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Abstract Data manipulated in an enterprise context are structured data as well as un-

structured data such as emails, documents, social networks, etc. Graphs are a natural way of 
representing and modeling such data in a unified manner (Structured, semi-structured and 
unstructured ones). The main advantage of such a structure relies in the dynamic aspect and 
the capability to represent relations, even multiple ones, between objects. Recent database 
research work shows a growing interest in the definition of graph models and languages to 
allow a natural way of handling data appearing. In this chapter, we give a survey of the 
main graph database models and the associated graph query languages. We then present an 
application using a graph database to extract social networks. 
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1.1 Introduction 

We have now entered the knowledge era, where people work in a collaborative 
way and manipulate structured as well as unstructured data. More and more in-
formation about communications among people are available. This mass of infor-
mation should be used in companies to optimize the business process, for example 
using information about people to constitute the best team for a particular project.  
These tremendous amounts of data need storage and analysis. This data can re-
sides in multiple locations and may change over time. Moreover, the data sources 
do not have a unified schema or their schemas cannot be controlled.  Current re-
presentation and storage systems are not very flexible in dealing with dynamic 
changes and are not very efficient to manipulate complex data. Besides, data ma-
nipulation systems cannot easily work with structural or relational data. 

 Graphs are a powerful representation formalism for both structured and unstruc-
tured data, and can be seen as a unified data representation. Data in multiple do-
mains can be naturally modeled as graphs like Semantic Web (Shadbolt et al. 
2006), images, social networks (Xu et al., 2008), bioinformatics, etc.  Thus, recent 
database research shows a growth of interest in the definition of graph models and 
languages to allow a natural way of handling data appearing in these applications.  
Indeed, Graph database leads to a more natural modeling (graph structures) and 
offers a flexible support for dynamic data (Social network, web, etc...). It also fa-
cilitates data query using graph operations.  Explicit graphs and graph operations 
allow a user to express a query at a very high level of abstraction. Queries about 
paths and shortest path between two nodes are performed efficiency with graph 
database techniques.  
In this chapter, we present the main graph database models and the associated 
graph query languages; we will also discuss two related models that do not fit 
properly as graph database models, but use graphs, for example, for navigation, 
for defining views, or as language representation. We discuss in each section the 
capacity of these models and query languages to present or to query communities 
data especially information found on social networks. Then we show an applica-
tion using a graph database for modeling social networks. 
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1.2 Graph database: Models and query languages 

1.2.1Brief overview of Graph database models 

     A graph database is defined (Angles et al. 2008) as a “database where the data 
structures for the schema and/or instances are modeled as a (labeled) (directed) 
graph, or generalizations of the graph data structure, where data manipulation is 
expressed by graph-oriented operations and type constructors, and has integrity 
constraints appropriate for the graph structure.”  More formally, a graph database 
schema is in the form of a graph Gdb= ),,,( λψEN  where: N is a set of nodes and E 
is a set of edges;ψ is an incidence function from  E into NN × ;V is a set of labels 
and λ  is a labeling function from EN ∪ into V . There is a variety of models for 
Graph database (for more details see (Angles et al. 2008)). All these models have 
their formal foundation as variations of the basic mathematical definition of a 
graph. The structure used for modeling entities and relations influences the way to 
query and visualize data. In this section, we made a comparison between existing 
models to find the more suitable for storing and representing a Social Network. 
We will focus on the representation of entities and relations in these models.  We 
present in what follows some models classified according to the data structure 
used to model entities and relations. 

1.2.1.1 Models based on simple node 

Data are represented in these models by a (directed or undirected) graph with sim-
ple nodes and edges. Most of these models (GOOD (Gyssens et al. 1990), GMOD 
(Andries et al. 1992), etc.) represent both schema and instance database as a la-
beled directed graph. Moreover, LDM (Kuper and Vardi 1993) represents the 
graph schema as a directed graph where leaves represent data and whose internal 
nodes represent connections among the data. LDM instances consist of two-
column tables, one for each node of the schema. Entities, in these model, are 
represented by nodes labeled with type name and also with type value or object 
identifier (in the case of instance graph). Some models have nodes for explicit re-
presentation of tuples and sets (PaMaL (Gemis and Paredaens 1993), GDM (Hid-
ders 2003)), and n-ary relations (GDM).  Relations (attributes, relations between 
entities) are generally represented in these models by the mean of labeled edges. 
LDM and PaMaL use tuple nodes to describe a set of attributes which are used to 
define an entity. GOOD defines edges to distinguish between mono-valued (func-
tional edge) and multi-valued attributes (nonfunctional edge). Nevertheless, these 
models do not allow the presentation of nested relations and are not very suited for 
modeling complex objects. 

1.2.1.2 Models based on complex node 
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In these models, the basic structure of a graph (node and edge) and the presenta-
tion of entities and relations are based on hypernodes (and hypergraphs). Indeed, a 
hypernode is a directed graph in which nodes can themselves be graphs (or hyper-
nodes). Hypernodes (Levene and Poulovassilis, 1990)  can be used to represent 
simple (flat) and complex objects (hierarchical, composite, and cyclic) as well as 
mappings and records. A hypergaphs is a generalized notion of graph where the 
notion of edge is extended to hyper edge, which relates to an arbitrary set of 
nodes.  The Hypernode Model (Levene and Loizou, 1995) and GGL (Graves et al, 
1995) emphasize the use of hypernodes for representing nested complex objects. 
GROOVY (Levene and Poulovassilis, 1991) is centered on the use of hyper-
graphs. The hypernode model is characterized by using nested graphs at the sche-
ma and instance levels.  GGL introduces, in addition to its support for hypernodes 
(called Master-nodes), the notion of Master-edge for encapsulation of paths. It 
uses hypernodes as an abstraction mechanism consisting in packaging other 
graphs as an encapsulated vertex, whereas the Hypernode model additionally uses 
hypernodes to represent other abstractions like complex objects and relations. 
Most models have explicit labels on edges. In the hypernode model and 
GROOVY, labeling can be attained by encapsulating edges, that represent the 
same relation, within one hypernode (or hyperedge) labeled with the relation 
name. 

