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Abstract We present a new method of magnification for

textured images featuring scale invariance properties. This

work is originally motivated by an application to astronomi-

cal images. One goal is to propose a method to quantitatively

predict statistical and visual properties of images taken by a

forthcoming higher resolution telescope from older images

at lower resolution. This is done by performing a virtual su-

per resolution using a family of scale invariant stochastic

processes, namely compound Poisson cascades, and frac-

tional integration. The procedure preserves the visual aspect

as well as the statistical properties of the initial image. An

augmentation of information is performed by locally adding

random small scale details below the initial pixel size. This

extrapolation procedure yields a potentially infinite number

of magnified versions of an image. It allows for large magni-

fication factors (virtually infinite) and is physically conser-

vative: zooming out to the initial resolution yields the initial

image back. The (virtually) super resolved images can be

used to predict the quality of future observations as well as

to develop and test compression or denoising techniques.
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1 Introduction

We present a new method to magnify random textured im-

ages by any factor (even much larger than 2) while preserv-

ing their visual aspect as well as their statistical properties.

Such a method will add small scale details below the initial

pixel size by proposing some plausible guess of what might

be hidden under the available resolution, see figure 1. As a

consequence, an augmentation of information is performed.

This work was originally motivated by various applications

to remote sensing for geophysics and astrophysics as well

as to computer graphics. The purpose of our approach is to

propose a reasonable set of predictions of what the small

scales might be. In astrophysics, no instrument will likely

ever resolve all relevant physical scales. One would like to

be able to simulate realistic high resolution images extrap-

olated from currently badly resolved ones. Compression al-

gorithms or denoising techniques could then be optimized

and validated using these virtually super-resolved images as

a reference. For instance, in solar physics, current observa-

tions from the Extreme ultraviolet Imaging Telescope on-

board SOHO are 1024×1024 images at resolution 1800km

[18]. Therefore, physicists are considering the design of a

new spatial telescope with a much better resolution of 80km

which is about 25 times finer than that of EIT. Virtually

super-resolved images may help to design and calibrate var-

ious image processing procedures before there embedding.

Moreover, as the resolution gets finer, the flux of photons

on the CCD sensor gets smaller so that the images may

be under-exposed and unusable. Since the present approach

preserves statistical properties, statistical quantities such as

histograms of intensity at finer resolutions can be predicted

in good approximation provided the assumption of scale in-

variance remains valid over the range of scales that is con-

sidered. The expected quality of future images can then be

reasonably estimated. Such an approach may be useful in
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other remote sensing contexts where turbulent physical sys-

tems like galaxies or clouds are observed. Virtual super-

resolution of textures may be useful in computer graphics

as well. The purpose is then to compute small scale details

if they are visible only. Indeed textures play a crucial role in

the æsthetic rendering but also use a lot of memory space

when stored at full resolution. Procedural texture synthe-

sis [19] permits to synthesize textures (ideally on the fly)

at sufficient resolution for rendering. For instance, when a

character moves towards some object in a scene, it is desir-

able to be able to synthesize new details gradually thanks to

an online enhancement of the texture. The visual aspect of

some random texture is a direct consequence of the statis-

tical properties of the underlying stochastic process. There-

fore we are faced with the same kind of problem as evoked

above for astronomy. Virtual super-resolution will then aim

at the rendering of better resolved textures by generating

new details at arbitrary resolution. More generally this ap-

proach may be used to enhance textured regions in a seg-

mented image.

Our approach relies on the fact that natural images as

well as many random textures usually present scale invari-

ance properties [19, 49]. More precisely, the present work

deals with scale invariant textured images in particular, such

as obtained by the remote sensing of turbulent systems like

the Sun, clouds or stellar systems for instance. The main

thrust is to consider images as realizations of some stochas-

tic process and to propose a reasonable extrapolation of their

scale invariance properties at arbitrarily small scales, below

the initial pixel size. We perform some kind of stochastic

interpolation in the spatial domain by extrapolating multi-

fractal properties in the scale domain. Therefore, we speak

of virtual super resolution since we do not aim at a determin-

istic prediction of some under-resolved existing information

but rather at proposing a set of realizations of some plausi-

ble underlying information. To this purpose, we require that

the content of the augmented image be consistent with the

information available at larger scales from the original im-

age. We define this consistency by two requirements: the

preservation of scale invariance properties of the initial im-

age (statistical consistency) and the conservation of the en-

ergy flux, that is zooming out to the initial resolution must

yield the original image back (physical consistency). As a

consequence, this approach uses minimal assumptions and

introduces some prior through fundamental properties only.

Several approaches to enlargement by interpolation or

super-resolution have already been proposed in the litera-

ture. The enlargement of images implies the apparition of

new pixels. This calls for some assumptions on the image it-

self to design some interpolation method. Beyond Shannon

interpolation, B-spline based techniques have been proposed

to enlarge or reduce regular images [53] and to overcome the

limitation of the usual band-limited assumption [54]. Gener-

Fig. 1 Position of the problem : how to propose some plausible guess

of what might be hidden under the available resolution ? New sub-

pixel details will be introduced, under some physical and statistical

constraints.

alized interpolation techniques [33, 51] have also been pro-

posed to reach a better quality of approximation than tradi-

tional interpolation.

Some approaches have proposed to take into account

the importance of edges in natural images. The basic idea

in [39] was to estimate local covariance coefficients of a

low-resolution image to adapt the high-resolution covari-

ance. Despite its large computational complexity, this method

gives very nice results for cartoon-like images. In [20], a

statistical modeling of edges and a maximum likelihood es-

timate are used to propose an edge preserving upsampling.

While they interestingly preserve local anisotropy, such ap-

proaches are not suited to texture images where edges are

not expected to be the key features.

In a slightly different spirit, some works propose to pre-

serve the local Hölderian regularity of the image which is

equivalent to preserve some locally scale invariant behavior.

One possibility is to learn some codebook mapping between

low-resolution and high-resolution patches [50]. Other au-

thors use the scaling behaviour of wavelet coefficients around

a singularity to extrapolate a new wavelet subband at higher

resolution [8, 16, 37]. One limitation may be that once the

wavelet is chosen, this extrapolation is deterministic and the

result may be noticeably affected by the chosen wavelet.

Moreover, the main purpose is in general more to sharpen

the edges rather than to preserve scale invariant textures.

Aiming at a better processing of textured regions, sev-

eral approaches have proposed to use some prior knowledge

of higher resolution information. This is the basic idea of

example based super-resolution [22] where the system first

learns a set of correspondences between low-resolution and

high-resolution patches. The same kind of idea has been de-

veloped in more recent works. In [38], a data-driven para-

metric model in the wavelet domain is used. In [27], texture

hallucination is introduced, that is high-resolution patches

are chosen in a dataset of examples. These approaches as-

sume the knowledge of high resolution information which

is not available in our case.

A very interesting approach has been proposed in [24]

to overcome this drawback by exploiting the scale invari-



3

ance of the image itself, in the spirit of NL-means methods.

