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ABSTRACT [3]. Therefore, physicists are considering the design afa n

We present a new method of magnification for textured im§pat|al telescope with a much better resolution of 80km tvhic

ages featuring scale invariance properties. The proceuare is about 25 times finer than that of EIT. However as the reso-

serves the visual aspect as well as the statistical pre|sertiIUtlon gets finer, the flux of photons on the CCD sensor gets

of the initial image. An augmentation of information is per- smaller so that the images may be under-exposed and un-

formed by locally adding small scale details below the ini_gsable. Our approach proposes a way to simulate realistic

tial pixel size. This is made possible thanks to a family ofimages extrapolated from the current ones. The evolution of

scale invariant stochastic processes, namely compoursd P0§tat|st|cs at finer resolutions such as histograms could lege

son cascades. This extrapolating procedure yields a poteﬁ][ed'Cted‘ Another application lies in procedural textsye-

tially infinite number of magnified versions of an image. It esis for computer graphics. Our procedure could allow for

allows for large magnification factors (virtually infinitepd an onlln;}_gnhancement of a ':Iex.ture o:edzpbendmgdon ws;:allza-
is physically conservative: zooming out to the initial reso tion conditions. More generally it could be used to enhance
lution yields the initial image back. This work is motivated textured regions in a segmented Image.

by an application to images of the quiet Sun to quantitativel After some mathematical definitions we present our ap-

predict statistical and visual properties of images takga b proa<_:h. Next,.we lllustrate _the.met_hod on nume_ncal example
forthcoming high resolution telescope. and finally point to an application in solar physics.

Index Terms— Image enhancement, resolution, image

generation, scale invariance, stochastic processes,limpde 2. MATHEMATICAL PRELIMINARIES

2.1. Statistical scale invariance of images
1. INTRODUCTION

The statistics of natural images have been studied in dépth [
We present a new method to magnify random textured imagesnd have revealed two main properties: scale invariance and
by any factor (even much larger than 2) while preserving theinon-Gaussian statistics. This is also true for a large tyaok
visual aspect as well as their statistical properties. phis  "random textures” [2]. Note that some models for natural im-
cedure uses an augmentation of information by adding smadiges can be used to synthesize random textures as well. The
scale details below the initial pixel size as the resolugjets  scale invariance of natural images is basically charadri
(virtually) finer. We focus on random textured images suctby a power law Fourier spectrum 1/k2~" over a wide range
as those resulting from observations of the Sun by a spatiaif spatial frequencies. The notion of scale invariance @n b
telescope or clouds by a satellite. Our approach uses a midefined for higher order statistics as well [4]. LBtr) be a
imum of a priori on the original image. It relies on the fact multiscale transform (wavelets, box averages...) at scafe
that natural images and random textures usually preselst scahe imagel under study. The scale invariance property results
invariance properties [1, 2] to randomly extrapolate new dein the power law scaling behavi@7;(r)? « 7<), ¢ € R
tails. Furthermore, we require that the content of the augwherelE stands for mathematical expectation. Tiie) are
mented image beonsistentvith the information available at calledmultiscaling exponentsThey can be decomposed in a
larger scales from the original image. This consistencyis d linear partg H depending on a paramet&rand a non-linear
fined by two requirements: the preservation of scale invaripart(g), such thatr(0) = 7(1) = 0 andH = ¢(1). For
ance properties of the initial imagetatistical consistency) instance in the cas€(q) = ¢H (e.g. a fractional Brownian
and a zoom out to the initial resolution must yield the oridin field), the imagd is said self-similar and its scale invariance
image backphysical consistency)One application domain is characterized by the parametéronly. Ther(g) betray
is in solar physics where current observations are ¥d»24  a multiscaling property: when(q) # 0 a set of exponents
images at resolution 1800km (E.l.Telescope onboard SOHQ3$ necessary to describe the scale-invariance of the inlage.



can be shown that the(¢) depict the non-Gaussianity of the >| interpolation )

image statistics. For a multiscaling image, the paraméfers i Ly Ji
andr(q) are linked to the power law Fourier spectrum which ;

is o 1/k>T2H+7(2) [5]. Infinitely Divisible Cascades (IDC) SHgEeieh

are a family of multiscaling models for natural images re- K I
cently proposed in [5]. Our approach uses a sub-family of ~<—— conservation — Lo+ -
IDC, namely Compound Poisson Cascades (CPC).

