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Summary : In this report, we study in a detailed way higher order variances and quadrature
Gauss Jacobi. Recall that the variance of order j measures the concentration of a probability close
to j points xj,s with weight λj,s which are determined by the parameters of the quadrature Gauss
Jacobi. We shall study many example in which these measures specify adequately the distribution
of probabilities. We shall also study their estimation and their asymptotic distributions under
very wide assumptions. In particular we look what happens when the probabilities are a mixture
of points with measures nonzero and of continuous densities. We will see that the Gauss Jacobi
Quadrature can be used in order to detect these points of nonzero measures. We apply these
results to the decomposition of Gaussian mixtures. Moreover, in the case of regression we can
apply these results to estimate higher order regression.

Summary : Dans ce rapport, on etudie de facon détaillée les variance d’ordre supérieur et la
quadrature de Gauss Jacobi. On rappelle que la variance d’ordre j mesure la concentration d’une
probabilité autour de j points xj,s avec des poids λj,s qui sont déterminés par les paramêtres de
la quadrature de Gauss Jacobi. On étudiera de nombreux exemples pour détailler différents cas
où ces mesures précisent suffisament bien la répartition des probabilités. On étudiera aussi leur
estimation et leurs lois asymptotiques sous des hypothèses très larges. On regarde en particulier ce
qui se passe lorsque les probabilités sont un mélange de points de mesures non nulles et de densités
continues. On verra que la Quadrature de Gauss Jacobi peut permettre de détecter ces points de
mesures non nulles. On appliquera ces résultats à la décomposition de mélanges gaussiens. De
plus dans le cas de régression on peut appliquer ces résultats à l’estimation de régression d’ordre
supérieur.

Key Words : Higher order variance, Gauss Jacobi quadrature, Central limit theorem, Higher
order regression. Gaussian mixtures.
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Chapter 1

Higher Order Variances

1.1 Introduction

Orthogonal polynomials have many interesting applications in Probability and Statistics. So they
have introduced higher order correlation coefficients and higher order variances (cf [1], [2], [4],
[5], [7], [6], [3]). They also have introduced new hypotheses for the central limit theorem (cf [3]).
One can also obtain the distributions of quadratic forms, Gaussian or not Gaussian, and simple
methods of calculation of these laws (cf [8]).

Higher order variances have been introduced in [6] and [7]. They generalize the classical
variance. Thus, variance of order 1 measures of concentration of a probability close to a point :
the expectation. Variance of order j measures the concentration close to j points which are the
roots of the j-th orthogonal polynomial.

Notations 1.1.1 let X be a random variable defined on (Ω, A, P ). Let m be the distribution of

X. Let P̃j be the j-th orthogonal polynomial associated to X such that P̃j(x) =
∑j

t=0 aj,tx
t with

aj,j = 1.

We set nm
0 = dim

{

L2(R,m)
}

. Let Θ ⊂ N such that P̃j(x) exists. We denote by Pj the j-th
orthonormal polynomial associated to X if there exists.

Remark that if m is concentrated close to nm
0 points where nm

0 <∞, Θ = {0, 1, ..., nm
0 }.

If not, Θ = N if all moments exists, and Θ = {0, 1, ...., d} if
∫

|x|2d−1.m(dx) < ∞ and
∫

|x|2d+1.m(dx) = ∞. In this case, Pj exist if
∫

|x|2d.m(dx) <∞.

For example, P̃0 ≡ 1, P̃1(x) = x− E(X) where E(.) is the expectation,

P̃2(x) = x2 − M3 −M1M2

M2 −M2
1

(x−M1) −M2 ,

where Ms = E(Xs) .

Now we know that the zeros of P̃j are real (cf th 5-2 page 27 [10])

Proposition 1.1.1 Let j ∈ Θ. Then, the zeros of P̃j are distincts and real. We denote them by
xj,s, s=1,2,....,j.

For example, if j=1, x1,1 = E(X). If j=2,

x2,s =
M3 −M1M2

2(M2 −M2
1 )

± 1

2

√

√

√

√

(

M3 −M1M2

M2 −M2
1

)2

− 4M2 .

We recall theorem 5.3 of [10].
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Proposition 1.1.2 Suppose that, for all j ∈ Θ, xj,s < xj,s+1 for each s=1,2,...,j-1. Then, for all
j + 1 ∈ Θ, xj+1,s < xj,s < xj+1,s+1 for each s=1,2,...,j.

Now the roots of orthogonal polynomials have stronger properties : the Gauss-Jacobi Quadra-
ture.

Theorem 1 Let j ∈ Θ. There exists a single probability mj concentrated over j distincts points
such that

∫

xq.m(dx) =
∫

xq.mj(dx) for q=0,1,...,2j-1.

Moreover, the j points of concentration of mj are the j zeros of P̃j : xj,s, s=1,...,j, and the

probabilities λj,s = mj
(

{xj,s}
)

check λj,s =
∫

ℓjs(x).m(dx), where ℓjs(x) =
P̃j(x)

(x−xj,s)P̃ ′

j(xj,s)
when P̃ ′

j

is the derivative of P̃j .

Proof The most simple way in order to prove this theorem is to use proof of [7]. It shows that

the λj,t’s are the only solution of the system of Cramer
∑j

t=1 λtPq(xj,t) = δq,0 for q=0,1,...,j-1.
The proof is more complicated than the classic proofs. But it has the advantage of treating also
the case j = nm

0 .
If we do not suppose j = nm

0 , one can use classical proofs : they are in paragraph 6 page 31 of
[10] or in theorem 3-2 and formula 3-8, page 19-23 of [11]. Then, if j = nm

0 , one can use the proof
of theorem 2. �

For example ℓj1(x) =
(x−xj,2)(x−xj,3)...(x−xj,j)

(xj,1−xj,2)(xj,1−xj,3)...(xj,1−xj,j)
. In particular, if j=2, ℓ21(x) =

x−x2,2

x2,1−x2,2
and

ℓ22(x) =
x−x2,1

x2,2−x2,1
. Therefore, λ2,1 =

M1−x2,2

x2,1−x2,2
and λ2,2 =

M1−x2,1

x2,2−x2,1
.

Recall that the λj,k’s are called Christoffel numbers

Now, we complete the definition of Gauss Jacobi quadrature by defining higher order variances.

Definition 1.1.2 Let j ∈ Θ . We call variance of order j, and we note it by σ2
j or σj(X)2 or

σj(m)2 the real σ2
j =

∫

|P̃j |2.dm .

Remark that P̃j = σjPj . Moreover, σ1(X)2 = M2 −M2
1 is the classical variance. Now, if j=2,

σ2
2 = M4 − (M3−M1M2)

2

M2−M2
1

− M2
2 .

Then, variance of order j measure the concentration close to j distinct points.

Theorem 2 Let j ∈ Θ . Then, σj = 0 if and only if m is concentrated in j distincts points which

are the zeros of P̃j : the xj,t’s. Moreover the probability associated at each xj,t is equal at λj,t. In

this case, j = nm
0 <∞ and P̃j = 0 in L2(R,m) .

Proof we use the two following lemmas : they are proved in 4-2 and 4-3 of [4].

Lemma 1.1.1 Let p ∈ N
∗. Let m’ be a probability on R. Then the two following assertions are

equivalent.
1) dim

(

L2(R,m′) = p.
2) There exists Ξ = {x1, x2, ...., xp} ⊂ R, Card(Ξ) = p such that m′(xs) = λs > 0 for all

s ∈ {1, 2, ...., p} and
∑p

s=1 λs = 1, i.e. m′ =
∑p

s=1 λsδxs
.

Lemma 1.1.2 Let t ∈ N
∗, such that t < nm

0 . Then, the set {xj}, j=0,1,...,t, xj ∈ R[X] is a set
linearly independent of L2(R,m).

Proof of theorem 2 If σj = 0, P̃j = 0 in L2(R,m). Then, m is concentrated on the j roots

xj,s of P̃j = 0. Now it is not concentrated on j-h point, if not dim
{

L2(R,m)
}

= j − h and
1, x, x2, ...., xj−h−1 would be linearly dependent. Therefore σj−h = 0. But it is not the case : if

7



not σj would not be defined.

Now we know that ℓjk(xj,t) = δk,t. Therefore, λj,k =
∫

ℓjk(x).m(dx) = m({xj,k}). �

The Bienayme-Tschbichev Inequality allows to specify more this concentration.

Proposition 1.1.3 Let ǫ > 0 . Then, P
(

|P̃j | > ǫ
)

≤ σ2
j

ǫ2 .

In particular assume that σ2
j is small enough. Let ω such that |P̃j(X(ω))| ≤ ǫ. Then, there

exists s such that X(ω) − xj,s is small enough. Then, the variance of order j measures the
concentration of a probability close to j distincts points.

Then, they generalize the classical variance which one can call variance of order 1. Indeed,
classical variance measure the concentration close to expectation. For the variance of order j,
the roots of P̃j plays this role. Moreover we know the weight associated : the λj,t’s. All these
properties justify well the name of variances of higher order.

1.1.1 Some examples

We’ll look at some example. We will see that the results tally what it was expected intuitively
about higher order variances parameters and Gauss Jacobi quadrature.

Remark 1.1.3 In the figures of this section, the graphs are not normalized. Indeed, we put on the
same figure the densities and weights of Gauss Jacobi, which is normally impossible. Indeed if we
show only the densities, the densities of the measure concentrated on the xj,t’s should be infinite.
This means that the y-axis is only there to give information on the order of size: it should not be
taken into account for exact calculations.

The x-axis is correct.

In spite of this remark, the following figures are clear enough to get an idea of density and
weight λj,t ’s of various probabilities.

Remark 1.1.4 The higher order variances transformed by homothety can give very different fig-
ures since it depend on the moments which can become very large or very small. We can not
properly use the higher order variances in order to know the concentration unless it is first carried
out a normalization.

For example, a normalization can may be given by considering the number
σj

||xj || which repre-

sents the sinus of the angle formed by the polynomial xj and the subspace spanned by polynomials
of degree strictly less than j.
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Figure 1.1: x2,t =0.8691, 0.1473, λ2,t= 0.5944, 0.4056, σ2
2=0.0037
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Figure 1.2: x2,t=0.8698, 0.1257, λ2,t=0.5647, 0.4353 , σ2
2=0.0034
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Figure 1.3: x2,t=0.8447, 0.1893, λ2,t=0.5606, 0.4394, σ2
2=0.0044
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Figure 1.4: x2,t=0.8261, 0.2090, λ2,t=0.5582, 0.4418, σ2
2= 0.0048
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Figure 1.5: x2,t=0.8109, 0.1948, λ2,t=0.5309, 0.4691, σ2
2=0.0044
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Figure 1.6: x2,t=0.7917, 0.2183, λ2,t=0.5298, 0.4702, σ2
2=0.0045
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Figure 1.7: Uniform distribution, x2,t=0.7887, 0.2114, λ2,t=0.5000, 0.5000, σ2
2=0.0056

Note again that although the variance of order j is small, σ2
j can measure not a good concen-

tration close to j distinct points. For example, the classical variance of a Gaussian distribution
may be small. So we have a concentration around 0. This leads that some following variances will
be small. But we cannot speak about a concentration around several points.

In fact, there seems that this is the first variance σ2
j small when we take the sequence σ2

i , i =
1,2, ... which may indicate a concentration around j points.

Gaussian mixtures

Now, we have examples of Gaussian mixtures.
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Figure 1.8: x2,t=0.7089, 0.2365 , λ2,t=0.4889, 0.5111, p2
s, σ

2
2=0.0038
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Figure 1.9: x2,t=0.7360, 0.2813, λ2,t=0.3130, 0.2126, σ2
2=0.1554
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Figure 1.10: Distribution N(0,0.1), x2,t=0.6568, 0.3433, λ2,t=0.5000, 0.5000, σ2
2=0.0011
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Figure 1.11: x2,t=2.0330, -1.0330, λ2,t=0.5000, 0.5000, σ2
2=0.9200
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Figure 1.12: x2,t=2.0330, -1.0330, λ2,t=0.5000, 0.5000, σ2
2=3.6200
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Figure 1.13: x2,t=2.0330, -1.0330, λ2,t= 0.5000, 0.5000, σ2
2=3.6200
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Figure 1.14: x2,t=2.4700, -0.9381, λ2,t=0.6409, 0.3591, σ2
2=9.8473
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Figure 1.15: x2,t=2.1416, -1.0216, λ2,t=0.6916, 0.3084, σ2
2=3.1403
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Figure 1.16: x2,t=2.1179, -1.0924, λ2,t=0.6212, 0.3788, σ2
2=3.2614
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Now we shall study the variances of order j for mixtures of j Gaussian components.
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Figure 1.17: σ2
6=1658.9
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Figure 1.18: σ2
6=2704.8

1.1.2 Some properties of Gauss Jacobi Quadrature

Concentration points of a probability can be detected using various properties of the Gauss Jacobi
Quadrature. First, the most important of these properties is the Stieltjes-Markov Inequality.

Proposition 1.1.4 Let FX be the distribution function of X. Then, for all k ∈1,2,..,j,

∑

xj,s<xj,k

λj,s ≤ FX(xj,k − 0) and
∑

xj,s≤xj,k

λj,s ≥ FX(xj,k + 0) .

These results are proved pages 26-29 of [11] equation 5.4. For example, in figure 1.27, we have the
distribution function of m and mj .

This result means that if FX has a point of discontinuity xj,k < x0 < xj,k+1 : FX(x0 + 0) −
FX(x0 − 0) = b > 0, i.e. m(x0) = b. As this discontinuity is between two roots, we thus find
λj,k + λj,k+1 ≥ b for all j.

Now we will give a condition under which we have the convergence of distributions : mj d→ m
(th 1.1 page 89 of [11]).
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Figure 1.19: σ2
5=2704.8
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Figure 1.20: σ2
4=92.0874
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Figure 1.21: σ2
3=26.9485
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Figure 1.22: σ2
2=7.4576
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Figure 1.23: σ2
2=7.3208
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Figure 1.24: σ2
3=27.1092
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Figure 1.25: σ2
4=93.1528
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Figure 1.26: σ2
5=306.6277
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Figure 1.27: Stieljes-Markov Inequality
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Theorem 3 We suppose that there is not other random variable T , T 6= X m-almost surely,
such that E{Tn} = E{Xn} for n=0,1,2,...

Let f ∈ L1(R,m). Assume that there exists A ≥ 0, B ≥ 0 and s ∈ N such that |f(x)| ≤
A+Bx2s. Then,

Limj→∞

∫

f(x)mj(dx) =

∫

f(x)m(dx) .

One can specify the speed of convergence in the following way (Theorem 4.4 page 110 of [11]).

Theorem 4 Assume that X ∈ [−1, 1] has a absolutely continuous distribution function FX such
that F ′

X(x) ≤ k0√
1−x2

for all x ∈ [−1, 1]. Then, for all −1 < x0 < 1,

∫ x0

−1

mj(dx) =

∫ x0

−1

m(dx) +O
(1

j

)

.

Now if the probability is enough regular, the weight λj,k’s converges regularly to 0 (cf Lemma
3.1 page 100 and remark page 101 of [11]).

Theorem 5 Assume that X ∈ [−1, 1] and that
∣

∣

FX(x)−FX(y)
x−y

∣

∣ ≤M <∞. Then, λj,k = O(M
j ).

We can specify this result in the following way (Theorem 6.8 page 254 of [11]).

Theorem 6 Assume that X ∈ [−1, 1]. Assume that there exists a polynomial τ(x) such that
F ′

X(x) ≥ τ(x)2 for all x ∈ [−1, 1]. We suppose FX(x) is absolutely continuous in [−1,+1] where
τ(x) does not vanish. Assume that, for all x, y ∈ [−1, 1],

|F ′
X(x) − F ′

X(y)| ≤ K|x− y|ρ

is satisfied for a 0 < ρ ≤ 1 and for all x, y ∈ [−1, 1]. Then,

1

λj,k
=
j

π

1
√

1 − xj,k F ′
X(xj,k)

+O(j1−ρ) when ρ < 1,

1

λj,k
=
j

π

1
√

1 − xj,k F ′
X(xj,k)

+O(log(j)) when ρ = 1.

Now if the distribution of X is enough regular, distances of successive roots xj,k converges to
0 (Theorem 5.1 page 111 of [11]).

Theorem 7 Assume that X ∈ [−1, 1]. Assume that 0 < M ′ <
∣

∣

FX(x)−FX(y)
x−y

∣

∣ ≤M <∞ holds for

x, y ∈ [c, d]. Let xj,k < xj,k+1 be two successive zeros of Pj(x) such that xj,k, xj,k+1 ∈ [c+ ǫ, d− ǫ]
where ǫ > 0.

Then, there exists two positive numbers c1(ǫ) > 0 and c2(ǫ) > 0 depending only on m, c, d,
and ǫ such that

c1(ǫ)

j
≤ xj,k+1 − xj,k ≤ c2(ǫ)

j
.