The main idea is to take benefit from patch redundancy in

a single image: the low-res/high-res patch correspondences

are learnt directly from the image and its coarsened versions

at various scales. This approach implicitly uses the internal

self-similarity of a single image to extrapolate information

at high resolution. The visual result is very nice and accurate

both for edges and textures. However, we have no guarantee

that quantitative statistical properties will be correctly ex-

trapolated, in particular when applying an enlargement by a

factor much larger than 2 like 16 or 32 for instance.

Note that the various approaches above were designed

to process either cartoon-like images (smooth regions sepa-

rated by edges) or more textured images with prior knowl-

edge of textures at small scales. The former do not aim at

adding much information at sub-pixel scales, but rather at

being as faithful as possible to the fully resolved reality un-

derlying some sufficiently regular image. In the latter, small

scale information is supposed to be available within some

data base of patches for instance. When dealing with remote

sensing images of disordered (turbulent) scenes, we fall out

of the assumptions of all these methods since there are no

clearly visible edges and we do not know what small scales

consist of because of observational limitations. As a con-

sequence, we will work in two steps: first enlarge the im-

age thanks to any regularity preserving technique, and then

add new details considering the image as a stationary scale

invariant random field; we are not much concerned about

edges here.

As far as the interpolation of stationary random fields

is concerned, some authors [26, 28] have explored the po-

tential of fractal interpolation by modeling the image as a

fractional Brownian motion (fBm). Due to the local rough-

ness of the fBm, one expects that the visual aspect of tex-

tured regions be better preserved than with usual interpola-

tion methods which enforce some kind of regularity of the

resulting image. More recently, wavelet fractal interpolation

was proposed to enlarge remote sensing satellite images of

the Earth [26]. The idea is to apply a fractal interpolation in

the wavelet domain. In these approaches, the model is Gaus-

sian and works with second order correlations only.

Still in the stream of fractal interpolation, Iterated Func-

tion Systems (IFS) [2] have also been proposed with some

success for compression and interpolation. An IFS can be

used to model an image as the fixed point of some iter-

ated function transformation. Interpolation using IFS con-

sists in applying another iteration of the initial IFS deter-

mined thanks to the collage theorem. Such an approach pre-

serves scale invariance in a very elegant framework. How-

ever it remains deterministic and does not ensure the con-

trolled extrapolation of the higher order multifractal behav-

ior of the initial image since the IFS remains an implicit

model. Another possibility relies on the use of Hidden Markov

Random Fields. The idea is to propose an enhanced version

of some low resolution image by using a hierarchical hidden

field [40]. By constructing hierarchical hidden fields, which

label the behaviour type, such an approach may be able to

capture heterogeneous structure in a scale-dependent way.

This method has been applied to the resolution enhancement

of porous media binary images. Among other limitations,

this method calls for the learning of statistical quantities

from high resolution images so that the knowledge of the

small-scale structure is needed. An exact prediction is then

expected. Last, this approach has been proposed for binary

images only and an important limitation is that fractal-like

images are difficult to deal with by using such methods until

now.

The originality of our approach lies in several main in-

gredients. We consider the image intensity as a measure-

ment of the energy carried by the photon flux. Therefore,

our technique will assume an energy conservation rule: the

super resolved image must give the initial image back when

degrading the image back to the initial resolution. Another

originality of our approach lies in its stochastic nature: we

do not aim at proposing a unique version of the virtual high

resolution image but rather at proposing a plausible set of re-

alizations that may be underlying some given low resolution

image. By plausible, we mean that the high resolution image

must obey the same scale invariance properties as the origi-

nal image but over a wider range of scales. We will always

implicitly assume that original images are very much under

resolved and that scale invariance holds over a wide range of

scales below the initial pixel size. Last, let us emphasize that

we speak of virtual super resolution here, since small scales

are introduced by a model. This model relies on a family of

multifractal stochastic processes, namely compound Pois-

son cascades (CPC) [4, 12, 13, 42], combined to fractional

integration understood as a scale invariant low pass filter-

ing in the Fourier domain. The core of our approach lies

in the multiscale multiplicative structure of CPC: the high-

resolution version of a CPC can be decomposed as the prod-

uct of a low-resolution CPC and an independent intermedi-

ate CPC carrying small scale information, see eq. (14). Parts

of the results presented in this article were communicated to

ICIP’09 [34] and to GRETSI’09 [35].

The article is organized as follows. Section 2 recalls on

some definitions and properties of compound Poisson cas-

cades and multifractal processes. We also briefly review the

interest of such stochastic processes for the modeling of nat-

ural images and textures. Section 3 presents our approach in

details and explains the virtual super resolution procedure.

Section 4 studies the behavior of this approach thanks to

some numerical experiments and analyses. We also show

how such an approach can be useful for an application to

astronomical images of the Sun. Section 5 summarizes our

main results and points to directions for future work.
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2 Multifractal processes to model the statistics of

natural images

2.1 Scale invariance of natural images

The statistics of natural images have been studied in depth

[49]. They have revealed two main properties: scale invari-

ance and non-Gaussian statistics. This is also true for a large

variety of ”random textures” [19] so that many models for

natural images can be used to synthesize random textures

as well. The scale invariance of natural images is basically

characterized by the power law Fourier spectrum of the im-

age intensity ∝ 1/k2−η over a wide range of spatial fre-

quencies. It is noticeable that this behavior is very often

observed in good approximation even for one single nat-

ural image. In the spatial domain, this behavior is equiv-

alent to power law correlations at least for some range of

small scales. This scale invariance can be characterized in

an even more precise framework for higher order statistics as

well [12, 52]. Let TI(r) be a multiscale transform (wavelets,

box averages...) at scale r of the image I under study. The

scale invariance property results in the power law scaling

behavior ❊TI(r)
q ∝ rζ (q), q ∈ R where ❊ stands for math-

ematical expectation. The ζ (q) are called multifractal or

multiscaling exponents. They capture higher order depen-

dences. They can be decomposed in a linear part qH depend-

ing on a parameter H and a non-linear part τ(q), such that

τ(0) = τ(1) = 0 and H = ζ (1). Then ζ (q) = qH +τ(q). For

instance in the case ζ (q) = qH (e.g. a fractional Brownian

field), the image I is said self-similar and its scale invariance

is characterized by the parameter H only. When the non lin-

ear part {τ(q),q∈R} exists and is not identically zero, a set

of exponents is necessary to describe the scale-invariance

of the image. The nonlinearity of τ(q) betrays a multiscal-

ing property which also depicts the non-Gaussianity of the

image statistics. For a multiscaling image, the parameters H

and τ(q) are linked to the power law Fourier spectrum which

is ∝ 1/k2+2H+τ(2) [12]. Next section is a brief presentation

of the notion of statistical scale invariance of stochastic pro-

cesses.

