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Data manipulated in an enterprise context are structured data as well as unstructured data such as emails, documents, social networks, etc. Graphs are a natural way of representing and modeling such data in a unified manner (Structured, semi-structured and unstructured ones). The main advantage of such a structure relies in the dynamic aspect and the capability to represent relations, even multiple ones, between objects. Recent database research work shows a growing interest in the definition of graph models and languages to allow a natural way of handling data appearing. In this chapter, we give a survey of the main graph database models and the associated graph query languages. We then present an application using a graph database to extract social networks. 1.5.3Implementation and evaluation .

Introduction

We have now entered the knowledge era, where people work in a collaborative way and manipulate structured as well as unstructured data. More and more information about communications among people are available. This mass of information should be used in companies to optimize the business process, for example using information about people to constitute the best team for a particular project. These tremendous amounts of data need storage and analysis. This data can resides in multiple locations and may change over time. Moreover, the data sources do not have a unified schema or their schemas cannot be controlled. Current representation and storage systems are not very flexible in dealing with dynamic changes and are not very efficient to manipulate complex data. Besides, data manipulation systems cannot easily work with structural or relational data.

Graphs are a powerful representation formalism for both structured and unstructured data, and can be seen as a unified data representation. Data in multiple domains can be naturally modeled as graphs like Semantic Web [START_REF] Shadbolt | The semantic web revisited[END_REF], images, social networks [START_REF] Xu | Using Social Networks to Organize Researcher Community[END_REF], bioinformatics, etc. Thus, recent database research shows a growth of interest in the definition of graph models and languages to allow a natural way of handling data appearing in these applications. Indeed, Graph database leads to a more natural modeling (graph structures) and offers a flexible support for dynamic data (Social network, web, etc...). It also facilitates data query using graph operations. Explicit graphs and graph operations allow a user to express a query at a very high level of abstraction. Queries about paths and shortest path between two nodes are performed efficiency with graph database techniques. In this chapter, we present the main graph database models and the associated graph query languages; we will also discuss two related models that do not fit properly as graph database models, but use graphs, for example, for navigation, for defining views, or as language representation. We discuss in each section the capacity of these models and query languages to present or to query communities data especially information found on social networks. Then we show an application using a graph database for modeling social networks.

Graph database: Models and query languages

1.2.1Brief overview of Graph database models

A graph database is defined [START_REF] Angles | Survey of graph database models[END_REF]) as a "database where the data structures for the schema and/or instances are modeled as a (labeled) (directed) graph, or generalizations of the graph data structure, where data manipulation is expressed by graph-oriented operations and type constructors, and has integrity constraints appropriate for the graph structure." More formally, a graph database schema is in the form of a graph G db = ) , , , (
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where: N is a set of nodes and E is a set of edges;ψ is an incidence function from E into N N × ;V is a set of labels and λ is a labeling function from E N ∪ into V . There is a variety of models for Graph database (for more details see [START_REF] Angles | Survey of graph database models[END_REF]. All these models have their formal foundation as variations of the basic mathematical definition of a graph. The structure used for modeling entities and relations influences the way to query and visualize data. In this section, we made a comparison between existing models to find the more suitable for storing and representing a Social Network. We will focus on the representation of entities and relations in these models. We present in what follows some models classified according to the data structure used to model entities and relations.

Models based on simple node

Data are represented in these models by a (directed or undirected) graph with simple nodes and edges. Most of these models (GOOD [START_REF] Gyssens | A graph-oriented object model for database enduser interfaces[END_REF], GMOD [START_REF] Andries | Concepts for Graph-Oriented Object Manipulation[END_REF]), etc.) represent both schema and instance database as a labeled directed graph. Moreover, LDM [START_REF] Kuper | The Logical Data Model[END_REF] represents the graph schema as a directed graph where leaves represent data and whose internal nodes represent connections among the data. LDM instances consist of twocolumn tables, one for each node of the schema. Entities, in these model, are represented by nodes labeled with type name and also with type value or object identifier (in the case of instance graph). Some models have nodes for explicit representation of tuples and sets (PaMaL [START_REF] Gemis | An object-oriented pattern matching language[END_REF], GDM (Hidders 2003)), and n-ary relations (GDM). Relations (attributes, relations between entities) are generally represented in these models by the mean of labeled edges. LDM and PaMaL use tuple nodes to describe a set of attributes which are used to define an entity. GOOD defines edges to distinguish between mono-valued (functional edge) and multi-valued attributes (nonfunctional edge). Nevertheless, these models do not allow the presentation of nested relations and are not very suited for modeling complex objects.

Models based on complex node

In these models, the basic structure of a graph (node and edge) and the presentation of entities and relations are based on hypernodes (and hypergraphs). Indeed, a hypernode is a directed graph in which nodes can themselves be graphs (or hypernodes). Hypernodes [START_REF] Levene | The hypernode model and its associated query language[END_REF]) can be used to represent simple (flat) and complex objects (hierarchical, composite, and cyclic) as well as mappings and records. A hypergaphs is a generalized notion of graph where the notion of edge is extended to hyper edge, which relates to an arbitrary set of nodes. The Hypernode Model [START_REF] Levene | A Graph-Based Data Model and its Ramifications[END_REF] and GGL [START_REF] Graves | Graph database systems for genomics[END_REF] emphasize the use of hypernodes for representing nested complex objects. GROOVY [START_REF] Levene | An object-oriented data model formalised through hypergraphs[END_REF] is centered on the use of hypergraphs. The hypernode model is characterized by using nested graphs at the schema and instance levels. GGL introduces, in addition to its support for hypernodes (called Master-nodes), the notion of Master-edge for encapsulation of paths. It uses hypernodes as an abstraction mechanism consisting in packaging other graphs as an encapsulated vertex, whereas the Hypernode model additionally uses hypernodes to represent other abstractions like complex objects and relations. Most models have explicit labels on edges. In the hypernode model and GROOVY, labeling can be attained by encapsulating edges, that represent the same relation, within one hypernode (or hyperedge) labeled with the relation name.

