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Eshelby’s tensor fields and effective conductivity of composites

made of anisotropic phases with Kapitza’s interface thermal

resistance

H. Le Quang, Q.-C. He and G. Bonnet
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8208 CNRS, 5 Boulevard Descartes, F-77454 Marne-la-Vallée Cedex 2, France
(Received 00 Month 20xx; final version received 00 Month 20xx)

Eshelby’s results and formalism for an elastic circular or spherical inhomogeneity embed-
ded in an elastic infinite matrix are extended to the thermal conduction phenomenon with
a Kapitza’s interface thermal resistance between matrix and inclusions. Closed-form expres-
sions are derived for the generalized Eshelby’s interior and exterior conduction tensor fields
and localization tensor fields in the case where the matrix and inclusion phases have the most
general anisotropy. Unlike the relevant results in elasticity, the generalized Eshelby’s conduc-
tion tensor fields and localization tensor fields inside circular and spherical inhomogeneities
are shown to remain uniform even in the presence of Kapitza’s interface thermal resistance.
With the help of these results, the size-dependent overall thermal conduction properties of
composites are estimated by using the dilute, Mori-Tanaka, self-consistent and generalized
self-consistent models. The analytical estimates are finally compared with numerical results
delivered by the finite element method. The approach elaborated and results provided by the
present work are directly applicable to other physically analogous transport phenomena, such
as electric conduction, dielectrics, magnetism, diffusion and flow in porous media, and to the
mathematically identical phenomenon of anti-plane elasticity.

Keywords: Eshelby problem; Eshelby tensor; Kapitza interface thermal resistance;
Interfaces; Anisotropy; Composite materials; Conductivity; Micromechanics; Thermal
transports.

1. Introduction

Most of the studies dedicated to estimating the effective properties of inhomoge-
neous materials from their local phase properties and their microstructure adopt
the assumption that the interfaces between the phases are perfect. In the context
of thermal conduction, a perfect interface is a material surface across which the
temperature and the normal component of the heat flux are both continuous. In
practice, many situations occur where the assumption of perfect interface is inap-
propriate. Frequently, a thermal resistance appears at the interface between the
constituent phases, so that the heat flux remains continuous but the temperature
suffers a jump.

The thermal interface resistance in liquid helium was first observed in 1936 by
Kurti et al. [27] and Keesom and Keesom [26] and then systematically studied
in 1941 by Kapitza [25]. The presence of an interfacial thermal resistance, called
hereafter Kapitza’s thermal resistance, was also shown experimentally at solid/solid
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interfaces by many other researchers (see e.g. Swartz and Pohl [43, 44], Challis
[6], Stoner [40] and Cahill et al [5]). In fact, in physics and materials science, the
Kapitza thermal interface resistance has been recognized to be of a great theoretical
and practical importance. Applications concern, for example, the development of
microelectronic semiconductor devices which need an efficient heat dissipation.
Another example is related to the interface of high thermal resistance which can
be applied to elements requiring a good thermal isolation such as those in jet
engine turbines. To achieve a high thermal resistance, metal-ceramic composites
and multilayered systems are currently used for these applications.

The effect of thermal resistance interfaces on the effective conductivity of com-
posites was the subject of many studies (see, e.g., Benveniste and Miloh [4], Ben-
veniste [2], Hasselman and Johnson [21], Lipton and Vernescu [30, 31], Torquato
and Rintoul [41], Cheng and Torquato [8], Nan et al. [34], Hashin [18], Dunn and
Taya [11], Hatta and Taya [22, 23]). However, all of these works are limited to the
case where the phases constituting the composite are isotropic.

The present work is concerned with the effective conductivity of composites con-
sisting of a matrix in which circular inclusions in the two-dimensional (2D) case or
spherical inclusions in the three-dimensional (3D) case are embedded via interfaces
exhibiting Kapitza’s thermal resistance. It has the following two objectives:

(i) First, it aims at deriving the closed-form expressions for the generalized
Eshelby’s interior and exterior conduction tensor fields and for the local-
ization tensor fields in the general case where the materials constituting the
matrix and the inclusions have the most general thermal anisotropy, i.e., or-
thotropy. In contrast with the results presented by Hashin [19], Qu [36] and
Zhong and Meguid [46] for Eshelby’s elastic inhomogeneity problem with
the linear spring-layer interface which is the elastic counterpart of Kapitza’s
thermal resistance interface model, our results show that Eshelby’s thermal
conduction tensor fields inside the circular or spherical inclusion are uni-
form. This uniformity makes it possible to transform the circular or spheri-
cal inhomogeneity problem into an equivalent circular or spherical inclusion
problem and thus to preserve Eshelby’s formalism even in the presence of
Kapitza’s thermal interface resistance. The temperature gradient and heat
flux localization tensors can then be obtained and expressed compactly in
terms of Eshelby’s tensors.

(ii) Next, it has the purpose of estimating the effective conductivity of compos-
ites under consideration by using the derived expressions of the localization
tensor fields for extending some well-established micromechanical schemes
to situations where the interface resistance cannot be neglected.

The paper is structured as follows. In Section 2, the constitutive laws of the
constituent phases of composites under investigation, the interface model with
Kapitza’s thermal resistance and the general form of the effective thermal conduc-
tion behavior are specified. Section 3 is dedicated to deriving the size-dependent
Eshelby’s and localization tensor fields in the context of thermal conduction in
the presence of Kapitza’s interface thermal resistance. In Section 4, closed-form
expressions are obtained for the effective conductivity moduli by using the dilute,
Mori-Tanaka, self-consistent and generalized self-consistent schemes, respectively.
In Section 5, the Kapitza thermal interface resistance and inhomogeneities size
effect on the effective conductivity of composites are numerically discussed and
illustrated; in addition, the closed-form solutions obtained are compared with the
results provided by the finite element method (FEM). In section 6, a few concluding
remarks are provided.
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2. Local constitutive laws

The composite under investigation consists of circular or spherical inclusions em-
bedded in a matrix via imperfect interfaces. Let Ω be the domain of a 2D or 3D
Euclidean space Rd (d = 2, 3) occupied by a representative volume element (RVE)
of the composite and let ∂Ω be the boundary of Ω. The subdomains of Ω inhab-
ited by the inclusions and the matrix are denoted by Ω(1) and Ω(2), respectively.
The interface between Ω(1) and Ω(2) and its unit vector directed from Ω(1) toward
Ω(2) are designed by Γ and n (see Fig. 1b). In a system of Cartesian coordinates
{xi} associated to a right-handed orthonormal basis {fi} (1 ≤ i ≤ d), the matrix,
referred to as phase 2, and inclusions, denoted as phase 1, are assumed to be indi-
vidually homogeneous and have the linear thermal conduction behavior described
by an anisotropic Fourier’s law

q(i) = K(i) · e(i) or e(i) = H(i) · q(i), (1)

where K(i) and H(i), with i = 1 or 2, stand for the thermal conductivity and
resistivity second order tensors of phase i, which are symmetric, positive definite
and in general orthotropic.

The intensity field e(i) is related to the temperature field T (i) by

e(i) = −∇T (i). (2)

In the case of stationary thermal conduction without heat source, the heat flux
field q(i) must fulfill the energy conservation equation

∇ · q(i) = 0. (3)

In addition, the interface Γ between the matrix and inclusions is described by

Figure 1. Two- and three-phase configurations: (a) matrix/interphase/inclusion composite; (b) ma-
trix/inclusion composite with imperfect interface exhibiting the Kapitza thermal resistance.

an imperfect interface model with Kapitza’s thermal resistance. According to the
latter, the normal component of the heat flux q(x) is continuous across Γ, i.e.
q(1)(x) · n(x) = q(2)(x) · n(x) for any x ∈ Γ. At the same time, the temperature
field T (x) is in general discontinuous across Γ and its jump is related to the normal
component of the heat flux field by either of the following interface conditions
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holding on Γ:

T (2) − T (1) = −α(n)q(1) · n = −α(n)q(2) · n, (4)

β(n)(T (2) − T (1)) = −q(1) · n = −q(2) · n, (5)

where α and β = 1/α stand for the Kapitza thermal resistance and joint conduc-
tivity of Γ, respectively, and depend in general on n.