2.2 Statistical scale invariance

As we will make use of scale invariant stochastic processes,

we give a short presentation of the notion of scale invariance

for stochastic processes. To this aim, let us first recall the

link between scale invariance and power laws. In the deter-

ministic framework, an object is said to be self-similar when

it remains invariant through dilations. One simple example

is the set of functions on R+ such that, for some H ∈ R,

∀c ∈ R+, f (ct) = cH f (t). (1)

It is well known that this is the set of power laws f (t) = a tH

where a is a constant, H ∈ R. In the stochastic framework,

one speaks of statistical self-similarity when the correspon-

dence between descriptions of the same object at different

scales are expressed in terms of equalities in laws denoted

by
d
= below. A stochastic process X(t) indexed by t ∈ R

with values in R is self-similar with Hurst parameter H if:

∀c ∈ R+, {X(ct), t ∈ R+}
d
= cH{X(t), t ∈ R+}. (2)

The archetype of self-similar processes is the fractional Brow-

nian motion (fBm) denoted by BH(t). Note that the fBm is

the only Gaussian process which is self-similar with station-

ary increments. In 2 dimensions, the notion of self-similarity

can be generalized to other operators than natural dilation by

possibly introducing some anisotropy [7]. A more flexible

framework corresponds to the multiscaling scale invariance

property:

∀c ∈ [0,1],{X(ct), t ∈ [0,T ]}
d
= Wc · {X(t), t ∈ [0,T ]} (3)

where T is a large scale beyond which the property cannot

be true anymore; Wc is a random variable independent of X .

In this work, we will consider the particular case where Wc =
cHeΩc where Ωc is a random variable such that IEeqΩc =

cτ(q) for relevant values of q (τ(q) is a concave function).

Then IEW
q
c = cqH+τ(q). We speak of multiscaling processes.

In practice only processes with stationary increments are

easy to use for modelling purpose. Therefore, we will con-

sider scale invariant processes with stationary increments

only. In this case, the moments of the absolute value of the

increments δrX(t) = X(t + r)−X(t) behave as (if they are

well defined)

IE|δrX |
q = IE|δ1X |q rζ (q) (4)

where ζ (q) = qH + τ(q) and r ∈ [0, T ]. Such processes

are also called multifractal. Their scale invariance proper-

ties are described by the set of multifractal exponents ζ (q).
These exponents carry information on higher order correla-

tions. Very often, eq. (4) also holds for wavelet coefficients.

This is important as far as data analysis is concerned be-

cause when wavelet based estimates of exponents ζ (q) are

relevant, they are also more accurate and efficient than those

based on increments [17,30,32,36,43,46,57]. This is worth

being mentioned since the virtual super resolution method

described in this work calls for a preliminary multifractal

analysis of the original image, that is the estimation of the

exponents ζ (q). Finally, note that self-similarity is recov-

ered when ∀q,τ(q) = 0⇔ Ωc = 0 and the process is then

said monofractal with ζ (q) = qH.

To the purpose of modelling data from turbulent flows

in fluid mechanics, some authors have empirically proposed

an even more general framework, namely infinitely divisible

multiscaling [9–11]. This general framework later raised the
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basic ideas to build multifractal measures and processes. In-

finitely divisible multiscaling is defined by the general scal-

ing property (for instance for absolute values of wavelet co-

efficients)

IETX (r)q = cq exp[−H(q) ·n(r)] (5)

where n(r) can be some non increasing function of r and

e−H(q) = IEeqω is the moment generating function of an in-

finitely divisible random variable ω [21]. The classical power

laws of multifractal scaling are recovered when

{
n(r) = − logr,

IETX (r)q = cqrH(q).
(6)

Then H(q) can be identified to multifractal exponents ζ (q).
However, more general scale dependences can be consid-

ered and are sometimes called extended self-similarity [6,

52]. This approach is important since it opened the way to

the construction of infinitely divisible cascades [48]. Indeed

it makes a bridge between multiscaling properties and the in-

tuition that multiplicative cascades may be of some help to

define multiscaling stochastic processes (see eq. (9) below).

In this approach a scale evolution equation can be written

for IETX (r)q:

IETX (r2)
q = e−H(q)[n(r2)−n(r1)] · IETX (r1)

q (7)

for scales r2 ≤ r1. Let us recall that the product of moment

generating functions is associated to the convolution of cor-

responding distributions, which is itself associated to the

sum of independent random variables. Assume that G̃(q) =

e−H(q) is the moment generating function of an infinitely di-

visible random variable ω = logW [21]. Denote Y = logTX

so that IET
q

X = IEeqY . Then eq.(7) can be rewritten as

Pr2
(Y ) = G∗[n(r2)−n(r1)] ∗Pr1

(Y ), (8)

where Pr(Y ) is the distribution of Y = logTX at scale r and

G∗[n(r2)−n(r1)] must be read as an iterated convolution corre-

sponding to G̃(q)[n(r2)−n(r1)], the moment generating func-

tion of a random variable ωr1,r2
= logWr1,r2

. Below we will

denote Wr1,r2
= W [n(r2)−n(r1)] with little abuse. This equa-

tion shows that the evolution of the distribution of TX (r)
with scale r is controlled by the so-called propagator G and

the scale dependence n(r). Another consequence of eq.(8) is

that one may translate eq.(7) as a multiplicative underlying

structure described by the equality in law (with little abuse

of notation):

TX (r2)
d
= W [n(r2)−n(r1)] ·TX (r1). (9)

This short presentation points to the deep link between mul-

tiscaling processes and multiplicative constructions such as

multiplicative cascades on wavelet coefficients [5] or Man-

delbrot binomial cascades [41]. This remark makes explicit

the link between multifractals and ideas that have already

been applied to image processing [45, 55, 56]. Infinitely Di-

visible Cascades (IDC) are a family of multifractal processes

first introduced in [1, 4, 13, 42, 48] and recently proposed

in [12] to model the statistics of natural images. Our ap-

proach uses a sub-family of IDC, namely Compound Pois-

son Cascades (CPC), which permit the construction of mul-

tifractal processes featuring the main statistical properties of

natural images, including higher order correlations.

2.3 Compound Poisson cascades (CPC)

In this section, we recall the main definitions and proper-

ties of compound Poisson cascades (CPC), a subfamily of

infinitely divisible cascades. CPC were first introduced by

Barral & Mandelbrot (2001) [4] as Multifractal Products of

Cylindrical Pulses and later generalized to infinitely divisi-

ble cascades by several authors. We refer to [1,11,12,14,15,

42,48] for more detailed presentations of infinitely divisible

cascades in general.

This model is based on a multiplicative construction where

smaller scales of an image inherit information from larger

scales in a continuous way. Let QL
ℓ (x) be the pixel value at

location x; let L and ℓ, L > ℓ, the limiting largest and smallest

scales of the resulting image. Let (xi,ri) a Poisson point pro-

cess with: (i) xi i.i.d. uniformly distributed in the 2D plane,

ensuring the homogeneity of QL
ℓ in space; (ii) ℓ ≤ ri ≤ L

independent of xi and i.i.d. with density 1/r3 (so that the

final texture is mathematically well defined if ℓ > 0 only).

The (xi,ri) are marked by i.i.d. positive random variables Wi

called multipliers, independent of the (xi,ri). For all x of the

image, the CPC QL
ℓ (x) is defined by

QL
ℓ (x) =

∏i W
I1D(xi,ri)

(x)

i

IE

[
∏i W

I1D(xi,ri)
(x)

i

] (10)

where I1D(xi,ri) is the characteristic function of the disk of

radius ri centered in xi and the normalization ensures❊QL
ℓ =

1.

