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Abstract: A very simple hybrid circuit proposed as chaos generator is studied. It is modeled

using a 3-slopes piecewise linear map defined on [0,1] and depending upon three parameters.

The parameter space is investigated in order to classify regions of existence of stable periodic

orbits and regions associated with chaotic behaviors. Bifurcation curves are obtained numer-

ically and analytically. Border collision bifurcations and homoclinic bifurcations occurring in

cyclical chaotic regions leading to chaos in one-piece are detected.
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1. Introduction
Many circuits including switches have been considered during the last decade. Such systems are of

interest for two reasons: first, they belong to the class of hybrid systems that have attracted much

interest those last ten years, secondly, they permit to obtain chaos in a very easy way. Hybrid systems

have been much considered in many kinds of applications during the last decade. Such systems appear

for example in Electronics and Electrotechnics and the understanding of their behaviour is of great

interest. Hybrid systems evolve in continuous time, but it is possible to model them using discrete time

maps, by introducing a discretization similar to the building of a Poincaré map. This is the case for the

circuit we consider in this paper. Concerning the second point, chaotic signals have appeared as very

useful in many kinds of applications in the last twenty years, particularly in telecommunications and

image processing. Indeed, for some kind of applications, it is necessary to consider robust chaos [1],

which can endure, even if parameter values are slightly modified. A way to obtain robust chaotic

signals is to consider systems where border collision bifurcations appear [2, 3, 6, 8, 9], that generally

constitute a class of hybrid systems. Chaotic generators can also be obtained using continuous time

models as systems based on the Chua’s circuit (analogical circuit), while others are discrete time

systems which directly iterate a chaotic map (digital circuit). The problem with these systems is that

chaos is not necessarily as robust.

In this paper, we propose a chaos generator obtained from a simple RC circuit including switches
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managed using a clock (impulse waveform) and the charging/discharging of the capacitor. We have

previously proposed such a kind of chaos generator, where the model was a two-dimensional nonlinear

map [4, 5, 10]. Our aim in considering a one-dimensional case is to analyze rigorously the bifurcations

and to prove the existence of chaos in an even more simple circuit.

The section 2 is devoted to the description of the circuit and its modeling. The model under a

one-dimensional piecewise linear map is given in section 3. The dynamical behaviour of the map,

with the study of bifurcations permitting to obtain periodic orbits and chaos is explained for some

parameter values in section 4.

2. Description of the circuit

The 1D proposed chaos generator is a quite simple circuit given in Fig. 1, very similar to those

discussed in [3, 6]. The analog state variable is V (t), the voltage across the capacitor. We can see

that the switch position is ruled by the logic subsystem output p. In the same time inputs of the logic

subsystem are provided by comparison of the analog state variable V (t) with constant voltages VU

and VD. Analog and logic subsystems then form a hybrid system.

Fig. 1. The hybrid circuit including the analog and logic subsystems.

Behavior of the logic subsystem can be described by the following finite state diagram. At any state

transition, the condition is given by the boolean expression above the line, whereas the action at the

transition is indicated below the same line. As an example, the transition from the state C1 to the

state D occurs when the expression ((t < T ) & (V (t) ≥ VU )) is true. At this transition instant, the

system output p is set to the logic value 1. Actions are then described with variables allocations. The

variable t denotes the time. When the time reaches the value t = T , a state transition is expected

and the time variable is reset (allocation t := 0;).

From this diagram observation, it comes that the logic subsystem is an asynchronous sequential

system, that is periodically forced to return to the state C1 by an external periodic event. In [11, 15],

we proposed a very simple implementation of this logic subsystem based on a few R-S latches and

logic operators. The periodic event is then realized thanks to a pulse generator.

A switch occurs at every T -periodic event or when the state variable V (t) reaches the value of VD

or VU . The capacitor charges (p=0) when V (t) reaches VD or discharges (p=1) when V (t) reaches

VU . Let us call V the reference voltage, VA the borderline value corresponding to V (t) = VU , VB

the borderline value corresponding to V (t) = VD and τ = RC. Let us call V the reference voltage,

namely the constant voltage supply in the circuit. Then, we can propose a model for our system.
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Fig. 2. The finite state diagram, which describes the logic subsystem.

