses hypernodes as an abstraction mechanism consisting in packaging other
graphs as an encapsulated vertex, whereas the Hypernode model additionally uses
hypernodes to represent other abstractions like complex objects and relations.
Most models have explicit labels on edges. In the hypernode model and
GROOVY, labeling can be attained by encapsulating edges, that represent the
same relation, within one hypernode (or hyperedge) labeled with the relation
name.

1.2.1.3 Discussion

The purpose of this graph database models reviewing of is to find the most suited
one to model many complex data objects and their relationships, such as social
networks. Social Network is an explicit representation of relationships between
people, groups, organizations, computers or other entities (Barnes, 1954). As other
networks, it can be represented as a complex graph (Xu et al. 2008), G = (V, E),
where V is the set of nodes representing people and E is the set of edges (V × V)
meaning the different kind of relationships among people.
Indeed, the social network structure can contain one or more types of relations,
one or more types or levels of entities and many attributes over the entities. This
structure is dynamic: growth of the volume, change on attributes and relations.
Then, we have compared the previous graph database models using some charac-
teristics related to social network: the ability to present dynamic and complex ob-
jects, nested and neighborhood relations and the ability to give a good visualiza-
tion of social network. We resume the comparison on Table 1.1 where “+”
indicates the graph model support, “-” indicates that the graph model doesn’t sup-
port and “+/-” partial support. From this comparison, we have concluded that
models based on hypernodes can be very appropriate to represent complex and
dynamic object. Specially, the hypernode model with its nested graphs can pro-
vide an efficient support to represent every real-world object as a separated data-
base entity. Moreover, models based on simple graph cannot be suitable for com-
plex networks where entities have many attributes and multiple relations.

5

Table 1.1 Graph database model comparison

 Entity Relation Visualization

Complex Dynamic Nested Neighborhood

Hypernode + + + + +

Groovy + + + + -

GGL + + + + -

GOOD - + - - +

GMOD - + - - +

PaMaL + + - + +/-

GDM + + - - +

LDM + + - - -

1.2.2 Graph database languages

 A query language is a collection of operators or inference rules which can be
applied to any valid instance of the model data structure types, following the ob-
jective of manipulating and querying data in those structures in any desired com-
bination (Codd 1980). In this section, we review some proposals for graph data-
base query languages found in the literature. We concentrate this study on visual,
semantic, SQL-like and Formal query languages.

Fig.1.1 PHD student and their supervisors (Tables and corresponding graph)

For each category, we will run some queries using the following example about a
PhD student database as shown in Fig.1.1. We will show how these graph data-
base languages support graph features (path, neighborhood, etc.).

1.2.2.1 Visual query languages

 Visual query languages aim at providing the functionality of textual query lan-
guages to users who are not technical database experts, and also to improve the

6

productivity of expert database users. In general, these languages allow users to
draw a query as a graph pattern with the help of a graphical interface. The result is
the collection of all subgraphs of the database matching the desired pattern (Blau
et al. 2002), (Cruz et al. 1987), (Cruz et al. 1989).

 a. G, G+ and GraphLog

G (Cruz et al. 1987) is a visual query language based on regular expressions that
allow simple formulation of recursive queries. G enables users to pose queries, in-
cluding transitive closure, which is not expressible in relational query languages.
A graphical query Q (example Fig1.2) is a set of labeled directed multi-graphs, in
which the node labels of Q may be either variables or constants, and the edge la-
bels are regular expressions defined over n-tuples of variables and constants. A
path is expressed on a G query initially by the means of two types of edges:
dashed edges correspond to paths of arbitrary length in the graph and solid edges
correspond to paths of fixed length. In G, simple paths are traversed using certain
non-Horn clause constructs available in Prolog. Although, it does not support
cycles, finding the shortest path or calculating node distance. In addition, G does
not support aggregation functions.

Fig. 1.2 G query to find student and supervisors and query GraphLog query to find all students
working on Ontology

G evolved into a more powerful language called G+ (Cruz et al. 1989), in
which a query graph remains as the basic building block. A simple query in G+
has two elements, a query graph that specifies the class of patterns to search, and a
summary graph, which represents how to restructure the answer obtained by the
query graph. G+ provides primitive operators like depth-first search, shortest path,
transitive closure and connected components. It can easily find regular simple
path. The language contains also aggregate operators that allow finding path
length and node degree. The graph-based query language G+ provided a starting
point for GraphLog (Consens and Mendelzon 1989). GraphLog differs from G+
with a more general data model, the use of negation, and the computational tra-
ceability. GraphLog queries are graph patterns which ask for patterns that must be
present or absent in the database graph. Edges in queries represent edges or paths
in the database. Each pattern defines a set of new edges (i.e., a new relation) that
are added to the graph whenever the pattern is found. An edge used in a query

7

graph either represents a base relation or is itself defined in another query graph.
GraphLog supports computing aggregate functions and summarizing along paths.
Fig.1.2 shows an example of a GraphLog query.

b. Hyperlog

Hyperlog (Levene and Poulovassilis 1991) is a declarative query and update lan-
guage for the Hypernode Model (Fig.1.3). It visualizes schema information, data,
and query output as sets of nested graphs, which can be stored, browsed and que-
ried in a uniform way.

Fig.1.3 Hypernode database schema and instance

 A hyperlog query consists of a number of graphs (templates) which are

matched against the hypernodes and which generate graphical output.

Fig.1.4 Template and query with Hyperlog

 The user chooses which variables in the query should have their instantiations

output in the query result. Hyperlog programs contain sets of rules. The body of a
rule is composed of a number of queries, which may contain variables. The head

8

of a rule is also a query and indicates the updates (if any) to be undertaken for
each match of the graphs in the body. In order to illustrate the template and the
query in the Hyperlog query language, we give an example in Fig.1.4: the tem-
plate can find the students and their supervisors; the query can find the students
working on Ontology. Hyperlog does not offer a special notation or expression to
express paths. The existent rules can just find simple ones. The absence of aggre-
gation functions explains the absence of answers of query about node degree or
path lengths.

c. QGRAPH

QGRAPH (Blau et al., 2002) query is a labeled connected graph in which the
vertices correspond to objects and the edges to links with a unique label. The
query specifies the desired structure of vertices and edges. It may also place Boo-
lean conditions on the attribute values of matching objects and links, as well as
global constraints. A query consists of match vertices and edges and optional up-
date vertices and edges. The former determine which subgraphs in the graph data-
base constitute a match for the query. The latter determine modifications made in
the matching subgraphs. A query with both match and update vertices and edges
can be used for attribute calculation and for structural modification of the data-
base. The query processor first finds the matching subgraphs using the query’s
match elements, and then makes changes to those subgraphs as indicated by the
query’s update elements.