Such models are homogeneous but very irregular objects

and correspond from a mathematical standpoint to distribu-

tions with log compound Poisson law. They can be seen as

densities of multifractal measures. Indeed, in the limit ℓ→ 0,

the compound Poisson cascade tends to zero almost every-

where (see [4, 14, 42] for a complete presentation of their

mathematical properties). From a mathematical standpoint,

the object of study would be the measure associated to a

CPC. A CPC can be seen as the density of a measure, just

like a distribution. As a consequence, even though the CPC

tends to zero almost everywhere (think of a Dirac distribu-

tion for instance), the corresponding measure may not be
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zero everywhere ; the measure is then said to be non degen-

erate (in the limit ℓ→ 0). The scale invariance of a CPC is

characterized by H = 0 and τ(q) = q(❊W
q
i −1)+1−❊W

q
i

for scales between ℓ and L. This means that the choice of

the distribution of the multipliers Wi determines the scale in-

variance properties of a CPC. Their Fourier spectrum obeys

a power law ∝ 1/k2+τ(2) (τ(2) < 0). By construction, QL
ℓ (x)

is equal in distribution to Q1
ℓ/L

(x/L). Its variance is given

by:

var(QL
ℓ ) = (ℓ/L)τ(2)−1 (11)

Let f (x) a geometric kernel defined by a non negative

function with compact support. A natural generalization of

the previous definition is

QL
ℓ (x) =

∏i W
f
(

x−xi
ri

)

i

IE

[

∏i W
f
(

x−xi
ri

)

i

] (12)

Note that CPC connect to other existing models of natural

images. For instance, taking the logarithm of eq. (12), one

gets

logQL
ℓ (x) = ∑

i

logWi · f

(
x−xi

ri

)
+K (13)

which looks much like the Transported Generator Model

by Grenander & Srivastava (2001) [25] or the learnt sparse

codes by Olshausen & Field (1996) [44].

An essential property of CPC is that for any 0 < r2 ≤

r1 ≤ r0, Q
r0
r2

obeys a multiplicative multiscaling decomposi-

tion

Qr0
r2

= Qr0
r1
·Qr1

r2
(14)

where Q
r0
r1

and Q
r1
r2

are two independent CPC with the same

τ(q). This essential property is the core of the approach pre-

sented in this article.

The fractional pseudo-integration, denoted by the opera-

tor IH , is performed in practice by a 1/||k||H low-pass filter

in the Fourier domain for ||k|| > 0 (the singularity at k = 0

is treated separately). The fractional pseudo-derivation de-

noted by DH is the inverse of the integration and is per-

formed in practice by a ||k||H high-pass filter. These oper-

ations preserve scale invariance but modify the scaling ex-

ponents ζ (q) by adding, respectively subtracting, a linear

part qH, see Corollary 1 in [31]. Thus, CPC may be used to

model very rough images (or textures) with ζ (1) = 0 as well

as smoother images with ζ (1) = H > 0.

In terms of functional analysis, we recall [32] that the set

of multiscaling exponents ζ (q) characterizes the collection

of Sobolev and Besov spaces to which a function X belongs

since ζ (q) = sup{s : X ∈ B
s/p,∞
p }. Note that Besov spaces

express in a precise statement how sparse an image is in

the wavelet domain. A multifractal function X belongs to

the Sobolev space L1,ζ (1) and to Besov space B
ζ (1),∞
1 . The

construction of CPC imposes that ζ (q) = τ(q) and ζ (1) =

τ(1) = 0 while images considered here may be more regular

with ζ (1) = H > 0. Bare CPC are quite singular.

3 Virtual scale invariant super resolution

This section describes how the CPC presented above can be

used to propose a virtual scale invariant super resolution pro-

cedure. First we state the problem again and precise which

desirable properties such a procedure should obey.

3.1 The approach

Our purpose is to virtually refine the resolution of scale in-

variant textured images thanks to an adapted augmentation

of information. We require the augmentation to obey both

statistical and physical consistency with the initial image.

By statistical consistency we mean that the resulting image

should have the same scale invariance properties as the orig-

inal one, see figure 2. More precisely, the spectrum of the

super resolved image should correspond to a power law ex-

trapolation of the initial spectrum towards higher frequen-

cies, see fig. 2(a). Moreover, the higher order correlations

described by the multiscaling exponents ζ (q) should also

be extrapolated to scales smaller than the initial pixel size,

see fig. 2(b). By physical consistency, we mean energy con-

servation. Zooming out the magnified image to the initial

resolution should yield the initial image back, see figure 2.

To this aim, one must add details with well suited properties

at scales below the pixel size of the original image.

Some existing methods [3,16,26,28,37] aim at preserv-

ing scale invariance but they are deterministic and do not

extrapolate the multifractal behavior of the initial image.

Our method is more flexible since it adds scale invariant and

multifractal information at higher resolution in a stochas-

tic manner. However it must be noticed that a fundamental

assumption which is also a limitation is that the scale in-

variance properties of the original image are known, which

is the case for, e.g., synthetic textures, or images that have

been previously analyzed. The initial image is supposed to

have some random texture looking, e.g. taken from a turbu-

lent physical system such as the quiet Sun characterized by

the scale invariance parameters H and τ(q) estimated from

a prior multifractal analysis [18].

The main thrust is to a priori describe the initial image

by the following global model:

I1 = I0 +αIH{Q
r0
r1
−〈Qr0

r1
〉} (15)

where 〈〉 stands for spatial averaging and I0 for the average

intensity of the image. The fluctuation term is a fractionally
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(a) (b)

(c)

Fig. 2 (a)&(b) Statistical consistency: we aim at a super resolution

procedure which will add subpixel details by extrapolating the power

law spectrum as well as higher order scale invariant properties with

the same multiscaling exponents ζ (q) of the original image.(c) Phys-

ical consistency: the super resolution procedure should obey the en-

ergy conservation rule. The sum of intensities of subpixels of a given

macropixel must be equal to the intensity of this macropixel.

pseudo-integrated CPC with zero mean (IH is a 1/||k||H

low-pass filter in the Fourier domain), amplified by a fac-

tor α . The scales r0 and r1 stand for the largest scale and

the finest scale (the pixel size) of the image. We stress that

this global model is not really aimed at describing the com-

plete image but is only used to derive a local procedure of

augmentation. Recall that the scale invariance properties of

such an image are characterized by ζ (q) = qH + τ(q).

We derive a local procedure to add random correlated

details in every pixel of the initial image thanks to the mul-

tiscale multiplicative decomposition property of CPC, see

eq.(14). The main idea of this magnification procedure is to

replace Q
r0
r1

by Q
r0
r2

in (15) to get an image I2 at resolution

r2 < r1. The procedure is schematically represented in fig.

3. Eventually, a renormalization step ensures that the pro-

cedure is conservative in the sense that zooming out to the

initial resolution gives the original image back.