This means that the distance of the roots is of the order of 1/j if the Lipschitz condition is checked
by FX . We can specify this result in the following way (Theorem 9.2 page 130 of [11]).

Theorem 8 Assume that X ∈ [−1, 1]. Assume that F ′
X(x) > 0 for all x ∈ [−1, 1]. Let us denote

by N(Θ1,Θ2) the number of xj,k ∈ [cos(Θ1), cos(Θ2)]. Then,

limj→∞
N(Θ1,Θ2)

j
=

Θ2 − Θ1

π
.

These theorems in particular means that if there is no point x0 such that m({x0}) > 0, the
distribution of roots and weights is enough regular. As this is not the case if m({x0}) > 0, it will
detect the existence of those discontinuities by a way enough simple.
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1.1.3 Other results

At first, we have the following property.

Proposition 1.1.5 Let j ∈ Θ. Then σ
(

P̃j(X)
)

= σj. Moreover, if j < nm
0 , σ

(

Pj(X)
)

= 1.

Now, the variance of order j is is invariant by translation.

Proposition 1.1.6 Let a ∈ R. Let ma the translated probability : ma(B) = P (X + a ∈ B) . For
each j ∈ θ, the (j+1)-th orthonormal polynomial associated at ma is P̃j(x − a) . Moreover, let

x′j,1, x
′
j,2, ...., x

′
j,j, the zeros of P̃j(x − a) , λ′j,1, λ

′
j,2, ...., λ

′
j,j, be the weights of associated Gauss-

Jacobi Quadrature, and σ′2
j be the variance of order j associated at ma. Then, x′j,s = xj,s + a ,

λ′j,s = λj,s and σ′2
j = σ2

j .

In order to prove this result, it is enough to remark that
∫

P̃j(x − a)P̃k(x − a).ma(dx) =
∫

P̃j(x)P̃k(x).m(dx)

Now recall how to calculate practically the variance of order j.

Proposition 1.1.7 Let j ∈ Θ. Then,

σ2
j = M2j −

j−1
∑

s=0

β2
j,s where βj,s =

∫

xjPs(x).mdx .

Proof We have

P̃j = xj −
j−1
∑

s=0

E{XjPs(X)}Ps(x) .

Therefore,

σ2
j =

∫

(

xj −
j−1
∑

s=0

E{XjPs(X)}Ps(x)
)2

m(dx)

=

∫

x2jm(dx) − 2

∫

xj
(

j−1
∑

s=0

E{XjPs(X)}Ps(x)
)

m(dx) +

∫

(

j−1
∑

s=0

E{XjPs(X)}Ps(x)
)2

m(dx)

=

∫

x2jm(dx) − 2

j−1
∑

s=0

E{XjPs(X)}2 +

j−1
∑

s=0

E{XjPs(X)}2 . �

The following proposition results from the Gram-Schmidt Process

Proposition 1.1.8 The real σj is the distance in L2(R,m) of the polynomial x 7−→ xj to the sub-
space of L2(R,m) spanned by the polynomials of degree more little than j-1. Moreover, the mini-

mum of
∫ [

(x−t1)(x−t2)...(x−tj)
]2
.m(dx) when (t1, t2, ....., tj) ∈ R

j is reached for (t1, t2, ....., tj) =
(xj,1, xj,2, ....., xj,j) and is equal to σ2

j .

Now note that there cannot be more than two roots in an interval of measure zero.

Proposition 1.1.9 It can not be three successive roots xj,s < xj,s+1 < xj,s+2 such that P{X ∈
[xj,s, xj,s+2]} = 0 if λj,s+1 > 0.

Proof By Stieljes Markov inequality, we know that
∑

xj,s<xj,k+2
λj,s ≤ FX(xj,k+2 − 0) and

∑

xj,s≤xj,k
λj,s ≥ FX(xj,k + 0) . Then,

0 = FX(xj,k+2) − FX(xj,k) = FX(xj,k+2 − 0) − FX(xj,k + 0)

≥
∑

xj,s<xj,k+2

λj,s −
∑

xj,s≤xj,k

λj,s = λj,k+1 > 0 . �
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1.1.4 Theoretical Examples

At first, we recall the results on Jacobi polynomials associated to the Beta distribution (cf page
143 [10]).

Proposition 1.1.10 We suppose that X has the density

Γ(a+ b)

Γ(a)Γ(b)
xa−1(1 − x)b−1

if 0 ≤ x ≤ 1. We denote by J̃ab
j and

(

σab
j

)2
the orthogonal polynomials and associated variances.

Then,

J̃ab
j (x) = (−1)j Γ(a+ b+ j − 1)

Γ(a+ b+ 2j − 1)
x1−a(1 − x)1−b d

j
(

xa−1+j(1 − x)b−1+j
)

dxj

(

σab
j

)2
=

Γ(a+ j)Γ(b+ j)Γ(a+ b+ j − 1)(j!)

β(a, b)Γ(a+ b+ 2j − 1)2(a+ b+ 2j − 1)
.

Now, we study Legendre polynomials. (cf page 143 [10]).

Proposition 1.1.11 We suppose that X has the uniform distribution on [0,1]. We denote by L̃ej

and σ2
j the orthogonal polynomials and associated variances. Then,

L̃ej(x) =
j!

2j!

j
∑

t=0

Ct
j(−1)t((j + t)!)

t!
xt

(

σj

)2
=

(j!)4)

[(2j)!]2(2j + 1)
.

With the normal distribution we use the Hermite polynomials (cf page 145 [10]).

Proposition 1.1.12 Let Ĥj(x) = ex2 dj(e−x2
)

dx the Hermite orthogonal. We suppose that X has

the N(m,σ2) distribution. We denote by Hmσ2

j and
(

σmσ2

j

)2
the orthogonal polynomials and

associated variances. Then,

H̃mσ2

j (x) =
(−1)jσj

2j/2
Ĥj

(x−m

σ
√

2

)

,

(

σmσ2

j

)2
= j!σ2j .

At last we have the Laguerre polynomials (cf page 144 [10]).

Proposition 1.1.13 We suppose that X has γ(a, p) distribution (a > 0), i.e. X has the density

pa

Γ(a)
e−pxxa−1 if x ≥ 0.

We denote by L̃ap
j and

(

σap
j

)2
the orthogonal polynomials and associated variances. Then,

L̃ap
j (x) =

(−1)j

pj
x1−aepx d

j
(

xa−1+je−px
)

dxj

(

σap
j

)2
=
j!Γ(a+ j)

Γ(a)p2j
.
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Chapter 2

Estimation

We will see that one can easily estimate the higher order variances and the Gauss Jacobi quadra-
ture. We can also obtain their asymptotic distributions. We will study this problem under the
weakest possible assumptions. For this reason, we first recall some properties of empirical orthog-
onal functions.

2.1 Empirical Orthogonal functions

In order to define empirical orthogonal functions in the general case, at first we need to define
orthogonal functions. We do this under the most general assumptions possible.

2.1.1 Notations

Notations 2.1.1 Let (Ω, A, P ) be a probability space. Let h∈ N
∗ and Λ = (Λ0,Λ1, .....,Λh) ∈ R

h+1

be a random vector defined on (Ω, A, P ) . We assume that E(Λ2
j ) < +∞ for all j ∈ 0, 1, ..., h. We

assume that Λ0,Λ1, .....,Λh are lineraly independent in L2(Ω, A, P ) .

Under the previous assumptions, the Λj ’s can be orthogonalized by using the process of Gram-
Schmidt.

Theorem 9 Let µ be the distribution of Λ. Let <,> and |.| be the scalar product and the norm of
L2(Rh+1, µ). Let χ0, χ1, ....., χh be h+1 real variables. We set χ = (χ0, χ1, ....., χh) and we identify
χj and the function χ 7−→ χj. For all χ ∈ R

h+1, we set Ã−1(χ) = A−1(χ) = 0,

and, for h ≥ j ≥ 0, Ãj(χ) = χj −
j−1
∑

s=−1

< χj , As > As(χ),

Aj(χ) =
Ãj(χ)

||Ãj ||
.

Then, for all (j, j′) ∈ {0, 1, ..., h}2 ,
∫

AjAj′dµ = δj,j′ where δj,j′ is the Kronecker Delta.

For example, if Λ0 ≡ 1, then A0 ≡ 1, and A1(χ) = χ1−E(χ1)
σ(χ1)

where σ2(.) is the variance.

Now the function Ãj are completly defined by the matrix of variances covariances.

Lemma 2.1.1 For all j ∈ {0, 1, ..., h} , we set Ãj(χ) =
∑j

t=0 ãj,tχt . Then, there exists rational
functions ψj,t and ηj such that, for all random vector Λ , and for all (j,t), ãj,t = ψj,t

(

{τr,s
)

} and

||Ãj ||2 = ηj

(

{τr,s}
)

, 0 ≤ r ≤ s ≤ j, when τr,s = E{ΛrΛs} , 0 ≤ r ≤ s ≤ j .
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In particular,orthogonal polynomials are completly defined by the moments.

Now, one can estimate the Ãj under weak assumptions.

Proposition 2.1.1 Let {Λℓ.}ℓ∈N , Λℓ. =
(

Λℓ,0,Λℓ,1, ....,Λℓ,h

)

∈ R
h+1, be a sequence of random

vectors such that (1/n)
∑n

ℓ=1 Λ′
ℓ.Λℓ.

p→ E{Λ′Λ} where M′ is the transpose of the matrix M.
For all n ∈ N

∗, we denote by µn the empirical measure associated at the sample {Λℓ.}ℓ=1,2,..,n.
We denote by < , >n and || ||n the scalar product and the norm of L2(Rh+1, µn). For all n ∈ N

∗

and for all χ ∈ R
h+1, we set Ãn

−1(χ) = An
−1(χ) = 0,

and, for h ≥ j ≥ 0, Ãn
j (χ) = χj −

j−1
∑

s=−1

< χj , A
n
s >n A

n
s (χ),

An
j (χ) =





Ãn
j (χ)

||Ãn
j ||n

if ||Ãn
j ||n 6= 0,

0 if ||Ãn
j ||n = 0.



 ..

Then, for all (j, j′) ∈ {0, 1, ..., h}2 ,
∫

An
jA

n
j′ .dµn = δj,j′ if ||Ãn

s ||n 6= 0 for s=0,1,...,max(j,j’).

Notations 2.1.2 For all j ∈ {0, 1, ..., h}, we set Ãn
j = Ãj +

∑j
s=0 α̃

n
j,sAs and An

j = Aj +
∑j

s=0 α
n
j,sAs and we define the matrices α̃n and αn by α̃n = {{α̃n

j,s}}(j,s)∈{0,1,....,h}2 and αn =
{{αn

j,s}}(j,s)∈{0,1,....,h}2 by αn
j,s = α̃n

j,s = 0 if s > j .

Remark that α̃n
j,j = 0, i.e. Ãn

j = Ãj +
∑j−1

s=0 α̃
n
j,sAs .

Now the Ãn
j ’s are estimators of the Ãj .

Theorem 10 With the previous notations αn p→ 0 and α̃n p→ 0. Moreover, if {Λℓ} is IID, αn a.s.→ 0

and α̃n a.s.→ 0.

Now, in order to obtain asymptotic distributions of αn and α̃n, we need to use stochastics
”O(.)” and ”o(.)” (cf [9] page 8, section 1.2.5).

Notations 2.1.3 A sequence of random variable Xn is bounded in probability, if, for every ǫ > 0,
there exists Mǫ and Nǫ such that P{|Xn| ≤ Mǫ} ≥ 1 − ǫ for all n ≥ Nǫ . Then, one writes
Xn = OP (1) .

Moreover, we write Xn = OP (Zn) for two sequences of random variable Xn and Zn, if

Xn/Zn = OP (1) and Xn = oP (Zn) if Xn/Zn
p→ 0.

In the vector case, we define the stochastic op and Op by the following way. For example, we
denote (Zn,0, Zn,1, ....., Zn,h) = op(φ(n)−1) if Zn,s = op(φ(n)−1) for all s=0,1,...,h, and we do the
same for Op.

In particular, Xn = OP (1) if Xn
d→ X (cf also Problem 1.P.3 of [9]). Then, the following result

allow to know asymptotic distributions of An
j .

Theorem 11 Let φ(n) > 0 be a real sequence such that φ(n) → ∞ as n→ ∞. Assume E{Λ4
s} <

∞ for all s=0,1,..,h. We suppose that

φ(n)

n

[

n
∑

ℓ=1

[

Λ′
ℓ.Λℓ.

]

− E{Λ′Λ}
]

= Op(1) .

Then,
αn = en + op(φ(n)−1)
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where en = {{
∫

Ji,s.dµn}}(i,s)∈{0,1,...,h}2 with Ji,s(χ) = −Ai(χ)As(χ) if s < i, Ji,i(χ) = 1−Ai(χ)2

2
if s=i, and Ji,s ≡ 0 if s > i.

Moreover,
α̃n = ẽn + op(φ(n)−1)

where ẽn = {{
∫

J̃i,s.dµn}}(i,s)∈{0,1,...,h}2 with J̃i,s(χ) = −Ãi(χ)As(χ) if s < i, and J̃i,s ≡ 0 if
s ≥ i.

This result is remarkable because by elementary properties of orthogonal functions, αn
i,s =

∫

An
i Asdµ if i < s and αn

i,i =
∫

An
i Aidµ− 1.

2.1.2 Proofs

At first, we introduce the following notations.

Notations 2.1.4 For all (i, s) ∈ {0, 1, ..., h}2, we set α̃n
−1,s = α̃n

i,−1 = αn
−1,s = αn

i,−1 = 0.
We set A = (A0, A1, ....., Ah), An = (An

0 , A
n
1 , ....., A

n
h). For all i ∈ {0, 1, ..., h}, we set [A[i=

(A−1, A0, A1, ....., Ai−1), [An[i= (An
−1, A

n
0 , A

n
1 , ....., A

n
i−1), α̃

n
i = (α̃n

i,0, α̃
n
i,1, ....., α̃

n
i,h) , and [αn[i=

{{αn
j,s}}(j,s)∈{0,1,....,i−1}2 .

With these notations, the following result is easily proved.

Lemma 2.1.2 Under the previous notations , α̃n
i = (α̃n

i,0, α̃
n
i,1, ....., α̃

n
i,i−1, 0, ...., 0). Moreover

(An)′ = A′ + αnA′.
On the other hand, Ãi = χi−

( ∫

χi[A[idm
)

([A[i)
′, Ãn

i = χi−
( ∫

χi[A
n[idmn

)

([An[i)
′, ([An[i)

′ =

([A[i)
′ + [αn[i([A[i)

′ and Ãn
i = Ãi + α̃n

i (A)′ = Ãi +A(α̃n
i )′.

We deduce the following lemma

Lemma 2.1.3 For all i ∈ {0, 1, ..., h}, the following equalities hold :

a) Ãn
i = Ãi +

(

∫

χi[A[idm−
∫

χi[A[idmn

)

([A[i)
′ −
(

∫

χi[A[idmn

)(

[αn[i+([αn[i)
′)([A[i)

′

..........................................................−
(

∫

χi[A[idmn

)

([αn[i)
′[αn[i([A[i)

′ ,

b)

∫

Ãn
i Ã

n
i dmn =

∫

ÃiÃidmn + α̃n
i

(

∫

A′Ãidmn

)

+
(

∫

ÃiAdmn

)

(α̃n
i )′ + α̃n

i

(

∫

A′Admn

)

(α̃n
i )′ .

c) If i 6= s, αn
i,s =

α̃n
i,s

||Ãn
i ||n

if ||Ãn
i ||n 6= 0, αn

i,s = 0 if ||Ãn
i ||n = 0.

αn
i,i =

||Ãi||2−||Ãn
i ||2n

(

||Ãi||+||Ãn
i ||n
)

||Ãn
i ||n

if ||Ãn
i ||n 6= 0, αn

i,i = −1 if ||Ãn
i ||n = 0,
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Proof of theorem 10 We prove by recurence on i that α̃n
i,s and αn

i,s converge in probability
to 0 for every s ∈ {−1, 0, 1, ..., h}.

If i=-1, the result is obvious : αn
−1,s = α̃n

−1,s = 0.

Now, we suppose that, for every all (s, t) ∈ {−1, 0, 1, ..., i− 1} × {−1, 0, 1, ..., h}, αn
s,t

p→ 0.

By our assumption,
∫

χi[A[idmn
p→
∫

χi[A[idm. Then, by lemma 2.1.3-a, α̃n
i

p→ 0 and α̃n
i,s

p→ 0.

Now,
∫

AiAsdmn
p→
∫

AiAsdm. Then, by lemma 2.1.3-b, we deduce ||Ãn
i ||n

p→ ||Ãi||.

Since Λ0,Λ1, ....,Λh are linearly independent, ||Ãi|| 6= 0. Let g be the function g(a)=1/a if

a 6= 0, and g(0)=0. Then, g
(

||Ãn
i ||n

) p→ ||Ãi||−1 (cf page 24 [9]). Therefore, if s < i, by lemma

2.1.3-c , αn
i,s = g

(

||Ãn
i ||n

)

α̃n
i,s

p→ 0.