Fig. 1.5 Quries with QGRAPH

QGRAPH offers a good support to express paths by the means of sub-queries,
conditions and annotations on edges and nodes. However, it does not offer opera-
tor for aggregation. Fig.1.5 contains two queries: the right query finds all sub-
graphs with a supervised link between a Student and a Supervisor; the left one
finds just the students that have the ontology as Thesis-topic.

d. GOOD and languages based on GOOD

The Good (Gyssens et al. 1990) data transformation language is a database lan-
guage with graphical syntax and semantics. This query language is used for the
GOOD graph-based data model (Fig.1.6). GOOD query language is based on

9

graph-pattern matching and allows the user to specify node insertions and dele-
tions in a graphical way.

Fig. 1.6 GOOD data model shema and instance

Good contains five operators. Four of them correspond to elementary manipu-

lation of graphs: addition of nodes and edges, deletion of nodes and edges. The
fifth operation called abstraction is used to group nodes on the basis of common
functional or non-functional properties. The specification of all these operations
relies on the notion of pattern to describe subgraphs in an object base instance.
GOOD presents other features like macros (for more succinct expression of fre-
quent operations), computational-completeness of the query language, and simula-
tion of object-oriented characteristics like encapsulation and inheritance.

Fig. 1.7 GOOD queries

Simple path can be exprimed by using pattern. Moreaver, GOOD are not
adapted to find path with no fixed length. Fig.1.7 illustrates two examples of
GOOD query: First query to find student and their supervisor the secand one to
find student working on ontology topic. This language was followed by the pro-
posals GMOD (Andries et al. 1992), PaMaL (Gemis and Paredaens 1993) and
GOAL (Hidders and Paredaens 1993). These languages use GOOD principal’s
features and add some new functionality.

1.2.2.2 SQL-like languages

10

SQL-like languages are declarative rule query languages that extend traditional
SQL and propose new SQL-like operators for querying graphs and objects.

a. Lorel

Lorel (Abiteboul et al. 1997) is implemented as the query language of the Lore
prototype database management system at Stanford (http://www-
db.stanford.edu/lore).
It is used for the OEM (Object Exchange Model) data model (Fig.1.8). A database
conforming to OEM can be thought as a graph where Object-IDs represent node-
labels and OEM-labels represent edge-labels. Atomic objects are leaf nodes where
the OEM-value is the node value. Lorel allows expressing flexible path expres-
sions, which allow querying without precise knowledge of the structure. Path ex-
pressions are built from labels and wildcards (place-holders) using regular expres-
sions, allowing the user to specify rich patterns that are matched to actual paths in
the graph database. Lorel also includes a declarative update language.

Fig. 1.8 Object Exchange Model (OEM). Schema and instance are mixed.

b. GraphDB

Guting (Güting 1994) proposes an explicit model named GraphDB, which al-
lows simple modeling of graphs in an object oriented environment. A database in
GraphDB is a collection of object classes where objects are composed of identity
and tuple structure; attributes may be data or object-valued. There are three dif-
ferent kinds of object classes called simple classes, link classes, and path classes.
Simple objects are just objects, but also play the role of nodes in the database
graph. Link objects are objects with additional distinguished references to source
and target simple objects. Path objects are objects with an additional list of refer-
ences to simple and link objects that form a path over the database graph.
GraphDB uses graph algorithms in order to implement graph operations. Shortest
path and cycle both were implemented using the A* algorithm. Moreover, nodes,
paths and subgraphs are indexed using path classes and index structures like B-
Tree and LSD-Tree. GraphDB allows aggregation by using aggregate functions.

11

c. GOQL

GOQL (Sheng et al. 1999) is an extension of OQL enriched with constructs to
create, manipulate and query objects of type graph, path and edge. GOQL is ap-
plied to graph database that use an object oriented data model. In this data model,
they define similar to GraphDB a special type: node type, edge type, path type and
graph type. GOQL is capable to query sequences and paths. In addition to the
OQL sequence operators, GOQL uses the temporal operators next, until and con-
nected for queries involving the relative ordering of sequence elements. For
processing, GOQL queries are translated into an operator-based language, O-
Algebra, extended with new operators. O-Algebra is an object algebra designed
for processing object-oriented database (OODB) queries. To deal with GOQL‘s
extension for path and sequence expressions, O-Algebra is extended with three
temporal operators, corresponding to the temporal operators Next, Connected, and
Until.

d. SOQL

 SoQL (SOcial networks Query Language), (Ronen and Shmueli 2009) is an
SQL-like language for querying and creating data in social networks. SoQL
enables the user to retrieve paths to other participants in the network, and use a re-
trieved path in order to attempt to create a connection with the participant at the
end of the path. The main element of a SoQL query is either a path or a group,
with subpaths, subgoups and paths within a group defined in the query. Creation
of new data is also based on the path and group structures. Indeed, SoQL presents
four new operators:

-SELECT FROM PATH query which retrieves paths between network partici-
pants, starting at a specific node and satisfying conditions in the path predicates.

- SELECT FROM GROUP query which retrieves groups of participant that sa-
tisfy conditions as a set of nodes.

-The CONNECT USING PATH and CONNECT GROUP commands are pre-
sented. These commands automate the process of creating connections between
participants.

The language uses Operators which specify conditions on a path or a group. It
proposes also aggregation functionalities, as well as existential and universal
quantifiers on nodes and edges in a path or a group, and on paths within a defined
group.

e. GraphQL

 GraphQL (He and Sindh 2008) is a graph query language for graphs with arbi-
trary attributes and sizes. In GraphQL, graphs are the basic unit of information.
Then, each operator takes one or more collections of graphs as input and generates
a collection of graphs as output. It is based on graph algebra and the FLWR (For,

12

Let, Where, and Return) expressions used in Xquery (see next section). In the
graph algebra, the selection operator is generalized to graph pattern matching and
a composition operator is introduced for rewriting matched graphs using the idea
of neighborhood subgraphs and profiles, refinement of the overall search space,
and optimization of the search order.

1.2.2.3 Formal languages

a. LDM

The Logical Database Model (Kuper and Vardi 1993) presents a logic very
much in the spirit of relational tuple calculus, which uses fixed sort variables and
atomic formulas to represent queries over a schema using the power of full first
order languages. Fig1.9 presents the LDM schema and instances.