The idea of considering a physical quantity as some frac-

tional integral of a density that is an intensive quantity is not

new. Our model is quite similar to those used by physicists to

describe measurements from turbulent flows. For instance,

one may think of the fractional fields by Schertzer & Love-

joy (1987) [47]. The underlying intuition is that physical

measurements are averages of some local density over some

spatial or temporal domain. Here, the CPC Q
r1
r0

plays the

role of a density which may exhibit a very singular behav-

ior, similar to that of a distribution. The image is the result

of the counting of photons emitted by some region of space

and transmitted through a propagation medium. Therefore,

one may consider the intensity of an image as a kind of av-

erage over a spatio-temporal domain. The model described

by (15) fits to this phenomenology by producing a scale in-

variant image as a fractional integral (which preserves scale

invariance) of some scale invariant density distribution.

3.2 Super resolution procedure

This section describes in detail the elementary steps of our

procedure. As a first step, we need to magnify and resample

the original image I1 at resolution r2 < r1. To this aim, we

use a spline interpolation [53] leading to a smoothed ver-

sion Iinterp of I1 with minimum addition of information. In-

deed, spline interpolation has been shown to be very effec-

tive to this purpose. From a mathematical standpoint, the

image Iinterp may be quite regular and not comparable to

a singular distribution such as a CPC. Frequencies corre-

sponding to scales below r1 are cut off in Iinterp whereas a

∝ k−(2+2H+τ(2)) spectrum is wanted. An adapted fractional

derivation of order H = ζ (1) yields the intermediate image

J1 = DH Iinterp ←→ α
(
Qr0

r1
−〈Qr0

r1
〉
)

in (15). (16)

In some sense, this fractional derivation brings J1 down to

the same class of regularity as a CPC. Next step consists in

using the multiscale decomposition (14) of CPC to replace

J1 by

J2 = α
(
Qr0

r2
−〈Qr0

r2
〉
)

= J1 ·Q
r1
r2

+α〈Qr0
r1
〉
(
Qr1

r2
−〈Qr1

r2
〉
)

(17)

where the term Q
r1
r2

contains the new information at scales

smaller than r1. This image J2 contains new details down

to resolution r2 < r1. Note that Q
r1
r2

is independent of Q
r0
r1

;

it is generated using (10) with the same parameters as Q
r0
r1

.

Since Q
r1
r2

(x)
d
= Q1

r2/r1
(x/r1), the information brought by the

CPC between scales r1 and r2 depends on the magnification

factor r1/r2 only. The first term in (17) mainly describes the

augmentation of information in J1 at scales r2≤ r≤ r1. It en-

sures the coupling between the initial image J1 and the new

details Q
r1
r2

. The second term in some sense ensures that the

energy level of the new details is consistent with the initial

image. J2 is then expected to be characterized by the same

τ(q) as I1 and the same power law Fourier spectrum over a

larger range of spatial frequencies. Note that each realization

of Q
r1
r2

will produce one possible realization of the magnifi-

cation of the original image among a potential infinity since

we use a kind of stochastic extrapolation, see figure 4.

At this stage, the parameter α plays an important role

since it controls the weight of the new small scale details.

Assuming that the proposed model (15) holds, it depends on
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Fig. 3 Schematic view of the magnification process.

the variance of J1, the initial scale range r1/r0, and on τ(2).
It can be estimated using (11):

α̂ =

√√√√ v̂ar(J1)

(̂r1/r0)
τ(2)
−1

(18)

where τ(2) can be estimated from the power law Fourier

spectrum ∝ 1/k2+2H+τ(2) or from some multiscaling anal-

ysis. Some problem may rise from an inaccurate estimate

of α . Section 4.1.3 details the sensitivity of the present ap-

proach to parameter estimates and shows that no critical

problem appears.

The pseudo-integration step yields

K2 = I0 +IHJ2 (19)

At this stage, we must comment on the physical meaning of

K2. Since K2 should be interpreted as a light intensity, it is

expected to be a non negative quantity. In fact, there is some

uncertainty on the positiveness of K2 since we cannot ensure

that the fractional integration operator will not yield values

IHJ2 < −I0. However, we have observed on real images

(quiet Sun images from EIT onboard SoHo for instance)

that this condition was well obeyed with high probability.

Negative values appear to be isolated and may reasonably

be considered as outliers, even though they tell us that the

model may not be exact and remains an approximation. In

practice, one needs to check for positiveness of K2 and to

force negative values to zero.

Finally, the magnified image I2 results from a renormal-

ization of K2 which makes the procedure “energy conser-

vative”. While (17) adds information at scales r2 ≤ r ≤ r1,

it also slightly affects scales larger than r1 as well and the

desirable energy conservation rule is not obeyed. Therefore,

we impose that the sum of intensities in regions of I2 corre-

sponding to a pixel of size r1 in I1 equals the pixel value in

I1.

The multiplicative augmentation procedure and the en-

ergy conservation step are non-linear and local operations so

that they do not commute. As a consequence, a direct ×32

magnification is actually different from five successive ×2

magnifications. Ideally, the ratio r2/r1 should be close to 1

to carry out a continuous super resolution process. This is

Fig. 4 Several realizations of possible virtually super resolved ver-

sions of the same low-resolution initial image. The general aspect is

quite similar while local details vary from a realization to the other.

also important to preserve the scale invariance of the origi-

nal image and to limit any “blocking” artifact due to the con-

servation step. In the present work, and for obvious practical

reasons, we use r2/r1 = 1/2.

4 Illustration

4.1 Synthetic examples

We illustrate our approach in the ideal case where the initial

image is precisely of the form given by (15). A set of initial

images of size 32×32 is built with α = 8 and I0 = 23, for

r0 = 1 and r1 = 1/32 and with H = 0.7. In these examples

we have chosen τ(q) = −((1 + T )q/(1 + qT )− 1) where

T = 0.7 which leads to τ(2) =−0.20. The expected Fourier

spectrum is therefore of the form 1/k3.2. A magnification

×32 is performed as five ‘×2’ elementary magnifications

leading to 1024×1024 images. This corresponds to a dis-

tribution of the multipliers in (10) proportional to W 1/T−1

for W ∈ [0,1 + T ] with IEW = 1; the choice T = 1 would

correspond to multipliers with uniform distribution in [0,2].

4.1.1 Visual aspect

Fig. 5 compares typical results obtained by simple interpo-

lation (with no augmentation of information) by using cubic

B-spline as described in [53] with those obtained from the

magnification procedure described above (see our webpages

for other examples). Here, we assume that α , r1/r0 and τ(2)
are exactly known. Fig. 5 clearly illustrates the augmenta-

tion of information by the introduction of new small scale

details inside initial pixels while a simple interpolation only

smoothes the image. Moreover, lowering (by aggregation)

the resolution of I2 back to r1 yields I1 back: the energy con-

servation rule is obeyed. At least on purely visual grounds,
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⇓ (a) ⇑ ⇓ (b) ⇑

(c) (d)

Fig. 5 Illustration of our magnification procedure: (a) initial 16×16

image, (b) zoom in the ×32 interpolated image contained in the 4×4

black square of the initial image; cubic B-spline interpolation was

used [53], (c) ×32 magnified image with augmentation, (d) zoom in

the black square region. The dotted lines corresponds to initial pixels.

the image on fig. 5(c) appears as a relevant candidate to de-

scribe plausible details that may be underlying the image on

fig. 5(a) (idem for fig. 5(d) and (b)). Next section will show

that this ”plausibility” is essentially due to the statistical and

physical consistency of the added small scale details.