1.2.1.3 Discussion 

The purpose of this graph database models reviewing of is to find the most suited 
one to model many complex data objects and their relationships, such as social 
networks.   Social Network is an explicit representation of relationships between 
people, groups, organizations, computers or other entities (Barnes, 1954). As other 
networks, it can be represented as a complex graph (Xu  et al. 2008), G = (V, E), 
where V is the set of nodes representing people and E is the set of edges (V ×  V) 
meaning the different kind of relationships among people.  
Indeed, the social network structure can contain one or more types of relations, 
one or more types or levels of entities and many attributes over the entities. This 
structure is dynamic: growth of the volume, change on attributes and relations.  
Then, we have compared the previous graph database models using some charac-
teristics related to social network: the ability to present dynamic and complex ob-
jects, nested and neighborhood relations and the ability to give a good visualiza-
tion of social network.  We resume the comparison on Table 1.1 where “+” 
indicates the graph model support, “-” indicates that the graph model doesn’t sup-
port and “+/-” partial support. From this comparison, we have concluded that 
models based on hypernodes can be very appropriate to represent complex and 
dynamic object. Specially, the hypernode model with its nested graphs can pro-
vide an efficient support to represent every real-world object as a separated data-
base entity. Moreover, models based on simple graph cannot be suitable for com-
plex networks where entities have many attributes and multiple relations.   
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Table 1.1 Graph database model comparison 

  Entity Relation Visualization 

Complex  Dynamic Nested Neighborhood  

Hypernode + + + + + 

Groovy + + + + - 

GGL + + + + - 

GOOD - + - - + 

GMOD - + - - + 

PaMaL + + - + +/- 

GDM + + - - + 

LDM + + - - - 

  

1.2.2 Graph database languages 

  A query language is a collection of operators or inference rules which can be 
applied to any valid instance of the model data structure types, following the ob-
jective of manipulating and querying data in those structures in any desired com-
bination (Codd 1980). In this section, we review some proposals for graph data-
base query languages found in the literature. We concentrate this study on visual, 
semantic, SQL-like and Formal query languages.   

  

Fig.1.1 PHD student and their supervisors (Tables and corresponding graph) 

For each category, we will run some queries using the following example about a 
PhD student database as shown in Fig.1.1. We will show how these graph data-
base languages support graph features (path, neighborhood, etc.). 

1.2.2.1 Visual query languages 

      Visual query languages aim at providing the functionality of textual query lan-
guages to users who are not technical database experts, and also to improve the 
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productivity of expert database users. In general, these languages allow users to 
draw a query as a graph pattern with the help of a graphical interface. The result is 
the collection of all subgraphs of the database matching the desired pattern (Blau 
et al. 2002), (Cruz et al. 1987), (Cruz et al. 1989). 

 a. G, G+ and GraphLog 

G (Cruz et al. 1987) is a visual query language based on regular expressions that 
allow simple formulation of recursive queries. G enables users to pose queries, in-
cluding transitive closure, which is not expressible in relational query languages. 
A graphical query Q (example Fig1.2) is a set of labeled directed multi-graphs, in 
which the node labels of Q may be either variables or constants, and the edge la-
bels are regular expressions defined over n-tuples of variables and constants.  A 
path is expressed on a G query initially by the means of two types of edges: 
dashed edges correspond to paths of arbitrary length in the graph and solid edges 
correspond to paths of fixed length. In G, simple paths are traversed using certain 
non-Horn clause constructs available in Prolog. Although, it does not support 
cycles, finding the shortest path or calculating node distance. In addition, G does 
not support aggregation functions.  

 
 

 

 

 

Fig. 1.2 G query to find student and supervisors and query GraphLog query to find all students 
working on Ontology 

G evolved into a more powerful language called G+ (Cruz et al. 1989), in 
which a query graph remains as the basic building block. A simple query in G+ 
has two elements, a query graph that specifies the class of patterns to search, and a 
summary graph, which represents how to restructure the answer obtained by the 
query graph. G+ provides primitive operators like depth-first search, shortest path, 
transitive closure and connected components. It can easily find regular simple 
path. The language contains also aggregate operators that allow finding path 
length and node degree. The graph-based query language G+ provided a starting 
point for GraphLog (Consens and Mendelzon 1989). GraphLog differs from G+ 
with a more general data model, the use of negation, and the computational tra-
ceability. GraphLog queries are graph patterns which ask for patterns that must be 
present or absent in the database graph. Edges in queries represent edges or paths 
in the database. Each pattern defines a set of new edges (i.e., a new relation) that 
are added to the graph whenever the pattern is found. An edge used in a query 
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graph either represents a base relation or is itself defined in another query graph.  
GraphLog supports computing aggregate functions and summarizing along paths. 
Fig.1.2 shows an example of a GraphLog query.  

b. Hyperlog 

Hyperlog (Levene and Poulovassilis 1991) is a declarative query and update lan-
guage for the Hypernode Model (Fig.1.3).  It visualizes schema information, data, 
and query output as sets of nested graphs, which can be stored, browsed and que-
ried in a uniform way.  

 

 

Fig.1.3 Hypernode database schema and instance 

 
 A hyperlog query consists of a number of graphs (templates) which are 

matched against the hypernodes and which generate graphical output. 
 

 

Fig.1.4 Template and query with Hyperlog 
 
 The user chooses which variables in the query should have their instantiations 

output in the query result.  Hyperlog programs contain sets of rules. The body of a 
rule is composed of a number of queries, which may contain variables. The head 
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of a rule is also a query and indicates the updates (if any) to be undertaken for 
each match of the graphs in the body. In order to illustrate the template and the 
query in the Hyperlog query language, we give an example in Fig.1.4: the tem-
plate can find the students and their supervisors; the query can find the students 
working on Ontology. Hyperlog does not offer a special notation or expression to 
express paths. The existent rules can just find simple ones. The absence of aggre-
gation functions explains the absence of answers of query about node degree or 
path lengths. 

c. QGRAPH  

QGRAPH (Blau et al., 2002) query is a labeled connected graph in which the 
vertices correspond to objects and the edges to links with a unique label. The 
query specifies the desired structure of vertices and edges.  It may also place Boo-
lean conditions on the attribute values of matching objects and links, as well as 
global constraints. A query consists of match vertices and edges and optional up-
date vertices and edges. The former determine which subgraphs in the graph data-
base constitute a match for the query. The latter determine modifications made in 
the matching subgraphs. A query with both match and update vertices and edges 
can be used for attribute calculation and for structural modification of the data-
base. The query processor first finds the matching subgraphs using the query’s 
match elements, and then makes changes to those subgraphs as indicated by the 
query’s update elements. 