Fig.1. 9 Logical Data Model, The schema (on the left) and part of instances (on the right)

The result of a query is another LDM schema called query schema which con-
sists of those objects over a valid instance that satisfy the query formula. In addi-
tion the model presents an alternative algebraic query language proven to be
equivalent to the logical one.

b. Gram

Gram (Amann and Scholl 1992) is an algebraic language based on regular ex-
pression and supporting a restricted form of recursion.

Fig.1. 10 Gram Data Model, the schema (on the left) and the instances (on the right)

13

Fig.1.10 shows the data model used by Gram. Regular expressions over data
types are used to select walks (paths) in a graph. It uses a data model where walks
are the basic objects. A walk expression is a regular expression without union,
whose language contains only alternating sequences of node and edge types, start-
ing and ending with a node type. The query language is based on hyperwalk alge-
bra with operations closed under the set of hyperwalks.
This hyperwalk facilitates the query of paths and to find adjacent node and edge.
A Gram query example is presented on Fig.1.11.

Fig.1. 11 Gram query to find student and their supervisors

c. G-Log

G-Log (Paredaens et al. 1995) is a declarative, nondeterministic complete lan-
guage for complex objects with identity.

Fig.1. 12 G-Log Data Model: The schema (on the left) and the instances (on the right)

The data model of G-Log is (up to some minor details) the same as that of

GOOD (Fig.1.12). The main difference between G-Log and GOOD is that the
former is a declarative language, and that the latter is imperative. In G-Log, the
basic entity of a program is a rule. Rules in G-Log are graph-based and are built
up from colored patterns. A G-Log program is defined as a sequence of sets of G-
Log rules.

d. HNQL

HyperNode Query Language (HNQL) is a query and update language for the
hypernode model (Levene and Loizou 1995). HNQL consists of a basic set of op-
erators for declarative querying and updating of hypernodes. In addition to the
standard deterministic operators, HNQL provides several non-deterministic opera-
tors, which arbitrarily choose a member from a set. HNQL is further extended in

14

a procedural style by adding to the said set of operators an assignment construct, a
sequential composition construct, a conditional construct for making inferences
and, finally, loop and while loop constructs for providing iteration (or equivalently
recursion) facilities.

1.2.2.4 Semantic languages

A semantic query language is a query language which is defined for querying a
semantic data model.

Fig. 1.13 Ontology describing the graph (Left) and the Pattern to extract students working on
same topic (Right)

The semantic query language presented in (Kalpan, 2006) provides a founda-

tion for extracting information from the semantic graph where the possible struc-
ture of the graph is described by ontology (Fig1.13) that defines the vertex types,
the edge types and how edges may interconnect vertices to form a directed graph.
It uses a query with a specific format containing function which specifies patterns
and conditions for matching graphs in the database. Fig1.13 shows an example of
pattern used by kalpan query language.

1.2.2.5 Discussion

Querying social networks turns out to be a non-trivial task due to the intrinsic
complexity of the networked data. Also these kinds of querying focus on special
type of information. Moreover, information needs from a community or a social
network are diverse and can be categorized in two types: (1) values or measures
like the centrality, diameter, etc; (2) information about attributes relations and data
management on social networks. In this section, we present a comparison of the
previous graph database languages and we discuss if they are well adapted to
query a social network. The existing graph query languages cannot extract all the
characteristics of a social network even those designed for social networks
(e.g.SoQL). We resume the main characteristics of the previous languages on the
following tables (Table 1.2 and Table 1.3). We put (+) where the language pro-
poses an explicit definition for the characteristics, (-) if not and (+/-) where it try
to define it indirectly.

15

Table 1.2 Graph query languages-1-

 G

G+ Graph-
Log

Hyperlog QGraph GOOD Kalpan HNQL

Basic Unit nodes/

edges

nodes/

edges

Hypernode nodes/

edges

nodes/

edges

nodes/

edges

Hypernode

Data Model graph graph Hypernode graph GOOD Semantic
graph

Hypernode

Language style Graphical Graphical Graphical Graphical Graphical semantic formal

Pattern + + Rules + + + -

Update query + + + + + - +

Implementation + + + - + - +

Path +/- + +/- +/- +/- + +/-

Neighborhood - + +/- - +/- + +/-

Diameter - + - - - - -

Distance

between nodes

- + - - - - -

These two tables show that:

• Many query languages use pattern to facilitate the information search process
especially graphical languages like Good, Qgraph, G, etc.

• Almost languages provide operator or techniques to find path. Nevertheless,
graphical languages do not determine path by direct operation.

• The neighborhood characteristic is not well processed by existing languages.
• Graph characteristics based on calculation like diameter or distances between

nodes are only treated by G+ and GraphLog.

In practice, users prefer graphical languages because they are easy to use.
Moreover, graphical query languages for graph model lack of operation to obtain
information about communities. Languages designed for social network like
SOQL are based on SQL and can be applied only on simple graphs.

Table 1.3 Graph query languages-2-

 Lorel GOQL SOQL GraphDB GraphQL LDM Gram G-Log

Basic Unit Object nodes/

edges

Group/

path

nodes/

edges

graph tuple nodes/

edges

nodes/

edges

Data Model OEM graph graph graph graph LDM Gram G-Log

Query style SQL-
like

SQL-
like

SQL-like SQL-like SQL-like formal formal formal

Pattern - - + + + - - +
Update query + - + + - - - -
Implementation + + + + - - + -

16

Path + + + + + - + +/-
Neighborhood +/- +/- +/- +/- + - +/- +/-
Diameter - - +/- - - - - -
Distance between
nodes

+/- - + - - - - -

1.3Related Data Model

1.3.1 RDF query languages

RDF (Miller et al., 2004) is a knowledge representation language dedicated to the
annotation of documents and more generally of resources within the framework of
the Semantic Web. By definition, an RDF graph (Klyne et al., 2004) is a set of
RDF triples. An RDF triple is a triple (s, p, o)∈ (I ∪ B)× I × (I ∪ B ∪ L) where
I, B, and L are sets that represent (IRIs), Blank nodes, and Literals, respectively).
In this triple, s is the subject, p the predicate, and o the object.
RDF models information with graph-like structure, where basic notions of graph
theory like node, edge, path, neighborhood, connectivity, distance, degree, and so
on play a central role. RDF has been used for presenting communities and social
network (e.g FOAF1, RELATIONSHIP2, etc). RDF can be a good support to mod-
el social network although its query languages do not offer an efficient support to
query this kind of data. Indeed, several languages for querying RDF documents
have been proposed, some in the tradition of database query languages (i.e. SQL,
OQL): RQL (Karvounarakis et al, 2002), SeRQL (Broekstra et al, 2003), RDQL
(Seaborne, 2004) SPARQL (Perez et al, 2006). Others more closely inspired by
rule languages: Triple (Sintek et al, 2002), Versa3, N3 and RxPath4. The currently
available query languages for RDF support a wide variety of operations. However,
several important features are not well supported, or even not supported at all.
RDF query languages support only querying for patterns of paths which are li-
mited in length and form. Nevertheless, RDF allows representing irregular and in-
complete information (e.g the use of blank node). From the original approach just
Versa and SeRQL provide built in means for dealing with incomplete information.
For example, the SeRQL language provides so-called optional path expressions