3. Modeling

By considering the classical equations of a RC circuit, we obtain VA = V − (V − VU )e
T
τ , VB =

V −
VD

VU
(V − VU )e

T
τ . Let us call Vn, the state value at each time t = T when the time is initialized

again, we obtain the following relations:

0 < Vn ≤ VA , Vn+1 = V − (V − Vn)e−
T
τ

VA < Vn < VB , Vn+1 = (V − Vn) VU

V −VU
e−

T
τ

VB < Vn ≤ 1 , Vn+1 = V − (V − Vn)VU

VD

V −VD

V −VU
e−

T
τ

(1)

We normalize the state variables and the parameters in order to deal with dimensionless values and

a normalized phase space equal to [0, 1]:

xn = Vn

V
∈ [0, 1] , xn+1 = Vn+1

V
∈ [0, 1]

β = VU

V
∈]0, 1[ , 0 < m = VD

VU
< 1 , δ = e−

T
τ ∈]0, 1]

xb = VB

V
, xa = VA

V

(2)

The following switching values in [0, 1] are:

xa = 1 −
1−β

δ

xb = 1 −
m(1−β)

δ

(3)

Finally, the circuit is modeled by the map xn+1 = F (xn) (cf. Fig. 3), which is defined as follows:

if xn ∈ [0, xa[, F (xn) = F1(xn) = 1 − (1 − xn)δ

if xn ∈ [xa, xb[, F (xn) = F2(xn) = (1 − xn) δβ
1−β

if xn ∈ [xb, 1], F (xn) = F3(xn) = 1 − (1 − xn) δ
m

1−βm
1−β

(4)

It is easy to see that the map is well defined as F is continuous and maps the interval [0, 1] (the phase

space of interest) into itself.
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Fig. 3. The 3-pieces piecewise linear map.

4. Dynamical behaviour of the 1-D model

The map (4) is a 1-dimensional piecewise linear map with three pieces. In this section, we study the

fixed points, order k periodic orbits and their bifurcations. We also put in evidence the homoclinic

bifurcations giving rise to chaotic behaviour. First, let us give the slopes of the map, depending where

is located the point in the interval [0, 1]. These values will be useful for the rest of our study.

if x ∈ [0, xa[, p1 = δ > 0

if x ∈ [xa, xb[, p2 = −δβ
1−β

< 0

if x ∈ [xb, 1], p3 = δ
m

1−βm
1−β

> 0

(5)

4.1 Bifurcations of fixed points and order 2 periodic orbits

This study has been previously done in [4, 15]. We recall the results. Two fixed points X∗

1 and X∗

2

exist and are given by:
X∗

1 = δβ
1−β+δβ

∈ [xa, xb]

X∗

2 = 1
(6)

X∗

1 is stable when the slope p2 = −δβ
1−β

∈] − 1, 0[, that means β < 1
1+δ

. X∗

2 is stable when the slope

p3 = δ
m

1−βm
1−β

∈]0, 1[, that means β < m−δ
m(1−δ) and m > δ. So, we can define the bifurcation curves

related to fixed points bifurcations:

FB1a : β = 1
1+δ

, m < δ, FB1b : β = 1
1+δ

, m > δ

FB1c : β = m−δ
m(1−δ) , m > δ

(7)

These curves correspond to degenerate flip bifurcations, FB1a corresponds to the appearance of

a stable order 2 cycle after the flip bifurcation of X∗

1 , FB1b corresponds to the appearance of an

order 2 cyclic chaotic attractor (C1, C2), after X∗

1 has changed its stability (see Fig. 6); for instance,

the order 2 periodic orbit (Y1, Y2), which appears at the flip bifurcation FB1b, undergoes in the

same time a border collision bifurcation (Y2 is merging with xb) and becomes unstable (see Fig. 5).

FB1c corresponds to a border collision bifurcation for X∗

1 , which disappears when merging with xb

(β below FB1b in the plane (m, β), δ being fixed); at the same bifurcation value, X∗

2 becomes a

stable fixed point (β below FB1b in the plane (m, β), δ being fixed). The curve FB1c (β above

FB1b) also corresponds to a degenerate bifurcation for X∗

2 with the appearance of an order 2 cyclic

chaotic attractor, after X∗

2 has become unstable. Then, the order 2 cyclic chaotic attractor after an
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Fig. 4. In the (m, β) plane, δ = 0.4, bifurcation curves of the map F related
to fixed points and order 2 and 3 cycles.