 

 

Fig. 1.5 Quries with QGRAPH 

QGRAPH offers a good support to express paths by the means of sub-queries, 
conditions and annotations on edges and nodes. However, it does not offer opera-
tor for aggregation. Fig.1.5 contains two queries: the right query finds all sub-
graphs with a supervised link between a Student and a Supervisor; the left one 
finds just the students that have the ontology as Thesis-topic. 

d. GOOD and languages based on GOOD 

The Good (Gyssens et al. 1990) data transformation language is a database lan-
guage with graphical syntax and semantics.  This query language is used for the 
GOOD graph-based data model (Fig.1.6). GOOD query language is based on 
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graph-pattern matching and allows the user to specify node insertions and dele-
tions in a graphical way.    

 

Fig. 1.6 GOOD data model shema and instance 
 
Good contains five operators. Four of them correspond to elementary manipu-

lation of graphs: addition of nodes and edges, deletion of nodes and edges. The 
fifth operation called abstraction is used to group nodes on the basis of common 
functional or non-functional properties. The specification of all these operations 
relies on the notion of pattern to describe subgraphs in an object base instance. 
GOOD presents other features like macros (for more succinct expression of fre-
quent operations), computational-completeness of the query language, and simula-
tion of object-oriented characteristics like encapsulation and inheritance.  

 

Fig. 1.7 GOOD queries 

Simple path can be exprimed by using pattern. Moreaver, GOOD are not 
adapted to find path with no fixed length. Fig.1.7 illustrates two examples of 
GOOD query: First query to find student and their supervisor the secand one to 
find student working on ontology topic. This language was followed by the pro-
posals GMOD (Andries et al. 1992), PaMaL (Gemis and Paredaens 1993) and 
GOAL (Hidders and Paredaens 1993). These languages use GOOD principal’s 
features and add some new functionality. 

1.2.2.2 SQL-like languages 
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SQL-like languages are declarative rule query languages that extend traditional 
SQL and propose new SQL-like operators for querying graphs and objects. 

a. Lorel 

Lorel (Abiteboul et al. 1997) is implemented as the query language of the Lore 
prototype database management system at Stanford (http://www-
db.stanford.edu/lore).  
It is used for the OEM (Object Exchange Model) data model (Fig.1.8). A database 
conforming to OEM can be thought as a graph where Object-IDs represent node-
labels and OEM-labels represent edge-labels. Atomic objects are leaf nodes where 
the OEM-value is the node value. Lorel allows expressing flexible path expres-
sions, which allow querying without precise knowledge of the structure. Path ex-
pressions are built from labels and wildcards (place-holders) using regular expres-
sions, allowing the user to specify rich patterns that are matched to actual paths in 
the graph database.  Lorel also includes a declarative update language. 
 

 
Fig. 1.8 Object Exchange Model (OEM). Schema and instance are mixed. 

b. GraphDB 

Guting (Güting 1994) proposes an explicit model named GraphDB, which al-
lows simple modeling of graphs in an object oriented environment. A database in 
GraphDB is a collection of object classes where objects are composed of identity 
and tuple structure; attributes may be data or object-valued.  There are three dif-
ferent kinds of object classes called simple classes, link classes, and path classes. 
Simple objects are just objects, but also play the role of nodes in the database 
graph. Link objects are objects with additional distinguished references to source 
and target simple objects. Path objects are objects with an additional list of refer-
ences to simple and link objects that form a path over the database graph. 
GraphDB uses graph algorithms in order to implement graph operations. Shortest 
path and cycle both were implemented using the A* algorithm. Moreover, nodes, 
paths and subgraphs are indexed using path classes and index structures like B-
Tree and LSD-Tree. GraphDB allows aggregation by using aggregate functions. 
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c. GOQL 

GOQL (Sheng et al. 1999) is an extension of OQL enriched with constructs to 
create, manipulate and query objects of type graph, path and edge. GOQL is ap-
plied to graph database that use an object oriented data model. In this data model, 
they define similar to GraphDB a special type: node type, edge type, path type and 
graph type. GOQL is capable to query sequences and paths. In addition to the 
OQL sequence operators, GOQL uses the temporal operators next, until and con-
nected for queries involving the relative ordering of sequence elements. For 
processing, GOQL queries are translated into an operator-based language, O-
Algebra, extended with new operators. O-Algebra is an object algebra designed 
for processing object-oriented database (OODB) queries. To deal with GOQL‘s 
extension for path and sequence expressions, O-Algebra is extended with three 
temporal operators, corresponding to the temporal operators Next, Connected, and 
Until. 

d. SOQL 

      SoQL (SOcial networks Query Language), (Ronen and Shmueli 2009) is an 
SQL-like language for querying and creating data in social networks. SoQL 
enables the user to retrieve paths to other participants in the network, and use a re-
trieved path in order to attempt to create a connection with the participant at the 
end of the path.  The main element of a SoQL query is either a path or a group, 
with subpaths, subgoups and paths within a group defined in the query. Creation 
of new data is also based on the path and group structures. Indeed, SoQL presents 
four new operators: 

-SELECT FROM PATH query which retrieves paths between network partici-
pants, starting at a specific node and satisfying conditions in the path predicates. 

- SELECT FROM GROUP query which retrieves groups of participant that sa-
tisfy conditions as a set of nodes. 

-The CONNECT USING PATH and CONNECT GROUP commands are pre-
sented. These commands automate the process of creating connections between 
participants. 

The language uses Operators which specify conditions on a path or a group. It 
proposes also aggregation functionalities, as well as existential and universal 
quantifiers on nodes and edges in a path or a group, and on paths within a defined 
group. 

e. GraphQL 

    GraphQL (He and Sindh 2008) is a graph query language for graphs with arbi-
trary attributes and sizes. In GraphQL, graphs are the basic unit of information. 
Then, each operator takes one or more collections of graphs as input and generates 
a collection of graphs as output. It is based on graph algebra and the FLWR (For, 
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Let, Where, and Return) expressions used in Xquery (see next section). In the 
graph algebra, the selection operator is generalized to graph pattern matching and 
a composition operator is introduced for rewriting matched graphs using the idea 
of neighborhood subgraphs and profiles, refinement of the overall search space, 
and optimization of the search order. 
 
1.2.2.3 Formal languages 

a. LDM 

The Logical Database Model (Kuper and Vardi 1993)   presents a logic very 
much in the spirit of relational tuple calculus, which uses fixed sort variables and 
atomic formulas to represent queries over a schema using the power of full first 
order languages.  Fig1.9 presents the LDM schema and instances. 

 

Fig.1. 9 Logical Data Model, The schema (on the left) and part of instances (on the right) 

The result of a query is another LDM schema called query schema which con-
sists of those objects over a valid instance that satisfy the query formula. In addi-
tion the model presents an alternative algebraic query language proven to be 
equivalent to the logical one. 

b. Gram 

Gram (Amann and Scholl 1992) is an algebraic language based on regular ex-
pression and supporting a restricted form of recursion.  