1 http://www.foaf-project.org/

2 http://vocab.org/relationship/.html

3 http://wiki.xml3k.org/Versa
4 http://rx4rdf.liminalzone.org/ RxPathSpec

17

(denoted by square brackets) to match paths whose presence is irregular. Usually,
such optional path expressions can be simulated, if a language provides set union
and negation. Others works on RDF query languages try to extend the original
languages to improve path expressiveness. For example in (Alkhateeb et al,
2009), they allow to query an RDF knowledge base using graph patterns whose
predicates are regular expressions. In RDF Path5, N3 and Graph Path6, they try to
use specifications similar to those in XPATH to query paths in RDF. Moreover,
RDF query languages are not well adapted to query path with unknown length or
including multiples propriety on RDF graph. Neighborhoods retrieving cannot be
well done for languages that do not have a union operator. Many of the existing
proposals support very little functionality for grouping and aggregation. Moreo-
ver, Aggregated functions like COUNT, MIN, MAX applied to paths could be
used to answer queries in order to analyze data (like the degree of a node, the dis-
tance between nodes, and the diameter of a graph). We can find exceptions in Ver-
sa, RQL and N3which support count functionality Aggregation in path and nodes
are not explicitly treated by any languages which need to be considered as a re-
quirement

1.3.2 XML query languages

The Extensible Markup Language (XML) is a subset of SGML. XML data are
labeled ordered trees (with labels on nodes), where internal nodes define the struc-
ture and leaves the data (scheme and data are mixed.). XML additionally provides
a referencing mechanism among elements that allows simulating arbitrary graphs.
In this sense XML can simulate semi-structured data. Also, many new extension
of XML are designed to represent graphs like GML, GraphML, XGML and etc.

Current query languages (Bonifati et al, 2000) for XML do not support the ma-
jority features for graph-structured XML document. The principal feature sup-
ported is path. For example, XPath7 uses path expressions to select nodes or node-
sets in an XML document. Also, the set of axes defined in XPath is clearly de-
signed to allow the set of graph traversal operations that are seen to be atomic in
XML document trees. An XPath axis is fundamentally a mapping from nodes to
nodesets and defines a way of traversing the underlying graph. Each axis encapsu-
lates two things: a type of edge to follow (eg. child vs. attribute) and whether to
follow it transitively (e.g. child vs. descendant). Also, XQuery8 uses XPath to ex-
press complex path and supports flexible query semantics. In XML-QL (Deutsch
et al,1999), path expressions are admitted within the tag specification and they
permit the alternation, concatenation and Kleene-star operators, similar to those
used in regular expressions. In XML-GL (Ceri et al, 1999), the only path expres-

5 http://infomesh.net/2003/rdfpath
6 http://www.langdale.com.au/GraphPath/
7 http://www.w3.org/TR/xpath

8 http://www.w3.org/TR/xquery/

18

sions supported are arbitrary containment, by means of a wildcard* as edge label;
this allows traversing the XML-GL graph reaching an element at any level of
depth. However, Current query languages for XML are designed for tree-
structured XML data and do not support the matching of schema in form of gener-
al graph. Even though XPath can express a node with multiple parents by multiple
constraints with axis “parent", it cannot express a graph with cycles. While XML
won't allow multiple parents, there's nothing in XQuery (or in particular, XPath)
which precludes a traversal from parent to child to a different parent. This insuffi-
ciency does not allow the presentation and the query of all kind of graphs specially
those on social network.

1.4 Social network Extraction from relational database using a
graph database

Social Network is an explicit representation of relationships between people,
groups, organizations, computers or other entities and it is modeled by a graph
(see section 1.2.1.3). There are many ways to obtain a Social Network. The ap-
proaches presented in the literature for Social Network extraction use a specific
type of data source to extract people and relations among them (Kirchhoff et al.
2008). Most of these data sources come from the Web. However, some problems
related to the extraction of Social Network from various information sources
available on the World Wide Web still remains. First, a general problem is the
identification of people because of different naming standards or same names as-
signed to different persons. The social context and the type of social interactions
among people within these information sources need to be carefully analyzed in
order to obtain a meaningful understanding of the underlying Social Network
structure. Moreover, data from the web are often not well reliable because anyone
can add information; also in some case we cannot easily collect information from
the web due to privacy issues.

Nevertheless, in the context of business, important expertise information about
people is not stored on the Web. Such information is stored in files, databases and
especially relational databases. Relational database is a rich source of data, but it
is not well adapted to store and manipulate social network data. Indeed, the rela-
tional model was directed to simple record-type data with a structure known in
advance. The schema is fixed and extensibility is a difficult task. Thus, they might
require very sophisticated and expensive operations, such as renormalization, re-
indexing etc., which may not be performed automatically. Schema renormalization
in such cases is neither desirable nor easy to do. The standard query and trans-
formation language for the relational database is SQL which does not support
paths, neighborhoods and queries that address connectivity (an exception is transi-
tivity). These graph features will facilitate the application of social network analy-
sis algorithm. Also, it will allow to response queries such as who owns the infor-
mation, who has the leadership, who is an expert in a particular domain and etc.

19

Such information is very important for business applications. Then, enterprises
need to extract their Social Network from the existing relational database to store,
update and retrieve information in a simple way as graphs. On the other hand, ex-
tracting social network from relational database is not just a translation of rela-
tional database into a simple graph structure. The resulting Social Network should
contain detailed information about people and their relations. As we have shown
in the previous section Graph database can be a good representation for social
networks and facilitate its querying. There are many approaches that transform re-
lational databases to other structure having graph-like features like RDF, XML or
even ontology, but not into a graph databases. Then, in this section, we will
present our approach to transform a relational database to a social network using a
graph database.

1.5.1 Converting relational database into hypernode database

Having a graph database instead of relational database will provide a more
clear view of existents entities in the initial database. Indeed, all these entities will
be presented on the form of nodes and the relations between them will be outlined
which facilitate in further steps the selection of the desired entities. Also, nodes in
graph database can encapsulate all the attribute of entities in the same node and
give us a simple graph of entities. From this graph of entities, a social network can
be extracted. Using the comparison between existing graph database models (Ta-
ble1.1), we have chosen to work with the hypernode model (Levene and Loizou
1995)because the hypernode database with its nested graphs can provide an effi-
cient support to represent every real-world object as a separated database entity.