Next, to clarify the physical background and validity domain of the interface
model with Kapitza’s thermal resistance used here to describe Γ, we consider two
configurations in Fig. 1. In the three-phase one (Fig. 1a), a representative volume
element Ω consists of a finite number of inclusions Ω(1) embedded in the matrix
phase Ω(2) via the interphase Ω(s). The interface between Ω(1) and Ω(s) and the
one between Ω(2) and Ω(s) are assumed to be perfect, and the thickness h of Ω(s)

is uniform and very small in comparison with the minimum size of the inclusions.
In the two-phase configuration (Fig. 1b), Ω(s) is replaced by a thermally resistive
surface of zero thickness located at the middle surface Γ of the interphase, and the
inclusions and matrix are extended up to the middle surface Γ. By using asymptotic
expansions, the jump conditions that the imperfect interface Γ has to verify for the
two configurations to be physically equivalent between themselves within an error of
order 0(h) were derived first by Sanchez-Palencia [37] and Pham Huy and Sanchez-
Palencia [35] in a particular case and then completed by Miloh and Benveniste
[32], Hashin [18] and Benveniste [3] in the general situation. More precisely, when
the interphase with thermal conductivity tensor K(s) is assumed to be weakly
conducting, namely ‖ K(s) ‖�‖ K(1) ‖ and ‖ K(s) ‖�‖ K(2) ‖, then the conditions
that the imperfect interface Γ must satisfy are exactly those characterizing the
imperfect interface model with Kapitza’s thermal resistance described above. The
corresponding Kapitza thermal resistance of Γ can be expressed in terms of K(s)

and h as follows (see Benveniste [3]):

α(n) =
h

n ·K(s) · n . (6)

In what follows, we make the assumption that K(s) is circularly or spherically
orthotropic (see e.g. Dryden [10]; Chen [7]), so that ks = n ·K(s) · n is constant.
Then, it is immediate from Eq. (6) that

α =
h

ks
(7)

is independent of n.
Finally, at the macroscopic scale, the composite under consideration is assumed

to be statistically homogeneous. The corresponding effective thermal behavior is
characterized by

Q = Keff · E or E = Heff ·Q (8)

where Keff and Heff are the effective thermal conductivity and resistivity second-
order tensors, Q and E denote the macroscopic heat flux and intensity fields. More
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precisely, the macroscopic intensity field E and the heat flux field Q are defined as

E = − 1

|Ω|

∫

∂Ω
T (x)ν(x)dx, (9)

Q =
1

|Ω|

∫

∂Ω
(q · ν)xdx, (10)

where ν(x) is the outward unit normal vector to ∂Ω and |Ω| denotes the volume
or area of the domain Ω according to the case (3D or 2D) which is concerned. As
in the classical case of perfect interfaces, the macroscopic heat flux field Q defined
by (9) is equal to the volume or surface average of the local counterpart q(x) over
Ω, i.e.,

Q =
1

|Ω|

∫

Ω
q(x)dx = 〈q〉, (11)

where 〈•〉 is the volume or surface average of quantity • over the domain Ω. How-
ever, due to the fact that the temperature field suffers a jump across Γ, the macro-
scopic intensity field E defined by (9) is not simply the volume or surface average
of the local counterpart e(x) over Ω but given by

E = 〈e〉 − 1

|Ω|

∫

Γ
[T (2)(x)− T (1)(x)]n(x)dx, (12)

or equivalently by

E = 〈e〉+
1

|Ω|

∫

Γ
α[q(1)(x) · n(x)]n(x)dx. (13)

Thus, compared with the classical case, new terms due to the Kapitza interface
thermal resistance appear in both Eqs (12) and (13).

3. Generalized Eshelby’s formalism

3.1. Integral formulation

Now, let V be a subdomain of a 2D or 3D domain Ω made of a homogeneous
material with thermal conductivity and resistivity tensors denoted by K0 and H0,
respectively. The boundary of V and its unit outward normal vector are denoted
by ∂V and n. The interface Γ between the subdomain V and the remaining part
of Ω is not necessarily perfect. If a heat-free (or an eigen) intensity field e∗(x) is
prescribed over V , the induced heat flux field q(x) is related to the intensity field
e(x) produced by e∗(x) through Fourier’s law

q(x) = K0 · e(x) + q∗(x) (14)

with x ∈ Ω \ Γ and

q∗(x) = −K0 · e∗(x). (15)

With the help of the thermal result analogous to the Maxwell-Betti reciprocal
theorem of elasticity, we can derive an integral representation of the temperature
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field T (x) due to the prescribed heat-free intensity field e∗(x) as follows:

K0
ij

∫

∂V
[T (y)G,j(y − x)− T,j(y)G(y − x)]ni(y)dy

−K0
ij

∫

V
e∗j,i(y)G(y − x)dy =

{
T (x) for x ∈ V ,
0 for x ∈ Ω \ V . (16)

Hereafter, the subscript i following a comma denotes the derivative with respect
to yi; G(y − x) represents the Green’s function giving the temperature at a point
x produced by a unit point heat source at a point y in an infinite domain. More
precisely, G(y − x) is the solution to the equation

K0
ijG,ij(y − x) = δ(y − x), (17)

where δ is the Dirac delta function.

3.2. Generalized Eshelby’s conduction tensor fields

In this subsection, we are interested in the thermal counterpart of the well-known
Eshelby’s elastic inclusion problem [12, 13] while accounting for imperfect interface
effects. Indeed, the domain Ω described above in the last subsection is now assumed
to be infinitely extended and the heat-free intensity e∗(x), which plays a role similar
to the eigenstrain tensor in elasticity, is distributed within a subdomain ω of Ω
and vanishes outside ω (Fig. 2). The interface Γ between the inclusion ω and the
external medium has the outward normal vector n and is assumed to exhibit the
Kapitza thermal resistance.

Figure 2. The Eshelby’s conduction problem for the thermal conduction phenomenon consisting of a
subdomain ω embedded in an infinite medium Ω , subjected to a uniform heat-free intensity e0 within ω
and vanishing outside ω.
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When the domain V is taken to be the inclusion ω, applying the integral formu-
lation (16) and using the divergence theorem yield

T (x) = K0
ij

∫

Γ−
{T (y)G,j(y − x)−G(y − x)[T,j(y) + e∗j (y)]}ni(y)dy

+ K0
ij

∫

ω
e∗j (y)G,i(y − x)dy, for x ∈ ω. (18)

Here Γ− denotes the inside part of the interface between the inclusion and the
external medium, i.e. the limit of a surface inside ω tending to Γ. For the points
outside the inclusion ω, it follows from Eq. (16) together with the divergence the-
orem that

0 = −K0
ij

∫

Γ−
{T (y)G,j(y − x) +G(y − x)[T,j(y) + e∗j (y)]}ni(y)dy

− K0
ij

∫

ω
e∗j(y)G,i(y − x)dy, for x ∈ Ω \ ω. (19)

Next, if V is taken to be the exterior domain of ω, i.e. V = Ω\ω, from the integral
formulation (16) and by taking into account the fact that the Green function G(y−
x) and the temperature field T (y) are equal to zero for y ∈ ∂Ω, we can show that

0 = K0
ij

∫

Γ+

[T (y)G,j(y − x)−G(y − x)T,j(y)]ni(y)dy (20)

for x ∈ ω. Here, Γ+ is the outside part of the interface Γ as opposed to Γ−. For the
points exterior to the inclusion ω, we derive from Eq. (16) the temperature field
outside the inclusion as follows:

T (x) = −K0
ij

∫

Γ+

[T (y)G,j(y − x)−G(y − x)T,j(y)] ni(y)dy (21)

for x ∈ Ω \ ω.
Due to the fact that the normal component of the heat flux field q(x) is continu-

ous across Γ, subtracting Eqs. (20) and (19) from Eqs. (18) and (21), respectively,
leads to the temperature field both inside and outside the inclusion

T (x) = −K0
ij

∫

Γ
[[T (y)]]G,j(y − x)ni(y)dy +K0

ij

∫

ω
e∗j (y)G,i(y − x)dy, (22)

where [[T (y)]] = T (y+) − T (y−) with y+ ∈ Γ+ and y− ∈ Γ−. Correspondingly,
the resulting intensity field components both inside and outside the inclusion are
given by

em(x) = −∂T (x)

∂xm
= −K0

ij

∫

Γ
[[T (y)]]G,jm(y − x)ni(y)dy

+ K0
ij

∫

ω
e∗j (y)G,im(y − x)dy. (23)

Moreover, by using the interface condition Eq.(4), the intensity field components
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can be rewritten in the following equivalent form

em(x) = K0
ij

∫

ω
e∗j (y)G,im(y − x)dy

+ αK0
ijK

0
sr

∫

Γ
G,jm(y − x)ni(y)ns(y)(er(y)− e∗r(y))dy. (24)

Now, let us show that if the heat-free intensity e∗ is uniformly distributed within a
spherical or circular inclusion, i.e. e∗(x) = χω(x)e0 with the characteristic function
χω(x) of ω defined by

χω(x) =

{
1 for x ∈ ω,
0 for x /∈ ω, (25)

then the intensity field given by Eq.(24) inside the inclusion ω is, as in the case
of perfect interfaces, independent of the position x. To this end, we first compute
the right members of Eq. (22) and Eq. (24) for a constant intensity field e(x) = eω

within the inclusion.
In the important special case where ω is a spherical or circular inclusion of radius

R, substituting ni(y) = yi/R for any y ∈ Γ into Eq.(24), using the divergence
theorem to transform the second integral of Eq. (24) and accounting for the fact
that

∂G(y − x)

∂xi
= −∂G(y − x)

∂yi
, (26)

the resulting intensity components are given by

e′m(x) = K0
ije

0
j

∫

ω
G,im(y − x)dy +

α

R
K0
ijK

0
srMijms(x)(eωr − e0

r), (27)

for x ∈ ω. Here,

Mijms(x) = −∂Nijs(x)

∂xm
+ δisDmj(x), (28)

with

Nijs(x) =
∂2

∂xi∂xj

∫

ω
G(y − x)ysdy, (29)

Dmj(x) =
∂2

∂xm∂xj

∫

ω
G(y − x)dy. (30)

Next, it is shown in the appendix that when ω is an ellipsoidal or elliptical inclusion
and when x ∈ ω, then Nmji(x) and Dmj(x) are polynomial functions of degree 1
and 0 in terms of the position vector x. Thus, the tensorM(x) with the components
Mijms(x) given by Eq.(28) is uniform inside ω and equal to a constant tensor Mω,
i.e. M(x) = Mω when x ∈ ω.