 
Fig.1. 10 Gram Data Model, the schema (on the left) and the instances (on the right) 
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Fig.1.10 shows the data model used by Gram. Regular expressions over data 
types are used to select walks (paths) in a graph. It uses a data model where walks 
are the basic objects. A walk expression is a regular expression without union, 
whose language contains only alternating sequences of node and edge types, start-
ing and ending with a node type. The query language is based on hyperwalk alge-
bra with operations closed under the set of hyperwalks.  
This hyperwalk facilitates the query of paths and to find adjacent node and edge. 
A Gram query example is presented on Fig.1.11.  

 

 
Fig.1. 11 Gram query to find student and their supervisors  

c. G-Log 

G-Log (Paredaens et al. 1995) is a declarative, nondeterministic complete lan-
guage for complex objects with identity.  

 

 
Fig.1. 12 G-Log Data Model: The schema (on the left) and the instances (on the right) 

 
The data model of G-Log is (up to some minor details) the same as that of 

GOOD (Fig.1.12). The main difference between G-Log and GOOD is that the 
former is a declarative language, and that the latter is imperative.  In G-Log, the 
basic entity of a program is a rule. Rules in G-Log are graph-based and are built 
up from colored patterns. A G-Log program is defined as a sequence of sets of G-
Log rules.  

d. HNQL 

HyperNode Query Language (HNQL) is a query and update language for the 
hypernode model (Levene and Loizou 1995). HNQL consists of a basic set of op-
erators for declarative querying and updating of hypernodes. In addition to the 
standard deterministic operators, HNQL provides several non-deterministic opera-
tors, which arbitrarily choose a member from a set.  HNQL is further extended in 
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a procedural style by adding to the said set of operators an assignment construct, a 
sequential composition construct, a conditional construct for making inferences 
and, finally, loop and while loop constructs for providing iteration (or equivalently 
recursion) facilities. 

1.2.2.4 Semantic languages 

A semantic query language is a query language which is defined for querying a 
semantic data model. 

 

 
 

Fig. 1.13 Ontology describing the graph (Left) and the Pattern to extract students working on 
same topic (Right) 

 
The semantic query language presented in (Kalpan, 2006) provides a founda-

tion for extracting information from the semantic graph where the possible struc-
ture of the graph is described by ontology (Fig1.13) that defines the vertex types, 
the edge types and how edges may interconnect vertices to form a directed graph. 
It uses a query with a specific format containing function which specifies patterns 
and conditions for matching graphs in the database. Fig1.13 shows an example of 
pattern used by kalpan query language. 

1.2.2.5 Discussion 

Querying social networks turns out to be a non-trivial task due to the intrinsic 
complexity of the networked data.  Also these kinds of querying focus on special 
type of information. Moreover, information needs from a community or a social 
network are diverse and can be categorized in two types: (1) values or measures 
like the centrality, diameter, etc; (2) information about attributes relations and data 
management on social networks. In this section, we present a comparison of the 
previous graph database languages and we discuss if they are well adapted to 
query a social network.  The existing graph query languages cannot extract all the 
characteristics of a social network even those designed for social networks 
(e.g.SoQL). We resume the main characteristics of the previous languages on the 
following tables (Table 1.2 and Table 1.3).  We put (+) where the language pro-
poses an explicit definition for the characteristics, (-) if not and (+/-) where it try 
to define it indirectly.  
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Table 1.2 Graph query languages-1- 

 G 

 

G+ Graph-
Log 

Hyperlog QGraph GOOD Kalpan HNQL 

Basic Unit nodes/ 

edges 

nodes/ 

edges 

Hypernode nodes/ 

edges 

nodes/ 

edges 

nodes/ 

edges 

Hypernode 

Data Model graph graph Hypernode graph GOOD Semantic 
graph 

Hypernode 

Language style Graphical Graphical Graphical Graphical Graphical semantic formal 

Pattern + + Rules + + + - 

Update query + + + + + - + 

Implementation + + + - + - + 

Path +/- + +/- +/- +/- + +/- 

Neighborhood - + +/- - +/- + +/- 

Diameter - + - - - - - 

Distance  

between  nodes 

- + - - - - - 

 
These two tables show that: 

•  Many query languages use pattern to facilitate the information search process 
especially graphical languages like Good, Qgraph, G, etc. 

•   Almost languages provide operator or techniques to find path. Nevertheless, 
graphical languages do not determine path by direct operation.  

•  The neighborhood characteristic is not well processed by existing languages.  
•  Graph characteristics based on calculation like diameter or distances between 

nodes are only treated by G+ and GraphLog. 

In practice, users prefer graphical languages because they are easy to use. 
Moreover, graphical query languages for graph model lack of operation to obtain 
information about communities. Languages designed for social network like 
SOQL are based on SQL and can be applied only on simple graphs. 

Table 1.3 Graph query languages-2- 

 Lorel GOQL SOQL GraphDB GraphQL LDM Gram   G-Log 

Basic Unit Object nodes/ 

edges 

Group/ 

path 

nodes/ 

edges 

graph tuple nodes/ 

edges 

nodes/ 

edges 

Data Model OEM graph graph graph graph LDM  Gram G-Log 

Query style SQL-
like 

SQL-
like 

SQL-like SQL-like SQL-like formal formal formal 

Pattern - - + + + - - + 
Update query + - + + - - - - 
Implementation + + + + - - + - 
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Path + + + + + - + +/- 
Neighborhood +/- +/- +/- +/- + - +/- +/- 
Diameter - - +/- - - - - - 
Distance  between 
nodes 

+/- - + - - - - - 

1.3Related Data Model 

1.3.1 RDF query languages 

RDF (Miller et al., 2004) is a knowledge representation language dedicated to the 
annotation of documents and more generally of resources within the framework of 
the Semantic Web. By definition, an RDF graph (Klyne et al., 2004) is a set of 
RDF triples. An RDF triple is a triple (s, p, o)∈  (I ∪  B)×  I ×  (I ∪ B ∪  L) where 
I, B, and L are sets that represent (IRIs), Blank nodes, and Literals, respectively). 
In this triple, s is the subject, p the predicate, and o the object. 
RDF models information with graph-like structure, where basic notions of graph 
theory like node, edge, path, neighborhood, connectivity, distance, degree, and so 
on play a central role. RDF has been used for presenting communities and social 
network (e.g FOAF1, RELATIONSHIP2, etc). RDF can be a good support to mod-
el social network although its query languages do not offer an efficient support to 
query this kind of data. Indeed, several languages for querying RDF documents 
have been proposed, some in the tradition of database query languages (i.e. SQL, 
OQL): RQL (Karvounarakis et al, 2002), SeRQL (Broekstra et al, 2003), RDQL 
(Seaborne, 2004) SPARQL (Perez et al, 2006). Others more closely inspired by 
rule languages: Triple (Sintek et al, 2002), Versa3, N3 and RxPath4. The currently 
available query languages for RDF support a wide variety of operations. However, 
several important features are not well supported, or even not supported at all.  
RDF query languages support only querying for patterns of paths which are li-
mited in length and form. Nevertheless, RDF allows representing irregular and in-
complete information (e.g the use of blank node). From the original approach just 
Versa and SeRQL provide built in means for dealing with incomplete information. 
For example, the SeRQL language provides so-called optional path expressions 