We prove similarly that αn
i,i

p→ 0.

We prove the convergence with probability 1 by the same way. �.

In order to prove theorem 11, we need the following lemma which one proves by means of
elementary properties of sequences of random variables (cf [9] chapter 1).

Lemma 2.1.4 Let Kn, Zn and Z∗
n be three sequences of random variables defined on (Ω,A, P )

such that φ(n)Zn = OP (1), φ(n)Z∗
n = OP (1) and Kn

p→ K ∈ R.
Then, φ(n)KZn = OP (1), φ(n)KnZn = OP (1), φ(n)Zn + φ(n)Z∗

n = OP (1), and KnZn =
KZn + oP (φ(n)−1).

Moreover, Zn
p→ 0 and KnZn

p→ 0.
Finally, ZnZ

∗
n = KnZnZ

∗
n + oP (φ(n)−1) = KZnZ

∗
n + oP (φ(n)−1) = oP (φ(n)−1).

Now we can prove the following properties

Lemma 2.1.5 Under the assumptions of theorem 11, φ(n)αn
i,s = OP (1) for all (i, s) ∈ {−1, 0, 1, ...

...., h}2.

Proof We prove this lemma by recurence on i. If i=-1, the result is obvious : αn
−1,s = 0.

Let i ∈ {0, 1, ..., h}. We suppose that, for every all (s, t) ∈ {−1, 0, 1, ..., i−1}×{−1, 0, 1, ..., h},
φ(n)αn

s,t = Op(1).

Therefore, φ(n)[αn[i= OP (1). Moreover, φ(n)
( ∫

χi[A[idmn −
∫

χi[A[idm
)

= Op(1) (lemma

2.1.4) and
∫

χi[A[idmn
p→
∫

χi[A[idm. Then, by lemma 2.1.4 and 2.1.3-a, φ(n)α̃n
i,s = Op(1), i.e.

φ(n)α̃n
i = Op(1).

Therefore, if s < i, by by lemma 2.1.4 and 2.1.3-c, φ(n)αn
i,s = φ(n)g

(

||Ãn
i ||n

)

α̃n
i,s = Op(1).

Moreover, by lemma 2.1.4, φ(n)
( ∫

(Ãi)
2dmn − ||Ãi||2

)

= Op(1). Therefore, by lemma 2.1.4

and 2.1.3-b, φ(n)
(

||Ãn
i ||2n − ||Ãi||2

)

= Op(1). We deduce φ(n)αn
i,i = OP (1). �

We deduce the following lemma.

Lemma 2.1.6 Under the assumptions of theorem 11, φ(n)α̃n
i,s = OP (1) for all (i, s) ∈ {0, 1, ..., h}2.

Proof By lemma 2.1.3-b, ||Ãn
i ||n

p→ ||Ãi||. Then, if i 6= s, and if n large enough, by lemma 2.1.4,
φ(n)α̃n

i,s = φ(n)||Ãn
i ||nαn

i,s = OP (1). Moreover, if i=s, α̃n
i,s = 0. �

We deduce the following lemma

Lemma 2.1.7 Under the assumptions of theorem 11, φ(n)
∫

Ãn
i Ã

n
i dmn − φ(n)

∫

ÃiÃidmn
p→ 0.
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Proof By lemma 2.1.3-b,
∫

Ãn
i Ã

n
i dmn =

∫

ÃiÃidmn + α̃n
i

(

∫

A′Ãidmn

)

+
(

∫

ÃiAdmn

)

(α̃n
i )′ + α̃n

i

(

∫

A′Admn

)

(α̃n
i )′ .

Now, A = (A0, A1, ...., Ah) and α̃n
i = (α̃n

i,0, α̃
n
i,1, ....., α̃

n
i,i−1, 0, 0, ...., 0). Then, φ(n)α̃n

i

( ∫

A′Ãidmn

)

=
∑i−1

s=0 φ(n)α̃n
i,s

∫

AsÃidmn
p→ 0 because φ(n)α̃n

i,s = Op(1).

By the same way, φ(n)
( ∫

ÃiAdmn

)

(α̃n
i )′

p→ 0.

Moreover, α̃n
i

p→ 0. Then, φ(n)α̃n
i

( ∫

A′Admn

)

(α̃n
i )′

p→ 0. �

Now we can prove the fundamental theorem.
Proof of first equations of theorem 11. Let αn

i = (αn
i,0, α

n
i,1, ....., α

n
i,h), i.e. An

i = Ai+α
n
i A

′

and An
s = As +A(αn

s )′. Then,

< An
i , A

n
s >n=

∫

AiAsdmn + αn
i

(

∫

A′Asdmn

)

+
(

∫

AiAdmn

)

(αn
s )′ + αn

i

(

∫

A′Admn

)

(αn
s )′

=

∫

AiAsdmn + αn
i,s

(

∫

AsAsdmn

)

+ αn
s,i

(

∫

AiAidmn

)

+ op(φ(n)−1) (cflemma 2.1.4)

=

∫

AiAsdmn + αn
i,s + αn

s,i + op(φ(n)−1) (cflemma 2.1.4) .

Then, 1 =
∫

AiAidmn +2αn
i,i + op(φ(n)−1) and 0 =

∫

AiAsdmn +αn
i,s + op(φ(n)−1) if s < i. �

Proof of second equations of theorem 11. If i > s,
α̃n

i,s = ||Ãn
i ||nαn

i,s = ||Ãn
i ||n[−

∫

AiAsdmn+op(φ(n)−1)] where φ(n)[
∫

AiAsdmn−0] = Op(1). Now,

by lemma 2.1.4, ||Ãn
i ||n

∫

AiAsdmn = ||Ãi||
∫

AiAsdmn + op(φ(n)−1) =
∫

ÃiAsdmn + op(φ(n)−1).
�

2.1.3 Asymptotic distribution

It is easy to deduce from theorem 11 the asymptotic distributions of Ãn and An. For example if
Λℓ is IID and if E{Λ4

ℓ}
)

< ∞, on can apply the CLT. For example, if s < i,
√
n
∫

AiAsdmn has
asymptotically a normal distribution. Then,

√
n{{αn

i,s}} has asymptotically a normal distribution.
Then, it is enough to apply classical theorems in order to deduce the asymptotic covariance of√
n{{αn

i,s}}.

2.2 Estimation of higher order variances

We will deduct from the previous results estimators of Gauss Jacobi Quadrature and of Higher
order variances.

At first, we need empirical orthogonal polynomials.

Notations 2.2.1 Let j ∈ N such that Pj exists. Let {Xℓ}ℓ∈N , Xℓ ∈ R, be a sequence of random

variables such that (1/n)
∑n

ℓ=1X
s
ℓ

p→ E{Xs} <∞ for all s ∈ N.
For all n ∈ N

∗, we denote by mn the empirical measure associated at the sample {Xℓ}ℓ=1,2,..,n.

Under these conditions the assumptions of the proposition 2.1.1 hold.
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Proposition 2.2.1 Let h ∈ N∗. We set {Λℓ}ℓ∈N , Λℓ =
(

X0
ℓ , X

1
ℓ , ...., X

h
ℓ

)

. Then,

(1/n)

n
∑

ℓ=1

Λ′
ℓΛℓ

p→ E{Λ′Λ} .

Proof We know that a sequence of random vectors Yn
p→ Y if P

{∣

∣Yn−Y
∣

∣ < a
}

→ 1 as n→ ∞
for every a > 0. Donc, P

{∣

∣Yn−Y
∣

∣ ≥ a
}

= P
{

∁{
∣

∣Yn−Y
∣

∣ < a
}

} = 1−P
{∣

∣Yn−Y
∣

∣ < a
}

→ 1−1 = 0.

One can choose in R
h+1 the maximum norm : ||(x0, x1, ...., xh)|| = Maxs=0,1,...,h(|xs|). Then,

convergence in probability of Λℓ means that

P
{∣

∣

∣

∣(1/n)

n
∑

ℓ=1

Λℓ − E{Λ}
∣

∣

∣

∣ ≥ a
}

= P
{

Maxs=0,1,...,h

∣

∣(1/n)
n
∑

ℓ=1

Xs
ℓ − E{Xs}

∣

∣ ≥ a
}

→ 0.

Let a > 0. Then, for all ǫ > 0, for all s ∈ {0, 1, ..., h}, there exists Ns such that if n ≥ Ns,
P
{∣

∣(1/n)
∑n

ℓ=1X
s
ℓ − E{Xs}

∣

∣ ≥ a
}

≤ ǫ/(h+ 1).
Now, if n ≥Ma = Maxs=0,1,...,h(Ns),

P
{

Maxs

∣

∣(1/n)

n
∑

ℓ=1

Xs
ℓ − E{Xs}

∣

∣ ≥ a
}

≤ P
{

∪s

∣

∣(1/n)

n
∑

ℓ=1

Xs
ℓ − E{Xs}

∣

∣ ≥ a
}

≤
∑

s

P
{∣

∣(1/n)
n
∑

ℓ=1

Xs
ℓ − E{Xs}

∣

∣ ≥ a
}

≤ (h+ 1)(ǫ/(h+ 1)) = ǫ .

That prove that
∑n

ℓ=1 Λℓ
p→ E{Λℓ}. We deduce that (1/n)

∑n
ℓ=1 Λ′

ℓΛℓ
p→ E{Λ′Λ} by changing

h in 2h. �

Then, we can define empirical orthogonal polynomials.

Notations 2.2.2 Let {P̃n
j }j=0,1,..,h and {Pn

j }j=0,1,..,h be the family of orthogonal polynomials

such that, for all i ≤ h, P̃n
i (x) = Ãn

i (1, x, x2, ..., xh) , Pn
i (x) = An

i (1, x, x2, ..., xh).

Notations 2.2.3 We set Pj(x) =
∑j

t=0 aj,tx
t, P̃j(x) =

∑j
t=0 ãj,tx

t and Pn
j (x) =

∑j
t=0 a

n
j,tx

t,

P̃n
j (x) =

∑j
t=0 ã

n
j,tx

t.

Then, the P̃n
i ’s are the orthogonal polynomials associated to the empirical measure mn.

Proposition 2.2.2 Under the previous notations, P̃i(x) = Ãi(1, x, x
2, ..., xh) , Pi(x) = Ai(1, x, x

2,
..., xh).

Moreover, there exists N such if n ≥ N , {Pn
i }i=0,1,..,h is the family of orhonormal polynomials

of L2(R,mn) and {P̃n
i }i=0,1,..,h is the family of orthogonal polynomials of L2(R,mn) such that

ãn
j,j = 1.

We deduce from theorem 10 that P̃n
i is an estimate of P̃i.

Proposition 2.2.3 For all i ≤ h, P̃n
i = Pi +

∑i−1
s=0 α̃

n
i,sPs and Pn

i = Pi +
∑i

s=0 α
n
i,sPs, where, for

all (j,s), α̃n
j,s

p→ 0 and αn
j,s

p→ 0. Moreover, for all (i,s), α̃n
i,s and αn

i,s converges almost surely to 0
if Xℓ is IID.

Now, one can define empirical Gauss Jacobi Quadrature and empirical variances of order j.

Notations 2.2.4 Let j ∈ N. We denote by (σn
j )2 the variance of order j of mn, by xn

j,1, x
n
j,2, ...., x

n
j,j

the zeros of P̃n
j , by λn

j,1, λ
n
j,2, ...., λ

n
j,j the weights of Gauss Jacobi quadrature, if these numbers

exists. If not, one defines theses variables by 0.
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Remark that (σn
1 )2 is the classical empirical variances. Moreover (σn

2 )2 = Mn
4 − (Mn

3 −Mn
1 Mn

2 )2

Mn
2
−(Mn

1
)2 −

(Mn
2 )2 , where Mn

j is the empirical moment of order j.

Clearly, these estimators converges almost surely if Xℓ is IID. More generally, the following
proposition holds.

Proposition 2.2.4 Under the previous assumptions, σn
j

p→ σj . Moreover, for all j=1,2,..,h, for

all s=1,2,..,j, xn
j,s

p→ xj,s and λn
j,s

p→ λj,s , respectively. These estimators converges almost surely
if Xℓ is IID.

Proof Clearly ãn
j,s

p→ ãj,s and an
j,s

p→ aj,s. Then, by theorem page 24 of [9], g(ãn
j,0, ã

n
j,1, ....., ã

n
j,j)

p→ g(ãj,0, ãj,1, ....., ãj,j) if g is continous with P-probability 1. Then, for example, xn
j,s

p→ xj,s .
One prove the almost sure convergence by the same way �.

In order to study asymptotic distributions, we will suppose assumptions as those of theorem
11 (cf also section 2.1.3). But they can be complicated. Also in order to simplify we assume from
now that Xℓ is IID.

Notations 2.2.5 We suppose now that {Xℓ}ℓ∈N , Xℓ ∈ R, is an IID sequence of random vectors
such that X0 = X and E{X4h} <∞.

For all n ∈ N
∗, we denote by < , >n and || ||n the scalar product and the norm of L2(Rh+1,mn).

Indeed, for example we want to know the asymptotic distributions of empirical variances. But if

we keep the hypothesis of Theorem 11, we assume then that φ(n)
n

[
∑n

ℓ=1

[

Λ′
ℓ.Λℓ.

]

− E{Λ′Λ}
] p→ G

where G is a random vector. This can give assumptions and notations too complicated (e.g.
Λℓ. =

(

X0
ℓ , X

1
ℓ , ...., X

h
ℓ

)

). So we just give the results in the IID case. But the reader can easily
obtain the same type of results under weakest hypotheses, for example under the strong mixing
assumption.

Now, by the CLT, one can apply the result of section 2.1 with φ(n) =
√
n

Lemma 2.2.1 Under the previous assumptions , α̃n = ẽn + op

(

n−1/2
)

and αn = en + op

(

n−1/2
)

.

Indeed, clearly, by the CLT,
√

n
n

[
∑n

ℓ=1

[

Λ′
ℓ.Λℓ.

]

− E{Λ′Λ}
] p→ G where G is a random vector

such that G ∼ N(0, C). Then, assumptions of theorem 11 hold.

At first, one generalizes the result about the asymptotical distribution of empirical classical
variance.

Theorem 12 Under the previous assumptions,
√

(n)
[

(σn
j )2 − σ2

j

]

has asymptotically a normal

distribution with mean 0 and variance E
{

P̃j(X)4
}

− σ4
j .

Proof : By lemma 2.1.7,
√
n
(

∫

P̃n
j P̃

n
j .dmn−

∫

P̃jP̃j .dm
)

has asymptotically the same distri-

bution as
√
n
(

∫

P̃jP̃j .dmn − σ2
j

)

=
∑n

ℓ=1

P̃j(Xℓ)P̃j(Xℓ)−σ2
j√

n
. Then, it is enough to use the Central

Limit Theorem. �

We obtain now the asymptotical distribution of the estimators of Gauss Jacobi Quadrature.

Theorem 13 For all s=1,2,...,j, we set xn
j,s = xj,s +ηs . Then,

√
n{ηs}s=1,..,j has asymptotically

a normal distribution with mean 0 and covariance matrix {Gs,t}(s,t)∈{1,2,...,j}2 where

Gs,t = E

{

[

∑j−1
v=0 Pv(xj,s)Pv(X)Pj(X)

][

∑j−1
v=0 Pv(xj,t)Pv(X)Pj(X)

]

P ′
j(xj,s)P ′

j(xj,t)

}

.
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This theorem is deduced from the following lemma by using the CLT.

Lemma 2.2.2 For all s = 1,2,...,j,

ηs =
1

P̃ ′
j(xj,s)

∫

P̃j(t)
(

j−1
∑

v=0

Pv(xj,s)Pv(t)
)

.mn(dt) + op(n
−1/2) .

Proof We prove this lemma for s=1. First, one proves that
√
n η1 is asymptotically normal.

By notations 2.1.2, we know that

P̃n
j = P̃j +

j−1
∑

v=0

α̃n
j,vPv .

Therefore, because P̃n
j (xn

j,1) = 0 ,

P̃j(x
n
j,1) = −

j−1
∑

v=0

α̃n
j,vPv(xn

j,1) .

Therefore,
√
nP̃j(x

n
j,1) =

√
n(xn

j,1 − xj,1)(x
n
j,1 − xj,2)....(x

n
j,1 − xj,j) is asymptotically normal.

Moreover (xn
j,1−xj,2)

−1....(xn
j,1−xj,j)

−1 converges almost surely to (xj,1−xj,2)
−1....(xj,1−xj,j)

−1.
Therefore,by the theorem of page 19 of [9]

√
n(xn

j,1 − xj,1) is asymptotically normal, i.e.
√
n η1 is

asymptotically normal.
By the same way, one proves that

√
n ηs is asymptotically normal for s=2,3,...,j.