Discussion

The purpose of this graph database models reviewing of is to find the most suited one to model many complex data objects and their relationships, such as social networks. Social Network is an explicit representation of relationships between people, groups, organizations, computers or other entities [START_REF] Barnes | Class and committees in a Norwegian island parish[END_REF]. As other networks, it can be represented as a complex graph [START_REF] Xu | Using Social Networks to Organize Researcher Community[END_REF], G = (V, E), where V is the set of nodes representing people and E is the set of edges (V × V) meaning the different kind of relationships among people. Indeed, the social network structure can contain one or more types of relations, one or more types or levels of entities and many attributes over the entities. This structure is dynamic: growth of the volume, change on attributes and relations. Then, we have compared the previous graph database models using some characteristics related to social network: the ability to present dynamic and complex objects, nested and neighborhood relations and the ability to give a good visualization of social network. We resume the comparison on Table 1.1 where "+" indicates the graph model support, "-" indicates that the graph model doesn't support and "+/-" partial support. From this comparison, we have concluded that models based on hypernodes can be very appropriate to represent complex and dynamic object. Specially, the hypernode model with its nested graphs can provide an efficient support to represent every real-world object as a separated database entity. Moreover, models based on simple graph cannot be suitable for complex networks where entities have many attributes and multiple relations. 

GGL + + + + - GOOD - + - - + GMOD - + - - + PaMaL + + - + +/- GDM + + - - + LDM + + - - -

Graph database languages

A query language is a collection of operators or inference rules which can be applied to any valid instance of the model data structure types, following the objective of manipulating and querying data in those structures in any desired combination [START_REF] Codd | Data models in database management[END_REF]. In this section, we review some proposals for graph database query languages found in the literature. We concentrate this study on visual, semantic, SQL-like and Formal query languages. andcorresponding graph) For each category, we will run some queries using the following example about a PhD student database as shown in Fig. 1.1. We will show how these graph database languages support graph features (path, neighborhood, etc.).

Visual query languages

Visual query languages aim at providing the functionality of textual query languages to users who are not technical database experts, and also to improve the productivity of expert database users. In general, these languages allow users to draw a query as a graph pattern with the help of a graphical interface. The result is the collection of all subgraphs of the database matching the desired pattern [START_REF] Blau | A Visual Language for Querying and Updating Graphs[END_REF], [START_REF] Cruz | A graphical query language supporting recursion[END_REF], [START_REF] Cruz | G+: recursive queries without recursion[END_REF]). a. G, G+ and GraphLog G [START_REF] Cruz | A graphical query language supporting recursion[END_REF]) is a visual query language based on regular expressions that allow simple formulation of recursive queries. G enables users to pose queries, including transitive closure, which is not expressible in relational query languages. A graphical query Q (example Fig1.2) is a set of labeled directed multi-graphs, in which the node labels of Q may be either variables or constants, and the edge labels are regular expressions defined over n-tuples of variables and constants. A path is expressed on a G query initially by the means of two types of edges: dashed edges correspond to paths of arbitrary length in the graph and solid edges correspond to paths of fixed length. In G, simple paths are traversed using certain non-Horn clause constructs available in Prolog. Although, it does not support cycles, finding the shortest path or calculating node distance. In addition, G does not support aggregation functions. G evolved into a more powerful language called G+ [START_REF] Cruz | G+: recursive queries without recursion[END_REF], in which a query graph remains as the basic building block. A simple query in G+ has two elements, a query graph that specifies the class of patterns to search, and a summary graph, which represents how to restructure the answer obtained by the query graph. G+ provides primitive operators like depth-first search, shortest path, transitive closure and connected components. It can easily find regular simple path. The language contains also aggregate operators that allow finding path length and node degree. The graph-based query language G+ provided a starting point for GraphLog [START_REF] Consens | Expressing Structural Hypertext Queries in Graphlog[END_REF]. GraphLog differs from G+ with a more general data model, the use of negation, and the computational traceability. GraphLog queries are graph patterns which ask for patterns that must be present or absent in the database graph. Edges in queries represent edges or paths in the database. Each pattern defines a set of new edges (i.e., a new relation) that are added to the graph whenever the pattern is found. An edge used in a query graph either represents a base relation or is itself defined in another query graph. GraphLog supports computing aggregate functions and summarizing along paths. The user chooses which variables in the query should have their instantiations output in the query result. Hyperlog programs contain sets of rules. The body of a rule is composed of a number of queries, which may contain variables. The head of a rule is also a query and indicates the updates (if any) to be undertaken for each match of the graphs in the body. In order to illustrate the template and the query in the Hyperlog query language, we give an example in Fig. 1.4: the template can find the students and their supervisors; the query can find the students working on Ontology. Hyperlog does not offer a special notation or expression to express paths. The existent rules can just find simple ones. The absence of aggregation functions explains the absence of answers of query about node degree or path lengths. c. QGRAPH QGRAPH [START_REF] Blau | A Visual Language for Querying and Updating Graphs[END_REF] query is a labeled connected graph in which the vertices correspond to objects and the edges to links with a unique label. The query specifies the desired structure of vertices and edges. It may also place Boolean conditions on the attribute values of matching objects and links, as well as global constraints. A query consists of match vertices and edges and optional update vertices and edges. The former determine which subgraphs in the graph database constitute a match for the query. The latter determine modifications made in the matching subgraphs. A query with both match and update vertices and edges can be used for attribute calculation and for structural modification of the database. The query processor first finds the matching subgraphs using the query's match elements, and then makes changes to those subgraphs as indicated by the query's update elements. QGRAPH offers a good support to express paths by the means of sub-queries, conditions and annotations on edges and nodes. However, it does not offer operator for aggregation. Fig. 1.5 contains two queries: the right query finds all subgraphs with a supervised link between a Student and a Supervisor; the left one finds just the students that have the ontology as Thesis-topic.

d. GOOD and languages based on GOOD

The Good [START_REF] Gyssens | A graph-oriented object model for database enduser interfaces[END_REF]) data transformation language is a database language with graphical syntax and semantics. This query language is used for the GOOD graph-based data model (Fig. 1.6). GOOD query language is based on graph-pattern matching and allows the user to specify node insertions and deletions in a graphical way. Good contains five operators. Four of them correspond to elementary manipulation of graphs: addition of nodes and edges, deletion of nodes and edges. The fifth operation called abstraction is used to group nodes on the basis of common functional or non-functional properties. The specification of all these operations relies on the notion of pattern to describe subgraphs in an object base instance. GOOD presents other features like macros (for more succinct expression of frequent operations), computational-completeness of the query language, and simulation of object-oriented characteristics like encapsulation and inheritance.