                                                           
1 http://www.foaf-project.org/ 
 

2 http://vocab.org/relationship/.html 

3 http://wiki.xml3k.org/Versa 
4 http://rx4rdf.liminalzone.org/ RxPathSpec 
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(denoted by square brackets) to match paths whose presence is irregular. Usually, 
such optional path expressions can be simulated, if a language provides set union 
and negation. Others works on RDF query languages try to extend the original 
languages to improve path expressiveness.  For example in (Alkhateeb et al, 
2009), they allow to query an RDF knowledge base using graph patterns whose 
predicates are regular expressions. In RDF Path5, N3 and Graph Path6, they try to 
use specifications similar to those in XPATH to query paths in RDF.  Moreover, 
RDF query languages are not well adapted to query path with unknown length or 
including multiples propriety on RDF graph. Neighborhoods retrieving cannot be 
well done for languages that do not have a union operator.   Many of the existing 
proposals support very little functionality for grouping and aggregation. Moreo-
ver, Aggregated functions like COUNT, MIN, MAX applied to paths could be 
used to answer queries in order to analyze data (like the degree of a node, the dis-
tance between nodes, and the diameter of a graph). We can find exceptions in Ver-
sa, RQL and N3which support count functionality Aggregation in path and nodes 
are not explicitly treated by any languages which need to be considered as a re-
quirement  

1.3.2 XML query languages 

The Extensible Markup Language (XML) is a subset of SGML. XML data are 
labeled ordered trees (with labels on nodes), where internal nodes define the struc-
ture and leaves the data (scheme and data are mixed.). XML additionally provides 
a referencing mechanism among elements that allows simulating arbitrary graphs. 
In this sense XML can simulate semi-structured data. Also, many new extension 
of XML are designed to represent graphs like GML, GraphML, XGML and etc. 

Current query languages (Bonifati et al, 2000) for XML do not support the ma-
jority features for graph-structured XML document. The principal feature sup-
ported is path. For example, XPath7 uses path expressions to select nodes or node-
sets in an XML document. Also, the set of axes defined in XPath is clearly de-
signed to allow the set of graph traversal operations that are seen to be atomic in 
XML document trees. An XPath axis is fundamentally a mapping from nodes to 
nodesets and defines a way of traversing the underlying graph. Each axis encapsu-
lates two things: a type of edge to follow (eg. child vs. attribute) and whether to 
follow it transitively (e.g. child vs. descendant). Also, XQuery8 uses XPath to ex-
press complex path and supports flexible query semantics.  In XML-QL (Deutsch  
et al,1999), path expressions are admitted within the tag specification and they 
permit the alternation, concatenation and Kleene-star operators, similar to those 
used in regular expressions.  In XML-GL (Ceri et al, 1999), the only path expres-
                                                           
5 http://infomesh.net/2003/rdfpath 
6 http://www.langdale.com.au/GraphPath/ 
7 http://www.w3.org/TR/xpath 

8 http://www.w3.org/TR/xquery/ 
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sions supported are arbitrary containment, by means of a wildcard* as edge label; 
this allows traversing the XML-GL graph reaching an element at any level of 
depth. However, Current query languages for XML are designed for tree-
structured XML data and do not support the matching of schema in form of gener-
al graph. Even though XPath can express a node with multiple parents by multiple 
constraints with axis “parent", it cannot express a graph with cycles. While XML 
won't allow multiple parents, there's nothing in XQuery (or in particular, XPath) 
which precludes a traversal from parent to child to a different parent. This insuffi-
ciency does not allow the presentation and the query of all kind of graphs specially 
those on social network.  

1.4 Social network Extraction from relational database using a 
graph database 

Social Network is an explicit representation of relationships between people, 
groups, organizations, computers or other entities and it is modeled by a graph 
(see section 1.2.1.3). There are many ways to obtain a Social Network. The ap-
proaches presented in the literature for Social Network extraction use a specific 
type of data source to extract people and relations among them (Kirchhoff et al. 
2008). Most of these data sources come from the Web. However, some problems 
related to the extraction of Social Network from various information sources 
available on the World Wide Web still remains. First, a general problem is the 
identification of people because of different naming standards or same names as-
signed to different persons. The social context and the type of social interactions 
among people within these information sources need to be carefully analyzed in 
order to obtain a meaningful understanding of the underlying Social Network 
structure. Moreover, data from the web are often not well reliable because anyone 
can add information; also in some case we cannot easily collect information from 
the web due to privacy issues. 

Nevertheless, in the context of business, important expertise information about 
people is not stored on the Web. Such information is stored in files, databases and 
especially relational databases. Relational database is a rich source of data, but it 
is not well adapted to store and manipulate social network data. Indeed, the rela-
tional model was directed to simple record-type data with a structure known in 
advance. The schema is fixed and extensibility is a difficult task. Thus, they might 
require very sophisticated and expensive operations, such as renormalization, re-
indexing etc., which may not be performed automatically. Schema renormalization 
in such cases is neither desirable nor easy to do.  The standard query and trans-
formation language for the relational database is SQL which does not support 
paths, neighborhoods and queries that address connectivity (an exception is transi-
tivity). These graph features will facilitate the application of social network analy-
sis algorithm. Also, it will allow to response queries such as who owns the infor-
mation, who has the leadership, who is an expert in a particular domain and etc. 
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Such information is very important for business applications. Then, enterprises 
need to extract their Social Network from the existing relational database to store, 
update and retrieve information in a simple way as graphs. On the other hand, ex-
tracting social network from relational database is not just a translation of rela-
tional database into a simple graph structure. The resulting Social Network should 
contain detailed information about people and their relations.  As we have shown 
in the previous section Graph database can be a good representation for social 
networks and facilitate its querying. There are many approaches that transform re-
lational databases to other structure having graph-like features like RDF, XML or 
even ontology, but not into a graph databases.  Then, in this section, we will 
present our approach to transform a relational database to a social network using a 
graph database. 