Now one can prove the lemma. Indeed, one can write the following equalities :

P̃n
j (x) = (x− xj,1 − η1)(x− xj,2 − η2)......(x− xj,j − ηj)

= (x− xj,1)(x− xj,2)......(x− xj,j)

− η1(x− xj,2)(x− xj,3)......(x− xj,j)

− η2(x− xj,1)(x− xj,3)......(x− xj,j)

...........................................................

− ηj(x− xj,1)(x− xj,2)......(x− xj,j−1) + op(n
−1/2) ,

by lemma 2.1.4. Therefore,

P̃n
j (xj,1) = −η1(xj,1 − xj,2)(xj,1 − xj,3)......(xj,1 − xj,j) + op(n

−1/2) = −η1P̃ ′
j(xj,1) + op(n

−1/2) .

Now, by theorem 11,

P̃n
j (xj,1) = P̃j(xj,1) +

j−1
∑

v=0

α̃n
j,vPv(xj,1)

=

j−1
∑

v=0

α̃n
j,vPv(xj,1)

=

j−1
∑

v=0

(

−
∫

P̃jPvdmn

)

Pv(xj,1) + op(n
−1/2) .

We deduce the lemma. �
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Theorem 14 Let j ∈ N such that E{X4j} < ∞ . For all s=1,2,...,j, and for all u=1,2,..,j, we

set Ls(x) =
P̃j(x)

x−xj,s
and hs

u(x) =
P̃j(x)

(x−xj,s)(x−xj,u) . We define Ds
u by

Ds
u =

j
∑

r=1,r 6=s

(

hs
r(xj,s)E{Ls(X)}

Ls(xj,s)
− E{hs

r(X)}
)(

Pu(xj,r)

Ls(xj,s)P̃ ′
j(xj,r)

)

−Pu(xj,s)E{Ls(X)}
Ls(xj,s)3

j
∑

r=1,s 6=r

hs
r(xj,s) .

Then,
√
n{λn

j,s − λj,s}s=1,..,j has asymptotically the normal distribution with mean 0 and co-
variance matrix {Os,t}1≤s,t≤j where

Os,t = E

{

[

ℓs(X) +

j−1
∑

u=0

Ds
uPu(X)P̃j(X)

][

ℓt(X) +

j−1
∑

u=0

Dt
uPu(X)P̃j(X)

]

}

− λj,sλj,t .

This theorem is deduced from the following lemma by using CLT.

Lemma 2.2.3 For all s ∈ {1, 2, .., j} ,

λn
j,s =

∫

ℓs(t).mn(dt) +

∫

(

j−1
∑

u=0

Ds
uPu(t)P̃j(t)

)

.mn(dt) + op(n
−1/2) .

Proof We prove this lemma for s=1. We simplify L1(t) in L(t) and h1
r in hr : L(t) =

(t−xj,2)(t−xj,3)....(t−xj,j) , h2(t) = (t−xj,3)(t−xj,4)....(t−xj,j) , h3(t) = (t−xj,2)(t−
xj,4)....(t− xj,j) etc. Moreover, we set Ln(t) = (t− xn

j,2)(t− xn
j,3)....(t− xn

j,j) .

We know that

λj,1 =

∫

ℓ1(x).m(dx)

=

∫

(t− xj,2)(t− xj,3)...(t− xj,j).m(dt)

(xj,1 − xj,2)(xj,1 − xj,3)...(xj,1 − xj,j)

=

∫

L(t).m(dt)

L(xj,1)

and that

λn
j,1 =

∫

ℓn1 (x).mn(dx)

=

∫

(t− xn
j,2)(t− xn

j,3)...(t− xn
j,j).mn(dt)

(xn
j,1 − xn

j,2)(x
n
j,1 − xn

j,3)...(x
n
j,1 − xn

j,j)

=

∫

Ln(t).mn(dt)

Ln(xn
j,1)

.

By proposition 2.2.4, we deduce easily that
∫

Ln(t).mn(dt) and Ln(xn
j,1) converge almost surely

to
∫

L(t).m(dt) and L(xj,1) , respectively. Therefore,
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λn
j,1 − λj,1 =

∫

Ln(t).mn(dt)

Ln(xn
j,1)

−
∫

L(t).m(dt)

L(xj,1)

=

∫

Ln(t).mn(dt) −
∫

L(t).m(dt)

Ln(xn
j,1)

+

∫

L(t).m(dt)

Ln(xn
j,1)

−
∫

L(t).m(dt)

L(xj,1)

=

∫

Ln(t).mn(dt) −
∫

L(t).m(dt)

L(xj,1)
−

[

∫

L(t).m(dt)
][

Ln(xn
j,1) − L(xj,1)

]

L(xj,1)2
+ op(n

−1/2) ,

if
√

(n)
[ ∫

Ln(t).mn(dt) −
∫

L(t).m(dt)
]

and
√
n
[

Ln(xn
j,1) − L(xj,1)

]

are asymptotically normal.
Then, we prove this result now. Indeed,

∫

Ln(t).mn(dt) −
∫

L(t).m(dt)

=

∫

(t− xn
j,2)(t− xn

j,3)....(t− xn
j,j).mn(dt) −

∫

(t− xj,2)(t− xj,3)....(t− xj,j).m(dt)

=

∫

(t− xj,2)(t− xj,3)....(t− xj,j).[mn −m](dt)

− η2

∫

(t− xj,3)(t− xj,4)....(t− xj,j).mn(dt)

− η3

∫

(t− xj,2)(t− xj,4)....(t− xj,j).mn(dt)

− .......................................................

− ηj

∫

(t− xj,2)(t− xj,3)....(t− xj,j−1).mn(dt) + op(n
−1/2)

=

∫

L(t).[mn −m](dt) − η2E{h2(X)} − η3E{h3(X)} − .....− ηjE{hj(X)} + op(n
−1/2) .

By the same way,

Ln(xn
1 ) − L(xj,1)

= (xn
j,1 − xn

j,2)(x
n
j,1 − xn

j,3)...(x
n
j,1 − xn

j,j) − (xj,1 − xj,2)(xj,1 − xj,3)...(xj,1 − xj,j)

= (xn
j,1 − xj,2)(x

n
j,1 − xj,3)...(x

n
j,1 − xj,j) − (xj,1 − xj,2)(xj,1 − xj,3)...(xj,1 − xj,j)

− η2(x
n
j,1 − xj,3)(x

n
j,1 − xj,4)...(x

n
j,1 − xj,j)

− η3(x
n
j,1 − xj,2)(x

n
j,1 − xj,4)...(x

n
j,1 − xj,j)

− ...................................................

− ηj(x
n
j,1 − xj,2)(x

n
j,1 − xj,3)...(x

n
j,1 − xj,j−1) + op(n

−1/2)

= (xj,1 − xj,2)(xj,1 − xj,3)...(xj,1 − xj,j) − (xj,1 − xj,2)(xj,1 − xj,3)...(xj,1 − xj,j)

+ η1(xj,1 − xj,3)(xj,1 − xj,4)...(xj,1 − xj,j)
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+ η1(xj,1 − xj,2)(xj,1 − xj,4)...(xj,1 − xj,j)

+ ...................................................

+ η1(xj,1 − xj,2)(xj,1 − xj,3)...(xj,1 − xj,j−1)

− η2(xj,1 − xj,3)(xj,1 − xj,4)...(xj,1 − xj,j)

− η3(xj,1 − xj,2)(xj,1 − xj,4)...(xj,1 − xj,j)

− ...................................................

− ηj(xj,1 − xj,2)(xj,1 − xj,3)...(xj,1 − xj,j−1) + op(n
−1/2)

= η1
[

h2(xj,1) + ...+ hj(xj,1)
]

− η2h2(xj,1) − ....− ηjhj(xj,1) + op(n
−1/2) .

Therefore,

λn
j,1 − λj,1

=

∫

L(t).[mn −m](dt)

L(xj,1)

− η2
E{h2(X)}
L(xj,1)

− η3
E{h3(X)}
L(xj,1)

− ........... − ηj
E{hj(X)}
L(xj,1)

− η1
E{L(X)}
L(xj,1)2

[

h2(xj,1) + h3(xj,1) + ....+ hj(xj,1)
]

+ η2h2(xj,1)
E{L(X)}
L(xj,1)2

+ .............+ ηjhj(xj,1)
E{L(X)}
L(xj,1)2

+ op(n
−1/2)

=

∫

(t− xj,2)(t− xj,3)...(t− xj,j).[mn −m](dt)

(xj,1 − xj,2)(xj,1 − xj,3)...(xj,1 − xj,j)

− η1
E{L(X)}
L(xj,1)2

[

h2(xj,1) + h3(xj,1) + ....+ hj(xj,1)
]

+ η2
1

L(xj,1)

[

h2(xj,1)E{L(X)}
L(xj,1)

− E{h2(X)}
]

+ η3
1

L(xj,1)

[

h3(xj,1)E{L(X)}
L(xj,1)

− E{h3(X)}
]

+ ........................................................................

+ ηj
1

L(xj,1)

[

hj(xj,1)E{L(X)}
L(xj,1)

− E{hj(X)}
]

+ op(n
−1/2)

=

∫

ℓ1(x).[mn −m](dx)
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−
(

∫

P̃j(t)
[

j−1
∑

u=0

Pu(xj,1)Pu(t)
]

.mn(dt)

)

E{L(X)}
P̃ ′

j(xj,1)L(xj,1)2

[

h2(xj,1) + ....+ hj(xj,1)
]

+

(

∫

P̃j(t)
[

j−1
∑

u=0

Pu(xj,2)Pu(t)
]

.mn(dt)

)

1

L(xj,1)P̃ ′
j(xj,2)

[

h2(xj,1)E{L(X)}
L(xj,1)

− E{h2(X)}
]

+

(

∫

P̃j(t)
[

j−1
∑

u=0

Pu(xj,3)Pu(t)
]

.mn(dt)

)

1

L(xj,1)P̃ ′
j(xj,3)

[

h3(xj,1)E{L(X)}
L(xj,1)

− E{h3(X)}
]

+ ...........................................................................

+

(

∫

P̃j(t)
[

j−1
∑

u=0

Pu(xj,j)Pu(t)
]

.mn(dt)

)

1

L(xj,1)P̃ ′
j(xj,j)

[

hj(xj,1)E{L(X)}
L(xj,1)

− E{hj(X)}
]

+ op(n
−1/2)

=

∫

L(t).[mn −m](dt)

L(xj,1)

−
(

∫

P̃j(t)
[

j−1
∑

u=0

Pu(xj,1)Pu(t)
]

.mn(dt)

)

E{L(X)}
L(xj,1)3

[

h2(xj,1) + ....+ hj(xj,1)
]

+

∫

{

j−1
∑

u=0

[

j
∑

r=2

(hr(xj,1)E{L(X)}
L(xj,1)

− E{hr(X)}
) Pu(xj,r)

L(xj,1)P̃ ′
j(xj,r)

]

Pu(t)P̃j(t)
}

.mn(dt)

+ op(n
−1/2) .

We deduce the lemma. �
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Chapter 3

Detection of points of

concentration

3.1 Introduction

The Gauss Jacobi quadrature can allow to detect the concentration points of a probability. For
example let X be a random variable with a uniform density on [0,1] except at one point x0 where
it has a nonzero measure : P{X = x0} = b > 0. Then the Gauss Jacobi quadrature will help to
detect this point and its weight. This will be true for several points of nonzero measure. This is
also the case for probabilities with concentrations in certain points, i.e. near certain points, the
probability is very close to a Dirac measure.

3.1.1 Complement of the results of section 1.1.2

The results of section 1.1.2 show that in the case of sufficiently smooth density, the distance of
successive roots xj,s converge to 0 and the same is true for weight λj,s. We can ask ourselves what
happens when X has a density of this type except at one point x0 where it has a nonzero measure
: P{X = x0} = b > 0. We can easily have a first answer thanks to Stieltjes Markov’s inequality.
But for further details, it seems difficult to get them quickly by mathematical theorems. Then the
simplest is to make simulations.

That’s what we did: in all simulations which we have made, we found that the properties of
Section 1.1.2 remain true except near points of nonzero measure. That is to say that, generally,
xj,s+1 − xj,s → 0 and λj,s → 0 as j → ∞.

But it is quite clear that it will be different for the points closest to x0 such that P{X = x0} =
b > 0. Indeed, suppose that two consecutive roots check xj,k < x0 < xj,k+1 with P{X = x0} =
b > 0. Then, by Stieljes Markov inequality,

∑

xj,s<xj,k

λj,s ≤ F (xj,k − 0) and F (xj,k+1 + 0) ≤
∑

xj,s≤xj,k+1

λj,s .

Therefore,
F (x0 + 0) − F (x0 − 0) ≤ F (xj,k+1 + 0) − F (xj,k − 0)

≤
∑

xj,s≤xj,k+1

λj,s −
∑

xj,s<xj,k

λj,s = λj,k + λj,k+1 .

Therefore, λj,k +λj,k+1 ≥ b. This means that there will always weights which are not too small
even if j is large.

In fact, in some simulations which we have made, we found enough frequently some weights
λj,kj → b as j → ∞. Moreover, xj,kj+1 ≈ x0 ou xj,kj ≈ x0 and xj,k+1 − xj,k → 0 as j → ∞.
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So it seems that in many cases, in order to find the non-zero measure in a point and its weight,
it suffices to find the roots xj,kj close to a x0 and weights λj,kj ≈ b.

This is what will confirm the following examples.

3.1.2 Example 1

In this example we chose a probability mixing a continuous density and a point x0 such that
P{X = x0} > 0. The continuous density is that of a Gaussian mixture centered in -3, -1, with
standard deviation 1, 2. The Dirac measure is located in x0 = 4. The weights of the two Gaussian
density and of the Dirac measure (in -3, -1, 4) are the weights 2/9, 4/9, 1/3.

We have calculated the xn
j,t’s and the λn

j,t’s empirically, i.e. we used a sample of this mixture
Gaussian. The histogram of the empirical density is represented in Figure 3.1. Note that in this
one, it is simultaneously represented the curve of the density of mixture Gaussian and the non-
zero measure in x0 = 4. In order that graphs are consistent, it would be required that the Dirac
measure is infinite. It’s impossible. Also, one has been obliged to adopt the following convention.

Convention 3.1.1 In Figure 3.1, the abscissae and ordinates do not represent the actual values
of the empirical density nor the probability of the value in x0 = 4: it is the only to give an idea of
the distribution of probability.

In this report, we’ll keep the same convention for representing any figure which has both a
density and a measure m({x0}) > 0.
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Figure 3.1: Gaussian mixture in -4,-3 and Dirac measure in 4

Variances We study first the variances of higher order. We find the following table.

j= 1 2 3 4
σ2

j 11.0370 63.0308 453.1219 2354.33

As a matter of fact, one sees that these variances tell us nothing about the concentration in 4.
Also, in order to compare, we also calculated the variances of the Gaussian mixture alone (without
the point of concentration 4). We find the following table.

j= 1 2 3 4
σ2

j 3.2234 24.5524 290.0836 1208.25

35



This shows that the study of variances does not tell us much about point of concentration.
Even the variance of order 2 of the Gaussian mixture does not clearly indicate the concentration
around two tops, which should be the case for a Gaussian mixture with two components.

Note that the variances are even smaller when we removed the point of concentration. In fact,
this is normal because the probability will stop to be close to 0 in 4 and moments will be bigger.

So generally, we can not use the variances of higher order to teach us the existence of a measure
m({x0}) > 0 mixed with a probability which has a continuous density. But we will see that this
is not the case with the parameters of the Gauss Jacobi quadrature.

Gauss Jacobi Quadrature Indeed, the points and weights of Gauss Jacobi quadrature allows
to detect the concentration in the point x0 = 4. Indeed, the parameters of the Gauss Jacobi
quadrature are given by the following tables.