Fig. 5. Degenerate flip bifurcation (FB1b) in the plane (xn, xn+1) for δ = 0.4,
m = 0.6 and β = 0.7142857.

homoclinic bifurcation, gives rise to an one-piece chaotic attractor (see Fig. 7). Such chaos can be

considered as robust in the sense of remaining chaotic even if the parameters or the initial conditions

are slightly changed [1].

When there exists a stable order 2 cycle, this cycle can undergo a degenerate flip bifurcation, which

gives rise to an order 4 cyclic chaotic attractor. The bifurcation curve is given by the following

equation, corresponding to the slope of F 2 that becomes equal to −1 (see Fig. 4):

FB2a : β = 1
1+δ2 (8)

FB2a corresponds to the slope of F 2 equal to p1p2 (F 2 = F1F2). It is impossible to obtain a flip

bifurcation for F 2 = F1F3, because p1p3 can never be negative.

Other bifurcation curves correspond to border collision bifurcations. It is possible to have F 2(xa) =

xa or F 2(xb) = xb. The corresponding curves are respectively denoted BC2a and BC2b. Their

equations are given by:
BC2a : β = 1

1+δ

BC2b : β = m−δ2

m(1−δ2) , m > δ2 (9)
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Fig. 6. An order 2 cyclic chaotic attractor (C1, C2) exists for δ = 0.4, m = 0.6
and β = 0.75. Let us remark that we have plotted the chaotic attractor in the
plane (xn, xn+1) for a better visualization.

Fig. 7. An one-piece chaotic attractor C appears after an homoclinic bifur-
cation. Parameter values are δ = 0.4, m = 0.6 and β = 0.8.

Let us remark that BC2a = FB1b. The bifurcation curves related to fixed points and order 2

cycles are plotted on Fig. 4.

4.2 Bifurcations of order k periodic orbits

Using the same method as for fixed points and order 2 cycles, we can obtain the bifurcation curves

for order k cycles. In this paragraph, we do not intend to study and write the bifurcation curves

equations for all the categories of order k cycles that can be defined, but only for those that we have

obtained in numerical simulations. Previous studies concerning bimodal piecewise linear maps have

been done in a more general way [7, 12]. In this work, we only intend to give the analytical forms of

bifurcation curves equations with the aim of a practical use for our model.

First, we give the bifurcation curves corresponding to the degenerate flip bifurcations. Indeed, if

we consider an order k cycle, each point X of this cycle verifies F k(X) = X and F k is obtained by

a combination of its three determinations F1, F2 and F3. We can write that, in F k, F1 appears i

times, F2 j times and F3 l times, with i + j + l = k. So regarding the degenerate flip bifurcation, it is
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Fig. 8. Stability areas of k periodic orbits in the parameter plane (m, β) for
δ = 0.4. They are limited by bifurcation curves obtained in Fig. 4.

obtained by considering the three slopes p1, p2 and p3 such that pi
1p

j
2p

l
3 = −1. This curve is denoted

FBkijl and is given by the following equation:

FBkijl : δi( δβ
β−1)j( δ

m
1−βm
1−β

)l = −1, i + j + l = k, (10)

which can also be written:

δk = (1−β)j+lml

(1−βm)lβj , i + j + l = k (11)

All the degenerate flip bifurcation curves are known analytically and can be plotted in the parameter

planes (β, δ), m being fixed or (m, δ), β being fixed.

It is also possible to find the border collision bifurcation curves. The collision can occur with any

of both points xa or xb. So, we will have to look the parameter values for which one has F k(xa) = xa

or F k(xb) = xb. Anyhow, we have to look at the way of exchanging the points of cycles by F .

The simplest case occurs when an order k cycle has its points exchanged k − 1 times by F1 and

one time by F2 or k − 1 times by F1 and one time by F3. It is possible to obtain the border collision

bifurcation curves, which are denoted BCka if the collision occurs with xa, that means F k(xa) = xa,

or BCkb if the collision occurs with xb, that means F k(xb) = xb. The corresponding equations are:

BCka : β = 1−δk−1

1−δk , m < δ

BCkb : β = m−δ2

m(1−δ2) , m > δ2
(12)

On Fig. 4 are plotted the bifurcation curves of an order 3 cycle whose exchange of points is given

by F 2
1 F2. Figure 8 gives the areas of stability of order k periodic orbits, k = 1, ...5, it is very easy to

observe that these areas are limited by the bifurcation curves obtained in Fig. 4. An enlargment of

these figures is provided in Fig. 9 and Fig. 10, which permits to put in evidence order 6 and 7 cycles.