1.5.1 Converting relational database into hypernode database 

Having a graph database instead of relational database will provide a more 
clear view of existents entities in the initial database. Indeed, all these entities will 
be presented on the form of nodes and the relations between them will be outlined 
which facilitate in further steps the selection of the desired entities. Also, nodes in 
graph database can encapsulate all the attribute of entities in the same node and 
give us a simple graph of entities. From this graph of entities, a social network can 
be extracted. Using the comparison between existing graph database models (Ta-
ble1.1), we have chosen to work with the hypernode model (Levene and Loizou 
1995)because the hypernode database with its nested graphs can provide an effi-
cient support to represent every real-world object as a separated database entity. 

The relational database transformation into a graph database includes schema 
translation and data conversion (Maatuk et al. 2008). The schema translation can 
turn the source schema into the target schema by applying a set of mapping rules. 
In our work, we propose a translation process which directly transforms the rela-
tional schema into a hypernode schema. Data Conversion process of converts data 
from the source to the target database based on the translated schema. Data stored 
as tuples (Rows) in relational database are converted into nodes and edges in 
graph database. This involves unloading and restructuring relational data, and then 
reloading them into a target database in order to populate the schema generated 
during the translation process. In what follows, we will detail these two steps. 

 1.4.1.1 Schema Translation 

The first step consists in extracting the relational database schema using the 
schema metadata of the relational database management system (information 
about tables and columns) which is extracted using SQL queries. The idea is to 
identify the primary key, composite key(s) and foreign key(s) of each relation. 
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This information is then used to design the new schema (hypernodes and relations 
within and between them). This process is performed by the following steps. 

Step1: Relational schema extraction. In this step, information from the relational 
database is extracted using SQL queries. In our approach a relational schema is 

represented as a set of relations (tables) ={ }FpKATR ,n ,,r : TR\ = , where: 

•  rn denotes the name of TR. 
•  A denotes a set of attributes of TR and gives information about each attribute 

integrity constraints, A :={ a\a :=<an, t, ce, cp, n, d>}, where an is an attribute 
name, t is its type, ce mentions if a is a foreign key or not, cp mentions if a is a 
primary key or not, n mentions if a can be null or not and d is a default value if 
one is available. 

•  Kp,F  denotes a set of key of TR and gives information about each Key integrity 
constraints, Kp,F  :={ β | β  := <kr, ce, cp, re ,fa}>}, where: β represents a key 

(an attribute which can be a key or a part of a composed key), kr is the name of 
a key attribute, ce indicates if  β  is a foreign key or not, cp indicates if  β  is 

a primary key or not, re is the relation that contains the exported primary key, 
fa is the attribute name of the foreign key. 

 

 

Fig. 1.14 Relational database schema (primary key is underlined and foreign key is marked by “#” 

This schema provides an image of metadata obtained from an existing relational 
database and provides more information than a traditional schema. Indeed, it gives 
information about primary and foreign keys to facilitate relations extraction in fur-
ther steps. For example for the Table “Thesis” (database in Fig.1.14), the relation 
Thesis (th_id, Th_name, Topic) was extracted. Once the schema is extracted, we 
can generate the corresponding hypernode schema (step 2). 

Step 2: Mapping the relational schema to the hypernode schema. We use on 
this step a hypernode schema which is an extension of the original one. 

A hypernode is defined (Levene and Loizou 1995)by H = (N, E), where N is a 
finite set of nodes containing primitive nodes and further hypernodes, and E is a 
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set of edges between members of N, Such that N ⊆  A ∪  L (where A is the set of 
atomic values and L the set of labels) and E ⊆  (N × N).  

A Hypernode database (HD) is a finite set of hypernodes which satisfies these 
following conditions: 

(1) The hypernode label is unique in HD. 
(2) ∀ H a label in the label set of HD, HDh⊂∃  whose defining label is H.  

 The Hypernode model does not use labeled edges, the task of representing rela-
tions (and their names) can be attained by encapsulating edges, that represent the 
same relation (same label edges), within one hypernode labeled with the relation-
name.  However, the traditional presentation of social network is labeled node at-
tached with explicit labeled edge. Then, we extend the HD to LHD (Labeled 
hypernode database) by adding explicit labels to edges.  LHD= HS∪ ES, where: 

(1) HS is a finite set of hypernode.  
(2) ES is a set of edge where ES ⊆  (HS ×  HS) and ∀  e ∈  ES, e has a label. 

   In this step, we use a hypernode database schema composed by the union of two 
sets:  { } { }dshn h,hr,:R\ ,h : H\ =∪= hRNhH  

The first one is the set of hypernodes where: 

•  hn denotes the name of H 
•  Nh denotes a set of nodes Nh :={ n\n :=<nn, t, ce, cp>} where nn is the node 

name, t is the type, ce mentions if the nodes contains a foreign key (in the 
relational schema n is a foreign key) and cp mentions if the nodes contains 
a primary key. 

The second one is the set of relations where: 

•  r denotes the name of R 
•  hs denotes  the hypernode source name 
•  hd denotes  the hypernode destination name 

To extract this schema, we start by identifying the hypernodes then their relations.  

Hypernode identification. Using the relational schema, we create from each table t 
∈ TR a new hyprnode h. h owns the same characteristics of t: same name and 
attributes. Indeed, each attribute a from the table TR is transformed into a node n 
in h where n contains all the characteristics of a (name, type, etc).  If the attribute 
is a foreign key, its type is changed to be the name of the exported relation.  

Relation identification.  In order to identify the relations between the identified 
hypernodes, the nodes set Nh of each hypernode h is analyzed. For each node, we 
verify if it contains a foreign key in order to search existent dependency with other 
hypernodes. We have identified four relation types: 

•  “IS-A”  relation: if h has only one node npf and no more, that contains a key 
which is primary (a simple one) and foreign key, then h shares the relation 
“IS-A” with the hypernode mentioned in the npf type; e.g. the hypernode 
“Foreign_Student” contains the node “ST_id” which is a primary key and a 
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foreign key, then “Foreign_Student” shares the relation “IS-A” with “Stu-
dent.” 

•   “Part_of ” relation : if h has more than one node  npf  that contains a key 
which is primary and foreign key, then h shares a Part-of relation with each 
hypernode mentioned  in the npf type. e.g. “Student” and “Thesis” are “Part-
of” the hypernode “Thesis_hasStudent” because “Thesis_hasStudent” con-
tains the nodes “St-id” with type “Student” and “Th-id” with type “Thesis”. 