Fig. 1.7 GOOD queries

Simple path can be exprimed by using pattern. Moreaver, GOOD are not adapted to find path with no fixed length. Fig. 1.7 illustrates two examples of GOOD query: First query to find student and their supervisor the secand one to find student working on ontology topic. This language was followed by the proposals GMOD [START_REF] Andries | Concepts for Graph-Oriented Object Manipulation[END_REF], PaMaL [START_REF] Gemis | An object-oriented pattern matching language[END_REF] and GOAL [START_REF] Hidders | GOAL, A Graph-Based Object and Association Language. Advances in Database Systems: Implementations and Applications[END_REF]. These languages use GOOD principal's features and add some new functionality.

SQL-like languages

SQL-like languages are declarative rule query languages that extend traditional SQL and propose new SQL-like operators for querying graphs and objects. a. Lorel Lorel [START_REF] Abiteboul | The Lorel query language for semistructured data[END_REF]) is implemented as the query language of the Lore prototype database management system at Stanford (http://wwwdb.stanford.edu/lore). It is used for the OEM (Object Exchange Model) data model (Fig. 1.8). A database conforming to OEM can be thought as a graph where Object-IDs represent nodelabels and OEM-labels represent edge-labels. Atomic objects are leaf nodes where the OEM-value is the node value. Lorel allows expressing flexible path expressions, which allow querying without precise knowledge of the structure. Path expressions are built from labels and wildcards (place-holders) using regular expressions, allowing the user to specify rich patterns that are matched to actual paths in the graph database. Lorel also includes a declarative update language. 

b. GraphDB

Guting [START_REF] Güting | GraphDB: Modeling and Querying Graphs in Databases[END_REF]) proposes an explicit model named GraphDB, which allows simple modeling of graphs in an object oriented environment. A database in GraphDB is a collection of object classes where objects are composed of identity and tuple structure; attributes may be data or object-valued. There are three different kinds of object classes called simple classes, link classes, and path classes. Simple objects are just objects, but also play the role of nodes in the database graph. Link objects are objects with additional distinguished references to source and target simple objects. Path objects are objects with an additional list of references to simple and link objects that form a path over the database graph. GraphDB uses graph algorithms in order to implement graph operations. Shortest path and cycle both were implemented using the A* algorithm. Moreover, nodes, paths and subgraphs are indexed using path classes and index structures like B-Tree and LSD-Tree. GraphDB allows aggregation by using aggregate functions. c. GOQL GOQL [START_REF] Sheng | A Graph Query Language and Its Query Processing[END_REF]) is an extension of OQL enriched with constructs to create, manipulate and query objects of type graph, path and edge. GOQL is applied to graph database that use an object oriented data model. In this data model, they define similar to GraphDB a special type: node type, edge type, path type and graph type. GOQL is capable to query sequences and paths. In addition to the OQL sequence operators, GOQL uses the temporal operators next, until and connected for queries involving the relative ordering of sequence elements. For processing, GOQL queries are translated into an operator-based language, O-Algebra, extended with new operators. O-Algebra is an object algebra designed for processing object-oriented database (OODB) queries. To deal with GOQL's extension for path and sequence expressions, O-Algebra is extended with three temporal operators, corresponding to the temporal operators Next, Connected, and Until.

d. SOQL

SoQL (SOcial networks Query Language), [START_REF] Ronen | SoQL: A Language for Querying and Creating Data in Social Networks[END_REF]) is an SQL-like language for querying and creating data in social networks. SoQL enables the user to retrieve paths to other participants in the network, and use a retrieved path in order to attempt to create a connection with the participant at the end of the path. The main element of a SoQL query is either a path or a group, with subpaths, subgoups and paths within a group defined in the query. Creation of new data is also based on the path and group structures. Indeed, SoQL presents four new operators:

-SELECT FROM PATH query which retrieves paths between network participants, starting at a specific node and satisfying conditions in the path predicates.

-SELECT FROM GROUP query which retrieves groups of participant that satisfy conditions as a set of nodes.

-The CONNECT USING PATH and CONNECT GROUP commands are presented. These commands automate the process of creating connections between participants.

The language uses Operators which specify conditions on a path or a group. It proposes also aggregation functionalities, as well as existential and universal quantifiers on nodes and edges in a path or a group, and on paths within a defined group.

e. GraphQL

GraphQL (He and Sindh 2008) is a graph query language for graphs with arbitrary attributes and sizes. In GraphQL, graphs are the basic unit of information. Then, each operator takes one or more collections of graphs as input and generates a collection of graphs as output. It is based on graph algebra and the FLWR (For, Let, Where, and Return) expressions used in Xquery (see next section). In the graph algebra, the selection operator is generalized to graph pattern matching and a composition operator is introduced for rewriting matched graphs using the idea of neighborhood subgraphs and profiles, refinement of the overall search space, and optimization of the search order.