The choice of the precise multifractal model underly-

ing a CPC based super-resolution is crucial. Fig. 6 shows

results obtained from the same initial image for slightly,

mildly and strongly multifractal models. The visual con-

sequences are clear: the more multifractal the model, the

more intermittent and disordered the texture. While fig. 6(a)

is only slightly different from some usual regular interpo-

lation, fig. 6(b) and (c) exhibit more localized ”extreme”

events. Again, the visual aspect betrays statistical properties.

Note again that a potentially infinite number of images may

be underlying some given initial low resolution image. We

emphasize again that we do not predict some deterministic

hidden information but we only propose a class of plausible

underlying high resolution images, see fig. 4.

4.1.2 Scale invariance properties

Fig. 7(a) presents a log-log plot of the Fourier spectra of the

original image I1 and of the virtually super resolved image

I2 after magnifications by factors 2 and 32. These spectra re-

sult from averaging over all possible directions. We see that

the power law Fourier spectrum of I1 has been preserved at

lower frequencies and extended to higher frequencies with

(a) (b) (c)

Fig. 6 Comparison between results obtained from the same original

regular image (peaks of Matlab) by using a CPC (a) slightly, (b) mildly,

(c) strongly multifractal. Dashed lines corresponds to the initial pixels.

the same exponent and without any discontinuity. This il-

lustrates the fact that both the energy content and the energy

level of the added small scale/high frequency details are con-

sistent with those of the initial image. The scale invariant

behavior of second order correlations has been correctly ex-

trapolated to high frequencies.

To be even more precise, we now turn to higher order

correlations which are described by the multiscaling behav-

ior of absolute moments of wavelet coefficients, see eq. (4).

Fig. 7(b) shows that this multiscaling behavior is indeed well

extrapolated to smaller scales since the linear behavior in a

log-log plot has been extended over a wide range of octaves

at smaller scales. Fig. 7(c) shows that the associated mul-

tiscaling exponents estimated from I2 are close to the ex-

pected ones within reasonable error bars.

Finally, we comment on the evolution of the histograms

of wavelet coefficients. As explained in section 2.2 thanks

to eq. (8), the multiscaling behavior we just mentioned is

closely linked to the evolution of the histograms of wavelet

coefficients through scales. This evolution usually goes from

nearly Gaussian at larger scales to less and less Gaussian (for

instance, generalized exponential) distributions at smaller

scales. This is often called the intermittency phenomenon

by physicists in turbulence. Indeed, this departure from the

normal law at small scales means that extreme events hap-

pen ‘abnormally’ often at small scales. These extreme events

are associated to high dissipation regions in fluid flows. In

images, they are rather associated to localized large gradi-

ent areas like isolated bright points or edges. Fig. 8 shows
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(a) (b) (c)

Fig. 7 (a) Power law Fourier spectra; (b) multiscaling behavior of the absolute moments of wavelet coefficients of order 1, 2 and 3 of ×2 and ×32

magnified images; (c) multifractal exponents of magnified images.

Fig. 8 The evolution of the histograms of wavelet coefficients for oc-

taves available from original images (in black) towards less and less

Gaussian distributions for the augmented images where new octaves

are reachable.

the histograms of wavelet coefficients at smaller and smaller

scales from bottom to top. In log-scale, a Gaussian distri-

bution would be associated to a parabola, while here the

histograms are more and more peaked and heavy tailed as

smaller scales are considered. This is consistent with the

well known fact that generalized exponentials are usually

good candidates to model wavelet coefficients distributions

of natural images.

Thus we have shown, at least through these numerical

experiments, that our magnification procedure adds new in-

formation to the original image while (i) enhancing its visual

aspect, (ii) preserving its scale invariance properties and (iii)

being conservative with respect to zoom in and out opera-

tions. These experiments have been applied to a wide variety

of multifractal images and have given similar results.

4.1.3 Sensitivity to parameter estimates

In this work, we always assume that the scaling exponents

of I1 are known from a prior analysis. In practice, we as-

sume for instance that these images belong to some class of

textured images such as quiet Sun images [18]. Therefore,

a multifractal analysis can be performed prior to this su-

per resolution procedure. Estimates of the multiscaling ex-

ponents ζ (q) are then known. A parametric model among

those CPC that can be simulated is chosen to reproduce the

same multiscaling properties as faithfully as possible. An

important limitation of this method is its dependence on the

precision of ζ (q) estimates which require a large amount of

data. Another limitation roots in the use of parametric mod-

els. There is some work left to find an approach which could

deal with a single image.

While all parameters have been assumed to be known

above, we now consider the more realistic situation where

α and the ratio r1/r0 are unknown. As seen in (18), α de-

pends on r1/r0, the ratio between the initial resolution r1

and the largest scale r0 present in the image. An error on the

estimate r̂1/r0 may lead to an error on the estimate α̂ , see

eq. (18). The scale r1 is known a priori since it is the small-

est scale available, the pixel size. Therefore, the estimation

of α is directly linked to the estimation of the larger scale

r0 in the image. It may be in general smaller but sometimes

larger than the image size; in any case, this quantity is diffi-

cult to estimate accurately. One must check whether an error

on this estimate could have quantitative or qualitative conse-

quences. In the case where r0 is overestimated, α is under-

estimated so that the power of details is too small: the final

image misses some energy at high frequencies to accurately

extend scale invariance properties into the range of scales

[r2,r1], see fig. 9(a)&(d). However, remark that the Fourier

spectrum does not fall down dramatically. There is only a

small fall off at the frequency corresponding to the scale r1

which is not so easy to detect by simply looking at the im-

age. This is expected when looking closer at eq. (17): the

procedure adds small scale details, even when α̂ = 0. Note

that if the true α was really zero, the initial image would

be constant I1 = I0, and there would be no reason to use the

present procedure. The use of eq. (17) is relevant under the

assumption that α 6= 0 only. In the case where r0 is under-
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(a) (b) (c)

(d) (e) (f)

Fig. 9 Illustration of the consequences of an error on the estimate of r0 and α . First row: images resulting from a×32 magnification; second row:

corresponding Fourier spectrum averaged over all directions. (a)&(d) when α is underestimated; (b)&(e) when α is correctly estimated; (c)&(f)

when α is overestimated.

estimated, the power of details is too big and results in too

much energy at high frequencies, see fig. 9(c)&(f). Again,

scale invariance is not correctly extended to smaller scales;

even more, this would give rise to clear visual artifacts since

blocks of approximate size r1/r2 could appear in the super

resolved image. In the limit where α̂ is really too large, the

super resolved image would even look noisy, in particular at

scales between r2 and r1.