As a consequence, the intensity field is constant within the inclusion and the
components e′m are identical to eωm for any x inside ω. Thus, for any x inside ω, we
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have

eωm(x) = K0
ije

0
j

∫

ω
G,im(y − x)dy +

α

R
K0
ijK

0
srM

ω
ijms(e

ω
r − e0

r). (31)

This last equation can be recast into

eω = S̄ω · e0 (32)

with

S̄ω = [I− α

R
K0 : Mω ·K0]−1 · [Sω − α

R
K0 : Mω ·K0]. (33)

Here, Sω stands for the classical Eshelby’s conduction tensor inside ω without
interface effect while S̄ω is defined as the Eshelby’s conduction tensor inside ω
with Kapitza interface thermal resistance; I is the second-order identity tensor.
Indeed, the classical Eshelby’s conduction tensor fields both inside and outside ω
with perfect interface are, in general, given by (see, e.g. Le Quang et al. [28])

S(x) =

(∫

ω
∇⊗∇G(y − x)dy

)
·K0. (34)

Using the definition (30), the classical Eshelby’s conduction tensor field S(x) can
be determined via the tensor D(x):

Sij(x) = Dim(x)K0
mj . (35)

Thus, the general solution to equation (24), both inside and outside ω, can be
written as

e(x) = S̄(x) · e0 (36)

where the tensor S̄(x), called thereafter Eshelby’s conduction tensor field with
Kapitza interface thermal resistance, is defined as:

S̄(x) = S(x) +
α

R
K0 : M(x) ·K0 · [S̄ω − I], (37)

where S̄ω is given by Eq. (33).
Eq. (37) shows that the Eshelby’s conduction tensor S̄(x) with Kapitza’s interface

thermal resistance is uniform inside the inclusion ω but varies outside the inclusion
ω. Note that S̄(x) depends not only on the geometry of ω and the material thermal
anisotropy as in the case of perfect interfaces but also on the interfacial thermal
resistance parameter α and the inclusion size R. When α = 0 or when the size
R of the heterogeneity is very large, the imperfect interface effect disappears or
becomes negligible so that the expression (37) of S̄(x) reduces to the formula (34)
of the classical Eshelby’s conduction tensor.

The elastic counterpart of Kapitza’s interface thermal resistance model is the
well-known spring-layer imperfect interface model. When the latter is adopted in
studying a spherical inclusion embedded in an isotropic matrix, Hashin [19], Qu
[36] and Zhong and Meguid [46] have shown that the Eshelby’s elastic tensor S̄(x)
is in general a quadratic function of the position vector, so that it is not uniform
inside the spherical inclusion.
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The results derived above for Eshelby’s thermal conduction tensor S̄(x) with
Kapitza’s interface thermal resistance hold for any thermal anisotropy. In order to
obtain the explicit expression of S̄(x), we now consider the most important special
case where the 2D or 3D infinite body Ω consists of an isotropic material whose
thermal conductivity tensor takes the form K0 = k0I with k0 being a positive
scalar.

By using (35) with Dim(x) given by Eqs. (A-43) and (A-44) for the 3D case or by
Eqs. (A-55) and (A-56) for the 2D case, the classical Eshelby’s conduction tensor
field reads

S(x) =
1

d
Iχω(x) + (1− χω(x))ρd

(
1

d
I− x̄⊗ x̄

)
(38)

where

ρ =
R

r
=

R

|x| , x̄ =
x

r
. (39)

By substituting Eq. (38) into Eq. (37) with Dmj(x) and Nmij(x) determined in
the appendix, Eshelby’s conduction tensor field with Kapitza’s interface thermal
resistance in the case of an isotropic medium is obtained as

S̄(x) =

(
1 + (d− 1)α̂

d+ (d− 1)α̂

)
Iχω(x) + (1− χω(x))

dρd

d + (d− 1)α̂

(
1

d
I− x̄⊗ x̄

)
,

(40)

where the dimensionless parameter α̂ is defined by

α̂ =
αk0

R
. (41)

From a dual point of view, we now consider the conjugate Eshelby’s conduction
problem where a heat-free flux is uniformly distributed within a spherical or cir-
cular inclusion, or equivalently q∗(x) = χω(x)q0 (see Fig. 3). The general heat
flux field solution, both inside and outside the inclusion ω, can be determined via
the conjugate Eshelby’s conduction tensor field with Kapitza’s interface thermal
resistance, denoted by C̄(x), such as

q(x) = C̄(x) · q0. (42)

It can be shown that C̄(x) is related to S̄(x) by

C̄(x) = −K0 · S̄(x) ·H0 + χω(x)I. (43)

This equation indicates that, as expected, the conjugate Eshelby’s conduction ten-
sor C̄(x) with Kapitza’s interface thermal resistance is also uniform inside ω, i.e.
C̄(x) = C̄ω for x ∈ ω with

C̄ω = −K0 · S̄ω ·H0 + I. (44)

In particular, when the interface between the inclusion and the exterior medium
is perfect, i.e. α = 0 or when the size R of the inclusion ω is very large, we obtain
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Figure 3. The conjugate Eshelby’s conduction problem concerned with a subdomain ω embedded in an
infinite medium Ω and subjected to a uniform heat-free flux equal to q0 within ω and vanishing outside ω.

from Eq. (43) the classical conjugate Eshelby’s conduction tensor

C(x) = −K0 · S(x) ·H0 + χω(x)I (45)

and the classical conjugate Eshelby’s conduction tensor inside the inclusion reads

Cω = −K0 · Sω ·H0 + I. (46)

In the particular case where the 2D or 3D infinite body Ω is made of an isotropic
material, by substituting the expressions of S̄(x) and S(x) given by Eqs. (40) and
(38) into Eqs. (43) and (45), respectively, we obtain the expressions for the conju-
gate Eshelby’s conduction tensors with and without Kapitza’s thermal resistance
effect:

C̄(x) =

(
d− 1

d+ (d− 1)α̂

)
Iχω(x)− (1− χω(x))

dρd

d + (d− 1)α̂

(
1

d
I− x̄⊗ x̄

)
,

(47)

C(x) =

(
d− 1

d

)
Iχω(x)− (1− χω(x))ρd

(
1

d
I− x̄⊗ x̄

)
. (48)

3.3. Generalized localization tensor fields

Now, consider a 2D or 3D infinitely extended matrix Ω with the thermal conduc-
tivity and resistivity tensors, K0 and H0, in which an inclusion (or more precisely
an inhomogeneity) ω made of another material with the thermal conductivity and
resistivity tensors denoted by K(1) and H(1), is embedded. As before, the interface
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Γ between matrix and inclusion is assumed to exhibit the Kapitza thermal resis-
tance. On the boundary ∂Ω of Ω, the following homogeneous heat flux boundary
condition is prescribed

q(x) · ν(x) = q0 · ν(x), (49)

where x ∈ ∂Ω, ν(x) is the outward unit normal to ∂Ω and q0 is a constant heat
flux field.

Similarly to the results obtained in the previous subsection for the Eshelby’s
conduction tensor with Kapitza interface thermal resistance, we proceed to
show that the heat flux and intensity fields are uniform within the spherical or
circular inhomogeneity i.e. q(x) = qω and e(x) = H(1) · qω for any x ∈ ω. For

Figure 4. Decomposition of the initial heterogeneity problem into three Sub-problems (A), (B) and (C)
with qω being the uniform heat flux solution field of the initial heterogeneity problem within ω.

this, we decompose the inhomogeneity problem under consideration into three
Sub-problems, denoted as A, B and C (see Fig. 4). Each Sub-problem and its
solution are presented in detail as follows.

a) Sub− problem A

This Sub-problem is concerned with the determination of the heat flux solution
field within the infinite homogeneous matrix Ω subjected to the homogeneous flux
boundary condition (49) on its external surface ∂Ω. Clearly, the corresponding
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heat flux solution field q(A)(x) is provided directly by

q(A)(x) = q0 (50)

for any x ∈ Ω.

b) Sub− problem B

Sub-problem B consists in computing the heat flux field within the infinite
heterogeneous matrix medium Ω with the thermal conductivity and resistivity
tensors, K0 and H0, in which the sub-domain ω made of the same material as
the matrix and surrounded by the interface Γ with Kapitza’s thermal resistance
is subjected to a uniform heat-free flux field q∗ = (C̄ω)−1 · qω. Applying the
conjugate Eshelby’s conductivity tensor fields obtained in Section 3, the heat flux
field is provided by

q(B)(x) = C̄(x) · (C̄ω)−1 · qω (51)

where x ∈ Ω.

c) Sub− problem C

In this problem, the sub-domain ω embedded in the infinite homogeneous
matrix medium Ω is formed of the same material as the matrix, with the thermal
conductivity and resistivity tensors, K0 and H0, and the interface between ω and
the external medium is assumed to be perfect. Then, we subject ω to uniform
heat-free flux field q∗ = −K0 · (H(1) −H0) ·qω − (C̄ω)−1 ·qω. Due to the fact that
the interface is perfect, the heat flux solution field q(C)(x) can be determined via
the classical conjugate Eshelby’s conductivity tensor field by

q(C)(x) = −C(x) ·K0 · (H(1) −H0) · qω −C(x) · (C̄ω)−1 · qω (52)

with x ∈ Ω.
Finally, by applying the superposition principle, the heat flux field of the inho-

mogeneity problem is given by

q(x) = q(A)(x) + q(B)(x) + q(C)(x)

= q0 + C̄(x) · (C̄ω)−1 · qω −C(x) ·K0 · (H(1) −H0) · qω −C(x) · (C̄ω)−1 · qω

(53)

where x ∈ Ω.
When x ∈ ω, we have q(x) = qω. Introduction of this relation into Eq. (53)

allows us to calculate qω as follows:

qω = B̄ω · q0, (54)

where B̄ω, called thereafter the localization tensor for the inhomogeneity ω, has
the expression

