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Linear Fredholm integral equations of the first kind over surfaces are less familiar than those
of the second kind, although they arise in many applications like computer tomography, heat
conduction, and inverse scattering. This article emphasizes their numerical treatment, since
discretization usually leads to ill-conditioned linear systems. Strictly speaking, the matrix
is nearly singular and ordinary numerical methods fail. However, there exists a numerical
regularization method — the Tikhonov method — to deal with this ill-conditioning and to
obtain accurate numerical results.
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1. Introduction

Integral equations arise in a variety of applications (cf. [20]). Depending on the field,
one obtains Fredholm integro-differential equations (cf. [1, 8]), Volterra integral
equations (cf. [17]), or Fredholm integral equations (cf. [10]). The latter case can
be classified further into linear and nonlinear Fredholm integral equations of the
first or second kind. Although a recent topic of research, linear Fredholm integral
equations of the first kind are less familiar, since they are often ill-posed. They are
usually considered only over an interval (cf. [13, 23]).

In this article, we consider Fredholm integral equations of the first kind over
surfaces in three dimensions with emphasis on their numerical treatment, since they
arise in various applications in physics, computer tomography, and heat conduction
problems (cf. [24]).

The inverse scattering problem is still under investigation with many unanswered
questions (cf. [7, 15, 16]). In the direct problem, the scattered field has to be
calculated for a given obstacle and incident field. The inverse problem consists
of finding the shape of an obstacle for given scattered and incident fields. This
question arises in applications like sonar, radar, medical imaging, and geophysical
exploration. The main issues are that the solution depends nonlinearly on the
boundary and the reconstruction of the scattering wave from its far field is ill-
posed.

There are several approaches to solve this inverse problem (cf. [22]). One method
is to split the inverse scattering problem into two parts. In the linear ill-posed part,
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one must reconstruct the scattered wave from the far field pattern. The nonlinear
well-posed part consists of finding the boundary of the object. More specifically,
the integral equation of the first kind

u∞(x̂) =
1

4π

∫

Γ

eiκ〈x̂,y〉ϕ(y) dΓy, x̂ ∈ S
2 =

{
x̂ ∈ R

3 : |x̂| = 1
}

has to be solved for the density ϕ provided the far-field pattern u∞ and a closed
surface Γ is given (cf. [7]).

In order to attack this complex inverse scattering problem for arbitrary obstacles,
we first consider the ill-posed part of this problem by looking at linear Fredholm
integral equations of the first kind over surfaces.

The outline of this article is as follows. Section 2 gives the preliminaries about
linear Fredholm integral equations of the first kind with a smooth kernel. Singular
kernels are not considered here, since they are already discussed in [3] and [5]. The
next section discusses the boundary element method (BEM) for solving the first
kind integral equations over a surface with emphasis on the numerical approxima-
tion. An integration scheme is presented which reduces the linear system dramat-
ically. Another approach for more complex surfaces might be to consider meshless
methods (see [21] for details and the description of the moving least squares (MLS)
method). Section 4 is devoted to the Tikhonov regularization method and its us-
age. Furthermore, the discretization of the operator equation is given in detail.
Section 5 illustrates numerical examples for the direct and inverse problem for
several smooth and piecewise smooth surfaces and for different kernel and data
functions. With the Nyström interpolation the solution can be obtained at every
point. The last section gives a summary and an outlook for future work.

2. Fredholm integral equation of the first kind

In this section, the linear Fredholm integral equation of the first kind is presented.

Definition 2.1 (Fredholm integral equation of the first kind)We denote the equa-

tion of the form

∫

Γ

k(x, y)f(x) dΓx = g(y), y ∈ Γ

a Fredholm integral equation of the first kind, where Γ is a closed and bounded

surface in R
3. The given functions k(x, y) and g(y) are called the kernel of the

equation and the data, respectively. The solution f is an unknown function which

is to be determined.

Fredholm integral equations of the first kind can be classified into two cate-
gories. The first has singular kernel functions, but those are not considered here.
The second class consists of smooth functions k(x, y) with non-degenerate kernel.
According to Hadamard, a problem is well-posed if it has a solution (existence), not
more than one solution (uniqueness), and the solution depends continuously on the
data (stability). Problems are called ill-posed, if they are not well-posed. Fredholm
integral equations of the first kind are examples of such ill-posed problems. That is,
small changes in the data cause huge changes in the unknown function f (cf. [11,
Section 1.1]). That means, the solution does not depend continuously on the data.
Strictly speaking, the solution f is extremely sensitive to small changes in g(y).
A method to solve an ill-posed problem approximately is called a regularization
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Integral equations of the first kind 3

method. Note that the operator

Kf =

∫

Γ

k(x, y)f(x) dΓx

is linear where the kernel is assumed to be smooth. For a discussion of existence
and uniqueness of a solution f , refer to [11, 12, 25]. Note that Fredholm integral
equations of the first kind over an interval are already discussed in [9, 11, 18, 24, 25].