Fortunately, a precise estimation of r0 is not so crucial

for the procedure to remain efficient. For instance, let us

consider that r0 will be often close to Nr1 (r1 = pixel size)

for an N×N image so that r̂1/r0 can be replaced by 1/N. In

the present example, τ(2) =−0.20, r0/r1 = 1/32 and α = 8

(here var(J1)≃ 66). If the estimation of r0 is r̂0 = 2× r0 (re-

spectively r̂0 = r0/2), α̂ = 7.02 (respectively α̂ = 9.3) in-

stead of α = 8. In other words, a factor 2 on r̂0 leads to a

14% uncertainty on α̂ . Fig. 10 shows the relative error on

α̂ as a function of the relative error on r̂0. Furthermore, the

fractional pseudointegration consists of a lowpass filtering

which makes this uncertainty even smaller; the conservation

step tends to reduce it as well. In the end, the error is close

to negligible. Note that α̂ = α/2, respectively α̂ = 2×α ,

would correspond to r̂0 = 93.4, respectively r̂0 = 0.09 in-

stead of r0 = 1. In other words, an error of a factor between

10 and 100 on r̂0 would be necessary to yield an error of a

factor 2 on α̂ . Let us remark that the sensitivity of α estimate

to r0 also depends on the global regularity of the original

image (larger |τ(2)| will degrade the estimation precision

over α). However, we studied the typical case τ(2) =−0.20

which already corresponds to rather irregular images and

gives good hints to what will likely happen in usual situa-

tions.

In summary, the maximum error on r0 is expected to be

within a factor 2 which leads to an error on α of the order of

10%. Furthermore, the fractional pseudo-integration as well

as the conservation step tend to reduce the consequences of

this uncertainty on α̂ . In the end, the error is close to neg-

ligible. As a conclusion, the accuracy of the estimation of

r1/r0 and α is not critical.

Another possible source of error which is easier to deal

with may be the estimate of the variance J1 in (18). Indeed, if

the initial image is to small, very few statistics are available

to estimate var(J1) so that α will be poorly estimated. One

must take care of working either with one sufficiently large

initial image or with a set of a sufficiently large number of

images to get an accurate estimate v̂ar(J1).

4.1.4 Extrapolation of histograms

One important initial motivation of this work is the ques-

tions asked by solar physicists about their future high reso-

lution observations. Among others, two questions are simple

to formulate: knowing present low resolution images from

E.I.T (1 pixel = 1800 km), can we have a reasonable idea

of what would images at a resolution 25 times smaller (1

pixel = 80 km) look like ? and how far could these new im-

ages be underexposed ? Indeed, the photon flux measured
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Fig. 10 Relative error (in %) on α as a function of the relative error

(in %) on the estimate of r0.

by one pixel of the sensor decreases with the resolution. The

virtual super resolution procedure we presented above pro-

poses a method to give a plausible answer to the first ques-

tion. Moreover, this approach gives an answer to the second

one as well. Since we are directly aiming at the modeling of

the physical light intensity in a quantitative manner, we ex-

pect that the histograms of the virtually super resolved im-

ages can be estimated. This will permit us to study the nec-

essary characteristic of the data acquisition system to ensure

that images be sufficiently exposed to be usable. Here we

illustrate this possibility on simulated images first. The ap-

plication to quiet Sun images will be evoked in next section.

We consider the same numerical experiments as in previous

sections.

Fig. 11(a)&(b) show the histograms of initial images

of size 32×32 obtained from fractionally integrated CPC

with the parameters defined at the beginning of section 4.1.

This figure also shows the histograms of corresponding vir-

tually super resolved versions for enlargement factors ×2

and ×32. At first sight, we have in some sense implicitly

extrapolated the histograms of the initial low resolution im-

ages. The mode of the histogram corresponding to the initial

images is preserved in high resolution images. This obser-

vation calls for several comments. The multifractal behav-

ior is linked to the intermittency phenomenon evoked ear-

lier which gives rise to abnormally frequent extreme events

at small scales (again abnormal means more frequent than

with a Gaussian distribution). Therefore one expects that the

histograms of super resolved images have heavier tails than

initial low resolution images. This is true for pure CPC (with

no fractional integration). The finer the resolution of a CPC,

the more frequent large isolated values are. Here, on images

which correspond to fractionally integrated CPC, the result

is apparently the same. The histogram of the magnified im-

age has a larger tail at large intensities than original images.

However, let us remark that we are comparing histograms

estimated from datasets of different sizes: super resolved im-

ages contain 322 = 1024 times more points than the original

dataset. Due to a simple statistical effect, the tail of the his-

togram of magnified images is necessarily better estimated.

(a) (b)

(c) (d)

Fig. 11 (a) & (b) Histograms of the initial 32x32 image and of cor-

responding virtually super resolved versions for enlargement factors

x2 to x32. (c) & (d) Comparison between histograms of intensity esti-

mated from data sets of 32x32 and 1024x1024 images using identical

statistics: even the tails are quite similar. Normalized intensity is the

intensity times the square of the enlargement factor; on figure (b) & (d)

the graphs have been artificially translated for sake of clarity.

To be able to distinguish the result of the super resolution

procedure from purely statistical effects, one must compare

histograms estimated on datasets of identical sizes.

Fig. 11(c)&(d) compare the histogram of intensity esti-

mated from a set of N×1024 images of size 32× 32 to the

histogram estimated from N images enlarged 32 times. The

surprising result is that both histograms are very similar. The

pure statistical effect is far from negligible ! It appears that

the fractional integration step plays a crucial role here. In-

deed, we have repeated the same experiment for various val-

ues of H between 0 and 1. For small values of H, say smaller

than 0.5 (H = 0 means that we consider a pure CPC), one

can observe some real difference between the histogram of

super resolved images and that of original (low resolution)

images. This is consistent with our intuition of multifractal-

ity. For large values of H, say greater than 0.5, the histogram

of super resolved images is quite similar to that of low res-

olution initial images if comparable statistics are used for

estimation. The larger H, the closer the histograms. Our in-

tuition is that this may be due to some kind of ’Central Limit

Theorem’ effect since fractional integration is equivalent to

some low pass filtering which sums a large number of (non

independent) random variables. Indeed, we observe that, for

sufficiently large H, the histogram of super resolved images

is close to some distribution which may be independent of

the enlargement factor.

In practice only a limited number of images is avail-

able. The super resolution procedure will then provide us

both with virtually super resolved images and with a tool
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(a) (d)

(b) (e)

(c) (f)

Fig. 12 Application of our CPC based super-resolution on a coarsened

version of some quiet Sun image : (a) initial image at full available

resolution, (b) image coarsened by a factor 4 (pixels have been grouped

within 4×4 blocks), (c) image obtained by CPC based super-resolution

×4. Fig. (d), (e) & (f) are zooms in the same (white square) region of

(a), (b) & (c) respectively.

to extrapolate various statistical quantities at high resolution

(like histograms of intensity or wavelet coefficients...). As

observed above, a careful numerical study shows that these

extrapolations are consistent with what one would expect by

taking into account the multifractal nature of considered im-

ages.