The relational database transformation into a graph database includes schema
translation and data conversion (Maatuk et al. 2008). The schema translation can
turn the source schema into the target schema by applying a set of mapping rules.
In our work, we propose a translation process which directly transforms the rela-
tional schema into a hypernode schema. Data Conversion process of converts data
from the source to the target database based on the translated schema. Data stored
as tuples (Rows) in relational database are converted into nodes and edges in
graph database. This involves unloading and restructuring relational data, and then
reloading them into a target database in order to populate the schema generated
during the translation process. In what follows, we will detail these two steps.

 1.4.1.1 Schema Translation

The first step consists in extracting the relational database schema using the
schema metadata of the relational database management system (information
about tables and columns) which is extracted using SQL queries. The idea is to
identify the primary key, composite key(s) and foreign key(s) of each relation.

20

This information is then used to design the new schema (hypernodes and relations
within and between them). This process is performed by the following steps.

Step1: Relational schema extraction. In this step, information from the relational
database is extracted using SQL queries. In our approach a relational schema is

represented as a set of relations (tables) ={ }FpKATR ,n ,,r : TR\ = , where:

• rn denotes the name of TR.
• A denotes a set of attributes of TR and gives information about each attribute

integrity constraints, A :={ a\a :=<an, t, ce, cp, n, d>}, where an is an attribute
name, t is its type, ce mentions if a is a foreign key or not, cp mentions if a is a
primary key or not, n mentions if a can be null or not and d is a default value if
one is available.

• Kp,F denotes a set of key of TR and gives information about each Key integrity
constraints, Kp,F :={ β | β := <kr, ce, cp, re ,fa}>}, where: β represents a key

(an attribute which can be a key or a part of a composed key), kr is the name of
a key attribute, ce indicates if β is a foreign key or not, cp indicates if β is

a primary key or not, re is the relation that contains the exported primary key,
fa is the attribute name of the foreign key.

Fig. 1.14 Relational database schema (primary key is underlined and foreign key is marked by “#”

This schema provides an image of metadata obtained from an existing relational
database and provides more information than a traditional schema. Indeed, it gives
information about primary and foreign keys to facilitate relations extraction in fur-
ther steps. For example for the Table “Thesis” (database in Fig.1.14), the relation
Thesis (th_id, Th_name, Topic) was extracted. Once the schema is extracted, we
can generate the corresponding hypernode schema (step 2).

Step 2: Mapping the relational schema to the hypernode schema. We use on
this step a hypernode schema which is an extension of the original one.

A hypernode is defined (Levene and Loizou 1995)by H = (N, E), where N is a
finite set of nodes containing primitive nodes and further hypernodes, and E is a

21

set of edges between members of N, Such that N ⊆ A ∪ L (where A is the set of
atomic values and L the set of labels) and E ⊆ (N × N).

A Hypernode database (HD) is a finite set of hypernodes which satisfies these
following conditions:

(1) The hypernode label is unique in HD.
(2) ∀ H a label in the label set of HD, HDh⊂∃ whose defining label is H.

 The Hypernode model does not use labeled edges, the task of representing rela-
tions (and their names) can be attained by encapsulating edges, that represent the
same relation (same label edges), within one hypernode labeled with the relation-
name. However, the traditional presentation of social network is labeled node at-
tached with explicit labeled edge. Then, we extend the HD to LHD (Labeled
hypernode database) by adding explicit labels to edges. LHD= HS∪ ES, where:

(1) HS is a finite set of hypernode.
(2) ES is a set of edge where ES ⊆ (HS × HS) and ∀ e ∈ ES, e has a label.

 In this step, we use a hypernode database schema composed by the union of two
sets: { } { }dshn h,hr,:R\ ,h : H\ =∪= hRNhH

The first one is the set of hypernodes where:

• hn denotes the name of H
• Nh denotes a set of nodes Nh :={ n\n :=<nn, t, ce, cp>} where nn is the node

name, t is the type, ce mentions if the nodes contains a foreign key (in the
relational schema n is a foreign key) and cp mentions if the nodes contains
a primary key.

The second one is the set of relations where:

• r denotes the name of R
• hs denotes the hypernode source name
• hd denotes the hypernode destination name

To extract this schema, we start by identifying the hypernodes then their relations.

Hypernode identification. Using the relational schema, we create from each table t
∈ TR a new hyprnode h. h owns the same characteristics of t: same name and
attributes. Indeed, each attribute a from the table TR is transformed into a node n
in h where n contains all the characteristics of a (name, type, etc). If the attribute
is a foreign key, its type is changed to be the name of the exported relation.

Relation identification. In order to identify the relations between the identified
hypernodes, the nodes set Nh of each hypernode h is analyzed. For each node, we
verify if it contains a foreign key in order to search existent dependency with other
hypernodes. We have identified four relation types:

• “IS-A” relation: if h has only one node npf and no more, that contains a key
which is primary (a simple one) and foreign key, then h shares the relation
“IS-A” with the hypernode mentioned in the npf type; e.g. the hypernode
“Foreign_Student” contains the node “ST_id” which is a primary key and a

22

foreign key, then “Foreign_Student” shares the relation “IS-A” with “Stu-
dent.”

• “Part_of ” relation : if h has more than one node npf that contains a key
which is primary and foreign key, then h shares a Part-of relation with each
hypernode mentioned in the npf type. e.g. “Student” and “Thesis” are “Part-
of” the hypernode “Thesis_hasStudent” because “Thesis_hasStudent” con-
tains the nodes “St-id” with type “Student” and “Th-id” with type “Thesis”.

• R relation: this kind of relation is a particular case of the “Part_of” rela-
tion. When the hypernode is composed only with nodes which contain a
key which is primary and foreign key, then we delete this hypernode and
we use its name to build relations between the hypernodes mentioned in the
npf type. e.g. the hypernode “Thesis_hasLab” is deleted and is transformed
into a relation between “Thesis” and “Laboratory”.

• “” relation: if h contains a node which contains a foreign key, h has a rela-
tion with the hypernode mentioned in the type of the node. In this case, we
are not able to give a name to this relation.

Considering the initial database, Fig 1.15 shows the resulting Hypernode schema.

Fig.1.15 Hypernode database schema

1.4.1.2 Data conversion

In order to instantiated the hypernode database schema already identified, Data
conversion is performed in three steps. First, the relational database Table’ tuples
are extracted. Second, these data are converted to match the target format. Then,
for each hypernode in the hypernode database, a set of instances hypernode HI is
extracted from the relational tuples.