Fig. 1. Schematic view of the magnification process.
2.2. Compound Poisson Cascades (CPC)

We give below a brief presentation and refer to [5] for more

details. This model is based on a multiplicative constarcti rough images (or textures) witf{1) = 0 as well as smoother
where smaller scales of an image inherit information fromimages with((1) = H > 0.

larger scales in a continuous way. L@ (x) be the pixel
value at locatiorx; let L and/, L > ¢, the limiting largest
and smallest scales of the resulting image. (xetr; ) a Pois-
son point process with: (§; uniformly distributed in the 2D
plane, ensuring the homogeneity ©f in space; (ii)¢ <
r; < L distributed with densityt /7 (so that the final texture Our purpose is to (virtually) refine the resolution of scale i

is mathematically well defined i > 0 only). The(x;,r;) are  variant textured images thanks to an adapted augmentation
marked by i.i.d. positive random variablgg; called multi- ~ of information. We require the augmentation to dnsis-
pliers, independent of thex;, ;). Let f(x) be a non negative tentwith the initial image, which means that (i) the resulting
function with compact support. For afl of the image, the image has the same scale invariance properties as the origi-

3. VIRTUAL RESOLUTION ENHANCEMENT

3.1. The approach

CPCQ(x) is defined by nal one and (ii) zooming out the magnified image to the ini-
( ) tial resolution yields the initial image back. To this ainmeo
O t add details with well suited properties at scales below
Fxy=cIw; ™ 1 Mmus prop
@ (x) 1:[ ¢ @ the pixel size of the original image. These details can be

generated from the extrapolation of the initial image watel
whereC' is a normalization coefficient such thBQ} = 1.  coefficients assuming a local power law behavior as in [6].
Such models are homogeneous but very irregular objects ambwever, the new wavelet coefficients strongly depend on the
correspond from a mathematical standpoint to distribstionwavelet used for the image decomposition and on the esti-
with log compound Poisson law. Their scale invariance ismation of the local regularity. Another possibility is toeus
characterized byl = 0 andr(q) = ¢(EW;/—1)+1-EW; |.E.S. (Iterated Function Systems) [7]. Interpolationngsi
for scales betweefiand L. Their Fourier spectrum obeys a |.F.S. consists in applying another iteration of the initi&. S.
power lawx 1/k%+7(2). QF (x) is equal in distribution£) to  determined thanks to the collage theorem [7]. These meth-

Qg1 (X/L). Its variance is given by: ods preserve scale invariance but they are deterministic an
) @ do not extrapolate the multifractal behavior of the initral
ogr = (/L) =1 (2)  age. Our method is more flexible since it adds scale invariant

and multifractal information at high resolution in a stostia
manner. A fundamental assumption which is also a limitation
is that the scale invariance properties of the original ienag
= Q. Q! (3) known, which is the case _for, e.g., synthetic texturgs, or im.
ages that have been previously analyzed. The main thrust is
whereQ7? andQ;} are two independent CPC with the sameto a priori describe the initial image bygiobal model using
7(¢q). One can create a larger family of images by usinga fractionally pseudo-integrated CPC. This model is used to
fractional pseudo-integration and derivation. The fiawdl  derive alocal procedure to add random correlated details in
pseudo-integration, denoted by the operdigris performed  every pixel of the initial image. Eventually, a renormatina
in practice by a /||k||” low-pass filter in the Fourier domain step ensures that the procedure is conservative in the sense

for [|k][ > 0 (the singularity at = 0 is treated separately). that zooming out to the initial resolution gives the oridina
The fractional pseudo-derivation, denoted®y = 7', is image back.

the inverse of the integration and is performed in practice b

a||k||* high-pass filter. Note that these two operations pres
serve the scale invariance of the original image but modify
the scaling exponentdq) by adding, respectively subtract- The initial image is supposed to have some random texture
ing, a linear paryH. Thus, CPC may be used to model verylooking, e.g. taken from a turbulent physical system such as

An essential property of CPC is that for atiy ro < r; <
0, @79 obeys a multiplicative multiscaling decomposition

2. Magnification procedure



the quiet Sun characterized by the scale invariance paeasnet
H andr(q) estimated from a prior multifractal analysis [3].
The image is a priori modeled by

I = Ip + aZp{Q° — (Q°)} (4)

where() stands for spatial averaging aiig for the average
intensity of the image; the fluctuation term is a fractiopall
pseudo-integrated CPC with zero mean, amplified by a factor
«a. The scales andr; stand for the largest scale and the
finest scale (the pixel size) of the image. We stress that this
global model is not aimed at describing the complete image
but is only used to derive lacal procedure of augmentation.
The main idea of this magnification procedure is to replace |

79 by Q79 in (4) by using the multiscale decomposition of
CPC (3) to get an imagk at resolution, < ry. The proce-
dure is schematically represented in fig. 1.

The first step magnifieg, by resampling it at, < r;
using a spline interpolation [8] leading to a smoothed wersi
Iinterp Of I1. A fractional derivation yields/y = Dy linterp
which corresponds to the term(_ 270 — (G T§>)_ in (4). By © «
using the multiscale decomposition (3) in this model/of
we define a new imagé, at resolutions < rq:

(@ 1 4 (b) 1

Fig. 2. lllustration of our magnification procedure: (a) initial
_ 7 . ro o 16x16 image, (b) zoom in the<32’ interpolated image con-
2= Q@) (@ — (@) ®) tained in the 44 black square of the initial image, (cx32’
where Q7L contains the new information at scales smallermagnified image with augmentation, (d) zoom in the black
thanr;. Q7! is independent of)°; it is generated using (1) square region. The dotted lines correspond to initial gixel
with the same parameters @3°. Note that since);! (x) =
Q}z/n (x/r1), the information brought by the CPC between
scalesr; andr, depends on the magnification factey/r,
only. The first term in (5) mainly describes the augmenta

tion of information inJi at scales < r < ry. It@NSUres o yiract 32" magnification is very different from five suc-
the coupling between the initial imagle and the new details cessive &2’ magnifications. Ideally, the ratie, /1 should