Formal languages a. LDM

The Logical Database Model [START_REF] Kuper | The Logical Data Model[END_REF] presents a logic very much in the spirit of relational tuple calculus, which uses fixed sort variables and atomic formulas to represent queries over a schema using the power of full first order languages. Fig1.9 presents the LDM schema and instances. The result of a query is another LDM schema called query schema which consists of those objects over a valid instance that satisfy the query formula. In addition the model presents an alternative algebraic query language proven to be equivalent to the logical one.

b. Gram

Gram [START_REF] Amann | Gram: A Graph Data Model and Query Language[END_REF]) is an algebraic language based on regular expression and supporting a restricted form of recursion. The data model of G-Log is (up to some minor details) the same as that of GOOD (Fig. 1.12). The main difference between G-Log and GOOD is that the former is a declarative language, and that the latter is imperative. In G-Log, the basic entity of a program is a rule. Rules in G-Log are graph-based and are built up from colored patterns. A G-Log program is defined as a sequence of sets of G-Log rules.

d. HNQL

HyperNode Query Language (HNQL) is a query and update language for the hypernode model [START_REF] Levene | A Graph-Based Data Model and its Ramifications[END_REF]. HNQL consists of a basic set of operators for declarative querying and updating of hypernodes. In addition to the standard deterministic operators, HNQL provides several non-deterministic operators, which arbitrarily choose a member from a set. HNQL is further extended in a procedural style by adding to the said set of operators an assignment construct, a sequential composition construct, a conditional construct for making inferences and, finally, loop and while loop constructs for providing iteration (or equivalently recursion) facilities.

Semantic languages

A semantic query language is a query language which is defined for querying a semantic data model. The semantic query language presented in (Kalpan, 2006) provides a foundation for extracting information from the semantic graph where the possible structure of the graph is described by ontology (Fig1.13) that defines the vertex types, the edge types and how edges may interconnect vertices to form a directed graph. It uses a query with a specific format containing function which specifies patterns and conditions for matching graphs in the database. Fig1.13 shows an example of pattern used by kalpan query language.

Discussion

Querying social networks turns out to be a non-trivial task due to the intrinsic complexity of the networked data. Also these kinds of querying focus on special type of information. Moreover, information needs from a community or a social network are diverse and can be categorized in two types: (1) values or measures like the centrality, diameter, etc; (2) information about attributes relations and data management on social networks. In this section, we present a comparison of the previous graph database languages and we discuss if they are well adapted to query a social network. The existing graph query languages cannot extract all the characteristics of a social network even those designed for social networks (e.g.SoQL). We resume the main characteristics of the previous languages on the following tables (Table 1.2 andTable 1.3). We put (+) where the language proposes an explicit definition for the characteristics, (-) if not and (+/-) where it try to define it indirectly. These two tables show that: • Many query languages use pattern to facilitate the information search process especially graphical languages like Good, Qgraph, G, etc.

• Almost languages provide operator or techniques to find path. Nevertheless, graphical languages do not determine path by direct operation.

• The neighborhood characteristic is not well processed by existing languages.

• Graph characteristics based on calculation like diameter or distances between nodes are only treated by G+ and GraphLog.

In practice, users prefer graphical languages because they are easy to use. Moreover, graphical query languages for graph model lack of operation to obtain information about communities. Languages designed for social network like SOQL are based on SQL and can be applied only on simple graphs. 

1.3Related Data Model

RDF query languages

RDF [START_REF] Miller | Resource description framework (RDF)[END_REF]) is a knowledge representation language dedicated to the annotation of documents and more generally of resources within the framework of the Semantic Web. By definition, an RDF graph [START_REF] Klyne | Resource description framework (RDF): Concepts and abstract syntax[END_REF]) is a set of RDF triples. An RDF triple is a triple (s, p, o)

∈ (I ∪ B) × I × (I ∪ B ∪ L)
where I, B, and L are sets that represent (IRIs), Blank nodes, and Literals, respectively). In this triple, s is the subject, p the predicate, and o the object. RDF models information with graph-like structure, where basic notions of graph theory like node, edge, path, neighborhood, connectivity, distance, degree, and so on play a central role. RDF has been used for presenting communities and social network (e.g FOAF1 , RELATIONSHIP2 , etc). RDF can be a good support to model social network although its query languages do not offer an efficient support to query this kind of data. Indeed, several languages for querying RDF documents have been proposed, some in the tradition of database query languages (i.e. SQL, OQL): RQL [START_REF] Karvounarakis | RQL: a declarative query language for RDF[END_REF], SeRQL [START_REF] Broekstra | SeRQL: Sesame RDF query language[END_REF], RDQL [START_REF] Seaborne | RDQL-A Query Language for RDF, Member Submission[END_REF]) SPARQL (Perez et al, 2006). Others more closely inspired by rule languages: Triple [START_REF] Sintek | TRIPLE -A Query, Inference, and Transformation Language for the Semantic Web[END_REF], Versa 3 , N3 and RxPath 4 . The currently available query languages for RDF support a wide variety of operations. However, several important features are not well supported, or even not supported at all. RDF query languages support only querying for patterns of paths which are limited in length and form. Nevertheless, RDF allows representing irregular and incomplete information (e.g the use of blank node). From the original approach just Versa and SeRQL provide built in means for dealing with incomplete information. For example, the SeRQL language provides so-called optional path expressions (denoted by square brackets) to match paths whose presence is irregular. Usually, such optional path expressions can be simulated, if a language provides set union and negation. Others works on RDF query languages try to extend the original languages to improve path expressiveness. For example in [START_REF] Alkhateeb | Extending SPARQL with regular expression patterns (for querying RDF)[END_REF], they allow to query an RDF knowledge base using graph patterns whose predicates are regular expressions. In RDF Path5 , N3 and Graph Path6 , they try to use specifications similar to those in XPATH to query paths in RDF. Moreover, RDF query languages are not well adapted to query path with unknown length or including multiples propriety on RDF graph. Neighborhoods retrieving cannot be well done for languages that do not have a union operator. Many of the existing proposals support very little functionality for grouping and aggregation. Moreover, Aggregated functions like COUNT, MIN, MAX applied to paths could be used to answer queries in order to analyze data (like the degree of a node, the distance between nodes, and the diameter of a graph). We can find exceptions in Versa, RQL and N3which support count functionality Aggregation in path and nodes are not explicitly treated by any languages which need to be considered as a requirement

XML query languages

The Extensible Markup Language (XML) is a subset of SGML. XML data are labeled ordered trees (with labels on nodes), where internal nodes define the structure and leaves the data (scheme and data are mixed.). XML additionally provides a referencing mechanism among elements that allows simulating arbitrary graphs. In this sense XML can simulate semi-structured data. Also, many new extension of XML are designed to represent graphs like GML, GraphML, XGML and etc.