B̄ω = [Cω · (C̄ω)−1 + Cω ·K0 · (H(1) −H0)]−1, (55)

with Cω and C̄ω given by Eqs. (46) and (44), respectively.
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After obtaining the expression of qω, the heat flux field q(x) in Eq. (53) for both
inside and outside ω can be calculated by combining equations (54) and (55) with
(53), so that

q(x) = B̄(x) · q0 (56)

where B̄(x), named the localization tensor field with Kapitza’s interface thermal
resistance, is given by:

B̄(x) = I − {C(x) ·K0 · (H(1) −H0) + [C(x)− C̄(x)] · (C̄ω)−1} · B̄ω (57)

where B̄ω, C(x), C̄(x) and C̄ω are provided by Eqs. (55), (45), (43) and (44).
In the important particular case where the matrix and inclusion phases are both

isotropic, their thermal conductivity and resistivity tensors are given by K0 = k0I,
H0 = 1/k0I, K(1) = k1I and H(1) = 1/k1I with k0 and k1 being two positive
scalars. Then, the localization tensor field B̄(x) has the simple expression

B̄(x) =
dk1

k1 + (d− 1)(k0 + k1α̂)
Iχω(x)

+ (1− χω(x))

{
I +

dρd[k0 + k1(α̂− 1)]

k1 + (d− 1)(k0 + k1α̂)

(
1

d
I(d) − x̄⊗ x̄

)}
(58)

where α̂ is defined by Eq. (41). Remark that, if α̂ = 0, B̄(x) reduces to the well-
known classical localization tensor field B(x).

4. Effective thermal behavior

Starting from the results obtained in the previous two sections, we will derive in
this section the closed-form expressions for the effective conductivity of composites
accounting for the effects of the Kapitza interface thermal resistance between the
matrix and inclusion phases following the dilute, Mori-Tanaka, self-consistent and
generalized self-consistent schemes. For more details about these schemes in the
case of perfect interfaces, the reader can refer to the review papers of Hashin
[15, 17].

4.1. Dilute distribution model

Assuming that the interaction between the inhomogeneities of the composite de-
scribed in Section 2 is neglected, a dilute distribution of inhomogeneities is adopted
to estimate the effective thermal conductivity or resistivity tensors, Keff or Heff ,
respectively. For this purpose, we first let Ω be subjected to the homogeneous heat
flux boundary conditions given by Eq. (49).

Under boundary condition (49) and owing to the fact that the normal component
of heat flux is continuous across the interface between the matrix and inclusions
phases, the macroscopic heat flux defined by Eq. (10) is obtained by

Q = 〈q〉 = q0. (59)

Within the framework of the dilute distribution model, the interaction between
the inhomogeneities is omitted and, accounting for the results obtained for the
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localization tensor fields in Section 3, it can be shown that the heat flux and
intensity fields inside the inhomogeneity ω are uniform and given by

q̄(1) = [Cω · (C̄ω)−1 + Cω ·K(2) · (H(1) −H(2))]−1 · q0, (60)

ē(1) = H(1) · q̄(1). (61)

Here, K(i) and H(i) are thermal conductivity and resistivity second-order tensors
of phase i, respectively. The conjugate Eshelby’s conduction tensors without and
with interface effects, Cω and C̄ω, inside ω are respectively given by Eqs. (46) and
(44) taking into account Eqs. (33) and (34) with K0 = K(2) and H0 = H(2).

From Eq. (59), the volume or surface averages of the heat flux and intensity fields
in the matrix phase are given by

q̄(2) = c−1
2 (q0 − c1q̄(1)), (62)

ē(2) = H(2) · q̄(2), (63)

where c1 and c2 = 1− c1 are the volume or surface fractions of the inclusion and
matrix phases, respectively. The macroscopic intensity field can be obtained from
Eq. (13) and is given by

E = c1ē
(1) + c2ē

(2) + c1
α

R
q̄(1). (64)

Unlike the classical case where the matrix-inclusion interface is perfect, the macro-
scopic intensity field given by Eq. (64) is not simply the volume or surface average
of the different contributions over the domain Ω. More precisely, a new term due
to the discontinuity of both temperature field and normal component of the inten-
sity field across the Kapitza interface Γ is added in Eq. (64). By introducing Eqs.
(60)-(63) into Eq. (64) and by identifying the resulting expression with Eq. (8), we
obtain the expression of the effective thermal conductivity tensor

KDD = {H(2) + c1[H(1) −H(2) +
α

R
I] · [Cω · (C̄ω)−1 + Cω ·K(2) · (H(1) −H(2))]−1}−1.

(65)

It is interesting to note that when α = 0, the expression (65) of KDD reduces to
the well-known formula without interface effects. In the particular case where the
matrix and inclusion phases are isotropic and have the thermal conductivities k2

and k1, respectively, Eq. (65) leads to

kDD = k2

{
1 +

c1d[k2 − k1 + αk1k2/R]

k1 + (d− 1)k2(1 + αk1/R)

}−1

(66)

where kDD is the effective thermal conductivity of the composite for the dilute dis-
tribution model. The expression (66) for the effective thermal conductivity allows
us to recover the formula derived by Benveniste and Miloh [4].
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4.2. Mori-Tanaka model

To account for the interaction between the heterogeneities, the Mori-Tanaka model
is now applied. In this model, under the boundary conditions written as in Eq.
(49), the heat flux field in the matrix and far from the inclusions is assumed to be
uniform and equal to Q0. Consequently, the heat flux and intensity fields inside the
inhomogeneities ω are obtained by using Eqs. (60) and (61) with q0 being replaced
by Q0. Thus, this yields

q̄(1) = [Cω · (C̄ω)−1 + Cω ·K(2) · (H(1) −H(2))]−1 ·Q0, (67)

ē(1) = H(1) · q̄(1), (68)

where the conjugate Eshelby’s conduction tensors without and with interface ef-
fects, Cω and C̄ω, inside ω are respectively provided by Eqs. (46) and (44), taking
into account Eqs. (33) and (34) with K0 = K(2) and H0 = H(2). Concerning the
matrix phase, the volume or surface average intensity and heat flux fields are given
by

q̄(2) = Q0, ē(2) = H(2) ·Q0. (69)

Due to the fact that Q = 〈q〉 = q0, we can express Q0 in terms of the macroscopic
heat flux field as follows

Q0 = L · q0. (70)

with

L = {c1[Cω · (C̄ω)−1 + Cω ·K(2) · (H(1) −H(2))]−1 + c2I}−1. (71)

By substituting Eqs. (67)-(71) into Eq. (64) and by identifying the resulting equa-
tion with Eq. (8), the effective thermal conductivity tensor is given by

KMT = {H(1) +
α

R
I− c2[H(1) −H(2) +

α

R
I] · L}−1. (72)

In the special case where the matrix and inclusion phases are isotropic and have
the thermal conductivities k2 and k1, respectively, we obtain from Eq. (72) the
effective thermal conductivity of the composite for the Mori-Tanaka model

kMT = k2

{
1 +

c1d[k2 − k1 + αk1k2/R]

k1c1d+ c2[(d− 1)k2(1 + αk1/R) + k1]

}−1

. (73)

We notice that this expression for the effective thermal conductivity is identical to
the one given by Benveniste [2]. Moreover, it is easy to check that when the volume
or surface fraction of the inclusion is small enough (c1 � 1), Eq. (73) giving the
effective thermal conductivity of the composite for the Mori-Tanaka model reduces
to the one obtained by Eq. (66) for the dilute distribution model.
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4.3. Self-consistent model

As for all estimate schemes for the effective thermal behavior of the composite, it is
necessary to determine the volume or surface average of the intensity and heat flux
fields inside the inhomogeneities. In the self-consistent model, the intensity and
heat flux fields inside each inhomogeneity are estimated by embedding this inho-
mogeneity in a fictitious infinite medium which has unknown effective properties.
By using the expression for the solution of the localization problem for thermal
conduction described in Section 4, we can calculate the heat flux and intensity
fields inside the inhomogeneity ω as follows:

q̄(1) = [Cω · (C̄ω)−1 + Cω ·KSC · (H(1) −HSC)]−1 · q0, (74)

ē(1) = H(1) · q̄(1). (75)

In these expressions, Cω and C̄ω are given by Eqs. (46) and (44) together with
Eqs. (33) and (34) in which K0 and H0 are replaced by the unknown effective
thermal conductivity and resistivity tensors, KSC and HSC , respectively.

As in the dilute distribution model, owing to the fact that Q = 〈q〉 = q0, the
volume or surface averages of the heat flux and intensity fields in the matrix phase
are given by

q̄(2) = c−1
2 (q0 − c1q̄(1)), (76)

ē(2) = H(2) · q̄(2). (77)

Introducing Eqs. (74)-(77) into Eq. (64) and taking into account the macroscopic
behavior expressed by Eq. (8), the effective thermal conductivity tensor is obtained
from a quadratic equation in KSC which can be written as

KSC = {H(2) + c1[H(1) −H(2) +
α

R
I] · [Cω · (C̄ω)−1 + Cω ·KSC · (H(1) −HSC)]−1}−1.