1 2 3 4 5 6 7 8
x1s -0.2274 0 0 0 0 0 0 0
x2s 3.4109 -3.2730 0 0 0 0 0 0
x3s 3.9011 -4.8453 -1.7292 0 0 0 0 0
x4s -6.3918 3.9776 -3.3357 -0.4282 0 0 0 0
x5s -7.7252 3.9960 -4.5646 -2.2141 0.6129 0 0 0
x6s -8.7553 -5.6417 4.0051 -3.2739 1.7758 -0.9448 0 0
x7s -9.5629 -6.5870 4.0981 3.8168 -4.1424 -2.0990 0.3619 0
x8s -10.2119 -7.4893 5.7010 3.9945 -5.0952 -3.1244 1.1844 -1.1042
x9s -10.6159 -8.2123 6.2676 -5.9674 3.9995 -3.9839 1.8163 -2.2345
x10s -10.8087 -8.6956 6.4217 -6.6345 -4.7074 4.0022 -3.0406 2.5305
x11s -10.8938 -9.0235 6.4882 -7.1783 -5.3689 4.0106 3.6130 -3.7158
x12s -10.9303 -9.2567 6.5310 -7.6459 -5.9684 4.6708 3.9965 -4.3445

9 10 11 12
x9s -0.2326 0 0 0
x10s -1.3096 0.6104 0 0
x11s -2.1612 1.4062 -0.4045 0
x12s 1.9751 -2.8888 -1.3550 0.3182

1 2 3 4 5 6 7 8
λ1,s 1.0000 0 0 0 0 0 0 0
λ2,s 0.4557 0.5443 0 0 0 0 0 0
λ3,s 0.3658 0.1791 0.4551 0 0 0 0 0
λ4,s 0.0317 0.3454 0.3893 0.2336 0 0 0 0
λ6,s 0.0052 0.3383 0.1696 0.3761 0.1108 0 0 0
λ6,s 0.0011 0.0557 0.3333 0.3348 0.0431 0.2320 0 0
λ7,s 0.0003 0.0176 0.1909 0.1529 0.2029 0.3218 0.1137 0
λ8,s 0.0001 0.0050 0.0002 0.3375 0.0821 0.3057 0.0579 0.2116
λ9,s 0.0000 0.0016 0.0000 0.0296 0.3355 0.1943 0.0298 0.2817
λ10,s 0.0000 0.0007 0.0000 0.0123 0.1010 0.3337 0.2708 0.0138
λ11,s 0.0000 0.0004 0.0000 0.0055 0.0484 0.3210 0.0175 0.2019
λ12,s 0.0000 0.0002 0.0000 0.0026 0.0232 0.0008 0.3351 0.1223
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9 10 11 12
λ9,s 0.1273 0 0 0
λ10,s 0.1954 0.0723 0 0
λ11,s 0.2453 0.0383 0.1217 0
λ12,s 0.0208 0.2452 0.1740 0.0756

This shows that the measure nonzero in x0 = 4 with a weight 1/3 implies roots close to 4 and
weights close to 0,333 while the other roots and weights are much more varied.

Note that some weights are close to 0. This is due to properties of the pure Gaussian (without
Dirac measure) or to that of Gaussian mixtures: compare with the examples in the following
sections 3.1.3 , 3.1.4, 3.1.5 , 3.1.6 (N(0,1) distribution) and 3.1.7, 3.1.8, 3.1.9 (mixture of uniform
distributions).

In order to better appreciate these results, in the following table, we shall group together the
roots close to 4 and the associated weight by using the following convention.

Convention 3.1.2 In the tables giving the two roots around points xs with measures m({xs}) > 0,
we are only interested by the roots with significant weight. When there is an alone significant weight
we put a 0 for the following weight and we did the same thing for root.

There are then for the roots close to x=4 and the associated weights the following table.

j xj,k xj,k+1 λj,k λj,k+1

3 3.9011 0 0.3658 0
4 3.9776 0 0.3454 0
5 3.9960 0 0.3383 0
6 4.0051 0 0.3333 0
7 4.0981 3.8168 0.1909 0.1529
8 3.9945 0 0.3375 0
9 3.9995 0 0.3355 0
10 4.0022 0 0.3337 0
11 4.0106 0 0.3210 0
12 3.9965 0 0.3351 0

By Stieljes Markov’s inequality, we know that the weight at x = 4, checks λj,k + λj,k+1 ≥
P{X = 4} when xj,k < 4 < xj,k+1.

So we see that there is a weight of about 0,333 concentrated around 4: indeed, P{X ∈ [4 −
a, 4 + a]} ≤ λj,k + λj,k+1 where a is small enough .

Remark 3.1.3 One can find practical problems for calculating the elements of the Gauss Jacobi
quadrature. Indeed, it is known that the computation of orthogonal polynomials Pj can be difficult
when j increases a little. This is because the moments become very large or very small depending
on the case. The accuracy of calculations becomes delicate and one can sometimes find values
enough distant of real values. A fortiori, it is even more true for the Gauss Jacobi quadrature.

3.1.3 Example 2 : Gaussian standard case

We study now the standard Gaussian case : without measure concentrated at a point. We will
see that for the first roots, it appears significant weight at x = 0. In order to make it to vanish,
we have to choose root and weight of large enough order.

Therefore around x = 0, we find the roots and weight following.
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j xj,k xj,k+1 λj,k λj,k+1

3 0.0075 0 0.6709 0
4 0.7816 -0.6968 0.4410 0.4671
5 0.1057 0 0.5309 0
6 0.7879 -0.4427 0.3657 0.4449
7 0.1651 0 0.4348 0
8 0.6528 -0.3623 0.3280 0.3803
9 0.1216 0 0.3645 0
10 0.5370 -0.3207 0.2945 0.3265
11 0.0905 0 0.3148 0
12 0.4472 -0.2924 0.2643 0.2844

This shows that, at the beginning, the weight around 0 decreases slowly although there have
no points of nonzero measure.

However the roots are well distributed, but associated weights may be almost zero. For example
for j = 12, we have the following table.

x12,s 4.3503 3.1757 -3.5296 -3.0934 2.6400 -2.4636 1.9207 -1.7602 1.1829 -1.0183 0.4472 -0.2924

λ12,s 0.0001 0.0013 0.0003 0.0022 0.0095 0.0132 0.0451 0.0596 0.1479 0.1722 0.2643 0.2844

3.1.4 Example 3

One takes a standard normal curve with a point of concentration 0 and weight 1/4 for N(0.1) and
3/4 for the point of concentration with the nonzero measure at x = 0 : m({0}) = 3/4.

Because the results of the standard Gaussian case, it is not surprising that the weight close to
0 does not tend fast enough to the weight of the point of concentration.

Note that the roots xj,k where j is odd have a single point with a strong concentration and
that the roots of even order have two points around 0. This result is normal: it is due to the
symmetry with respect to 0.

j xj,k xj,k+1 λj,k λj,k+1

3 0.0060 0 0.9172 0
4 0.3908 -0.2998 0.4297 0.5438
5 0.0003 0 0.8873 0
6 -0.2835 0.2572 0.4546 0.4960
7 0.0005 0 0.8649 0
8 0.2334 -0.1870 0.4169 0.5079
9 0.0033 0 0.8472 0
10 0.2094 -0.1355 0.3655 0.5388
11 0.0039 0 0.8335 0
12 0.2048 -0.0921 0.2920 0.5946

Regarding the other roots and weights, we find similar results to those of the Gaussian case:
the roots are well distributed and the other weights are lower (which is normal because you have
to remove the weights near x = 0) .

Finally, we see that the weight around x = 0 decreases slowly and we have to take j bigger
than 12 in order that the weights associated approaches 0.75.
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3.1.5 Example 4

Now, we take a weight for the Dirac measure smaller than in the previous example. One takes a
mixture of N (0,1) and of a point of concentration in x = 0 with weight 1/2 for N (0,1) and 1/2
the point of concentration : m({0}) = 1/2.

j xj,k xj,k+1 λj,k λj,k+1

3 -0.0000 0 0.8294 0
4 0.4661 -0.4574 0.4665 0.4732
5 0.0018 0 0.7574 0
6 0.3627 -0.3392 0.4297 0.4524
7 0.0014 0 0.7126 0
8 0.2766 -0.2730 0.4126 0.41789
9 -0.0037 0 0.6783 0
10 -0.2351 0.2049 0.3739 0.4124
11 -0.0028 0 0.6523 0
12 -0.1813 0.1788 0.3752 0.3757

As previously, we see that the weight around 0 decreases slowly.
In order to find weight approaching the normal weight (0.5), we have to use orthogonal poly-

nomials of bigger order. For example if j = 23, there is a root and a weight λj,k+1 = 0.5827.

3.1.6 Example 5

In this example, we take two points of concentration in -4 and 4 and a Gaussian mixture centered
-1,0 with standard deviation 1, 2. The respective weights in x=-4,4,-1,0 are 0.2, 0.4, 0.2, 0.2 :
m({−4}) = 0.2 and m({4}) = 0.4.
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Figure 3.2: Two points of nonzero measure in 4 and -4

Then, one has the following table.
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j xj,k xj,k′ λj,k λj,k′

5 4.2142 -3.9737 0.2936 0.2150
6 -3.9986 3.5103 0.2059 0.3375
7 4.0160 -4.0258 0.3095 0.1917
8 -3.9430 4.4904 0.2079 0.1772
9 -3.9913 3.9020 0.2066 0.3032
10 -4.0001 4.1900 0.2032 0.2394
11 3.8007 -4.0082 0.2796 0.1983
12 4.0488 -3.9490 0.2668 0.1756
12 4.0051 -4.0087 0.2108 0.2087

In this table, we do not give two roots around each points of concentration, but the roots close
to 4 and -4. Of course, the weight λj,k and λj,k′ are the associated weights.

This shows that the roots approach slowly 4 and -4. Moreover the weights associated converge
slowly.

3.1.7 Example 6

We choose mixtures of two uniform distributions and of two points of nonzero measures. We choose
uniform mixture on the intervals [-2, -1], [3/4, 3/2] and the points -3, 2 , as having a non-zero
measure. The weights associated with these intervals and in points -3, 2, of nonzero measure are
respectively 0.2, 0.4, 0.2, 0.2.
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Figure 3.3: Two points with a nonzero measure

j xj,k xj,k′ λj,k λj,k′

3 -2.8337 1.6785 0.2724 1.6785
4 -2.9880 1.9522 0.2072 1.9522
5 -2.9973 1.9812 0.2021 1.9812
6 -2.9998 -1.8015 0.2002 1.9980
7 -3.0000 1.9993 0.2000 1.9993
8 -3.0000 1.9999 0.2000 1.9999
9 -3.0000 2.0000 0.2000 0.2000
10 -3.0000 2.0000 0.2000 0.2000
11 -3.0000 2.0000 0.2000 0.2000
12 -3.0000 2.0000 0.2000 0.2000
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We note that the concentration points (-3,2) appear much more distinctly than in the previous
example.

We note also that the roots are almost all concentrated on the intervals of uniform mixing,
i.e. on the interval [-2, -1] and [3/4, 3/2] : for example the roots of P12 are : -3.0000, 2.0000 and
-1.9621, -1.8077, -1.5662, -1.291, -1.0662 and 1.4613, 1.3114, 1.0914, 0.8704, 0.7396,

This specifies proposition 1.1.9 according to which there may not be three successive roots
xj,k < xj,k+1 < xj,k+2 such that P{X ∈ [xj,k, xj,k+2]} = 0 if λj,k+1 > 0.

This shows that the points of concentration and weight appear clearly : they are the roots and
weights associated close to points with a nonzero measure.

3.1.8 Example 7

One chooses two uniform mixtures on [-2, -1] and [3/4, 3/2] and a non-zero measure in x=0 with
respective weights 0.4, 0.4, 0.2,
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Figure 3.4: One point with a nonzero measure

j xj,k λj,k

5 -0.0520 0.2055
6 0.0560 0.2048
7 -0.0103 0.1991
8 0.0050 0.2009
9 -0.0018 0.1996
10 0.0004 0.2001
11 -0.0003 0.1999
12 0.0000 2.0000

In this example, the points of concentration and weight appear clearly: they are the roots near
x=0 and the weights associated from a certain j.

Moreover as in the previous example, the roots are almost all concentrated on the intervals of
the uniform mixture, i.e. on the intervals [-2, -1] and [3/4, 3/2]: for example the roots of P12 are :
0.0000 and -1.9742, -1.8658, -1.6833, -1.4546, -1.2165, -1.0445 and 1.4754, 1.3722, 1.2014, 0.9927,
0.8071 .
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3.1.9 Example 8

We choose uniform distributions on connected intervals and a point of nonzero measure located
inside of their supports. Then we take an uniform mixture of the intervals [-3.0], [0,0.750] and a
non-zero measure in -1 with weights, respectively 0.3, 0.5, 0.2.
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Figure 3.5: One point with a nonzero measure

Roots close to -1 and the associated weights are given in the following table.

j xj,k xj,k+1 λj,k λj,k+1

5 -1.0055 0 0.3157 0
6 -1.3163 -0.7185 0.1797 0.2035
7 -1.0081 0 0.2852 0
8 -1.2715 -0.8540 0.1320 0.2036
9 -1.0145 0 0.2650 0
10 -1.2385 -0.9095 0.2067 0.0755
11 -1.0156 0 0.2521 0
12 -1.2521 -0.9544 0.0695 0.2228
13 -1.0389 0 0.2234 0
14 -1.0308 0 0.2310 0
15 -0.9705 0 0.2273 0
16 -1.0026 -0 0.2422 0

The points of concentration and weights appear clearly: they are the roots close to x=0 and
the weights associated from a certain order.

3.1.10 Conclusion

The Gauss Jacobi quadrature can effectively detect the points with a non-zero measure. It suffices
in many cases to see near which points, the weights λj,s are greater than a certain limit. But
because we can calculate the orthogonal polynomials only until a finite order, it may also mean
that the probability is concentrated near a given point, but in a measure weaker than the Dirac
measure.
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Chapter 4

Application : mixtures

We will apply the previous results to find the different components of a Gaussian mixture. In
order to do this, at first we need some properties.

4.1 Some properties

At first we introduce the type of mixtures that we will study.

Notations 4.1.1 Let Y be a real random variable. We assume that there exists p ∈ N such that
Y =

∑p
r=1 δrZr, where Zr − zr = σrǫr ∼ N(0, σ2

r), zr ∈ R , where the δr are random variables
such that δr = 0 or 1 ,

∑p
r=1 δr = 1 , and where (δ1, δ2, ...., δp), ǫ1, ǫ2, ...., ǫp are independent.

We assume that the zr’s , r = 1, 2, .., p, are distincts. We set P (δr = 1) = qr for r = 1, 2, ..., p.

Because Zr = zr + σrǫr, then Y =
∑p

r=1 δr(zr + σrǫr) =
∑p

r=1 δrzr +
∑p

r=1 δrσrǫr.

One want to estimate the zr ’s and qr’s by using Gauss Jacobi Quadrature. Unfortunately,
the Gauss-Jacobi quadrature of Y does not give the zr ’s and qr’s directly. Indeed, let us denote
by yp,s and λ′p,s , the zeros and the weights of orthogonal polynomials associated to Y. Then,
generally, yp,s 6= zs and λ′p,s 6= qs.

It is true only when σp(Y ) = 0 .

Proposition 4.1.1 We denote by {Q̃j} the familly of orthogonal polynomials associated with
∑p

r=1 δrzr : Q̃j(z) =
∑j

t=0 bj,tz
t where bj,j = 1. Then, the zr’s are the zeros zp,r of Q̃p .

Moreover, let ℓSr (z) =
Q̃p(z)

(z−zr)Q̃′

p(zr)
. Then, qr =

∫

ℓSr (z).mS(dz) for r = 1, 2...., p where mS is the

distribution of S =
∑p

r=1 δrzr.

Therefore, we have to use the Gauss Jacobi Quadrature not of Y but of S =
∑p

r=1 δrzr.
Therefore, we need to know moments of

∑p
r=1 δrzr . In this aim, one has the idea to use ”negative

variance” of Gaussian ( cf Section V-2, page IV-28, [5]) .
Indeed, recall that this naming is based on the following property(cf lemma 1.1, (viii) [8])

Proposition 4.1.2 Soit G ∼ N(0, σ2), U ∼ N(0, 1) and ǫ ∼ N(0, 1) three independent random
variable. Then, for all q ∈ N,

E

{

[

G+ iU
]q
}

= E

{

[

√

σ2 − 1 ǫ
]q
}

Proof Let hj(x) = xj +
∑j−1

s=0 gj,sx
j be the j-eme Hermite orthogonal polynomial. Then, one

know that hj(x) = E
{

(iU + x)j
}

(cf Théorème 1-4, page IV-7, [5], lemma 1.1, (ii) [8], [13], [12]).
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Then, by using this property, one prove this proposition (cf [5], [8]). �.

Then, iU+G behaves like a Gaussian distribution with variance negative if σ2 < 1. Now, if
σ2 > 1, we find a usual Gaussian distribution. If σ2 = 1, the probability is concentrated in 0.

To use the negative variances in order to solve our problem, we will first prove the following
property which is a consequence of proposition 4.1.2.

Proposition 4.1.3 Let U ∼ N(0, 1) be a random variable independent with (δ1, δ2, ...., δp) and
(ǫ1, ǫ2, ...., ǫp). Then, for all q ∈ N,

E

{(

p
∑

t=1

(δtzt + σtǫt) + isU
)q}

= E
{

(Ts)
q
}

,

where Ts =
∑p

t=1 δt(zt +
√

σ2
t − s2ǫt).

Proof We have

E

{(

p
∑

s=1

δs(zs + σsǫs)
)q}

= E

{

∑

j1+....+jp=q

q!

j1!.....jp!

(

δj1
1 (z1 + σ1ǫ1)

j1δj2
2 (z2 + σ2ǫ2)

j2 ..........δjp
p (zp + σpǫp)

jp

)}

= E

{q!

q!