Bifurcation curves of order k cycles, k = 1, ...7 are plotted on Fig. 10. All these cycles are cycles of

F k = F k−1
1 F2. Let us remark that we obtain a period-adding sequences of periodic orbits. Between

two stability areas of periodic orbits, chaos appears (k-pieces chaotic attractor), which undergoes a

succession of homoclinic bifurcations giving rise to an one-piece chaotic attractor.

On Fig. 8, we consider the parameter plane (δ, β), m being fixed and equal to 0.4, we can see the

stability areas of some order k cycles, k = 1, ...5. On Fig. 12 and Fig. 13, an enlargment permits

to obtain order k cycles, k = 1, ..., 7. Those cycles have their points exchanged as given below (we

consider the cycles from left to right in the figures). It is also possible to use Symbolic Dynamics of a
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Fig. 9. Enlargment of Fig. 8, order k cycles are observed, k = 1, ..., 7.

Fig. 10. Bifurcation curves corresponding to the limit of stability regions of
Fig. 9 in the parameter plane (m, β) for δ = 0.4.

bimodal map [13, 14], we have chosen to represent a cycle by beginning with the point at the left of

the interval [0, 1] (generally, this point is located inside I1 and F1 is applying). The use of symbolic

dynamics corresponds to give a code to every order k cycle by considering the location of the points

in the intervals I1, I2 or I3; generally, the following rule is used: a point of the cycle is coded by L

when it belongs to I1, M when it belongs to I2 and R when it belongs to I3 (sometimes, the codes A

or B can be used if one point of the cycle is merging with xa or xb, in this paper, we will not take

this possibility into account). Here are the obtained coding for the cycles of Fig. 12 from left to right

in the figure:

• order 6 cycle, F2F
4
3 F1, LRRRRM

• order 5 cycle, F2F
3
3 F1, LRRRM

• order 4 cycle, F2F
2
3 F1, LRRM

• order 7 cycle, F2(F
2
3 F1)

2, LRRLRRM
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Fig. 11. Stability areas of k periodic orbits, k = 1, 2, 3 in the parameter
plane (δ, β) for m = 0.4.

Fig. 12. Enlargment of Fig. 11. Stability areas of k periodic orbits, k =
1, ..., 7 in the parameter plane (δ, β) for m = 0.4. They are limited by bifurca-
tion curves obtained in Fig. 13.

• order 3 cycle, F2F3F1, LRM

• order 5 cycle, F2(F3F1)
2, LRLRM

• order 7 cycle, F2(F3F1)
3, LRLRLRM

• order 2 cycle, F2F1, LM

• order 7 cycle, F1F2F1(F3F1)
2, LRLRLML

• order 5 cycle, F1F2F1F3F1, LRLML

• order 3 cycle, F2F
2
1 , LLM
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Fig. 13. Bifurcation curves of k periodic orbits, k = 1, 2, 3, 4, 5, 6, 7 in the
parameter plane (δ, β) for m = 0.4. They limit the stability areas of Fig. 12.
In order to clarify the figure, only bifurcation curves for k = 1, ..., 5 have been
indicated.

• order 7 cycle, F2F
2
1 F3F

3
1 , LLLRLLM

• order 4 cycle, F2F
3
1 , LLLM

All the stability areas in Fig. 12 are bounded by degenerate flip bifurcation curves DFBkijl (10)

or border collision bifurcation curves. The border collision bifurcation curves must be calculated by

considering the exchange of the points of the cycle and the point xa or xb with which there is a

collision. The cycles above can be classified in different categories, related to the kind of symbols

which represent them or regarding the way of exchanging their points. We can propose the following

classification and give the equations of the border collision bifurcation curves for each of them (let us

recall that the degenerate flip bifurcation curves are given by (10)(11)):

• The order 2 cycle (F2F1, LM), the order 3 cycle (F2F
2
1 , LLM) and the order 4 cycle (F2F

3
1 ,

LLLM) have already been studied and their bifurcation curves are given in (10)(11)(12).