•  R relation:  this kind of relation is a particular case of the “Part_of”  rela-
tion. When the hypernode is composed only with nodes which contain a 
key which is primary and foreign key, then we delete this hypernode and 
we use its name to build relations between the hypernodes mentioned in the 
npf type. e.g. the hypernode “Thesis_hasLab”  is deleted and is transformed 
into a relation between “Thesis” and “Laboratory”. 

•  “”  relation: if h contains a node which contains a foreign key, h has a rela-
tion with the hypernode mentioned in the type of the node. In this case, we 
are not able to give a name to this relation. 

Considering the initial database, Fig 1.15 shows the resulting Hypernode schema.   

 

Fig.1.15 Hypernode database schema 

1.4.1.2 Data conversion 

In order to instantiated the hypernode database schema already identified, Data 
conversion is performed in three steps. First, the relational database Table’ tuples 
are extracted. Second, these data are converted to match the target format. Then, 
for each hypernode in the hypernode database, a set of instances hypernode HI is 
extracted from the relational tuples.  

The set of instances hypernode HI is defined by HI  = { }hiii NH ,hh, : H\ i= where:
 

•  Hi denotes the instance hypernode  
•  h denotes the hypernode source name. 
•  hi denotes the name of Hi. 
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•  Nhi denotes a set of nodes Nhi :={ n\ni :=< nn, t, val>} where nn is the node 
name, t is the type, and val mentions the node value. 

 

 

Fig.  1. 16 Part of the Hypernode database instance 

For each relation in the LHD, a set of instance relations RI is extracted using 
the value of keys on the relational tables.  RI is defined by RI:={ r i\ri :=< r, his, hid 
>} where:    

•  r denotes the relation which is intanciated by ri. 
•  his denotes  the hypernode instance source. 
•  hid denotes  the hypernode instance destination.  

Finally, transformed data are loaded into the LHD schema. An excerpt of the 
HD is shown in Fig.1.16. 

1.5.2 Social network extraction 

Using the result Hypernode database from the previous step, the social network 
is extracted. This phase passes through two steps: (1) Entities (people) identifica-
tion and (2) Detection of relations among people. 
The social network is defined by: SN = (ESN, RSN) where: 
•  ESN is a finite set of entity such ESN :={ e\ e ∈ HI, e :=< h, en, Ne>} where h is 
the hypernode which represents e, en is e’s name and Ne is the set of e’s node. 
•  RSN is a finite set of the relations between entities such RSN= {r sn\ rsn:=<n,e1, 
e2>}where n is the relation name, e1 and e2 ∈  ESN. 

In what fallows, we will describe the two step of the social network extraction. 
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1.4.2.1 Entities identification 

Entities identification is the process to identify hypernodes that contain entities 
which compose the social network.  In this step, we describe the process to identi-
fy people. The hypernode database schema is used to extract candidate hypernodes 
(hypernodes which may be contain persons). Then, the hypernodes instances are 
used to deeply analyze the candidate hypernodes and detect those containing 
people. 
Candidate hypernodes detection. A person has a number of characteristics like 
name, surname, birthday, address, email, etc. Some of these characteristics are 
used when designing databases containing persons. We collect these characteris-
tics from various ontologies such FOAF ontology and person ontology (schema-
Web9) and we manually build a person ontology (PO) containing all these charac-
teristics and their synonyms (collected from WordNet). Using the person 
ontology, the set of nodes related to each hypernode in the LHD is analyzed. 

•  If the node’s name is one of the PO concepts, the number of characteristics for 
this hypernode is incremented. 
•  If the number of characteristics for the hypernode >=1 and one of them con-
tains a name, the hypernode h is a candidate to contain persons.  

Candidate hypernodes Analysis. Each candidate hypernode has a set of instance 
hypernodes hi. In order to analyze the name found in each instances hypernode 
(we take just the 10 first entities), the name is send to the web search engine (Bing 

API). The top 10 returned documents is downloaded and parsed using DOM10. 
Each document is analyzed using the NER (Named entity Recognition) proposed 

by Stanford11 and which put three kinds of tags (Person, location or organization). 
We give for each document a rank rd. If the name is tagged in the document by 
Person, the document is ranked by rd=1 else rd=0. The average assigned to the 
name found in the hypernode instance hi (avghi) counts how many times is consi-
dered as a person name in the documents (where the tag of this name is Person) 
avghi=

documentsnumber

rd

_
∑

         (1.1)     
The average assigned to the hypernode (avgH) calculates the average where the 
names found in its hypernode instances are considered as a person name:                                 
avgH=     

hinumber

avghi

_
∑                    (1.2)                                                    

In order to identify persons, we use the NER proposed by standford: in which 
precision is in the average of 90%to find Person entities; so, a hypernode is consi-
dered as representative of a person if more than 60% of its instances contains a 
person name (we take only 60% as a threshold due to problems such as wrong 
written name use of abbreviations, etc. which decrease the precision of NER). 

                                                           
9 http://ebiquity.umbc.edu/ontology/person.owl 

10 http://www.w3.org/DOM/ 

11 http://nlp.stanford.edu/ner/index.shtml 



25 

 1.4.2.2 Building relations 

 After the identification of the entities set ESN, we use the existent relations in the 
hypernode database (the relations which share ESN elements with other hyper-
nodes or among them) to find the set of relations RSN. 

In order to facilitate this step, we have designed a set of patterns to apply this 
kind of transformation to all the relation on the hypernode database. The pattern 
will enumerate all the existent relations between persons only by using the hyper-
node database schema. After the relation pattern identification, we will search the 
correspondent relations on the instances database. 
A pattern relation Pr is defined by Pr=<nPr, hp1, hp2, hin> such as nPr is the name 
of the relation, hp1 and hp2 the hypernodes which share the relation hypernodes 
which represent people), hin a mediator for this relation (the hypernode used to 
identify the relation). 
For each relation Rh ∈ set of LHD relations, we check these conditions: 
1. If Rh:=<”IS-A”,h s,hd> where hs or hd ∈  ESN then hs or  hd is added to ESN. 

The relation “IS-A” allows to find hidden entities which are not identified in 
the previous step. In the relation construction process, we start by analyzing 
this kind of relation to find in the next steps the relations related to the new 
discovered entity. 