Current query languages [START_REF] Bonifati | Comparative analysis of five XML query languages[END_REF] for XML do not support the majority features for graph-structured XML document. The principal feature supported is path. For example, XPath7 uses path expressions to select nodes or nodesets in an XML document. Also, the set of axes defined in XPath is clearly designed to allow the set of graph traversal operations that are seen to be atomic in XML document trees. An XPath axis is fundamentally a mapping from nodes to nodesets and defines a way of traversing the underlying graph. Each axis encapsulates two things: a type of edge to follow (eg. child vs. attribute) and whether to follow it transitively (e.g. child vs. descendant). Also, XQuery8 uses XPath to express complex path and supports flexible query semantics. In XML-QL (Deutsch et al,1999), path expressions are admitted within the tag specification and they permit the alternation, concatenation and Kleene-star operators, similar to those used in regular expressions. In XML-GL [START_REF] Ceri | XML-GL: a graphical language for querying and restructuring XML documents[END_REF], the only path expres-sions supported are arbitrary containment, by means of a wildcard* as edge label; this allows traversing the XML-GL graph reaching an element at any level of depth. However, Current query languages for XML are designed for treestructured XML data and do not support the matching of schema in form of general graph. Even though XPath can express a node with multiple parents by multiple constraints with axis "parent", it cannot express a graph with cycles. While XML won't allow multiple parents, there's nothing in XQuery (or in particular, XPath) which precludes a traversal from parent to child to a different parent. This insufficiency does not allow the presentation and the query of all kind of graphs specially those on social network.

Social network Extraction from relational database using a graph database

Social Network is an explicit representation of relationships between people, groups, organizations, computers or other entities and it is modeled by a graph (see section 1.2.1.3). There are many ways to obtain a Social Network. The approaches presented in the literature for Social Network extraction use a specific type of data source to extract people and relations among them [START_REF] Kirchhoff | Using social network analysis to enhance information retrieval systems[END_REF]. Most of these data sources come from the Web. However, some problems related to the extraction of Social Network from various information sources available on the World Wide Web still remains. First, a general problem is the identification of people because of different naming standards or same names assigned to different persons. The social context and the type of social interactions among people within these information sources need to be carefully analyzed in order to obtain a meaningful understanding of the underlying Social Network structure. Moreover, data from the web are often not well reliable because anyone can add information; also in some case we cannot easily collect information from the web due to privacy issues.

Nevertheless, in the context of business, important expertise information about people is not stored on the Web. Such information is stored in files, databases and especially relational databases. Relational database is a rich source of data, but it is not well adapted to store and manipulate social network data. Indeed, the relational model was directed to simple record-type data with a structure known in advance. The schema is fixed and extensibility is a difficult task. Thus, they might require very sophisticated and expensive operations, such as renormalization, reindexing etc., which may not be performed automatically. Schema renormalization in such cases is neither desirable nor easy to do. The standard query and transformation language for the relational database is SQL which does not support paths, neighborhoods and queries that address connectivity (an exception is transitivity). These graph features will facilitate the application of social network analysis algorithm. Also, it will allow to response queries such as who owns the information, who has the leadership, who is an expert in a particular domain and etc. Such information is very important for business applications. Then, enterprises need to extract their Social Network from the existing relational database to store, update and retrieve information in a simple way as graphs. On the other hand, extracting social network from relational database is not just a translation of relational database into a simple graph structure. The resulting Social Network should contain detailed information about people and their relations. As we have shown in the previous section Graph database can be a good representation for social networks and facilitate its querying. There are many approaches that transform relational databases to other structure having graph-like features like RDF, XML or even ontology, but not into a graph databases. Then, in this section, we will present our approach to transform a relational database to a social network using a graph database.

Converting relational database into hypernode database

Having a graph database instead of relational database will provide a more clear view of existents entities in the initial database. Indeed, all these entities will be presented on the form of nodes and the relations between them will be outlined which facilitate in further steps the selection of the desired entities. Also, nodes in graph database can encapsulate all the attribute of entities in the same node and give us a simple graph of entities. From this graph of entities, a social network can be extracted. Using the comparison between existing graph database models (Ta-ble1.1), we have chosen to work with the hypernode model [START_REF] Levene | A Graph-Based Data Model and its Ramifications[END_REF]because the hypernode database with its nested graphs can provide an efficient support to represent every real-world object as a separated database entity.

The relational database transformation into a graph database includes schema translation and data conversion [START_REF] Maatuk | Relational Database Migration: A Perspective[END_REF]). The schema translation can turn the source schema into the target schema by applying a set of mapping rules. In our work, we propose a translation process which directly transforms the relational schema into a hypernode schema. Data Conversion process of converts data from the source to the target database based on the translated schema. Data stored as tuples (Rows) in relational database are converted into nodes and edges in graph database. This involves unloading and restructuring relational data, and then reloading them into a target database in order to populate the schema generated during the translation process. In what follows, we will detail these two steps.

Schema Translation

The first step consists in extracting the relational database schema using the schema metadata of the relational database management system (information about tables and columns) which is extracted using SQL queries. The idea is to identify the primary key, composite key(s) and foreign key(s) of each relation.

This information is then used to design the new schema (hypernodes and relations within and between them). This process is performed by the following steps.

Step1: Relational schema extraction. In this step, information from the relational database is extracted using SQL queries. In our approach a relational schema is represented as a set of relations (tables) = { }

F p K A TR , n , , r : TR \ =
, where:

• r n denotes the name of TR.