• The order 6 cycle (F2F
4
3 F1, LRRRRM), the order 5 cycle (F2F

3
3 F1, LRRRM), the order 4

cycle (F2F
2
3 F1, LRRM) and the order 3 cycle (F2F3F1, LRM) belong to the same class of

order k cycle, which can be denoted: F2F
k−2
3 F1, LR...RM , where the symbol R appears (k−2)

times. The border collision bifurcation curves are given by:

BCka : δk(1−βm)k−2β+(1−β)k−1mk−2

δ(1−β)k−2mk−2 = 1,

BCkb : δk = ( (1−β)m
(1−βm))

k−1
(13)

• The order 5 cycle (F2(F3F1)
2, LRLRM) and the order 7 cycle (F2(F3F1)

3, LRLRLRM) belong

to the same category of order k cycle, k odd, which can be denoted: F2(F3F1)
(k−1)

2 , LRLR...M ,

where the symbol LR appears (k−1
2 ) times. The border collision bifurcation curves are given

by:

BCka : δk−2(1−βm)
k−3
2

mk−4(1−β)
k−1
2

−
δkβ(1−βm)

k−1
2

mk−3(1−β)
k+1
2

= 1,

BCkb : δk = ( (1−β)m
(1−βm))

k+1
2

(14)

• Concerning the order 7 cycle (F2(F
2
3 F1)

2, LRRLRRM), we only give its own bifurcation curves:

BCka : − δ7β(1−βm)4

m4(1−β)5 + δ4(1−βm)2

m2(1−β)3 = 1,

BCkb : δ7 = ( (1−β)m
(1−βm))

5
(15)
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Fig. 14. A chaotic attractor is located in the three intervals I1, I2 and I3

and is issued from an order 3-cycle whose points are exchanging using the three
determinations of F .

• The order 7 cycle (F1F2F1(F3F1)
2, LRLRLML) and the order 5 cycle (F1F2F1F3F1, LRLML)

belong to the same category of order k cycle, k odd, which can be written under the following

general form: F1F2F1(F3F1)
(k−2)

3 , LRLR...LRLML, where the symbol LR appears k−3
2 times.

The border collision bifurcation curves are given by:

BCka : δ2

(1−β) −
δkβ(1−βm)

k−3
2

m
k−3
2 (1−β)

k−1
2

= 1,

BCkb : δk = ( (1−β)m
(1−βm))

k−3
(16)

• Concerning the order 7 cycle (F2F
2
1 F3F

3
1 , LLLRLLM), we only give its own bifurcation curves:

BCka : δ3

(1−β) −
δ7β(1−βm)
m(1−β)2 = 1,

BCkb : δ7 = ( (1−β)m
(1−βm))

2
(17)

All the bifurcation curves for order k cycles, k = 1, ..., 7 are plotted on Fig. 13. They clearly limit

the stability areas of order k cycles of Fig. 12. The curves of degenerate flip bifurcations and border

collision with xb are given in an explicit form and can be directly plotted, the curves related to the

border collision with xa are given under an implicit form and have to be plotted by using a numerical

method (Newton-Raphson).

Between two stability regions, there exists a chaotic attractor. The chaotic attractor issued from

a degenerate flip bifurcation is a cyclic one, then after a succession of homoclinic bifurcations, it

becomes an one-piece chaotic one.

For some parameter values, chaos can be located on the three domains I1, I2 and I3 (Fig. 14). This

chaos is obtained from border collision bifurcations of order k-cycles whose points exchange by F1, F2

and F3. This is the case around the stability area of the order 3-cycle (F2F3F1, LRM)(see Fig. 12).

In this case, chaos can be considered as robust; indeed its existence domain in the parameter space is

large enough.

5. Conclusions
We have proposed a very simple circuit under the form of a hybrid system, which presents two major

interests. First, this circuit is modeled by a one-dimensional piecewise bimodal linear map, such

map exhibits very rich signals properties and dynamics. Secondly, such a circuit allows to produce

chaotic signals, which can be robust in the sense of remaining chaotic even if the parameters or the

initial conditions are slightly changed; such chaotic signals can be very useful for different kinds of
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applications. The model is very simple and depends on three parameters, we have been able to

derive the exact analytical expressions of degenerate flip bifurcation and border collision bifurcation

curves in the parameter space for some periodic orbits. The border collision bifurcations give rise to

chaos, which can be robust, depending upon parameter values and configurations of periodic orbit

sequences in parameter space. We intend to continue our study, in order to have a more general

classification of all periodic orbits of the map. This will help to have a good understanding of the

dynamical behaviour of the circuit and, depending on the intended application, to propose suitable

sets of parameters values.
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