(78)

This second order polynomial matrix equation provides the effective conductivity
tensor KSC . If the matrix and inclusion phases are isotropic and characterized by
the thermal conductivities k2 and k1, Eq. (78) is reduced to a quadratic equation

kSC = k2

{
1 +

c1d[k2 − k1 + αk1k2/R]

k1 + (d− 1)kSC(1 + αk1/R)

}−1

, (79)

and the effective thermal conductivity kSC is given by the real positive root of Eq.
(79).

4.4. Generalized self-consistent model

The model proposed in this section does not use the Eshelby’s tensor fields and
localization tensor fields but is presented here to provide results allowing a compar-
ison with those coming from the three models described above. It can be considered
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as an extension to the thermal conduction problem with interface effects of the clas-
sical GSCM for elasticity which was initiated by Van der Poel [42], improved and
completed by Smith [38, 39] and Christensen and Lo [9].

According to this model, we first consider an infinite three-dimensional medium
M consisting of the effective homogeneous and isotropic medium whose thermal
behavior is characterized by Eq. (8) in which the effective thermal conductivity
tensor is denoted by Keff = kGSCMI(3). As before, let M be subjected to the
uniform boundary conditions Eq. (49) in which the constant heat flux vector q0 is
chosen such as q0 = (0, 0, q0)T where q0 is a constant heat flux field (Fig. 2). In the
system of spherical coordinates (r, θ, ϕ) corresponding to the spherical orthogonal
basis (fr, fθ, fϕ), this uniform boundary condition takes the equivalent form

q0(x) = q0(cos θfr − sin θfθ), x ∈ ∂M. (80)

This boundary condition gives rise to the following temperature, intensity and heat
flux fields at point x of M

T 0(x) = − q0

kGSCM
r cos θ,

e0(x) =
q0

kGSCM
(cos θfr − sin θfθ),

q0(x) = q0(cos θfr − sin θfθ). (81)

Let us introduce the following energy U0(q0) of M (see e.g. Hashin [16])

Figure 5. Generalized self-consistent model applied to thermal conduction problem.

U0(q0) =

∫

M
q0(x) · e0(x)dx = vol(M)(q0)2/kGSCM . (82)

Next, we cut a sphere out of the foregoing infinite effective medium and substitute
into its place a composite sphere Ω, while applying the same boundary condition on
∂M as before. The interface between the composite sphere and the outside medium
is assumed to be perfect. The core of this composite sphere is made of the inclusion
phase, referred to as phase 1 and surrounded by a concentric shell consisting of
the matrix phase, denoted by phase 2. The core and outer coating consist of two
isotropic materials whose thermal conductivities are k1 and k2. The radii of the
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core and coating, symbolized by r1 and r2 are chosen so as to be compatible with
the prescribed phase volume fraction

c1 = 1− c2 =
r3

1

r3
2

. (83)

The 3D spherical interface Γ between the matrix and inclusion is modeled by the
Kapitza interface thermal resistance as described in Section 2.

Under boundary condition (80), the expressions of the temperature field, non-
zero intensity and heat flux field components are given by (see, e.g. Hervé [24])

T (i) = −
(
air +

bi
r2

)
cos θ, (84)

e(i)
r =

(
ai −

2bi
r3

)
cos θ, e

(i)
θ = −

(
ai +

bi
r3

)
sin θ, (85)

q(i)
r = ki

(
ai −

2bi
r3

)
cos θ, q

(i)
θ = −ki

(
ai +

bi
r3

)
sin θ.

(86)

with i = 1 referring to the core, i = 2 to the outer coating and i = e to the external
effective medium. In these expressions, ai and bi are constants to be determined
from the boundary and interface conditions together with a condition avoiding the
displacement singularity in the core of the composite sphere. More precisely, the
requirement of the temperature in the core at r = 0 to be finite implies that b1 = 0.
The value of ae, determined by using the boundary condition (80) with r →∞, is
given by ae = q0/kGSCM .

At the interface between the core and the coating, the normal component of heat
flux field is continuous, so that

k2

(
a2 −

2b2
r3

1

)
= k1a1. (87)

The surface condition (4) at the interface between the core and the coating can be
specified by :

(
a2 +

b2
r3

1

)
− a1 = α̂

(
a2 −

2b2
r3

1

)
, (88)

with α̂ = αk2/r1.
The interface at r = r2 between the coating matrix and outside effective medium

is perfectly bonded. Thus, the continuity conditions of both temperature field T
and normal component heat flux field qr across the interface at r = r2 are expressed
as

q0

kGSCM
+
be
r3

2

= a2 +
b2
r3

2

, (89)

kGSCM
(

q0

kGSCM
− 2be

r3
2

)
= k2

(
a2 −

2b2
r3

2

)
. (90)

As in the GSCM of Christensen and Lo [9] in the context of elasticity, the effective
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thermal conductivity is required to be such that the energy U(q0) after introducing
the sphere composite is equal to the initial one U0(q0) which is given by Eq. (82).
On the other hand, we can show that the actual energy U(q0) can be expressed in
terms of U0(q0) as follows

U = U0 −
∫

Γ
(q0T (e) − q(e)T 0) · ndx. (91)

Thus, the self-consistency condition U0 = U is reduced to

∫

Γ
(q0T (e) − q(e)T 0) · ndx = 0. (92)

Substituting Eqs. (80), (81), (84) and (84) with i = e into Eq. (92), we obtain the
simple equation

be = 0. (93)

Finally, substituting be = 0 into Eqs. (87), (88), (89) and (90), we obtain a system
of four homogeneous linear equations for the four unknowns a1, a2, b2 and q0.
A non-trivial solution to this system exists if and only if the determinant of the
relevant 4×4 matrix is equal to zero. This necessary and sufficient condition yields
the expression for the effective thermal conductivity as follows:

kGSCM = k2

{
1 +

3c1[k2 + (α̂− 1)k1]

3k1c1 + c2[2(k2 + α̂k1) + k1]

}−1

. (94)

We remark that the effective thermal conductivity obtained by Eq. (94) depends
not only on the phase thermal properties and volume fractions but also on the
interface thermal conductivity and on the size of the inhomogeneities through α̂.
When setting α̂ = 0, the expression (94) of kGSCM reduces to the one obtained by
Hashin and Shtrikman [20] or Hervé [24] without interface effects.

In the 2D case, the corresponding effective thermal conductivity is given by

kGSCM = k2

{
1 +

2c1[k2 + (α̂− 1)k1]

2k1c1 + c2[k2 + (α̂+ 1)k1]

}−1

. (95)

The details of the derivation are omitted here.
Finally, it is convenient to express (94) and (95) for kGSCM by the following

compact one :

kGSCM = k2

{
1 +

c1d[k2 + (α̂− 1)k1]

k1c1d+ c2[(d− 1)(k2 + α̂k1) + k1]

}−1

, (96)

where d (= 3 or 2) is the dimension of the problem. Compared Eq. (96) with Eq.
(73) for the case where the matrix and inclusion phases are isotropic, we notice that
kGSCM = kMT . This remark has been also mentioned in the work of Benveniste
([2]) for the tridimensional case.
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5. Numerical examples

This section is dedicated to numerically illustrate the features of the results ob-
tained above. The first example is related to the plane problem of a circular inhomo-
geneity having the radiusR = 1µm located within a 2D host matrix phase. The ma-
trix and inclusion phases are both assumed to be anisotropic. Additionally, the ther-
mal conductivity tensors, K(1)[Wm−1K−1] of the inclusion and K(2)[Wm−1K−1]
of the matrix, are provided by :

K(1) =

(
1.5 −0.5
−0.5 1.5

)
, K(2) =

(
0.15 0.05
0.05 0.15

)
(97)

relative to the orthonormal basis {f1, f2} and by

K
′(1) =

(
1 0
0 2

)
, K

′(2) =

(
0.2 0
0 0.1

)
(98)

according to the orthonormal basis {f ′1 = 1√
2
(f1 + f2), f

′
2 = 1√

2
(f2 − f1)} which is

obtained from the orthonormal basis {f1, f2} by an anti-clockwise rotation of angle
π/4.

Concerning the thermal parameters of the interface, we choose different values
of the Kapitza interface thermal resistance α ranging from 10−11m2K/W (nearly
perfect interface) to 10−3m2K/W (nearly insulating interface).

Next, by applying a uniform heat flux vector q0 = (1, 0)T [W/m2] at the bound-
ary of the heterogeneous medium consisting of a circular inclusion with radius
R = 1µm embedded in a square matrix domain 10µm× 10µm and 20µm× 20µm
and by assuming the interface between the matrix and inclusion to be imperfect
with Kapitza thermal resistance α = 10−3, 10−5, 10−6 and 10−11m2K/W , we calcu-
late first the heat flux field in the inclusion and matrix phases from the closed-form
solution of section 3 corresponding to an infinite matrix. Then, these values ob-
tained for the heat flux field are compared with the ones given by using the Finite
Element Method (FEM) with Comsol Multiphysics 3.5 for the meshes described in
Fig. 6. A temperature compatible with a constant intensity field is applied at the
boundary of the model and Fig. 7 provides the temperature distribution along the
axis parallel to the given intensity field obtained from the FEM results provided by
using the mesh described in Fig. 6a. Owing to the fact that the phase configura-
tions are dilute, it is meaningful and efficient to compare the analytical estimates
obtained for homogeneous flux boundary conditions with the numerical results de-
livered by the FEM for homogeneous intensity boundary. It can be seen from Fig.
7 that any modelling provides a resulting heat flux field which is uniform within
the inclusion. Due to the higher value of conductivity taken within the inclusion,
it can be observed that the heat flux inside the inclusion can be higher (for small
interface effect) or smaller (for high interface effect) than the heat flux at infinity.