(

δq
1(z1 + σ1ǫ1)

q + δq
2(z2 + σ2ǫ2)

q + .....+ δq
p(zp + σpǫp)

q
)}

= E

{(

δq
1(z1 + σ1ǫ1)

q + δq
2(z2 + σ2ǫ2)

q + .....+ δq
p(zp + σpǫp)

q
)}

= E

{

δq
1(z1 + σ1ǫ1)

q
}

+ E

{

δq
2(z2 + σ2ǫ2)

q
}

+ ..........+ E

{

δq
p(zp + σpǫp)

q
}

= E

{

δ1(z1 + σ1ǫ1)
q
}

+ E

{

δ2(z2 + σ2ǫ2)
q
}

+ ..........+ E

{

δp(zp + σpǫp)
q
}

= q1E

{

(z1 + σ1ǫ1)
q
}

+ q2E

{

(z2 + σ2ǫ2)
q
}

+ ..........+ qpE

{

(zp + σpǫp)
q
}

where qs = P{δs = 1}.

Therefore,

E

{(

(

p
∑

s=1

δs(zs + σsǫs)
)

+ isU
)q}

= E

{

q
∑

s=0

Cs
q

(

p
∑

s=1

δs(zs + σsǫs)
)s

(isU)q−s
}

=

q
∑

s=0

Cs
qE

{

(

p
∑

s=1

δs(zs + σsǫs)
)s
}

E

{

(isU)q−s
}

=

q
∑

s=0

Cs
q

[

q1E

{

(z1 + σ1ǫ1)
s
}

+ q2E

{

(z2 + σ2ǫ2)
s
}

+ ..........+ qpE

{

(zp + σpǫp)
s
}]

E

{

(isU)q−s
}

=

q
∑

s=0

Cs
qq1E

{

(z1 + σ1ǫ1)
s
}

E

{

(isU)q−s
}

+ ...........+

q
∑

s=0

Cs
qqpE

{

(zp + σpǫp)
s
}

E

{

(isU)q−s
}
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= q1E

{

[

(z1 + σ1ǫ1) + (isU)
]q
}

+ ...........+ qpE

{

[

(zp + σpǫp) + (isU)
]q
}

= q1E

{

[

(z1 +
√

σ2
1 − s2 ǫ)

]q
}

+ ..............+ qpE

{

[

(zp +
√

σ2
p − s2 ǫ)

]q
}

where ǫ ∼ N(0, 1).

Indeed,

E

{

[

σ2ǫ2 + (isU)
]q
}

= E

{

sq
[

(σ2/s)ǫ2 + iU
]q
}

= sq
E

{

[

(σ2/s)ǫ2 + iU
]q
}

= sq
E

{

[
√

(σ2/s)2 − 1 ǫ
]q
}

(by proposition 4.1.2)

= E

{

sq
[
√

(σ2/s)2 − 1 ǫ
]q
}

= E

{

[

s
√

(σ2/s)2 − 1 ǫ
]q
}

= E

{

[

√

σ2
2 − s2 ǫ

]q
}

.

Therefore,

E

{

[

z1 + σ1ǫ1 + (isU)
]q
}

= E

{

q
∑

s=0

Cs
qz

s
1

[

σ1ǫ1 + (isU)
]q−s

}

=

q
∑

s=0

Cs
qz

s
1E

{

[

σ1ǫ1 + (isU)
]q−s

}

=

q
∑

s=0

Cs
qz

s
1 E

{

[

√

σ2
1 − s2 ǫ)

]q−s
}

= E

{

q
∑

s=0

Cs
qz

s
1

[

√

σ2
1 − s2 ǫ)

]q−s
}

= E

{

[

(z1 +
√

σ2
1 − s2 ǫ)

]q
}

.

Now we have seen above that E

{(

∑p
s=1 δs(zs + σsǫs)

)q}

=
∑p

t=1 qtE
{

(zt + σtǫt)
q
}

.

Then, replace σt by
√

σ2
t − s2. Then,

E

{(

p
∑

t=1

δt(zt +
√

σ2
t − s2ǫs)

)q}

=

p
∑

t=1

qtE
{

(zt +
√

σ2
t − s2ǫt)

q
}

. �

Then, we can use the previous property in order to find the various parameters σ, zr and
qr. For example, if σr = σ for r=1,2,....,p, E

{

[Y + iσU ]q
}

= E
{

Sq
}

(if not, if s = mintσt, Ts

have the same moments as a degenerate Gaussian mixture, i.e. with a standard deviation of one
component which is equal to zero). Therefore if we choose s = σ, Y + isU has the same moments
as S =

∑p
r=1 δrzr. Then its variance of order p will be null. Therefore, we can find s = σ by

studying the variances of order p of isU + Y. When σ is obtained, it suffices to calculate the
parameters of the Gauss Jacobi quadrature which will be the associated the zr’s and qr’s.

If all the σt’s are not identical, we will apply the results of Chapter 3 to Y+isU.

Now, in order to make our calculations, we need also the following properties.
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Proposition 4.1.4 Let Zs, s=1,2,...,p, be some p random variables independent of (δ1, ...., δp).
Then, the random variable δ1Z1 + ......+ δpZp has the density g = q1fZ1

+ ......+ qpfZp where the
fZt ’s are the densities of the Zt’s.

Proof We know that

E
{

eit[δ1Z1+......+δpZp]
}

= E
{

eitδ1Z1 .......eitδpZp
}

= Eδ1=1

{

eitδ1Z1 .......eitδpZp
}

+ Eδ2=1

{

eitδ1Z1 .......eitδpZp
}

+ ......+ Eδp=1

{

eitδ1Z1 .......eitδpZp
}

= Eδ1=1

{

eitδ1Z1
}

+ Eδ2=1

{

eitδ2Z2
}

+ ......+ Eδp=1

{

eitδpZp
}

= Eδ1=1

{

eitZ1
}

+ Eδ2=1

{

eitZ2
}

+ ......+ Eδp=1

{

eitZp
}

= E
{

11(δ1)e
itZ1
}

+ E
{

11(δ2)e
itZ2
}

+ ......+ E
{

11(δp)e
itZp

}

= E
{

11(δ1)
}

E
{

eitZ1
}

+ E
{

11(δ2)
}

E
{

eitZ2
}

+ ......+ E
{

11(δp)
}

E
{

eitZp
}

= P{δ1 = 1}E
{

eitZ1
}

+ P{δ2 = 1}E
{

eitZ2
}

+ ......+ P{δp = 1}E
{

eitZp
}

= q1E
{

eitZ1
}

+ q2E
{

eitZ2
}

+ ......+ qpE
{

eitZp
}

= E
{

eitx[q1fZ1
(x) + ......+ qpfZp(x)]dx

}

. �

Proposition 4.1.5 If the Zi’s are Gaussian, the random variable δ1Z1 + ......+δpZp is completely
determined by its moments.

Proof Indeed, E
{

eit[δ1Z1+......+δpZp]
}

= q1E
{

eitZ1

}

+ q2E
{

eitZ2

}

+ ...... + qpE
{

eitZp
}

where

the Zi’s are Gaussian. Therefore we can write each E
{

eitZp
}

as a convergent serie which is
function of Gaussian moments. Therefore the characteristic function is completely determined by
the moments. �

4.2 First application to mixtures

4.2.1 Method

At first, we show how one can find the various parameters of a Gaussian mixture when σr = σ.

Notations 4.2.1 In this section 4.2, we assume that σ2
r = σ2 for all r ∈ {1, 2, ..., p}.

Then, we can use the negative variances of Gaussian distributions in order to obtain the
parameters of the mixture. Indeed, we have the following proposition.

Proposition 4.2.1 Under the previous assumptions, Y =
∑p

r=1 δrzr + σǫ0 where ǫ0 ∼ N(0, 1).

Proof We know that Y =
∑p

r=1 δrzr +
(
∑p

r=1 δrǫr
)

σ.

By proposition 4.1.4,
∑p

r=1 δrǫr has the density q1fZ1
(x)+......+qpfZp

(x) = [q1+......+qp]
e−x2/2

√
2π

=

e−x2/2

√
2π

.

Then, Y =
∑p

r=1 δrzr +
(
∑p

r=1 δrǫr
)

σ =
∑p

r=1 δrzr + σǫ0 where ǫ0 ∼ N(0, 1). �

One is therefore in case the variable S =
∑p

r=1 δrzr is disturbed by a Gaussian noise σǫ. We
will see that it is easy to find the parameters of this mixture by using the variances of higher order.
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Indeed, assume that we want to estimate the zt’s and qt’s. We can estimate the moments of S
by using negative variances because

E

{(

p
∑

t=1

(δtzt + σǫt) + isU
)q}

= E

{(

p
∑

t=1

δt
[

zt +
√

σ2 − s2 ǫt
]

)q}

.

It is thus enough find s such that σ2 = s2 : in this case, the moments of
∑p

t=1(δtzt + σǫt) + isU
have a variance of order p which is equal to zero. Indeed, it is the variance of order p of S which
is concentrated in p distinct points.

Then, to find s such that σ2 = s2 is easy. Indeed, if we take s increasing from 0,
∑p

t=1(δtzt +

σǫt) + isU has the same moments as the real random variable Ts =
∑p

t=1(zt +
√
σ − s2 ǫt). We

can then calculate the variance of order p of Ts. When it vanishes, we know the s is reached.
Then we know the parameters searched s = σ and also the zr’s and qr’s by using Gauss Jacobi
quadrature.

Concretely, if we take s more and more large, variance of order p decreases to 0 and then
becomes negative. Then, it is not difficult to find s = σ by calculating the variance of order p for
any value of s.

4.2.2 Examples

First example Suppose we have a sample yℓ , ℓ = 1, 2, ....., 10000, of Y. Suppose that Y is
a mixture of Gaussian components centered at [-2,0,3], with standard deviation 0.722 and with
weights 1/6, 2/6, 3/6. Then, one calculate the variance of order 3 of Ts for some values of s. In
order to calculate the moments of Y + isU we need a sample yℓ + isuℓ of Y+isU. In order to do
this, it is enough to add any pseudo-random sample uℓ of N(0,1).

In the first figure 4.1 we have the graph of the variance of order 3 when s varies from 0 to 1:
we take σ2

3 defined in SectionA.1.4 by replacing the moments Ms of X by the empirical moments
of Y+isU.

The red curve represents the imaginary part. Indeed, for a sample we must take into account
the imaginary part because it can be not exactly zero: we have a sample of X +isU and not the
exact distributions.

Anyway, this figure shows that the variance vanishes near s = 0.72.
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Figure 4.1: Variance of order 3 of Ts
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Second Example In figure 4.2, the blue curve represents the real part of the variance of order 3
of a sample of X + isU when X is a Gaussian mixture of components centered in -2,0,3, of standard
deviation 1,1,1 of weight 1/6, 2/6, 3/6 when s varies from 0 to 1. The red curve represents the
imaginary part. We see that the variance vanishes near s = 1.
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Figure 4.2: Variance of order 3 of Ts

To calculate σ, we’ll take a curve defined over a smaller interval near the point where s = σ.
In the figure 4.3, then we represent the same curves for intervals much smaller. This allows to
conclude that s0 = σ = 0.996.
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Figure 4.3: Variance of order 3 of Ts

With the moments, we can then estimate the parameters of the Gauss Jacobi quadrature.
We estimate the roots by -1.9735, 0.0653, 3.0232 (instead of -2,0,3) with weights 0.1776, 0.3274,

0.4950 ( instead of 0.1667, 0.3333, 0.5000).

Because these parameters were obtained for a sample of the given law, we will compare this
result with a new simulated sample. In the figure 4.4 it has been plotted in red the original curve
obtained by histogram estimation (function ”hist” of Matlab). In blue, we represent the curve
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obtained from the simulation of a distribution of a mixture which has the estimated parameters.

Thus we understand that we can assume that the parameters obtained by this estimation are
quite correct
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Figure 4.4: Histograms of theoretical and estimated mixtures

4.3 Second application to mixtures

4.3.1 Presentation

We have seen how to apply Proposition 4.1.3 when Y =
∑p

r=1 δr[zr + σǫr]. Now we will apply
this result when the σr ’s are different.

Then, by proposition 4.1.3, we know that

E

{(

p
∑

t=1

(δtzt + σǫt) + isU
)q}

= E

{(

p
∑

t=1

δt
[

zt +
√

σ2
t − s2 ǫt

]

)q}

.

Therefore, if s2 = Minr=1,...,p(σ
2
r), Ts =

∑p
t=1(δtzt + σtǫt) + isU has the same moments as

a Gaussian mixture with p components, including one degenerate, i.e. with a point of nonzero
measure in zt0 where σ2

t0 = Minr=1,...,p(σ
2
r) : P{Ts = zt0} = qt > 0. So we find s by applying a

method of the same type as that described in chapter 3. Then, in order to find this point zt, we
use the properties of the Gauss Jacobi quadrature instead of those of the variances of order p.

It then suffices to apply the method described in Chapter 3 in order to find the point of
concentration zt, its weight qt and its variance σ2

t .
After we removed the points corresponding to the Gaussian component of the mixture and we

start again.
In order to show how we had to proceed, we will study an example.

4.3.2 Example

One chooze a sample with size 100000 of a Gaussian mixture with components centered in -3,0,2,
with standard deviation 1, and with weights 0.4, 0.3, 0.3. (cf figure 4.5).

4.3.3 Calculation of the first standard deviation

The first standard deviation which we can know by using the Gauss Jacobi quadrature is the
smallest standard deviation. Indeed, adding iσtU , we find that the moments of Y + iσtU are the
same as those of a real random variable having a point of concentration.
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Figure 4.5: Gaussian mixture with components centered in -3,0,2

Now, for a sample, this is only estimation obtained thanks to a complex random variable.
Then, it is not quite sure that all the moments are real. We must take the real part since the
imaginary part of the moments tend to 0 as the sample size tends to ∞.

Therefore one estimates the moments and then the elements of the Gauss Jacobi quadrature
with different s. In this report, we’ll do it for s = 1/5 and s = 1/4.

Study of s=1/5 For simplicity, in this section we denote always by λj,s and xj,s the weights
and the roots of the Gauss Jacobi quadrature associated with the sample of the random variable
Y + isU, that is to say that the theoretical probabilities have the same moments as

∑p
r=1 δr

(

zr +
√

σ2
r − s2 ǫr

)

. Then, for s=1/5, we have the following tables.

1 2 3 4 5 6 7 8
x1,s -0.6021 0 0 0 0 0 0 0
x2,s -3.1159 1.3471 0 0 0 0 0 0
x3,s -3.9540 1.8420 -1.1128 0 0 0 0 0
x4,s -4.6964 -2.9009 2.0039 -0.1215 0 0 0 0
x5,s -5.1886 -3.5613 2.0427 -1.6815 0.2911 0 0 0
x6,s -5.6402 -4.1587 -2.6969 2.0721 0.9964 -0.3988 0 0
x7,s -6.0472 -4.6755 -3.3621 -1.9065 2.1145 1.5975 -0.0231 0
x8,s -6.4284 -5.1461 -3.9369 -2.6990 2.1680 1.8255 -0.9921 0.1971
x9,s -6.7533 -5.5361 -4.4093 -3.2956 2.2072 1.9006 -2.1171 0.4523
x10,s -6.9618 -5.8040 -4.7501 -3.7108 -2.6261 2.2346 1.9395 -1.2471
x11,s -7.0993 -6.0243 -5.0521 -4.0767 -3.0758 -2.0081 2.3790 2.0854
x12,s -7.1747 -6.1922 -5.2991 -4.3857 -3.4654 -2.5049 2.9729 2.1919
x13,s -7.1992 -6.2764 -5.4498 -4.6123 3.1542 -3.7849 -2.9287 2.2038
x14,s -7.1980 -6.2709 -5.4370 -4.5881 3.1361 -3.7446 -2.8661 2.2019
x15,s -13.2195 7.4003 -7.1993 -6.2765 -5.4493 -4.6105 3.1619 -3.7812
x16,s -7.2320 -7.2320 -6.3839 -5.5899 -4.8075 -4.0369 3.1403 3.1403
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9 10 11 12 13 14 15 16
x9,s -0.4043 0 0 0 0 0 0 0
x10,s 0.8678 -0.0280 0 0 0 0 0 0
x11,s 1.7481 -0.4754 0.3394 0 0 0 0 0
x12,s 1.8889 -1.3269 0.5672 -0.1748 0 0 0 0
x13,s 1.9050 -2.0216 0.7431 -0.7594 0.0334 0 0 0
x14,s 1.9019 -1.9129 0.6214 -0.0497 -0.0497 -0.4318 0 0
x15,s -2.9226 -2.0126 2.2042 1.9056 0.7514 -0.7462 0.0413 0
x16,s -3.2426 -2.4225 2.2181 1.9230 -1.4819 1.0409 -0.3944 0.2726