The set of instances hypernode HI is defined by HI = { }hiii NH ,hh, : H\ i= where:

• Hi denotes the instance hypernode
• h denotes the hypernode source name.
• hi denotes the name of Hi.

23

• Nhi denotes a set of nodes Nhi :={ n\ni :=< nn, t, val>} where nn is the node
name, t is the type, and val mentions the node value.

Fig. 1. 16 Part of the Hypernode database instance

For each relation in the LHD, a set of instance relations RI is extracted using
the value of keys on the relational tables. RI is defined by RI:={ r i\ri :=< r, his, hid
>} where:

• r denotes the relation which is intanciated by ri.
• his denotes the hypernode instance source.
• hid denotes the hypernode instance destination.

Finally, transformed data are loaded into the LHD schema. An excerpt of the
HD is shown in Fig.1.16.

1.5.2 Social network extraction

Using the result Hypernode database from the previous step, the social network
is extracted. This phase passes through two steps: (1) Entities (people) identifica-
tion and (2) Detection of relations among people.
The social network is defined by: SN = (ESN, RSN) where:
• ESN is a finite set of entity such ESN :={ e\ e ∈ HI, e :=< h, en, Ne>} where h is
the hypernode which represents e, en is e’s name and Ne is the set of e’s node.
• RSN is a finite set of the relations between entities such RSN= {r sn\ rsn:=<n,e1,
e2>}where n is the relation name, e1 and e2 ∈ ESN.

In what fallows, we will describe the two step of the social network extraction.

24

1.4.2.1 Entities identification

Entities identification is the process to identify hypernodes that contain entities
which compose the social network. In this step, we describe the process to identi-
fy people. The hypernode database schema is used to extract candidate hypernodes
(hypernodes which may be contain persons). Then, the hypernodes instances are
used to deeply analyze the candidate hypernodes and detect those containing
people.
Candidate hypernodes detection. A person has a number of characteristics like
name, surname, birthday, address, email, etc. Some of these characteristics are
used when designing databases containing persons. We collect these characteris-
tics from various ontologies such FOAF ontology and person ontology (schema-
Web9) and we manually build a person ontology (PO) containing all these charac-
teristics and their synonyms (collected from WordNet). Using the person
ontology, the set of nodes related to each hypernode in the LHD is analyzed.

• If the node’s name is one of the PO concepts, the number of characteristics for
this hypernode is incremented.
• If the number of characteristics for the hypernode >=1 and one of them con-
tains a name, the hypernode h is a candidate to contain persons.

Candidate hypernodes Analysis. Each candidate hypernode has a set of instance
hypernodes hi. In order to analyze the name found in each instances hypernode
(we take just the 10 first entities), the name is send to the web search engine (Bing

API). The top 10 returned documents is downloaded and parsed using DOM10.
Each document is analyzed using the NER (Named entity Recognition) proposed

by Stanford11 and which put three kinds of tags (Person, location or organization).
We give for each document a rank rd. If the name is tagged in the document by
Person, the document is ranked by rd=1 else rd=0. The average assigned to the
name found in the hypernode instance hi (avghi) counts how many times is consi-
dered as a person name in the documents (where the tag of this name is Person)
avghi=

documentsnumber

rd

_
∑

 (1.1)
The average assigned to the hypernode (avgH) calculates the average where the
names found in its hypernode instances are considered as a person name:
avgH=

hinumber

avghi

_
∑ (1.2)

In order to identify persons, we use the NER proposed by standford: in which
precision is in the average of 90%to find Person entities; so, a hypernode is consi-
dered as representative of a person if more than 60% of its instances contains a
person name (we take only 60% as a threshold due to problems such as wrong
written name use of abbreviations, etc. which decrease the precision of NER).

9 http://ebiquity.umbc.edu/ontology/person.owl

10 http://www.w3.org/DOM/

11 http://nlp.stanford.edu/ner/index.shtml

25

 1.4.2.2 Building relations

 After the identification of the entities set ESN, we use the existent relations in the
hypernode database (the relations which share ESN elements with other hyper-
nodes or among them) to find the set of relations RSN.

In order to facilitate this step, we have designed a set of patterns to apply this
kind of transformation to all the relation on the hypernode database. The pattern
will enumerate all the existent relations between persons only by using the hyper-
node database schema. After the relation pattern identification, we will search the
correspondent relations on the instances database.
A pattern relation Pr is defined by Pr=<nPr, hp1, hp2, hin> such as nPr is the name
of the relation, hp1 and hp2 the hypernodes which share the relation hypernodes
which represent people), hin a mediator for this relation (the hypernode used to
identify the relation).
For each relation Rh ∈ set of LHD relations, we check these conditions:
1. If Rh:=<”IS-A”,h s,hd> where hs or hd ∈ ESN then hs or hd is added to ESN.

The relation “IS-A” allows to find hidden entities which are not identified in
the previous step. In the relation construction process, we start by analyzing
this kind of relation to find in the next steps the relations related to the new
discovered entity.

2. If Rh:=<r,h s, hd> where hs and hd ∈ ESN then two patterns are identified:
2.1 Pr1:=<r, his, hid,null>, if two entities (hs and hd) are already connected in the

LHD, we will search if their instances (his and hid)are connected, too.
2.2 Pr2:=<Same_hd.name, hpi,hpj, hd > where hpi= his , hpj= his and i!=j. Pr2

represents the relations between the instances of hs which can be connected
with the same instance of hd.

3. If Rh:=<r h s,hd> where hs ∈ ESN and hd ∉ ESN then:
3.1 If r != “Part-of” then pattern Pr3 is extracted :Pr3:=<Same_hd.name, hpi,hpj,

hd > where hpi= his , hpj= his and i!=j. we search the hs instances which are
connected with the same instance of hd.

3.2 If r = “Part-of” then the hypernodes which are “Part-of” hd are researched:
Firstly, for each hj ∈ {h\h has the relation Rh:=<”Part-of”, hj, hd>}, a new
node is added to hs containing the name of hj then the pattern Pr4 is ex-
tracted. Pr4:=<Same_hj.name, hp1,hp2, hj > where hp1= hs , hp2= hs. Pr4
represents the relations between the instances of hs that share the same value
of hj.

4. If Rh:=<r h s,hd> where hs ∉ ESN and hd ∈ ESN then :
4.1 a new node on hs containing the name of hd is added.
4.2 if hs has relations with other entities then for each detected relations, a

pattern Pr5 is extracted as Pr5:=<Same_hs.name,hp1,hpj, hd > where
hp1=hd and hpj ∈ {e\e has relation with hs}.