However, we observe also from Fig. 7 that there is a difference for the heat flux
field inside the inclusion and matrix phases between both solutions. This difference
can be explained by the fact that the closed-form solution obtained in Section 3 is
related to a matrix extending to infinity while the numerical solution obtained by
FEM is calculated for a finite square domain. A second computation was performed
for the mesh defined in Fig.6b where the size of the square domain is increased from
10µm × 10µm to 20µm × 20µm. As for the first example, we observe from Fig. 8
that the heat flux field is uniform in the inclusion. It can be seen now from Fig.
8 that the proposed analytical solution presents a complete agreement with the
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(a)

(b)

Figure 6. Meshing and temperature solution field distributed in the matrix and inclusion phases for the
heterogeneity problem undergoing a uniform heat flux vector q0 = (1, 0)T [W/m2] at the boundary with
α = 10−5m2K/W and solved by FEM: (a) Case 1 with inclusion radius R = 1µm embedded in a square
matrix domain 10µm × 10µm; (b) Case 2 with inclusion radius R = 1µm embedded in a square matrix
domain 20µm × 20µm.

numerical solution by FEM both inside and outside the inclusion, meaning that
the size of the square domain is now such that the solution is no more affected by
the limited extension of the meshed domain.

A second numerical example is provided in order to study the size-dependence of
the effective thermal conductivity of the composite. In this example, the matrix and
inclusion phases are assumed to be both isotropic and the inhomogeneity radius
R takes different values between 1 and 50µm while the inhomogeneity volume
fraction is kept constant. Additionally, the inclusion phase is supposed to be less
conducting than the matrix one. The thermal conductivities of the matrix and of
the inhomogeneities are :

k1 = 0.1Wm−1K−1, k2 = 1Wm−1K−1. (99)

The ratio keff/keffc , where keffc is computed without taking into account the in-
terface and keff is obtained from various models of section 4, is plotted in Fig. 9
in terms of the inhomogeneity radius R. keff is the effective thermal conductivity
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Figure 7. The heat flux fields in the matrix and inclusion obtained by the present analytical method and
by FEM for Case 1 with inclusion radius R = 1µm embedded in a square matrix domain 10µm × 10µm.
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Figure 8. The heat flux fields in the matrix and inclusion obtained by the present analytical method and
by FEM for Case 2 with inclusion radius R = 1µm embedded in a square matrix domain 20µm × 20µm.

calculated by Eqs. (66), (73), (79) and (96) with α = 10−5m2K/W according to
the dilute distribution, Mori-Tanaka, self-consistent or generalized self-consistent
models, respectively. It can be seen from Fig. 9 that: (i) keff depends on the inho-

mogeneity radius R while keffc (corresponding to the “surface C” case) is obviously

independent of R; (ii) the difference between keff and keffc decreases when R in-
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creases; (iii) the surface effect becomes negligible when R is larger than 50 µm.
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Figure 9. The ratio keff/keffc versus the inclusion radius R(µm) with volume fraction of inclusions
c1 = 0.3 and Kapitza thermal resistance α = 10−5m2K/W .

The ratio keff/keffc in terms of the inhomogeneity volume fraction c1 is presented
in Fig. 10 for an inhomogeneity radius R = 1µm and a Kapitza thermal resistance
α = 10−5m2K/W . It can be seen from Fig. 10 that when the inhomogeneity volume

fraction increases, the values of the ratio keff/keffc obtained from closed-form
solutions decrease with the the concentration of inclusions. This result depicts a size
effect which increases with the concentration. In addition, all models give the same
results for low concentrations (below, say, 0.1), but differ for higher concentrations.

6. Concluding remarks

Being complementary with the recent work of Le Quang et al. [29] devoted to
the highly conducting imperfect interface model, the present work is based on
Kapitza’s concept of thermal resistance and contributes to the development of the
micromechanics of inhomogeneous materials with imperfect interfaces. However,
both problems have quite different solutions because, in the present work, it is
noteworthy that the solution has been obtained by using an extension to conduction
problems of the classical Eshelby’s inclusion problem in the case of a polynomial
heat free intensity field.

In the context of elasticity, Eshelby’s problem for a spherical inclusion embed-
ded in an infinite matrix via an interface characterized by the linear spring-layer
model was solved, in the case where the constituent material of the matrix is
isotropic, by Hashin [19] and Zhong and Meguid [46] who showed that Eshelby’s
strain tensor field inside the spherical inclusion is generally no longer uniform. In
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Figure 10. The ratio keff/keffc versus the inclusion volume fraction c1 with inclusion radius R = 1µm
and Kapitza thermal resistance α = 10−5m2K/W .

the case with anisotropic elastic material constituting the matrix, Qu [36] obtained
a semi-analytical solution by using an iterative computation, leading again to a
non-uniform strain field inside the inclusion. Thus, Eshelby’s formalism allowing
the transformation of an inhomogeneity problem into an inclusion problem is no
more valid. This is because Eshelby’s formalism is based on the uniformity of the
strain field inside an ellipsoidal inclusion embedded in an infinite matrix and sub-
jected to a prescribed uniform eigenstrain. Unlike the results of Hashin [19], Zhong
and Meguid [46] and Qu [36] for elasticity, the results given in the present paper
for thermal conduction show that the temperature gradient field inside a circular
or spherical inclusion remains uniform even in the presence of a Kapitza inter-
face and holds for any thermal anisotropy of materials constituting the matrix and
the inclusions. This fact allows to preserve the Eshelby’s formalism and to apply
some well-known micromechanical schemes to obtain closed-form expressions for
the effective conductivity of composites with Kapitza thermal interface resistance.

Finally, it is well known that due to the physical analogy existing between the
different transport phenomena, the approach elaborated and results obtained by
the present work for the thermal conduction phenomenon are straightforwardly
transposable to other classes of problems such as electric conduction, dielectrics,
magnetism, diffusion and flow in porous media. Moreover, owing to the close re-
lation existing between the depolarization tensor in electrostatics and Eshelby’s
conduction tensor under consideration (see e.g. [45] and [14]), all results previously
obtained for the thermal conduction phenomenon can be directly generalized to the
electromagnetic phenomenon. Additionally, since a mathematical correspondence
between anti-plane elasticity and 2D thermal conduction exists, new results for
anti-plane anisotropic elasticity can be deduced directly from the 2D anisotropic
results derived above.
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Appendix : temperature field induced by a polynomial heat-free intensity
inside an ellipsoidal inclusion

The intensity field induced by a constant heat-free intensity inside an ellipsoidal
inclusion is obtained from tensor Nmij defined in Eq. (29) which is related to a
linearly varying heat-free intensity inside an ellipsoidal inclusion. In this appendix,
similarly to the generalized Eshelby’s results in the case of elasticity (see e.g. Asaro
and Barnett [1] and Mura [33]) we show in the thermal conduction Eshelby’s prob-
lem with perfect interfaces that: when an ellipsoidal region in an infinite anisotropic
medium undergoes a heat-free intensity e∗(x) which is a polynomial of degree M in
the position coordinates x, then the resulting intensity and heat flux fields in this
ellipsoidal region are also polynomials of degree M in x.

The results described in [33] and [1] are completely developed in the case of
elasticity, more specifically in the description of the strain field outside inclusions
produced by polynomial eigenstrains of order 0 and 1. These results cannot however
be easily extended to the case of conduction problems. However, the process leading
to the solution described in the previously cited references can be used again. The
main difference is now that, instead of using harmonic and biharmonic potentials
as in [33] and [1], only harmonic potentials are now necessary.

As described above in Section 3, we consider now a subdomain ω embedded in
a 3D infinitely extended domain Ω constituting of a homogeneous material whose
thermal conductivity and resistivity tensors are K0 and H0, respectively. The in-
terface Γ between inclusion ω and external medium is assumed to be perfect.

By using the Green function, G(y−x) and by applying the divergence theorem,
the temperature field T (x) produced by e∗(x) can be expressed in terms of G(y−x)
and e∗(x) by (see e.g. Le Quang et al. [28])

T (x) = −
∫

ω
G,j(y − x)q∗j (y)dy, (A-1)

where the heat flux field q∗(x) relates to the heat-free intensity e∗(x) by

q∗j (x) = −K0
jie
∗
i (x), for x ∈ ω. (A-2)

It is clear from the last relation that if e∗(x) is a polynomial of degree M in the
position coordinates x then the heat flux field q∗(x) is also a polynomial of degree
M in x.

By using the property (26) of G(y− x), the resulting intensity field components
are given by

ep(x) = −∂T (x)

∂xp
= − ∂2

∂xp∂xj

∫

ω
G(y − x)q∗j (y)dy, (A-3)

Now, this equation can be written in Fourier space as follows

êp(ξ) = |ξ|2 zpzjĜ(ξ)

∫

ω
q∗j (y) exp(i |ξ| z · y)dy, (A-4)

where i =
√
−1, ξ is the discrete wave vector and z = ξ/ |ξ| with |•| = (•s•s)1/2.