1 2 3 4 5 6 7 8
λ1,s 1.0000 0 0 0 0 0 0 0
λ2,s 0.4367 0.5633 0 0 0 0 0 0
λ3,s 0.2217 0.3860 0.3922 0 0 0 0 0
λ4,s 0.0681 0.2982 0.3104 0.3233 0 0 0 0
λ5,s 0.0229 0.2239 0.2874 0.2073 0.2585 0 0 0
λ6,s 0.0065 0.1172 0.2389 0.2632 0.1220 0.2522 0 0
λ7,s 0.0017 0.0502 0.2032 0.1563 0.2128 0.1126 0.2632 0
λ8,s 0.0004 0.0181 0.1253 0.2016 0.1415 0.1678 0.1262 0.2191
λ9,s 0.0001 0.0064 0.0650 0.1757 0.0976 0.2040 0.1388 0.1358
λ10,s 0.0000 0.0027 0.0346 0.1322 0.1724 0.0729 0.2217 0.0904
λ11,s 0.0000 0.0012 0.0176 0.0886 0.1658 0.1132 0.0108 0.1950
λ12,s 0.0000 0.0006 0.0093 0.0555 0.1356 0.1448 0.0000 0.1099
λ13,s 0.0000 0.0004 0.0059 0.0352 0.0000 0.0994 0.1425 0.0986
λ14,s 0.0000 0.0004 0.0061 0.0373 0.0000 0.1047 0.1463 0.1005
λ15,s -0.0000 -0.0000 0.0000 0.0004 0.0059 0.0354 0.0000 0.0999
λ16,s -0.0000 0.0000 0.0003 0.0038 0.0229 0.0735 -0.0000 0.0000

j 9 10 11 12 13 14 15 16
λ9,s 0.1767 0 0 0 0 0 0 0
λ10,s 0.0545 0.2187 0 0 0 0 0 0
λ11,s 0.1016 0.1490 0.1572 0 0 0 0 0
λ12,s 0.1913 0.0718 0.0929 0.1882 0 0 0 0
λ13,s 0.2006 0.0955 0.0548 0.0858 0.1814 0 0 0
λ14,s 0.1994 0.0918 0.0911 0.0099 0.0120 0.2003 0 0
λ15,s 0.1428 0.0949 0.0982 0.2009 0.0535 0.0872 0.1808 0
λ16,s 0.1267 0.1172 0.0861 0.2100 0.0572 0.0251 0.1334 0.1437

Now we recapitulate the results for roots close to 2 and the weights associated.
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j xj,j0 xj,j0+1 λj,j0 λj,j0+1

3 1.8420 0 0.3860 0
4 2.0039 0 0.3104 0
5 2.0427 0 0.2874 0
6 2.0721 0 0.2632 0
7 2.1145 1.5975 0.2128 0.1126
8 2.1680 1.8255 0.1415 0.1678
9 2.2072 1.9006 0.0976 0.2040
10 2.2346 1.9395 0.0729 0.2217
11 2.0854 1.7481 0.1950 0.1016
12 2.1919 1.8889 0.1099 0.1913
13 2.2038 1.9050 0.0986 0.2006
14 2.2019 1.9019 0.1005 0.1994
15 2.2042 1.9056 0.0982 0.2009
16 2.2181 1.9230 0.0861 0.2100

By Stieljes Markov’s inequality, we see that there is a weight of about 0.3 concentrated around
2. Indeed, let λj,j0 and λj,j0+1 and xj,j0 , xj,j0+1, xj,j0 < 2 < xj,j0+1, be the weights and the roots
associated around 2. Then, P{G3 ∈ [2− a, 2 + a]} ≤ λj,j0 + λj,j0+1 where G3 represents the third
Gaussian component when a is small. Now there is no perfectly correct point in order to identify
it. We see only that it seems that there is a concentration close to 2.

This is normal because s is not well chosen. Indeed, at this point 2, we have a Gaussian
distribution with a variance of about 1/16 − 1/25 = 0.225 . This means that the probability is
mainly concentrated on an interval of length 0.2 around 2. In order to be sure there are no points
of nonzero measure, we should therefore consider the Pj where j is greater than 16. But the fact
that there is no concentration points xjs seems enough accurate in order to indicate that for s =
1/5, there is no point of nonzero measure.

Study of s=1/4 For s=1/4, we have the following tables.

j 1 2 3 4 5 6 7 8
x1,s -0.6021 0 0 0 0 0 0 0
x2,s -3.1124 1.3408 0 0 0 0 0 0
x3,s -3.9413 1.8229 -1.1275 0 0 0 0 0
x4,s -4.6980 -2.9385 1.9695 -0.1865 0 0 0 0
x5,s -5.2363 1.9932 -3.6727 -2.0133 0.0862 0 0 0
x6,s -5.6896 -4.2653 -2.8746 1.9991 -0.9214 0.2928 0 0
x7,s -6.1204 -4.8151 -3.5750 2.0010 -2.2863 0.5220 -0.3507 0
x8,s -6.6569 -5.4122 -4.2570 2.0014 -3.1082 -1.8523 0.6346 -0.1903
x9,s 44.9122 -6.6532 -5.4092 -4.2543 2.0014 -3.1058 -1.8497 0.6351
x10,s -7.0150 -5.7824 -4.7133 -3.6697 -2.5791 2.0658 2.0143 -1.1356
x11,s -7.1355 -5.9331 1.9053 1.9053 -4.9239 -3.9265 2.0012 -2.8875
x12,s -7.2054 3.1253 3.1253 -6.0623 -5.1399 -4.2139 -3.2681 2.0019
x13,s -7.2129 -6.0833 -5.1832 -4.2808 3.5464 -3.3681 2.2172 2.2172
x14,s -9.4594 -7.2232 -6.1087 -5.2331 -4.3565 2.9473 2.9473 -3.4813
x15,s -7.1460 -7.1460 -6.2943 -5.4456 -4.6159 -3.8111 -2.9820 2.8109
x16,s -7.1096 -6.6096 -6.6096 -5.6843 -4.8616 -4.0829 -3.2883 2.7362
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9 10 11 12 13 14 15 16
x9,s -0.1896 0 0 0 0 0 0 0
x10,s 0.9556 0.0315 0 0 0 0 0 0
x11,s -1.7116 0.6040 -0.1993 0 0 0 0 0
x12,s -2.2752 0.8774 -0.8637 0.0661 0 0 0 0
x13,s 1.9999 -2.4191 -1.2108 0.5951 -0.1226 0 0 0
x14,s -2.5807 2.0062 1.5700 -1.5540 0.3870 -0.3131 0 0
x15,s 2.8109 2.0691 1.9616 -2.1131 -0.9498 0.5362 -0.1068 0
x16,s 2.7362 2.3039 1.9923 -2.4793 -1.5876 0.7108 -0.4781 0.1401

1 2 3 4 5 6 7 8
λ1,s 1.0000 0 0 0 0 0 0 0
λ2,s 0.4363 0.5637 0 0 0 0 0 0
λ3,s 0.2222 0.3899 0.3879 0 0 0 0 0
λ4,s 0.0651 0.2953 0.3203 0.3193 0 0 0 0
λ5,s 0.0187 0.3062 0.1997 0.2010 0.2745 0 0 0
λ6,s 0.0050 0.0976 0.2359 0.3017 0.1549 0.2050 0 0
λ7,s 0.0011 0.0359 0.1723 0.2999 0.1735 0.1162 0.2011 0
λ8,s 0.0001 0.0085 0.0818 0.2994 0.1918 0.1192 0.0820 0.2171
λ9,s -0.0000 0.0001 0.0086 0.0821 0.2994 0.1918 0.1189 0.0819
λ10,s 0.0000 0.0027 0.0363 0.1374 0.1724 -0.0565 0.3533 0.0912
λ11,s 0.0000 0.0016 -0.0000 0.0000 0.0228 0.1063 0.2996 0.1762
λ12,s 0.0000 0.0000 -0.0000 0.0009 0.0130 0.0711 0.1521 0.2987
λ13,s 0.0000 0.0008 0.0115 0.0632 0.0000 0.1412 0.0000 -0.0001
λ14,s -0.0000 0.0000 0.0007 0.0099 0.0549 -0.0000 0.0000 0.1281
λ15,s -0.0000 0.0000 0.0004 0.0055 0.0336 0.0946 0.1395 -0.0000
λ16,s 0.0000 0.0001 0.0000 0.0030 0.0204 0.0702 0.1256 0.0000

9 10 11 12 13 14 15 16
λ9,s 0.2171 0 0 0 0 0 0 0
λ10,s 0.0366 0.2265 0 0 0 0 0 0
λ11,s 0.0968 0.0879 0.2088 0 0 0 0 0
λ12,s 0.1317 0.0364 0.0890 0.2071 0 0 0 0
λ13,s 0.3007 0.1379 0.0680 0.0797 0.1970 0 0 0
λ14,s 0.1409 0.2922 0.0137 0.0675 0.1309 0.1613 0 0
λ15,s 0.0000 0.0942 0.2084 0.0992 0.0619 0.0848 0.1779 0
λ16,s 0.0001 0.0048 0.2967 0.1195 0.0570 0.0414 0.1092 0.1521

Then, for the roots close to 2 and the associated weights we have the following table.
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j xj,j0 xj,j0+1 λj,j0 λj,j0+1

3 1.8229 0 0.3899 0
4 1.9695 0 0.3203 0
5 1.9932 0 0.3062 0
6 1.9991 0 0.3017 0
7 2.0010 0 0.2999 0
8 2.0014 0 0.2994 0
9 2.0014 0 0.2994 0
10 2.0658 2.0143 0.3533 0.0912
11 1.9053 2.0012 0.0000 0.2996
12 2.0019 0 0.2987 0
13 2.2172 1.9999 0.0000 0.3007
14 2.0062 0 0.2922 0
15 2.0691 1.9616 0.0942 0.2084
16 2.3039 1.9923 0.0048 0.2967

Conclusion Finally, we see little difference between the results s = 1/5 and s = 1/4 if we confine
ourselves to use the Markov Stieljes inequality. In order that the result appears more clearly, we
must in fact take orthogonal polynomials of degree greater than 16.

On the other hand, the number of weights close to 0.3 concentrated in a single root near 2 is
much more important. In the simulations made otherwise, this is what is significant.

Estimation

In the previous tables, we have give the results only for two values of s. But in fact, in order to
find the first s = σ3, the point of concentration and the associated weight, we had to repeat this
operation a larger number of times. Finally, by repeating many times this type of calculation we
find that the best estimation for the concentration point is z3 = 2.02 ± 0.01. It is indeed at this
point that the roots are as close to a break as in the case above.

The calculation of s is a little more imprecise: we find σ3 = 0.25 ± 0.02. About the weight, it
is estimated to be close to q3 = 0.3 ± 0.03.

As a matter of fact, we should study more in detail the behavior of the Gauss Jacobi quadrature
close to the points of nonzero measure for more certainty. One can also take orthogonal polynomials
of degree higher than 16.

The weight can also be refined during the removal of elements of 3-th Gaussian component (cf
after). This too should be clarified.

Note however that, for this example, these estimates are rather correct.

4.3.4 Suppression of the first Gaussian component

We therefore estimated the parameters of the first Gaussian component. To find the second using
the same technique, one must first eliminate points coming from the first component. There are
various techniques possible. One chose to use a simple technique by eliminating N3 = nq3 points
where n = 100000 is the size of sample. Normally N3 is a good estimation of the number of points
coming really from the first Gaussian component.

In order to eliminate the points of the first Gaussian component, we choose the following
method. We know there are about a point of the sample coming from that component in a
partition of R in N3 intervals whose the Gaussian probability of each is 1/N3. One can then
choose to remove the point nearest point of the middle of each interval.
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This is what we do in the following Matlab program.

function y = RepartGauss(N,Esp,sigma)
L=1/N;
if N/2 − fix(N/2) > 0
for k=1:fix(N/2)
Mm(k) = sqrt(2)*sigma*erfinv(2*k*L);
end
Im = fliplr(Mm);
M=[Im,Mm];
M=[-Im,0,Mm];
end

if N/2-fix(N/2)==0
for k=1:N/2
Mm(k) = sqrt(2)*sigma*erfinv(2*(L/2+(k-1)*L));
end
Im = fliplr(Mm);
M=[Im,0,Mm];
M=[-Im,Mm];
end

y=M+Esp;

function y=VarSuppresDeUnEchGauss(X,N,Esp,sigma)
DD=size(X);
n=DD(2);
M=RepartGauss(N,Esp,sigma);
E=1:0;
for k=1:N
A=1;
j=0;
Mini=min(abs(X-M(k)));
while A==1
j=j+1;
if abs(X(j)-M(k)) ==Mini
Re=X(j);
X=[X(1:j-1),X(j+1:n)];
n=n-1;
A=0;
end
end
end
y=X;

The result obtained is provided in Figure 4.6. In this figure 4.6, in a sample of n = 100000 we
have delete nq3 = 29500 points supposed to belong to the first Gaussian component. The graph
is the function histogram of Matlab (hist).

Note that these graphs can be used to better determine the weight, that is to say the size of
the sample which has to be removed. Indeed, the curve has peaks on his right incompatible with
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Figure 4.6: Suppression of the normal component centered in 2

a Gaussian mixture with two components.

Then, one can try another weight close to the estimation which we got. For example, if one
removes only 30150 point we have the graph of Figure 4.7.
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Figure 4.7: Suppression of 30150 elements of the normal component centered in 2

If we remove 30500 points we have the graph of Figure 4.8.
This kind of results can eventually allow us to refine the choice of s.

4.3.5 Estimation of the second Gaussian component

Then, we have eliminated the first Gaussian component. Thus we can apply the same method as
before to find the second one.

The theoretical points of concentration which we must find are -3 and 0 and the weights
(0.4, 0.3) ∗ (1000/705) = (0.5674, 0.4255): indeed, if you remove a component, the weight change.

Then we proceed as before. For example, for s = 1/2, we find the following tables.
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Figure 4.8: Suppression of 30500 elements of the normal component centered in 2

1 2 3 4 5 6 7 8
x1,s -1.6913 0 0 0 0 0 0 0
x2,s -3.4429 -0.1445 0 0 0 0 0 0
x3,s -4.0317 -2.1841 0.1523 0 0 0 0 0
x4,s -4.5255 -2.9674 0.9399 -0.2487 0 0 0 0
x5,s -5.0765 -3.7960 -2.5014 1.4345 -0.0680 0 0 0
x6,s 11.2814 -5.0631 -3.7812 -2.4895 1.4424 -0.0658 0 0
x7,s 0.9211 0.9211 -5.1013 -3.8404 -2.5575 1.3459 -0.0921 0
x8,s -9.6775 -5.2213 -4.0607 1.4925 1.4925 -2.9102 -1.6563 0.0201
x9,s -8.0995 -5.5455 -4.4788 -3.3913 -2.2586 1.6054 1.6054 1.3315
x10,s -7.3226 -7.3226 -5.1064 2.1558 2.1558 1.6360 -4.0071 -2.9664
x11,s 28.6401 -7.3263 -7.3263 -5.1077 2.1546 2.1546 1.6344 -4.0087
x12,s -7.2111 -6.9217 -6.9217 -5.2096 -4.0926 -3.0460 -1.9959 3.1344
x13,s 18.8979 -7.2508 -6.9393 -6.9393 -5.2043 -4.0896 -3.0438 -1.9941
x14,s -7.0392 -7.0392 -5.9610 -5.9610 -5.0132 -3.9360 -2.9025 -1.8360
x15,s -322.2582 -7.0391 -7.0391 -5.9609 -5.9609 -5.0132 -3.9360 -2.9025
x16,s -7.1775 -7.1775 -6.3276 -6.3276 -5.3557 -4.3760 -3.4468 -2.4124

9 10 11 12 13 14 15 16
x9,s -0.0528 0 0 0 0 0 0 0
x10,s -1.9245 -0.0187 0 0 0 0 0 0
x11,s -2.9682 -1.9263 -0.0188 0 0 0 0 0
x12,s 1.9661 1.9661 1.5180 -0.0240 0 0 0 0
x13,s 3.1862 1.9736 1.9736 1.5239 -0.0238 0 0 0
x14,s 2.4317 1.7740 1.7740 0.7133 0.7133 0.0070 0 0
x15,s -1.8359 2.4318 1.7740 1.7740 0.7131 0.7131 0.0070 0
x16,s -1.6254 -1.6254 3.1937 2.8374 1.7779 1.7779 1.2243 -0.0470
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1 2 3 4 5 6 7 8
λ1,s 1.0000 0 0 0 0 0 0 0
λ2,s 0.4690 0.5310 0 0 0 0 0 0
λ3,s 0.2653 0.3141 0.4207 0 0 0 0 0
λ4,s 0.1093 0.3954 0.0839 0.4114 0 0 0 0
λ5,s 0.0426 0.1789 0.3295 0.0391 0.4098 0 0 0
λ6,s 0.0000 0.0431 0.1833 0.3246 0.0383 0.4107 0 0
λ7,s -0.0002 -0.0002 0.0388 0.1741 0.3300 0.0448 0.4127 0
λ8,s 0.0000 0.0275 0.1339 0.0091 0.0091 0.2852 0.1349 0.4002
λ9,s 0.0001 0.0073 0.0961 0.1930 0.2671 -0.0008 -0.0008 0.0457
λ10,s 0.0001 0.0001 0.0295 -0.0003 -0.0003 0.0361 0.1501 0.2109
λ11,s 0.0000 0.0001 0.0001 0.0295 -0.0003 -0.0003 0.0360 0.1497
λ12,s 0.0005 0.0002 0.0002 0.0174 0.1558 0.1897 0.2136 0.0001
λ13,s -0.0000 0.0004 0.0002 0.0002 0.0187 0.1535 0.1929 0.2111
λ14,s 0.0001 0.0001 -0.0001 -0.0001 0.0361 0.1551 0.2204 0.1651
λ15,s 0.0000 0.0001 0.0001 -0.0001 -0.0001 0.0361 0.1551 0.2203
λ16,s 0.0000 0.0000 -0.0000 -0.0000 0.0139 0.0912 0.1677 0.2891