By applying these patterns to our example, we can detect the relations between the
detected entities Student and Director_thesis:

26

-From the relation, Rh=<”IS-A”, Foreign-Student, Student>, we detect a new enti-
ty “Foreign-Student” which is added to the set of entities ESN.
-From the relation Rh1:=<””,Student, Director_thesis >, we identify two patterns :
- Pr1:<””,Student, Director_thesis, null>: Student and Director_thesis share the
relation R:=<””,Student, Director_thesis > then each Student and Director_thesis
instance can have these relations if they have the same id_Dir value (Fig.1.17).

Fig 1.17 Instance of the relation between Student and Director_thesis

- Pr2:=<Same_ Director_thesis, Studenti, Studentj, Director_thesis >: two stu-
dents may have the same Director_thesis (same value of Dir-id) (Fig1.16).

Fig1.16 Relation among Student instances

-From the relation Rh2:=<””, Director_thesis, Laboratory>, we identify the pattern:
-Pr3:=<Same_Laboratory,Director_thesisi, Director_thesisj, Laboratory >: using

the value of the foreign key Lab_id in each hyeprnode instance of the entity Di-
rector_thesis, we will link those having the same value of Lab_id by the relation
Same_Laboratory. (Fig1.17)

Fig1. 17 Relation between Director_thesis instances

-From the relation Rh3:=<”Part-of”,Student, thesis_hasStudent>
- Thesis_hasStudent shares two relations “Part-of” with Student and Thesis. We

add a new node on the hypernode Student n:<Thesis, Thesis_i>, corresponding to
his Thesis. Then, we can apply the pattern Pr4 (Fig1.18).

Fig1.18 Adding the node thesis on the Student hypernode

27

-Pr4:=<Same_Thesis, Studenti, Studentj, Thesis_hasStudent >, by this pattern
we search all the student which shares the same thesis (not found in our data).
-From the relation Rh4:=<””, Thesis, Director_thesis >, there are no identified pat-
tern because Thesis is not related to other entities
After identifying relations and entities, the final social network is obtained by ap-
plying all the previous detection (people and their relations) and giving as tag for
each hypernode his type and the name of the corresponding person (see Fig.1.19)

Fig.1.19 Corresponding Social Network

1.5.3Implementation and evaluation

In order to demonstrate the effectiveness and the validity of the proposed ap-
proach, a prototype has been developed. The prototype was implemented using
Java and PostgreSQL. We have visualized the output database and the social net-
work using SNA12 (Fig1.20).
The Hypernode database will be stored in an adapted database management sys-
tem which also allows the storage of voluminous complex graphs.
We experimented (for more details see (Soussi et al, 2010)) the process using the
data of a database containing information about PhD students (Administrative and
technical information) and also information about actors surrounding them. This
database contains 1788 students (+ 80 students per year). To evaluate scalability
and performance of our method for converting relational database into hypernode
database, a set of SQL queries has been designed to observe any differences be-
tween the source relational database and the hypernode database. After comparing

12 http://www.sapweb20.com/blog/2009/03/sap-enterprise-social-networking-prototype/

28

the results between the two databases, the hypernode schema is generated without
loss or redundancy of data. This proves the correctness of this conversion.

We have used the same method to evaluate the transformation into a social
network. For each entity e :=<h,en, Ne> , we verify that: (1) the same attributes
appear in the relational database and in the social network, and (2) we find the
same relations. For example, in order to verify entity’s attributes: Select * from
h.name where n0.name=n0.val; (n0 is the first node on the e’s node set, and is
usually corresponding to the primary key or a part of the primary key on the rela-
tional database). For example for the entity “Student_Mohsen_Ali”, the corres-
pondent query used: Select * from Student where St_id=03;
The results obtained from these queries shows the correctness of the transforma-
tion approach. Our approach can transform a relational database into a graph from
a social network perspective without lost of information.

Fig. 1. 20 SNA visualization

Conclusion

In this chapter, we have presented the main graph database models and the as-
sociated graph query languages. Graph database models can model communities
(social networks) and their activities even they are complex and dynamic (using
model based on complex node). Even, Graph query languages are the most suited
query languages to query communities (e.g. better than RDF query languages) but
they are not well adapted to extract information about communities because they
do not use social network analyze methods or most of them do not offer tech-
niques to extract information about path and neighborhood. We have also pre-
sented a social network extraction method from relational database which is based
on (1) a transformation of the relational database into a hypernode database and
(2) a social network extraction from the hypernode database. In our future work,
we will focus on how to improve the extraction method by the use of ontologies

29

describing the relations between entities in the relational database. Then, we will
try to define a storage system based on the hypernode model and a graph query
language more adapted to the social network structure. We will also work on ge-
neric transformation rules according to different users’ point of view and graphs
merging.

References

Abiteboul S, Quass D, McHugh J, Widom J, Wiener J L (1997) The Lorel query language for
semistructured data. International Journal on Digital Libraries, 1(1):68–88.

Alkhateeb F, Baget J, and Euzenat J (2009) Extending SPARQL with regular expression patterns
(for querying RDF). Web Semantic 7, 2 , 57-73.

Amann B, Scholl M (1992) Gram: A Graph Data Model and Query Language. In: Proceedings
of the European Conference on Hypertext Technology (ECHT), ACM, pp 201–211.

Andries M , Gemis M, Paredaens J , Thyssens I, Bussche J D (1992) Concepts for Graph-
Oriented Object Manipulation. In Proceedings of the 3rd international Conference on Extend-
ing Database Technology: Advances in Database Technology, vol. 580. Springer-Verlag,
London,pp 21--38.

Angles R and Gutierrez C (2008) Survey of graph database models. ACM Comput. Surv. 40, 1
(Feb. 2008), 1-39. DOI= http://doi.acm.org/10.1145/1322432.1322433

Barnes J A (1954) Class and committees in a Norwegian island parish. Hum. Relat, pp 39--58.
Blau H, Immerman N, Jensen D(2002) A Visual Language for Querying and Updating Graphs.

University of Massachusetts Amherst, Computer Science Department Technical Report 2002-
037.

Bonifati A and Ceri S (2000) Comparative analysis of five XML query languages. SIGMOD
Rec. 29, 1 (Mar. 2000), 68-79.

Broekstra J(2003) SeRQL: Sesame RDF query language, in: SWAP Deliverable 3.2 Method De-
sign.

Ceri S, Comai S, Damiani E, Fraternali P, Paraboschi S, and Tanca L(1999) XML-GL: a graphi-
cal language for querying and restructuring XML documents. Comput. Netw. 31, 1171-1187.