T
Qré'_The seco.nd term ensures t_ha.t the energy level _Of the nepy, ciose to 1 to preserve the scale invariance of the original
details is consistent with the initial imagé, is then an image image and limit any “boxing” artifact due to the conservatio

with the samer(q) as/; and a power law Fourier SPeCtrum gyo | the present work, and for obvious practical reasons
over a larger range of spatial frequencies. Note that each rg o users/r = 1/2

alization of Q7! will produce one possible realization of the

magnification of the original image among a potential infin-

ity. The parameten depends om; /7, and can be estimated 4. COMPUTATIONAL ILLUSTRATION
using (2):

the pixel value inf;. The augmentation procedure and the
conservation step are non-linear and local operationsato th

4.1. Main properties
(6)

We illustrate our approach in the ideal case where the initia
image is precisely of the form given by (4). A set of initial
wherer(2) can be estimated from the power law Fourier specimages of size 3232 is built witha = 8 andl, = 23, for
trum oc 1/k>*t2H+7(2) or from some multiscaling analysis. 7o = 1 andr; = 1/32 and withH = 0.7. In these examples
AsE(Q;?) = 1, we set{Q;°) = 1in (5). Section 4.2 details we have chosen(q) = —((1+0.7)7/(1 4 ¢0.7) — 1) which

the sensitivity of our approach to parameters. The pseuddeads tor(2) = —0.20. A magnification %32’ is performed
integration step yield&> = Iy + ZyJ>. Finally, the mag- as five <2’ elementary magnifications leading to 1024024
nified imagel, results from a renormalization df, which  images. Fig. 2 compares typical results obtained by simple
makes the procedure “conservative”. While (5) adds infermainterpolation and by our magnification procedure. The same
tion at scalesy < r < ry, it slightly affects scales larger than procedure can be applied to images of the Sun with the same
r1 as well. Therefore, we impose that the sum of intensities itvisual and quantitative results (see our webpages).

regions ofl, corresponding to a pixel of sizg in I; equals Here, we assume that, r;/ro and 7(2) are exactly
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*% mtheory 5. CONCLUSION

3f=magn. im. x32

4 wgH
- q
Ny slope =-3.24 2

We have presented a new approach to the magnification of

’g , ..-.,.y.w%ﬁslope:% 35 )

% T g | random textured images featuring scale invariance priggert

g -inpuﬁr::;:m 1 5 by using an augmentation of information. Our method locally
-2{™magn. im. x2 ”"’.,. y”’”

adds small scale details below the pixel size using stoichast
processes. It preserves the original scale invarianceeprop
ties, extends them to smaller scales (statistical comgigje
and is conservative (physical consistency), that is a zogim o
of the magnified image yields the original image back. One
Fig. 3. (a) Power law Fourier spectrums and (b) multifractaloriginality of our approach lies in the synthesis of new deta
exponents of X2’ and ‘x 32’ magnified images. in a random manner so that this magnification/extrapolation

can potentially produce infinitely many magnified versiohs o

an image. An application to the detailed modeling of quiet
known. Fig. 2 clearly illustrates the augmentation of infor _Sun Images Wh.'Ch have rev_ealed multiscaling properties [3]

. i . ... is now the subject of ongoing work. Our approach opens

mation by the introduction of new small scale details inside o e - . ;
S . ) X . new insights to a quantitative prediction of visual quality
initial pixels while a simple interpolation only smoothdsget

: . . ._and statistics of future observations at a finer resolutibn (
image. Moreover, reducing (by aggregation) the resolution .

. . pixel= 80 km) given present low resolution observations (1
of I back tor; yields I; back. Fig. 3(a) presents a log-log . o L
plot20f the FOLljr)iler spe(I:tra o an%lg (af)tef)r magnificati?)nsg pixel=1800 km). Another application under study is in image

by factors 2 and 32. We see that the power law FourieProcessing for the enhancement of textured regions. Other

spectrum off, has been preserved and extended to highépustratlons of this magnification method are available at

frequencies without any discontinuity. Fig. 3(b) showstthaWWW"S'ma'fr/Nkoemg ancchainais.
the multiscaling exponents estimated frdgrare close to the
theoretical ones within reasonable error bars. Thus we have

shown, at least on these examples, that our magnification prfl] A Srivastava. AB. Lee. E.P. Simoncelli. and S-C. Zhu
cedure adds new information to the original image while (i) On advance's in‘ s.tatisti,cal. rﬁodeling of I"Iatural im-ages i

enhancing its visual aspect, (ii) preserving its scaleriavee .
properties and (iii) being conservative with respect tormoo Jour. of Math. Im. and Visignvol. 18, pp. 17-33, 2003.
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