4.2 Application to quiet Sun images in the extreme UV

4.2.1 Results

This work originates from questions asked by astrophysi-

cists and solar physicists in particular. In many cases and

despite constant progress of instrumentation, the smallest

physical scales remain out of reach of observation. Astro-

physicists deal with remote sensing of complex objects. These

huge objects contain structure over an incredibly large range

Fig. 13 Fourier spectra averaged over all directions for: an original

quiet Sun image; at artificially degraded (1/4) resolution; ×4 super-

resolved image obtained from the degraded image. Spectra have been

artificially translated for sake of clarity of the presentation.

of scales, so that we may never access a fully detailed knowl-

edge of them. Moreover, the finest observations are now

provided by telescopes onboard spatial missions. As a con-

sequence, the whole embedded apparatus must be well di-

mensioned and validated before launch. Such a requirement

calls for some relevant data sets to test the whole system in

as realistic conditions as possible. To answer at least part

of the questions, the present virtual super resolution pro-

cedure appears as a very interesting tool. Indeed, statisti-

cal consistency is physically grounded in the current state

of knowledge. The resulting images are physically credible

and can be used to study various aspect of the necessary im-

age processing. Fig. 12 compares the ground truth of some

quiet Sun image at the available resolution with the result of

our procedure applied to a coarsened version (resolution has

been artificially degraded by a factor 4). The textural aspect

of the image is satisfactorily recovered even though there

are differences at small scales between the ground truth and

the virtually super-resolved image. Recall that these differ-

ences are expected. Moreover, fig. 13 shows that the Fourier

spectrum is indeed well extrapolated at high frequencies.

The slight discrepancy between the extrapolated spectrum

and the original one is expected and essentially roots in the

presence of Poisson noise in the original image. This noise

is partly suppressed by the coarsening (low-pass) procedure

used to artificially degrade the resolution. In principle, the

super-resolved image should be compared to the perfectly

Poisson denoised original image, which incidentally enlight-

ens the importance of Poisson denoising for such an ap-

proach.

For comparison, fig. 14 shows the results obtained for

some part of an image of the quiet Sun by using either the

new edge directed interpolation by Li & Orchard (2001) [39],
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(a) (b) (c)

Fig. 14 Comparison between results obtained from the same original

quiet Sun image (a) by applying a ×32 magnification with (b) edge

directed interpolation by Li & Orchard (2001) [39] and (c) our super-

resolution method based on CPC.

fig. 14(b), or our method based on CPC, fig. 14(c). Edge di-

rected interpolation is aimed at preserving local gradients,

but does not add any small scale information as expected in

a textured region. In contrast, our method may make edges

a little irregular (but not blurry) and will add textured small

scale details in a ”plausible” manner.

4.2.2 Interest of the approach for quiet Sun images

Virtual super resolution could for instance help to optimize

forthcoming embedded software for compression or denois-

ing. Actually, images simulated by using a similar approach

directly on the sphere are used to calibrate the future obser-

vations by Solar Orbiter [29]. One must keep in mind that

usual compression algorithms usually assume that images

are rather regular and that large scales dominate. As a conse-

quence, they generally get rid of small scale details first. The

rash use of any compression technique on (very expensive)

high resolution images would lead to throw out most part

of the expected benefit. Plausible simulated images are of

great help to deal with such potential dilemma. Virtually su-

per resolved images can also be used as a reference to study

the effect of Poisson noise and to optimize denoising. As

mentioned above, they also simply permit to estimate some

statistical quantities of interest such as histograms of inten-

sity which can help in predicting the level of exposition and

thus an index of quality of future images. Fig. 15 shows the

histograms obtained by using the present procedure on 54

E.I.T. quiet Sun images [18] provided by the Royal Obser-

vatory of Belgium. We will present this application in details

elsewhere. A movie is available from our webpage at www.

isima.fr/~chainais/PUB/publications.html/quietSun_

movie.avi that illustrates a ×32 zoom in a quiet Sun im-

age. In the end, one low resolution pixel is replaced by 32×

32 = 1024 high resolution pixels. Other illustrations are avail-

able from www.isima.fr/~pchainai/PUB/ZOOM/zoom.

html

(a)

(b)

(c) (d)

Fig. 15 (a) Example of an image of the quiet Sun in the extreme UV;

(b) Illustration of the super resolution applied to a part of some EIT

quiet Sun image. (bottom) Histograms estimated from 54 quiet Sun

images and from corresponding virtually super resolved versions for

various enlargement factors ranging from x2 to x32; (c) Histograms of

normalized intensities; (d) the graphs have been artificially translated

for sake of clarity.

5 Conclusion

Motivated by questions from astronomy and astrophysics,

we have developed a virtual super resolution technique. This

work originates in particular from the observation of quiet

Sun images by E.I.T. onboard SoHo in the extreme UV [18]

but could have applications to other remote sensing observa-

tions (clouds...). The main purpose is not to predict the true

hidden high resolution information, but rather to propose a

plausible prediction of what may be hidden at potentially

any finer resolution than available. We are interested in tex-

tured (turbulent) images only. The present approach aims at

using as little a priori as possible on the hidden information.

It has been known for a long time that turbulent systems

usually exhibit a scale invariant behavior [23]. This scale

invariance often characterizes astrophysical objects where

the range of physical scales at play is incredibly large com-

pared to more usual terrestrial physical systems. As a conse-
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quence, only a little part of this range of scales is available

from observations which are limited and actually yield low

resolution images. For instance, one pixel of the images of

the Sun provided by the spatial telescope E.I.T. corresponds

at best to a square of (1800 km)2 whereas physicists think

that turbulence and therefore scale invariance might develop

down to a scale of 100 m. The main thrust of our approach

is to propose a plausible stochastic super resolution by only

assuming statistical and physical consistency. Physical con-

sistency simply means energy conservation: since we want

to model light intensity, that is photon fluxes, the sum of

the energies of high resolution subpixels must be the energy

of the corresponding low resolution pixel. Statistical con-

sistency means that virtually super resolved images should

exhibit the same multifractal behavior as original low res-

olution images but over a larger range of scales. Basically,

the Fourier spectrum of super resolved images must remain

a power law spectrum at higher frequencies with the same

exponent as original images. Moreover, we want that multi-

scaling (multifractal) properties be extrapolated as well. As

a result, not only second order correlations are extrapolated

but higher order ones as well.

This is made possible thanks to the use of fractionally

integrated compound Poisson cascades, a family of multi-

fractal stochastic processes with prescribed scale invariance

properties. We have detailed our procedure to enlarge im-

ages with a potentially infinite factor. Thanks to numerical

experiments we have shown that the result is visually quite

satisfactory; moreover, the expected scale invariance mul-

tiscaling properties are indeed quantitatively well extrapo-

lated at finer scales. This procedure opens the way to the

prediction of some statistical quantities such as intensity his-

tograms which can help to predict the exposition level of fu-

ture observations. It also provides us with simulated images

of forthcoming observations so that denoising, compression

or detection algorithm can be studied and optimized before

launching some spatial mission for instance. We have also

evoked an application to quiet Sun images which will be

presented in more details elsewhere. By the way, we men-

tioned that this approach assumes that multifractal proper-

ties are known which supposes the preliminary analysis of

a sufficiently large set of images. This could be a limitation

in some cases. An important direction for current and fu-

ture work is the opportunity to adapt this method to a single

image by directly identifying the underlying CPC structure

thanks to optimization techniques for instance. Note that it

can also be generalized to more than 2 dimensions, for the

modeling of 3D structures such as clouds for instance.

The authors gratefully acknowledge anonymous referees

for interesting and constructive remarks and suggestions.
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