• A denotes a set of attributes of TR and gives information about each attribute integrity constraints, A :={ a\a :=<a n , t, ce, cp, n, d>}, where a n is an attribute name, t is its type, ce mentions if a is a foreign key or not, cp mentions if a is a primary key or not, n mentions if a can be null or not and d is a default value if one is available. • K p,F denotes a set of key of TR and gives information about each Key integrity constraints, K p,F :={ β | β := <kr, ce, cp, re ,f a }>}, where: β represents a key (an attribute which can be a key or a part of a composed key), kr is the name of a key attribute, ce indicates if β is a foreign key or not, cp indicates if β is a primary key or not, re is the relation that contains the exported primary key, f a is the attribute name of the foreign key. This schema provides an image of metadata obtained from an existing relational database and provides more information than a traditional schema. Indeed, it gives information about primary and foreign keys to facilitate relations extraction in further steps. For example for the Table "Thesis" (database in Fig. 1.14), the relation Thesis (th_id, Th_name, Topic) was extracted. Once the schema is extracted, we can generate the corresponding hypernode schema (step 2).

Step 2: Mapping the relational schema to the hypernode schema. We use on this step a hypernode schema which is an extension of the original one.

A hypernode is defined [START_REF] Levene | A Graph-Based Data Model and its Ramifications[END_REF]by H = (N, E), where N is a finite set of nodes containing primitive nodes and further hypernodes, and E is a set of edges between members of N, Such that N ⊆ A ∪ L (where A is the set of atomic values and L the set of labels) and E ⊆ (N × N).

A Hypernode database (HD) is a finite set of hypernodes which satisfies these following conditions:

(1) The hypernode label is unique in HD.

(2) ∀ H a label in the label set of HD, HD h ⊂ ∃ whose defining label is H. The Hypernode model does not use labeled edges, the task of representing relations (and their names) can be attained by encapsulating edges, that represent the same relation (same label edges), within one hypernode labeled with the relationname. However, the traditional presentation of social network is labeled node attached with explicit labeled edge. Then, we extend the HD to LHD (Labeled hypernode database) by adding explicit labels to edges. LHD= HS ∪ ES, where:

(1) HS is a finite set of hypernode.

(2) ES is a set of edge where ES ⊆ (HS × HS) and ∀ e ∈ ES, e has a label.

In this step, we use a hypernode database schema composed by the union of two

sets: { } { } d s h n h , h r, : R \ , h : H \ = ∪ = h R Nh H
The first one is the set of hypernodes where:

• h n denotes the name of H •
Nh denotes a set of nodes Nh :={ n\n :=<n n , t, ce, cp>} where n n is the node name, t is the type, ce mentions if the nodes contains a foreign key (in the relational schema n is a foreign key) and cp mentions if the nodes contains a primary key.

The second one is the set of relations where: • r denotes the name of R • h s denotes the hypernode source name • h d denotes the hypernode destination name

To extract this schema, we start by identifying the hypernodes then their relations.

Hypernode identification. Using the relational schema, we create from each table t ∈ TR a new hyprnode h. h owns the same characteristics of t: same name and attributes. Indeed, each attribute a from the table TR is transformed into a node n in h where n contains all the characteristics of a (name, type, etc). If the attribute is a foreign key, its type is changed to be the name of the exported relation.

Relation identification. In order to identify the relations between the identified hypernodes, the nodes set Nh of each hypernode h is analyzed. For each node, we verify if it contains a foreign key in order to search existent dependency with other hypernodes. We have identified four relation types:

• "IS-A" relation: if h has only one node n pf and no more , that contains a key which is primary (a simple one) and foreign key, then h shares the relation "IS-A" with the hypernode mentioned in the n pf type; e.g. the hypernode "Foreign_Student" contains the node "ST_id" which is a primary key and a foreign key, then "Foreign_Student" shares the relation "IS-A" with "Student." • "Part_of " relation : if h has more than one node n pf that contains a key which is primary and foreign key, then h shares a Part-of relation with each hypernode mentioned in the n pf type. e.g. "Student" and "Thesis" are "Partof" the hypernode "Thesis_hasStudent" because "Thesis_hasStudent" contains the nodes "St-id" with type "Student" and "Th-id" with type "Thesis".

• R relation: this kind of relation is a particular case of the "Part_of" relation. When the hypernode is composed only with nodes which contain a key which is primary and foreign key, then we delete this hypernode and we use its name to build relations between the hypernodes mentioned in the n pf type. e.g. the hypernode "Thesis_hasLab" is deleted and is transformed into a relation between "Thesis" and "Laboratory".

• "" relation: if h contains a node which contains a foreign key, h has a relation with the hypernode mentioned in the type of the node. In this case, we are not able to give a name to this relation. 

Data conversion

In order to instantiated the hypernode database schema already identified, Data conversion is performed in three steps. First, the relational database Table ' tuples are extracted. Second, these data are converted to match the target format. Then, for each hypernode in the hypernode database, a set of instances hypernode HI is extracted from the relational tuples.

The set of instances hypernode HI is defined by

HI = { } hi i i N H , h h, : H \ i =
where:

• H i denotes the instance hypernode • h denotes the hypernode source name.

• h i denotes the name of H i .

• N hi denotes a set of nodes N hi :={ n\n i :=< n n , t, val>} where n n is the node name, t is the type, and val mentions the node value. For each relation in the LHD, a set of instance relations RI is extracted using the value of keys on the relational tables. RI is defined by RI:={ r i \r i :=< r, h is , h id >} where:

• r denotes the relation which is intanciated by r i .

• h is denotes the hypernode instance source.

• h id denotes the hypernode instance destination.

Finally, transformed data are loaded into the LHD schema. An excerpt of the HD is shown in Fig. 1.16.