9 10 11 12 13 14 15 16
λ9,s 0.3924 0 0 0 0 0 0 0
λ10,s 0.1867 0.3871 0 0 0 0 0 0
λ11,s 0.2112 0.1868 0.3873 0 0 0 0 0
λ12,s 0.0000 0.0000 0.0389 0.3835 0 0 0 0
λ13,s 0.0001 0.0002 0.0002 0.0378 0.3847 0 0 0
λ14,s 0.0023 0.0012 0.0012 -0.0030 -0.0030 0.4247 0 0
λ15,s 0.1652 0.0023 0.0012 0.0012 -0.0030 -0.0030 0.4246 0
λ16,s 0.0076 0.0076 -0.0001 0.0007 -0.0009 -0.0009 0.0566 0.3675

Then, we find for the roots close to 0 and the associated weights the following table.

j xj,j0 xj,j0+1 λj,j0 λj,j0+1

3 1.8420 0 0.3860 0
4 2.0039 0 0.3104 0
5 2.0427 0 0.2874 0
6 2.0721 0 0.2632 0
7 5 2.1145 1.5975 0.2128 0.1126
8 2.1680 1.8255 0.1415 0.1678
9 2.2072 1.9006 0.0976 0.2040
10 2.2346 1.9395 0.0729 0.2217
11 2.0854 1.7481 0.1950 0.1016
12 2.1919 1.8889 0.1099 0.1913
13 2.2038 1.9050 0.0986 0.2006
14 2.2019 1.9019 0.1005 0.1994
15 2.2042 1.9056 0.0982 0.2009
16 2.2181 1.9230 0.0861 0.2100

Calculation of the last Gaussian component

We must find the 3rd Gaussian component which is centered in -3 by our assumption and close
to -3 by our estimates. In order to do this, it suffices to suppress the second Gaussian compo-
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nent. For this, we apply the same method as in order to suppress the second Gaussian component.

In Figure 4.9, we have removed 28905 terms of the second Gaussian component among the
70500 terms remaining.
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Figure 4.9: Suppression of 28905 terms of the second Gaussian component

In Figure 4.10, we have removed 30000 terms of the second Gaussian component among the
70500 terms remaining.
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Figure 4.10: Suppression of 30000 terms of the second Gaussian component

It remains only to estimate the parameters of a single Gaussian component, which is very easy.

Final Estimation

By applying the method described here, we therefore found for the different Gaussian components.
z3 = 2.02 ± 0.01, z2 = 0.03 ± 0.01, z1 = −3.02 ± 0.01.
σ3 = 0.25 ± 0.01, σ2 = 0.50 ± 0.01, σ1 = 1.01 ± 0.02.
q3 = 0.3 ± 0.03, q2 = 0.3 ± 0.03, q1 = 0.4 ± 0.02.

Conclusion

So we have relatively good results especially when you consider that these results can be refined
by a more detailed study of negative variances and of properties of the Gauss Jacobi quadrature
and also of the method of removal of a Gaussian component.

Therefore in some cases this method can give good results for the calculation of Gaussian
mixtures.

Of course, one may want to compare this method with other methods to find the Gaussian
components, that is to say, essentially, the EM algorithm : by applying it to the sample which we
have just estimate, it was found.
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z3 = 2.1, z2 = −0.2 et z1 = −2.99.
σ3 = 0.26, σ2 = 0.49, σ1 = 0.98.
q3 = 0.28, q2 = 0.31, q1 = 0.39.

So, in this case, our method gives result best than those of the EM algorithm.

Of course, all this should be clarified. But that is not purpose of this report which is to show
the potentialities of the higher order variances and of Gauss Jacobi quadrature.
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Chapter 5

Higher Order Regression

One application of the higher order variances is the introduction of higher order regression.

5.1 Notations and theorems

5.1.1 Notations

In order to introduce these, the easiest way is to cite a case we have actually a higher order
regression.

Notations 5.1.1 Let (X,Y ) ∈ R
2 be a random vector such that E{|XpY p′ |} < ∞ for all, p,

p′ ∈ N. One supposes that there exists p ∈ R tel que Y = S(X) + σǫ where S(X) =
∑p

s=1 δsfs(X)
where δs = 0 or 1 ,

∑p
s=1 δs = 1, where ǫ ∼ N(0, 1) and where (δ1, δ2,...., δp) , ǫ and X are

independent. We set P(δs=1) = qs pour s=1,2,...,p. Moreover, we denote by m the distribution
of X.

Assume that fs ∈ L2(R,m) for s=1,2,...,p. Assume that fs(x) 6= fs′(x) for m-almost all x and
s6=s’.

Clearly, one can call curves x → fs(x) regression curves of order p. Indeed, the knowledge of the
curves x → fs(x) and of the weights qs allow to predict better the behavior of Y than a classical
regression would make.

In this section, we shall show quickly how these curves can be found by applying the properties
of the Gauss Jacobi quadrature and of variances of higher order. We will develop these points in
details later.

If σ = 0, generally the variance of order p of conditional probability is equal at zero. Then, we
introduce the following notations.

Notations 5.1.2 Let µx a regular version of the conditional probability of Y given x. We suppose
that E{Y 2p} < ∞. We denote by {Q̃x

j } , j=0,1,...,p, the family of orthonormal polynomials of

µx : Q̃x
j (y) = yj + dx

j−1y
j−1 + .... + dx

1y + dx
0 , and by yx

p,1, y
x
p,2,...., y

x
p,p the zeros of Q̃x

p . We

denote by (σx
p )2 the associated variance of order p and by λx

p,1, λ
x
p,2,...., λ

x
p,p the associated weights

of Gauss-Jacobi quadrature. Moreover, we denote by {Qx
j }, j=0,1,...,p, the family of orthonormal

polynomials of µx.

Then, the following property is a consequence of the properties of orthogonal polynomials.

Proposition 5.1.1 Let QX,Y be the probability of (X,Y). Let π(yp) =
∑p

s=0 y
sgs(x) be the or-

thogonal projection in L2(R2, QX,Y ) of (x, y) 7−→ yp onto the subspace generated by (x, y) 7−→
∑p−1

s=0 y
srs(x) where ysrs(x) ∈ L2(R2, QX,Y ).
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We suppose that, for all t=1,2,...,p, (yx
p,t)

p ∈ L2(R,m). Then, for m-almost all x,

Q̃x
p(y) = yp −

p−1
∑

s=0

ysgs(x) = [y − yx
p,1][y − yx

p,2].....[y − yx
p,p] .

Proof By definition of the orthogonal projection and of the orthogonalization process of Gram-

schmidt, for m-almost all x,
∫ (

[y − yx
p,1][y − yx

p,2].....[y − yx
p,p]
)2
.µx(dy) is the minimum of

∫ (

[y −
k1(x)][y − k2(x)].....[y − kp(x)]

)2
.µx(dy) when

(

k1(x), k2(x), ..., kp(x)
)

∈ R
p.

Therefore,
∫ ∫ (

[y−yx
p,1][y−yx

p,2].....[y−yx
p,p]
)2
.µx(dy).m(dx) is smaller than

∫ ∫ (

[y−k1(x)][y−
k2(x)].....[y − kp(x)]

)2
.µx(dy)m(dx) when [y − k1(x)][y − k2(x)].....[y − kp(x)] ∈ L2(R2, QX,Y ).

Now, the minimum of
∫ ∫ (

yp−∑p−1
s=0 y

srs(x)
)2
.µx(dy)m(dx) when

∑p−1
s=0 y

srs(x) ∈ L2(R2, QX,Y )
is reached for the orthogonal projection in L2(R2, QX,Y ) of (x, y) 7−→ yp onto the subspace

spanned by (x, y) 7−→∑p−1
s=0 y

srs(x) and it is reached also for (k1(x), ..., kp(x)) = (yx
p,1, ...., y

x
p,p) :

[y − k1(x)][y − k2(x)].....[y − kp(x)] = yp −
∑p−1

s=0 y
sgs(x) . �

5.1.2 Properties

If σ = 0, generally, (σx
p )2 = 0.

Proposition 5.1.2 We suppose σ = 0. Then, (σx
p )2 = 0 for m-almost all x ∈ R, i.e. E{Q̃x

p(Y )2} =
0. Moreover, yx

p,s = fs(x) for s=1,2,...,p and qs = λx
p,s for s=1,2,...,p .

Remark that if σ = 0 and if rs(x0) = rt(x0) for a (t,s) such that t 6= s, (σx0
p )2 does not exists.

But, in this case, (σx0

p−1)
2 = 0.

Now recall how to compute the λx
p,t’s.

Proposition 5.1.3 Let ℓxs (y) =
Q̃x

p(y)

(y−yx
p,s)Q̃x

p
′

(yx
p,s)

. Then, λx
p,s =

∫

ℓxs (y).µx(dy) for s=1,2,...,p.

Moreover, if σ = 0, qs = λx
p,s = E{ℓXs (Y )} for s=1,2,...,p.

For example, if σ = 0, ℓx1(y) =
(y−f2(x))(y−f3(x)).....(y−fp(x))

(f1(x)−f2(x))(f1(x)−f3(x)).......(f1(x)−fp(x)) .

For example, suppose that p=2 and that σ2 = 0 : q1 = λx
2,1 and q2 = λx

2,2. Then, (Y −
f1(X))(Y − f2(X)) = 0 and E{(Y − f1(X))2(Y − f2(X))2} = 0.

More generally E{(Y −f1(X))2(Y −f2(X))2} is the minimum of E{(Y −k1(X))2(Y −k2(X))2}
when ks ∈ L2(R,m) for s=1,2. It is also the minimum of E{(Y 2 − r(X)Y − s(X))2} when
r and s are functions of L2(R,m) : the minimum S2 = E{(Y 2 − r(X)Y − s(X))2} holds for
r(x) = r∗(x) = f1(x) + f2(x) and s(x) = s∗(x) = −f1(x)f2(x) .

Now, this minimum measures the distance L2 between (x, y) 7−→ y2 and the subspace spanned
by (x, y) 7−→ r(x)y + s(x) when r, s ∈ L2(R,m). Therefore, r∗(x)y + s∗(x) is the orthogonal
projection of (x, y) 7−→ y2 onto the subspace spanned by r(x)y+ s(x).

5.1.3 Method of computation

At first, we prove the following result in the same way that the proposition 4.1.3.
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Proposition 5.1.4 Let U ∼ N(0, 1) be a random variable independent with (δ1, δ2, ...., δp), X,
and (ǫ1, ǫ2, ...., ǫp). Then, for all q ∈ N,

E

{(

p
∑

t=1

(δtft(X) + σtǫt) + isU
)q}

= E

{

Ts(X)q
}

where

Ts(X) =

p
∑

t=1

δt
[

(ft(X) +
√

σ2
t − s2 ǫt)

]

.

Then, it is enough easy to calculate the parameters of higher order regression by using the same
method as in section 4.2.

For example suppose that we know the conditional density for all x. Then, in the theoretical
case, it suffices to calculate s for some x and the associated measure µx.

Then, if for example we can calculate the conditional moments, then we shall calculate the
polynomials Qx

j and then the roots yx
p,s and weight λx

p,s. Otherwise, we can calculate the roots
and weights in some points x and they are continued by continuity if this hypothesis holds. One
will do the same in case of estimation.

5.2 Examples : regression of order 2

Now we study some examples of regression of order 2. In the following figures we have the
graphs of the regression of order 2, empirical or not, when X ∈ [0, 1], f1(X) = cos(πX) − 3 and
f2(X) = 2sin(10(X +

√
2)) + 3, Y = Z(X) + σǫ, with for weights q1 = 1/4, q2 = 3/4, and with

σ = 1 (figures 5.1, 5.4) , σ = 2 (figures 5.2, 5.5), σ = 4 (figures 5.3, 5.6).

Figure 5.1: σ = 1

64



Figure 5.2: σ = 2

Figure 5.3: σ = 4
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Figure 5.4: σ = 1
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Figure 5.5: σ = 2
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Figure 5.6: σ = 4
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Appendix A

Variance of order 3

In order to better study the variances and the regression of order j, it is useful to have the exact
formulas for the parameters for the first j. Here we give these parameters in case j = 3.

A.1 Elementary calculations

A.1.1 Some formulas

We know that

P̄X
2 (x) = x2 − M3 −M1M2

M2 −M2
1

(x−M1) −M2 ,

σ2
2 = M4 −

(M3 −M1M2)
2

M2 −M2
1

− M2
2

ℓj1(x) =
(x− xj,2)(x− xj,3)...(x− xj,j)

(xj,1 − xj,2)(xj,1 − xj,3)...(xj,1 − xj,j)
.

A.1.2 Polynomials

By the Gram Schmidt Process,

P̃j(x) = xj −
j−1
∑

s=0

E{XjPs(X)}Ps(x) .

Therefore,

P̃3 = x3 − E{X3P2(X)}P2(x) − E{X3P1(X)}P1(x) − E{X3P0(X)}P0(x)

= x3 −

[

M5 − M3−M1M2

M2−M2
1

(M4 −M3M1) −M3M2

]

σ2
P2(x) −

M4 −M3M1

σ1
P1(x) −M3

= x3 −

[

M5 − M3−M1M2

M2−M2
1

(M4 −M3M1) −M3M2

]

M4 − (M3−M1M2)2

M2−M2
1

− M2
2

[

x2 − M3 −M1M2

M2 −M2
1

(x−M1) −M2

]
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−M4 −M3M1

M2 −M2
1

(x−M1) −M3

= x3 −

[

M5 − M3−M1M2

M2−M2
1

(M4 −M3M1) −M3M2

]

M4 − (M3−M1M2)2

M2−M2
1

− M2
2

x2

+

[

M5 − M3−M1M2

M2−M2
1

(M4 −M3M1) −M3M2

]

M4 − (M3−M1M2)2

M2−M2
1

− M2
2

M3 −M1M2

M2 −M2
1

(x−M1) −
M4 −M3M1

M2 −M2
1

(x−M1)

+

[

M5 − M3−M1M2

M2−M2
1

(M4 −M3M1) −M3M2

]

M4 − (M3−M1M2)2

M2−M2
1

− M2
2

M2 −M3 .

A.1.3 Weights

We know that

ℓ31(x) =
(x− x3,2)(x− x3,3)

(x3,1 − x3,2)(x3,1 − x3,3)
, ℓ32(x) =

(x− x3,1)(x− x3,3)

(x3,2 − x3,1)(x3,2 − x3,3)
,

ℓ33(x) =
(x− x3,1)(x− x3,2)

(x3,3 − x3,1)(x3,3 − x3,2)
.

Therefore,

λ3,1 =
M2 − [x3,2 + x3,3]M1 + x3,2x3,3

(x3,1 − x3,2)(x3,1 − x3,3)
,

λ3,2 =
M2 − [x3,1 + x3,3]M1 + x3,1x3,3

(x3,2 − x3,1)(x3,2 − x3,3)
,

λ3,3 =
M2 − [x3,1 + x3,2]M1 − x3,1x3,2

(x3,3 − x3,1)(x3,3 − x3,2)
.

A.1.4 Variance of order 3

By proposition 1.1.7, we know that

σ2
j = M2j −

j−1
∑

s=0

β2
j,s where βj,s =

∫

xjPs(x).mdx .

Therefore, for j=3,

β3,2 =

∫

x3P2(x).mdx =
1

σ2

∫

x3
[

x2 − M3 −M1M2

M2 −M2
1

(x−M1) −M2

]

.m(dx)

=

[

M5 − M3−M1M2

M2−M2
1

(M4 −M3M1) −M3M2

]

σ2
.
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Moreover,

β3,1 =

∫

x3P1(x).mdx =

∫

x3
[

x−M1

]

/σ1.mdx =

[

M4 −M3M1

]

σ1
.

and

β3,0 =

∫

x3P0(x).mdx = M3 .

Therefore,

σ2
3 = M6 −

[

M5 − M3−M1M2

M2−M2
1

(M4 −M3M1) −M3M2

]2

M4 − (M3−M1M2)2

M2−M2
1

− M2
2

−
[

M4 −M3M1

]2

M2 −M2
1

−M2
3 .
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