2. If Rh:=<r,h s, hd>  where hs and hd ∈  ESN then two patterns are identified: 
2.1 Pr1:=<r, his, hid,null>, if two entities (hs and hd) are already connected in the 

LHD, we will search if their instances (his and hid )are connected, too. 
2.2 Pr2:=<Same_hd.name, hpi,hpj, hd >  where hpi= his , hpj= his  and i!=j. Pr2 

represents the relations between the instances of hs which can be connected 
with  the same instance of hd. 

3. If Rh:=<r h s,hd> where hs ∈ ESN and hd ∉ ESN then: 
3.1 If r != “Part-of” then pattern Pr3 is extracted :Pr3:=<Same_hd.name, hpi,hpj, 

hd >  where hpi= his , hpj= his  and i!=j. we search the hs instances which are 
connected with the same instance of hd. 

3.2 If r = “Part-of” then the hypernodes which are “Part-of” hd are researched: 
Firstly, for each hj ∈ {h\h has the relation Rh:=<”Part-of”, hj, hd>}, a new 
node is added to  hs containing the name of hj then the pattern Pr4 is ex-
tracted. Pr4:=<Same_hj.name, hp1,hp2, hj > where hp1= hs , hp2= hs. Pr4 
represents the relations between the instances of hs that share the same value 
of hj. 

4. If Rh:=<r h s,hd> where hs ∉ ESN and hd ∈ ESN then : 
4.1 a new node on hs containing the name of hd is added. 
4.2 if hs has relations with other entities then for each detected relations, a 

pattern Pr5 is extracted as Pr5:=<Same_hs.name,hp1,hpj, hd > where 
hp1=hd and hpj ∈ {e\e has relation with hs}. 

By applying these patterns to our example, we can detect the relations between the 
detected entities Student and Director_thesis:  
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-From the relation, Rh=<”IS-A”, Foreign-Student, Student>, we detect a new enti-
ty “Foreign-Student” which is added to the set of entities ESN. 
-From the relation Rh1:=<””,Student, Director_thesis >, we identify two patterns : 
- Pr1:<””,Student, Director_thesis, null>: Student and   Director_thesis share the 
relation R:=<””,Student, Director_thesis >  then each Student and   Director_thesis 
instance can have these relations if they have the same id_Dir value (Fig.1.17). 
 

 

Fig 1.17 Instance of the relation between Student and Director_thesis 

- Pr2:=<Same_ Director_thesis, Studenti, Studentj, Director_thesis >: two stu-
dents may have the same Director_thesis (same value of Dir-id ) (Fig1.16). 
 

 

Fig1.16 Relation among Student instances 

-From the relation Rh2:=<””, Director_thesis, Laboratory>, we identify the pattern:  
-Pr3:=<Same_Laboratory,Director_thesisi, Director_thesisj, Laboratory >: using 

the value of the foreign key  Lab_id in each hyeprnode instance of the entity Di-
rector_thesis, we will link those having the same value of Lab_id by the relation  
Same_Laboratory. (Fig1.17) 

 

Fig1. 17 Relation between Director_thesis instances 

-From the relation Rh3:=<”Part-of”,Student, thesis_hasStudent>  
- Thesis_hasStudent shares two relations “Part-of” with Student and Thesis. We 

add a new node on the hypernode Student n:<Thesis, Thesis_i>, corresponding to 
his Thesis. Then, we can apply the pattern Pr4 (Fig1.18). 

 

 

Fig1.18 Adding the node thesis on the Student hypernode 
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-Pr4:=<Same_Thesis, Studenti, Studentj, Thesis_hasStudent >, by this pattern 
we search all the student which shares the same thesis (not found in our data). 
-From the relation Rh4:=<””, Thesis, Director_thesis >, there are no identified pat-
tern because  Thesis  is not related to other entities 
After identifying relations and entities, the final social network is obtained by ap-
plying all the previous detection (people and their relations) and giving as tag for 
each hypernode his type and the name of the corresponding person (see Fig.1.19) 
 

 

Fig.1.19 Corresponding Social Network 

   

1.5.3Implementation and evaluation 

In order to demonstrate the effectiveness and the validity of the proposed ap-
proach, a prototype has been developed. The prototype was implemented using 
Java and PostgreSQL. We have visualized the output database and the social net-
work using SNA12 (Fig1.20).  
The Hypernode database will be stored in an adapted database management sys-
tem which also allows the storage of voluminous complex graphs.  
We experimented (for more details see (Soussi et al, 2010)) the process using the 
data of a database containing information about PhD students (Administrative and 
technical information) and also information about actors surrounding them. This 
database contains 1788 students (+ 80 students per year). To evaluate scalability 
and performance of our method for converting relational database into hypernode 
database, a set of SQL queries has been designed to observe any differences be-
tween the source relational database and the hypernode database. After comparing 

                                                           
12 http://www.sapweb20.com/blog/2009/03/sap-enterprise-social-networking-prototype/ 
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the results between the two databases, the hypernode schema is generated without 
loss or redundancy of data. This proves the correctness of this conversion.  

We have used the same method to evaluate the transformation into a social 
network. For each entity e :=<h,en, Ne>  , we verify that: (1) the same attributes 
appear in the relational database and in the social network, and (2) we find the 
same relations. For example, in order to verify entity’s attributes: Select * from 
h.name where n0.name=n0.val; (n0 is the first node on the e’s node set, and is 
usually corresponding to the primary key or a part of the primary key on the rela-
tional database). For example for the entity “Student_Mohsen_Ali”, the corres-
pondent query used: Select * from Student where St_id=03; 
The results obtained from these queries shows the correctness of the transforma-
tion approach. Our approach can transform a relational database into a graph from 
a social network perspective without lost of information.  

 

 

Fig. 1. 20 SNA visualization 

Conclusion 

In this chapter, we have presented the main graph database models and the as-
sociated graph query languages.  Graph database models can model communities 
(social networks) and their activities even they are complex and dynamic (using 
model based on complex node). Even, Graph query languages are the most suited 
query languages to query communities (e.g. better than RDF query languages) but  
they are not well adapted to extract information about communities because they 
do not use social network analyze methods or most of them do not offer tech-
niques to extract information about path and neighborhood. We have also pre-
sented a social network extraction method from relational database which is based 
on (1) a transformation of the relational database into a hypernode database and 
(2) a social network extraction from the hypernode database.  In our future work, 
we will focus on how to improve the extraction method by the use of ontologies 
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describing the relations between entities in the relational database. Then, we will 
try to define a storage system based on the hypernode model and a graph query 
language more adapted to the social network structure. We will also work on ge-
neric transformation rules according to different users’ point of view and graphs 
merging. 
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