Social network extraction

Using the result Hypernode database from the previous step, the social network is extracted. This phase passes through two steps: (1) Entities (people) identification and (2) Detection of relations among people. The social network is defined by: SN = (ESN, RSN) where:

• ESN is a finite set of entity such ESN :={ e\ e ∈HI, e :=< h, e n , N e >} where h is the hypernode which represents e, e n is e's name and N e is the set of e's node.

• RSN is a finite set of the relations between entities such RSN= {r sn \ r sn :=<n,e 1 , e 2 >}where n is the relation name, e 1 and e 2 ∈ ESN.

In what fallows, we will describe the two step of the social network extraction.

Entities identification

Entities identification is the process to identify hypernodes that contain entities which compose the social network. In this step, we describe the process to identify people. The hypernode database schema is used to extract candidate hypernodes (hypernodes which may be contain persons). Then, the hypernodes instances are used to deeply analyze the candidate hypernodes and detect those containing people.

Candidate hypernodes detection.

A person has a number of characteristics like name, surname, birthday, address, email, etc. Some of these characteristics are used when designing databases containing persons. We collect these characteristics from various ontologies such FOAF ontology and person ontology (schema-Web9 ) and we manually build a person ontology (PO) containing all these characteristics and their synonyms (collected from WordNet). Using the person ontology, the set of nodes related to each hypernode in the LHD is analyzed.

• If the node's name is one of the PO concepts, the number of characteristics for this hypernode is incremented.

• If the number of characteristics for the hypernode >=1 and one of them contains a name, the hypernode h is a candidate to contain persons. Candidate hypernodes Analysis. Each candidate hypernode has a set of instance hypernodes h i . In order to analyze the name found in each instances hypernode (we take just the 10 first entities), the name is send to the web search engine (Bing API). The top 10 returned documents is downloaded and parsed using DOM 10 . Each document is analyzed using the NER (Named entity Recognition) proposed by Stanford 11 and which put three kinds of tags (Person, location or organization). We give for each document a rank rd. If the name is tagged in the document by Person, the document is ranked by rd=1 else rd=0. The average assigned to the name found in the hypernode instance h i (avghi) counts how many times is considered as a person name in the documents (where the tag of this name is Person) avghi= documents number rd _

∑

(1.1) The average assigned to the hypernode (avgH) calculates the average where the names found in its hypernode instances are considered as a person name:

avgH= hi number avghi _ ∑ (1.2)
In order to identify persons, we use the NER proposed by standford: in which precision is in the average of 90%to find Person entities; so, a hypernode is considered as representative of a person if more than 60% of its instances contains a person name (we take only 60% as a threshold due to problems such as wrong written name use of abbreviations, etc. which decrease the precision of NER).

Building relations

After the identification of the entities set ESN, we use the existent relations in the hypernode database (the relations which share ESN elements with other hypernodes or among them) to find the set of relations RSN.

In order to facilitate this step, we have designed a set of patterns to apply this kind of transformation to all the relation on the hypernode database. The pattern will enumerate all the existent relations between persons only by using the hypernode database schema. After the relation pattern identification, we will search the correspondent relations on the instances database. A pattern relation Pr is defined by Pr=<nPr, hp 1 , hp 2 , h in > such as nPr is the name of the relation, hp 1 and hp 2 the hypernodes which share the relation hypernodes which represent people), h in a mediator for this relation (the hypernode used to identify the relation).

For each relation R h ∈set of LHD relations, we check these conditions:

If R h :=<"IS-A",h s ,h d > where h s or h d ∈ ESN then h s or h d is added to ESN.

The relation "IS-A" allows to find hidden entities which are not identified in the previous step. In the relation construction process, we start by analyzing this kind of relation to find in the next steps the relations related to the new discovered entity. -From the relation, R h =<"IS-A", Foreign-Student, Student>, we detect a new entity "Foreign-Student" which is added to the set of entities ESN.

-From the relation R h1 :=<"",Student, Director_thesis >, we identify two patterns : -Pr 1 :<"",Student, Director_thesis, null>: Student and Director_thesis share the relation R:=<"",Student, Director_thesis > then each Student and Director_thesis instance can have these relations if they have the same id_Dir value (Fig. 1.17). -From the relation R h4 :=<"", Thesis, Director_thesis >, there are no identified pattern because Thesis is not related to other entities After identifying relations and entities, the final social network is obtained by applying all the previous detection (people and their relations) and giving as tag for each hypernode his type and the name of the corresponding person (see Fig. 

1.5.3Implementation and evaluation

In order to demonstrate the effectiveness and the validity of the proposed approach, a prototype has been developed. The prototype was implemented using Java and PostgreSQL. We have visualized the output database and the social network using SNA12 (Fig1.20). The Hypernode database will be stored in an adapted database management system which also allows the storage of voluminous complex graphs. We experimented (for more details see [START_REF] Soussi | Towards Social Network Extraction Using a Graph Database[END_REF]) the process using the data of a database containing information about PhD students (Administrative and technical information) and also information about actors surrounding them. This database contains 1788 students (+ 80 students per year). To evaluate scalability and performance of our method for converting relational database into hypernode database, a set of SQL queries has been designed to observe any differences between the source relational database and the hypernode database. After comparing the results between the two databases, the hypernode schema is generated without loss or redundancy of data. This proves the correctness of this conversion.

We have used the same method to evaluate the transformation into a social network. For each entity e :=<h,e n , N e > , we verify that: (1) the same attributes appear in the relational database and in the social network, and ( 2) we find the same relations. For example, in order to verify entity's attributes: Select * from h.name where n 0 .name=n 0 .val; (n 0 is the first node on the e's node set, and is usually corresponding to the primary key or a part of the primary key on the relational database). For example for the entity "Student_Mohsen_Ali", the correspondent query used: Select * from Student where St_id=03;

The results obtained from these queries shows the correctness of the transformation approach. Our approach can transform a relational database into a graph from a social network perspective without lost of information. 