The Fourier transform Ĝ(ξ) of G(y−x) can be derived from Eq. (17) and is given
by

Ĝ(ξ) = −k∗(z)/ |ξ|2 , (A-5)

Page 26 of 35

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

April 3, 2011 7:17 Philosophical Magazine Letters MS-HLQ-QCH-GB-RV

Philosophical Magazine Letters 27

with k∗(z) = (K0
ijzizj)

−1.
The Fourier inversion of Eq. (A-4) , using Eq. (A-5) is given by

ep(x) = −(2π)−3

∫

Θ
zpzjk

∗(z)dz

∫ ∞

0
|ξ|2 exp(−i |ξ| z · x)d |ξ|

×
∫

ω
q∗j (y) exp(i |ξ| z · y)dy (A-6)

where Θ is the surface of the unit sphere.
Next, owing to the fact that

∇2
x cos {|ξ| z · (y − x)} = − |ξ|2 cos {|ξ| z · (y − x)}, (A-7)

and

∫ ∞

0
cos {|ξ| z · (y − x)}d |ξ| = πδ[z · (y − x)], (A-8)

where

∇2
x• =

∂2•
∂xs∂xs

, (A-9)

Eq. (A-6) can be rewritten in the following equivalent form

ep(x) =
1

8π2

∫

Θ
zpzjk

∗(z)dz∇2
x

∫

ω
q∗j (y)δ(z · y − z · x)dy. (A-10)

We remark that this equation holds for an arbitrary thermal anisotropy of material
forming Ω and for an arbitrary closed inclusion ω. However, we are interested now
in the important case where ω is an ellipsoidal inclusion and can be expressed by
the following equation of its surrounding surface:

3∑

γ=1

x2
γ/a

2
γ = 1, (A-11)

where aγ are semi principal axes of the ellipsoidal inclusion.
Owing to the fact that a polynomial of degree M in {xi} remains a polynomial

of same degree M under any change of a system of Cartesian coordinates {xi}
by rotation or translation, without loss of generality, we can choose a system of
Cartesian coordinates {xi} such that the {xi} axes coincide with the principal axes
of the ellipsoidal inclusion.

Next, in order to calculate the intensity field ep(x) given by Eq. (A-10), the
polynomial q∗j (y) of degree M can be expressed in the following general form

q∗j (y) =

M∑

r=0

Aji1i2...iryi1yi2 ...yir , (A-12)

where Aji1i2...ir are constant.
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Substituting Eq. (A-12) into Eq. (A-10), we have

ep(x) =
a1a2a3

8π2

∫

Θ
gpj(z)

{
M∑

r=0

∇2
xI

(r)
j (x, z)

}
dz, (A-13)

with

gpj(z) = zpzjk
∗(z), (A-14)

I
(r)
j (x, z) =

Aji1i2...ir
a1a2a3

∫

ω
yi1yi2 ...yirδ[z · (y − x)]dy. (A-15)

It can be shown, by the change of variables

tγ =
xγ
aγ
, τγ =

yγ
aγ
, (A-16)

where the summation convention rule does not apply for index γ, that the integral
(A-15) reduces to an integral over the unit sphere, |τ| ≤ 1, i.e.,

I
(r)
j (x, z) =

3∑

i1,i2,...,ir

Aji1i2...irai1ai2 ...air

∫

|t|≤1
τi1τi2 ...τirδ[µ(s · τ− s · t)]dτ,

(A-17)

with

µ =

{
d∑

γ

a2
γz

2
γ

}1/2

, sγ =
zγaγ
µ

(no sum on γ).

By transformation of variable z by s in Eq. (A-13), we obtain the following equiv-
alent form

ep(x) =
1

8π2

∫

Θ
µ3gpj(z)

{
M∑

r=0

∇2
xI

(r)
j (x, z)

}
ds, (A-18)

with I
(r)
j (x, z) given by Eq. (A-17).

Explicit computation of the intensity field e(x)

In the following, the previous results, and more specifically (A-17) and (A-18)
are provided in a more explicit form. They are studied in a first step for interior
points and next for exterior points.

(i) For interior points of the inclusion ω
We note that the delta function δ[µ(s · τ − s · t)] = 1

µδ(s · τ − s · t) is non-zero
only when s · τ− s · t = 0. When x is inside the inclusion ω, or equivalently when
|t| ≤ 1, then |s · t| ≤ 1 and s ·τ− s · t = 0 if and only if τ takes the following form:

τ = η(u cosψ + v sinψ) + (s · t)s, (A-19)
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where 0 ≤ η ≤
√

1− (s · t)2 and u and v are two orthonormal basis vectors of the
plane normal to s, while ψ is a polar angle in this plane. Thus, the volume integral
(A-15) reduces to an integral over a plane circular region of radius

√
1− (s · t)2 as

follows

I
(r)
j (x, z) =

1

µ

3∑

i1,i2,...,ir

Aji1i2...irai1ai2 ...air

∫ 2π

0
J (r)(s, t, ψ)dψ (A-20)

where

J (r)(s, t, ψ) =

∫ √1−(s·t)2

0
[ηhi1 + (s · t)si1 ][ηhi2 + (s · t)si2 ]...[ηhir + (s · t)sin]ηdη,

(A-21)

with h = cosψu + sinψv.
Applying the binomial theorem for J (r)(s, t, ψ) yields

J (r)(s, t, ψ) =

∫ √1−(s·t)2

0

r∑

κ=0

ηκ+1(s · t)r−κ
(
r
κ

)
f

(κ)
i1,i2,...,ir

(ψ)dη, (A-22)

with

f
(0)
i1,i2,...,ir

(ψ) = si1si2 ...sir ,

f
(1)
i1,i2,...,ir

(ψ) = hi1si2 ...sir + si1hi2 ...sir + ...+ si1si2 ...hir ,

...

f
(r)
i1,i2,...,ir

(ψ) = hi1hi2 ...hir . (A-23)

Moreover, it is easy to show that

s · t =
z · x
µ

, (A-24)

∫ √1−(s·t)2

0
ηκ+1dη =

1

κ+ 2
(
√

1− (s · t)2)κ+2, (A-25)

∫ 2π

0
sinm ψ cosn ψdψ = 0, if m+ n is odd or if both m, n are odd,(A-26)

∫ 2π

0
f

(κ)
i1,i2,...,ir

(ψ)dψ = 0, if κ is odd. (A-27)

Finally, by combining Eq. (A-20) with Eqs. (A-22)-(A-27), we obtain the following

expression of I
(r)
j (x, z)=I

(r)
j (s · t)

I
(r)
j (s · t) =

1

2µ

3∑

i1,i2,...,ir

Aji1i2...irai1ai2 ...air

[ 1

2
r]∑

κ=0

(
r

2κ

){∫ 2π

0
f

(2κ)
i1,i2,...,ir

(ψ)dψ

}

× 1

κ+ 1
(s · t)r−2κ

{
1− (s · t)2

}κ+1
, (A-28)
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where [ 1
2r] is the integer part of 1

2r.

First, we remark from Eq. (A-28) that I
(r)
j (s · t) with x ∈ ω is a polynomial of

degree r + 2 in x. Thus, the resulting intensity field e(x) given by Eq. (A-18) and
the corresponding heat flux field q(x) = K0 · [e(x) − e∗(x)] inside the inclusion ω
are polynomials of degree M in x.

Next, in order to calculate integral (A-18), it can be seen from Eq. (A-14) that
gpj(z) = gpj(z1, z2, z3) with

z1 =
µs1

a1
, z2 =

µs2

a2
, z3 =

µs3

a3
(A-29)

However, since gpj(z1, z2, z3) are rational fractions with the numerator and denomi-
nators being both homogeneous polynomials of degree 2 of z1, z2 and z3 then gpj(z)
can be computed alternatively from:

z1 =
s1

a1
, z2 =

s2

a2
, z3 =

s3

a3
, (A-30)

Moreover, the components of the unit vector s can be expressed in the following
form

s1 = (1− s2
3)1/2 cos ζ, s2 = (1− s2

3)1/2 sin ζ, s3 = s3. (A-31)

Thus, by substituting ds = ds3dζ into Eq. (A-18), we obtain

ep(x) =
1

8π2

∫ 1

−1
ds3

∫ 2π

0
µ3gpj(z)

{
M∑

r=0

∇2
xI

(r)
j (s · t)

}
dζ, (A-32)

with I
(r)
j (s · t) given by Eq. (A-28).

(ii) For exterior points of the inclusion ω
When x is outside the inclusion ω, or equivalently |t| > 1, the delta function

δ[µ(s · τ− s · t)] = 1
µδ(s · τ− s · t) is non-zero only if |s · t| ≤ 1 and s · τ− s · t = 0.

These conditions imply that τ must take the same form as in Eq. (A-19) under the
condition |s · t| ≤ 1.

Figure 11. The subdomains Θ∗ and L of Θ satisfying the condition |s · t| ≤ 1 and s · t = 1 and the chosen
new coordinate system {s′1, s′2, s′3} for a given vector t
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By using a process similar to the one described above for interior points of
inclusion ω, we obtain the following expression of the intensity field e(x) for exterior
points of the inclusion ω (see, e.g. [33])

ep(x) =
1

8π2

∫

Θ∗
µ3gpj(z)

{
M∑

r=0

∇2
xI

(r)
j (s · t)

}
ds +

1

2π

∮

L
|t|−1

{
q∗j (y)gpj(z)

}
s·t=1

dζ

(A-33)

where Θ∗ and L are subdomains of Θ satisfying the condition |s · t| ≤ 1 and s·t = 1,

respectively; I
(r)
j (s · t) is given by Eq. (A-28). More precisely, the integral on Θ∗

and L can be calculated by introducing a new coordinate system {s′1, s′2, s′3} in
which s′3-axis is taken in the direction of t, and s′1- and s′2-axis are given along
two perpendicular directions in the plane normal to t (see Fig. 11). We can then
express the relation between {s′1, s′2, s′3} and {s1, s2, s3} by

si = Ξijs
′
j =

ziai
µ
, (no sum on i) (A-34)

where Ξij are the direction cosines between the si- and s′j-axis. Since

gpj(z) = gpj(µ
Ξ1ms

′
m

a1
, µ

Ξ2ms
′
m

a2
, µ

Ξ3ms
′
m

a3
)

= gpj(
Ξ1ms

′
m

a1
,
Ξ2ms

′
m

a2
,
Ξ3ms

′
m

a3
) = g′pj(s

′) (A-35)

and by setting

s′1 = (1− s′3
2
)1/2 cos ζ ′, s′2 = (1− s′3

2
)1/2 sin ζ ′, s′3 = s′3, (A-36)

the integral in (A-33) is rewritten as:

ep(x) =
1

8π2

∫ 1/|t|

−1/|t|
ds′3

∫ 2π

0
µ3g′pj(s

′)

{
M∑

r=0

∇2
xI

(r)
j (s′3|t|)

}
dζ ′

+
1

2π

∫ 2π

0

{
q∗j (y)g′pj(s

′)
}
s′3=1/|t| |t|

−1dζ ′.