Codd E F (1980) Data models in database management. In: Proceedings of the 1980 Workshop
on Data Abstraction, Databases and Conceptual Modeling (Pingree Park, Colorado, United
States, June 23 - 26, 1980). ACM, New York, NY,pp 112-114.

Consens M P, Mendelzon A O (1989) Expressing Structural Hypertext Queries in Graphlog. In:
Proceedings of the 2th International Conference on Hypertext, ACM Press, pp 269–292.

Cruz I F, Mendelzon A O, Wood P T (1987) A graphical query language supporting recursion.
SIGMOD Rec. 16(3) :323-330. doi= http://doi.acm.org/10.1145/38714.38749

Cruz I F, Mendelzon A O, Wood P T (1989) G+: recursive queries without recursion. In: Pro-
ceedingsof the 2th International Conference on Expert Database Systems (EDS). Addison-
Wesley, pp 645–666.

Deutsch A, Fernandez M, Florescu D, Alon Levy, Suciu D (1998) XML-QL: A Query Lan-
guage for XML. In:Proc. of the Query Languages workshop (QL98), Cambridge, Mass.,

Flesca S, Greco S (2000) Querying Graph Databases. In: Proceedings of the 7th international
Conference on Extending Database Technology: Advances in Database Technology (March
27 - 31, 2000). C. Zaniolo, P. C. Lockemann, M. H. Scholl, and T. Grust, Eds. Extending Da-
tabase Technology, vol. 1777. Springer-Verlag, London, pp 510–524.

Gemis M, Paredaens J (1993) An object-oriented pattern matching language. In: JSSST, Sprin-
ger-Verlag, vol. 742, pp 339-355.

Graves M, Bergeman E R, Lawrence C B (1995) Graph database systems for genomics. IEEE
Eng.Medicine Biol. 14(6):737--745.

30

Güting R H (1994) GraphDB: Modeling and Querying Graphs in Databases. In: Proceedings of
the 20th international Conference on Very Large Data Bases, September 12 - 15. Eds. Very
Large Data Bases. Morgan Kaufmann Publishers, San Francisco, CA, pp 297-308.

Gyssens M , Paredaens J, Gucht D V (1990) A graph-oriented object model for database end-
user interfaces. SIGMOD Rec. 19(2) :24-33. doi= http://doi.acm.org/10.1145/93605.93616

He H ,Singh A K (2008) Graphs-at-a-time: query language and access methods for graph data-
bases. In: Proceedings of the 2008 ACM SIGMOD international Conference on Management
of Data SIGMOD '08. ACM, New York, NY, pp 405–418.

Hidders J, Paredaens J (1993) GOAL, A Graph-Based Object and Association Language. Ad-
vances in Database Systems: Implementations and Applications, CISM: 247–265.

Hidders J (2002) Typing Graph-Manipulation Operations. In Proceedings of the 9th Internation-
al Conference on Database Theory (ICDT). Springer- Verlag. pp 394–409.

Kaplan I (2006)A Semantic Graph Query Language. technical repport, Lawrence Livermore Na-
tional Laboratory, October 17, 2006 UCRL-TR-255447

Karvounarakis G, Alexaki S, Christophides V, Plexousakis D, and Scholl M (2002) RQL: a dec-
larative query language for RDF. In Proceedings of WWW '02. ACM, NY, 592-603.

Kirchhoff L, Stanoevska-Slabeva K, Nicolai T, Fleck M (2008) Using social network analysis to
enhance information retrieval systems. In: Applications of Social Network Analysis (ASNA),

Klyne G, Carrol J J, Andmcbride B (2004) Resource description framework (RDF): Concepts
and abstract syntax. W3C recommendation. http://www.w3.org/TR/rdf-concepts/.

Kuper G M , Vardi M Y(1993) The Logical Data Model. ACM Trans. Database Syst,379--413.
Levene M, Poulovassilis A (1990) The hypernode model and its associated query language. In:

Proceedings of the Fifth Jerusalem Conference on information Technology (Jerusalem,
Israel). IEEE Computer Society Press, Los Alamitos, CA:520--530.

Levene M,Poulovassilis A(1991) An object-oriented data model formalised through hyper-
graphs. Data Knowl. Eng. 6(3): 205--224.

Levene M, Loizou G(1995) A Graph-Based Data Model and its Ramifications. IEEE Trans. on
Knowl. and Data Eng. 7(5): 809-823. doi= http://dx.doi.org/10.1109/69.469818

Maatuk A, Akhtar M, Rossiter B N (2008) Relational Database Migration: A Perspective. In:
DEXA’08, pp. 676--683

Miller E, Swick R, and Brickley D (2004) Resource description framework (RDF). Recommen-
dation,W3C.

Paredaens J, Peelman P, Tanca L (1995) G-Log: A Graph-Based Query Language. IEEE Trans-
actions on Knowledge and Data Engineering (TKDE), 7(3):436–453.

Pérez J, Arenas M, and Gutierrez C (2009) Semantics and complexity of SPARQL. ACM
Trans. Database Syst. 34, 3 (Aug. 2009), 1-45.

Ronen R, Shmueli O (2009) SoQL: A Language for Querying and Creating Data in Social Net-
works. In: Proceedings of the 2009 IEEE international Conference on Data Engineer-
ing,March 29 - April 02, ICDE. IEEE Computer Society, Washington, DC, pp 1595-1602.

Seaborne A (2004) RDQL—A Query Language for RDF, Member Submission, W3C.
Shadbolt N, Berners-Lee T, Hall W (2006) The semantic web revisited. IEEE Intelligent Sys-

tems, 21(3):96–101.
Sheng L, Ozsoyoglu Z M, Ozsoyoglu G(1999) A Graph Query Language and Its Query

Processing. In: Proceedings of the 15th Int. Conf. on Data Engineering (ICDE), IEEE Com-
puter Society, pp 572–581.

Sintek M, and Decker S (2002) TRIPLE - A Query, Inference, and Transformation Language for
the Semantic Web. In Proceedings of the First international Semantic Web Conference on the
Semantic Web. Lecture Notes In Computer Science, vol. 2342. Springer-Verlag, 364-378

Soussi R, Aufaure M A, Baazaoui H (2010)Towards Social Network Extraction Using a Graph
Database, In: Proceedings of Second International Conference on Advances in Databases,
Knowledge, and Data Applications, pp 28-34

Xu X, Zhan J, Zhu H (2008) Using Social Networks to Organize Researcher Community. In:
Proceedings of the IEEE ISI 2008 Paisi, Paccf, and SOCO international Workshops on intel-
ligence and Security informatics. Springer-Verlag, Heidelberg, pp 421--427