Conclusion

In this chapter, we have presented the main graph database models and the associated graph query languages. Graph database models can model communities (social networks) and their activities even they are complex and dynamic (using model based on complex node). Even, Graph query languages are the most suited query languages to query communities (e.g. better than RDF query languages) but they are not well adapted to extract information about communities because they do not use social network analyze methods or most of them do not offer techniques to extract information about path and neighborhood. We have also presented a social network extraction method from relational database which is based on (1) a transformation of the relational database into a hypernode database and (2) a social network extraction from the hypernode database. In our future work, we will focus on how to improve the extraction method by the use of ontologies describing the relations between entities in the relational database. Then, we will try to define a storage system based on the hypernode model and a graph query language more adapted to the social network structure. We will also work on generic transformation rules according to different users' point of view and graphs merging.
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  Considering the initial database, Fig 1.15 shows the resulting Hypernode schema.
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 17 Fig 1.17 Instance of the relation between Student and Director_thesis -Pr 2 :=<Same_ Director_thesis, Student i , Student j , Director_thesis >: two students may have the same Director_thesis (same value of Dir-id) (Fig1.16).
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 16 Fig1.16 Relation among Student instances-From the relation R h2 :=<"", Director_thesis, Laboratory>, we identify the pattern:-Pr 3 :=<Same_Laboratory,Director_thesis i , Director_thesis j , Laboratory >: using the value of the foreign key Lab_id in each hyeprnode instance of the entity Di-rector_thesis, we will link those having the same value of Lab_id by the relation Same_Laboratory. (Fig1.17)
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 17 Fig1. 17 Relation between Director_thesis instances -From the relation R h3 :=<"Part-of",Student, thesis_hasStudent> -Thesis_hasStudent shares two relations "Part-of" with Student and Thesis. We add a new node on the hypernode Student n:<Thesis, Thesis_i>, corresponding to his Thesis. Then, we can apply the pattern Pr 4 (Fig1.18).
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 1 

		1 Graph database model comparison	
		Entity			Relation	Visualization
		Complex Dynamic Nested	Neighborhood	
	Hypernode	+	+	+	+	+
	Groovy	+	+	+	+	-

Table 1 .

 1 

			2 Graph query languages-1-		
		G	G+ Graph-	Hyperlog QGraph GOOD	Kalpan	HNQL
			Log					
	Basic Unit	nodes/	nodes/	Hypernode nodes/	nodes/	nodes/	Hypernode
		edges	edges		edges	edges	edges	
	Data Model	graph	graph	Hypernode graph	GOOD	Semantic	Hypernode
							graph	
	Language style	Graphical Graphical Graphical Graphical Graphical semantic formal
	Pattern	+	+	Rules	+	+	+	-
	Update query	+	+	+	+	+	-	+
	Implementation	+	+	+	-	+	-	+
	Path	+/-	+	+/-	+/-	+/-	+	+/-
	Neighborhood	-	+	+/-	-	+/-	+	+/-
	Diameter	-	+	-	-	-	-	-
	Distance	-	+	-	-	-	-	-
	between nodes							

Table 1 .3

 1 Graph query languages-2-

		Lorel GOQL SOQL	GraphDB GraphQL LDM Gram	G-Log
	Basic Unit	Object nodes/	Group/	nodes/	graph	tuple nodes/	nodes/
			edges	path	edges			edges	edges
	Data Model	OEM graph graph	graph	graph	LDM Gram	G-Log
	Query style	SQL-	SQL-	SQL-like SQL-like SQL-like formal formal formal
		like	like						
	Pattern	-	-	+	+	+	-	-	+
	Update query	+	-	+	+	-	-	-	-
	Implementation	+	+	+	+	-	-	+	-

h :=<r,h s , h d > where h s and h d

  2. If R ∈ ESN then two patterns are identified: 2.1 Pr 1 :=<r, h is , h id ,null>, if two entities (h s and h d ) are already connected in the LHD, we will search if their instances (h is and h id )are connected, too. 2.2 Pr 2 :=<Same_hd.name, hp i ,hp j , h d > where hp i = h is , hp j = h is and i!=j. Pr 2 represents the relations between the instances of h s which can be connected with the same instance of h d . 3. If R

h :=<r h s ,h d > where h s ∈ ESN and h d ∉ESN then: 3

  .1 If r != "Part-of" then pattern Pr 3 is extracted :Pr 3 :=<Same_h d .name, hp i ,hp j , h d > where hp i = h is , hp j = h is and i!=j. we search the h s instances which are connected with the same instance of h d . 3.2 If r = "Part-of" then the hypernodes which are "Part-of" h d are researched:Firstly, for each h j ∈ {h\h has the relation R h :=<"Part-of", h j , h d >}, a new node is added to h s containing the name of h j then the pattern Pr 4 is extracted. Pr 4 :=<Same_h j .name, hp 1 ,hp 2 , h j > where hp 1 = h s , hp 2 = h s . Pr 4 represents the relations between the instances of h s that share the same value of h j. 4. If R

h :=<r h s ,h d > where h s ∉ESN and h d ∈ ESN then

  :4.1 a new node on h s containing the name of h d is added. 4.2 if h s has relations with other entities then for each detected relations, a pattern Pr 5 is extracted as Pr 5 :=<Same_hs.name,hp 1 ,hp j , h d > where hp 1 =h d and hp j ∈ {e\e has relation with h s }. By applying these patterns to our example, we can detect the relations between the detected entities Student and Director_thesis:

http://www.foaf-project.org/

http://vocab.org/relationship/.html

http://wiki.xml3k.org/Versa

http://rx4rdf.liminalzone.org/ RxPathSpec

http://infomesh.net/2003/rdfpath

http://www.langdale.com.au/GraphPath/

http://www.w3.org/TR/xpath

http://www.w3.org/TR/xquery/

http://ebiquity.umbc.edu/ontology/person.owl

http://www.w3.org/DOM/

http://nlp.stanford.edu/ner/index.shtml

http://www.sapweb20.com/blog/2009/03/sap-enterprise-social-networking-prototype/