(A-37)

Application to the cases of constant and linear polarization tensors

The following particular cases with M = 0 and 1 are studied in detail, because
they are explicitly used within the paper.

First, for M = 0, the polynomial q∗j (y) takes the simple form q∗j (y) = Aj. By

using Eqs. (A-23) and (A-28), we obtain the expressions of f (0)(ψ) and I
(0)
j (x, z)

as follows

f (0)(ψ) = 1, (A-38)

I
(0)
j (s · t) =

π

µ
Aj

{
1− (s · t)2

}
. (A-39)
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Since

∇2
x

{
(s · t)2

}
=

2

µ2
, (A-40)

introducing Eq. (A-39) and Eq. (A-40) into Eq. (A-32) and Eq. (A-37) leads to the
expression of the intensity fields

ep(x) = − 1

4π
Aj

∫ 1

−1
ds3

∫ 2π

0
gpj(z)dζ. (A-41)

inside the inclusion and

ep(x) = − 1

4π
Aj

∫ 1/|t|

−1/|t|
ds′3

∫ 2π

0
g′pj(s

′)dζ ′ +
1

2π
Aj

∫ 2π

0
|t|−1

{
g′pj(s

′)
}
s′3=1/|t| dζ

′

(A-42)

outside the inclusion.
Comparing Eq. (A-41) with Eq. (A-3) leads to:

Dpj(x) =
∂2

∂xp∂xj

∫

ω
G(y − x)dy =

1

4π

∫ 1

−1
ds3

∫ 2π

0
gpj(z)dζ. (A-43)

for x ∈ ω and

Dpj(x) =
∂2

∂xp∂xj

∫

ω
G(y − x)dy

=
1

4π

∫ 1/|t|

−1/|t|
ds′3

∫ 2π

0
g′pj(s

′)dζ ′ − 1

2π

∫ 2π

0
|t|−1

{
g′pj(s

′)
}
s′3=1/|t| dζ

′

(A-44)

for x /∈ ω.
Next, for M = 1, in addition to the polynomial of degree 0, the polynomial

q∗j (y) contains a polynomial which is homogeneous and linear in y, i.e. q∗jα(y) =
∑3

α=1 Ajαyα. The values of f (r)(ψ) and I
(r)
j (x, z) defined by Eqs. (A-23) and (A-28)

become:

f (0)(ψ) = 1, f (0)
α (ψ) = sα, f (1)

α (ψ) = 0, (A-45)

I
(1)
j (x, z) =

π

µ

3∑

α=1

Ajαsαaα (s · t)
{

1− (s · t)2
}
,

(A-46)

Owing to the fact that

∇2
x

{
(s · t)3

}
=

6

µ2
(s · t) , (A-47)
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we obtain the intensity fields

ep(x) = − 3

4π

3∑

α=1

Ajαaα

∫ 1

−1
ds3

∫ 2π

0
sα (s · t) gpj(z)dζ (A-48)

inside the inclusion and

ep(x) = − 3

4π

3∑

α=1

AjαΞαγaα

∫ 1/|t|

−1/|t|
ds′3

∫ 2π

0
s′γs
′
3|t|g′pj(s′)dζ ′

+
1

2π

3∑

α=1

AjαΞαγaα

∫ 2π

0
|t|−1

{
s′γg
′
pj(s

′)
}
s′3=1/|t| dζ

′ (A-49)

outside the inclusion. The comparison of Eqs. (A-48) and (A-49) with Eq. (A-3)
implies that

Npji(x) =
∂2

∂xp∂xj

∫

ω
G(y − x)yidy =

3ai
4π

∫ 1

−1
ds3

∫ 2π

0
si (s · t) gpj(z)dζ

(A-50)

when x ∈ ω and

Npji(x) =
∂2

∂xp∂xj

∫

ω
G(y − x)yidy

=
3ai
4π

Ξiγ

∫ 1/|t|

−1/|t|
ds′3

∫ 2π

0
s′γs
′
3|t|g′pj(s′)dζ ′

− ai
2π

Ξiγ

∫ 2π

0
|t|−1

{
s′γg
′
pj(s

′)
}
s′3=1/|t| dζ

′ (A-51)

when x /∈ ω.

Application to the case with elliptic or circular inclusion

The 2D case where ω is an elliptic or circular inclusion is now considered. This
case can be considered as a special case of the one described above related to an
ellipsoidal inclusion which is now degraded to a cylindrical one, which corresponds
to a3 → ∞. Next, for a3 → ∞ Eq. (A-30) implies that z3 = 0. Therefore, the
homogeneous functions gpj(s1/a1, s2/a2, 0) depend no more on s3 and the values
of s1 and s2 can be computed using s3 = 0. As a consequence s1 and s2 have now
the simple form

s1 = cos ζ, s2 = sin ζ, (A-52)

The intensity fields e(x) for interior points given by Eq. (A-41) with x = (x1, x2, 0)
reduce now to

ep(x) = − 1

4π
Aj

∫ 1

−1
ds3

∫ 2π

0
gpj(s1/a1, s2/a2, 0)dζ

= − 1

2π
Aj

∫ 2π

0
gpj(s1/a1, s2/a2, 0)dζ. (A-53)
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For exterior points, Eq. (A-42) leads to:

ep(x) = − 1

4π
Aj

∫ 1/|t|

−1/|t|
ds′3

∫ 2π

0
gpj(

Ξ1ms
′
m

a1
,

Ξ2ms
′
m

a2
, 0)dζ ′

+
1

2π
Aj

∫ 2π

0
|t|−1

{
gpj(

Ξ1ms
′
m

a1
,
Ξ2ms

′
m

a2
, 0)

}

s′3=1/|t|
dζ ′. (A-54)

Correspondingly, Dpj(x) with p and j = 1 or 2 takes the following form

Dpj(x) =
∂2

∂xp∂xj

∫

ω
G(y − x)dy =

1

2π

∫ 2π

0
gpj(s1/a1, s2/a2, 0)dζ (A-55)

when x ∈ ω and

Dpj(x) =
∂2

∂xp∂xj

∫

ω
G(y − x)dy

=
1

4π

∫ 1/|t|

−1/|t|
ds′3 ×

∫ 2π

0
gpj(

Ξ1ms
′
m

a1
,

Ξ2ms
′
m

a2
, 0)dζ ′

− 1

2π

∫ 2π

0
|t|−1

{
gpj(

Ξ1ms
′
m

a1
,
Ξ2ms

′
m

a2
, 0)

}

s′3=1/|t|
dζ ′ (A-56)

when x /∈ ω.
When a given heat-free intensity within an elliptic or cylindrical inclusion is

linear, the intensity fields e(x) inside and outside the inclusion are determined by

ep(x) = − 1

π

2∑

α=1

Ajαaα

∫ 2π

0
sα(s1t1 + s2t2)gpj(s1/a1, s2/a2, 0)dζ (A-57)

when x ∈ ω and

ep(x) = − 3

4π

2∑

α=1

AjαΞαγaα

∫ 1/|t|

−1/|t|
ds′3

∫ 2π

0
s′γs
′
3|t|gpj(

Ξ1ms
′
m

a1
,
Ξ2ms

′
m

a2
, 0)dζ ′

+
1

2π

2∑

α=1

AjαΞαγaα

∫ 2π

0
|t|−1

{
s′γgpj(

Ξ1ms
′
m

a1
,

Ξ2ms
′
m

a2
, 0)

}

s′3=1/|t|
dζ ′,

(A-58)

when x /∈ ω.
Finally, we obtain from Eqs. (A-57) and (A-58) the expressions of Npji(x) with

p, j and i = 1 or 2 for the case where the inclusion is elliptic or cylindrical

Npji(x) =
ai
π

∫ 2π

0
si(s1t1 + s2t2)gpj(s1/a1, s2/a2, 0)dζ (A-59)
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when x ∈ ω and

Npji(x) =
3

4π
Ξiγai

∫ 1/|t|

−1/|t|
ds′3

∫ 2π

0
s′γs
′
3|t|gpj(

Ξ1ms
′
m

a1
,
Ξ2ms

′
m

a2
, 0)dζ ′

− 1

2π
Ξiγai

∫ 2π

0
|t|−1

{
s′γgpj(

Ξ1ms
′
m

a1
,
Ξ2ms

′
m

a2
, 0)

}

s′3=1/|t|
dζ ′, (A-60)

when x /∈ ω.
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