3. Boundary element method for solving integral equations

The boundary element method is discussed extensively in [3] and [5] and we assume
that the reader is familiar with the used notation. We briefly summarize the main
points with emphasis on the numerical approximation of the Fredholm integral
equation of the first kind over a surface.

3.1 Triangulation

Assume that Γ is a piecewise smooth surface in R
3; that means, Γ can be written

as

Γ = Γ1 ∪ · · · ∪ ΓJ . (1)

Each Γj is divided into a triangular mesh and the collection of those is denoted by

Tn = {∆k | 1 ≤ k ≤ n} (2)

with mesh size

δn = max
1≤k≤n

diam(∆k), diam(∆k) = max
p,q∈∆k

|p − q|.

We assume, that δn → 0 as n → ∞. Let the unit simplex in the st-plane be defined
as

σ = {(s, t) | 0 ≤ s, t, s + t ≤ 1}.

Let {q1, . . . , q6} be the three vertices and three midpoints of σ given by

q1 = (0, 0), q2 = (0, 1), q3 = (1, 0)
q4 =

(
0, 1

2

)
, q5 =

(
1
2
, 1

2

)
, q6 =

(
1
2
, 0

)
.

(3)

For each ∆k, we assume there is a map

mk : σ
1−1−−−−→
onto

∆k, (4)

which is used for interpolation and integration on ∆k. Define the node points of
∆k by

vk,j = mk(qj), j = 1, . . . , 6.
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The first three are the vertices and the last three are the midpoints of the sides of
∆k. To obtain a triangulation (2) and the mapping (4), use a parametric represen-
tation for each region Γj of (1). Assume that for each Γj , there is a map

Fj : Rj
1−1−−−−→
onto

Γj , j = 1, . . . , J, (5)

where Rj is a polygonal region in the plane and Fj ∈ C3(Rj). That is, a trian-

gulation of Rj is mapped onto a triangulation Γj . Let ∆̂k,j be an element of the

triangulation of Rj with vertices v̂k,1, v̂k,2 and v̂k,3 and mesh size δ̂. Then the map
(4) is given by

mk(s, t) = Fj(uv̂k,1 + tv̂k,2 + sv̂k,3), (s, t) ∈ σ, u = 1 − s − t. (6)

Most smooth and piecewise smooth surfaces can be decomposed as in (1). Conform-
ing triangulations satisfying T1–T3 are considered (cf. [5, p. 188]). The refinement

of ∆k ∈ Tn is done by connecting the midpoints of the three sides of ∆̂k giving four
new triangles. This also leads to symmetry in the triangulation and cancellation of
errors occurs (cf. [5, p. 173]).

3.2 Interpolation and numerical integration

For quadratic interpolation on σ, let u = 1 − s − t and define the Lagrange basis
functions lj(s, t), 1 ≤ j ≤ 6, by

l1(s, t) = u(2u − 1), l2(s, t) = t(2t − 1), l3(s, t) = s(2s − 1)
l4(s, t) = 4tu, l5(s, t) = 4st, l6(s, t) = 4su.

The corresponding basis functions {lj,k(q)} on ∆k are

lj,k(mk(s, t)) = lj(s, t), 1 ≤ j ≤ 6, 1 ≤ k ≤ n.

For a function f ∈ C(Γ), define

Pnf(q) =

6∑

j=1

f(vj,k)lj,k(q), q ∈ ∆k, (7)

the piecewise quadratic isoparametric function interpolating f on the nodes of the
mesh {∆k} for Γ. For f ∈ C3(Γi), i = 1, . . . , J , we have (cf. [5, p. 165])

‖f − Pnf‖∞ = O(δ̂3
n).

To reduce integration over ∆k to σ, use the map mk : σ → ∆k to obtain

∫

∆k

f(q) dΓq =

∫

σ

f(mk(s, t))J(s, t) dσ (8)

with the Jacobian

J(s, t) =

∣∣∣∣
(

∂mk

∂s
× ∂mk

∂t

)
(s, t)

∣∣∣∣ . (9)
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Integral equations of the first kind 5

For simplicity write the right hand side of (8) as

I(f) =

∫

σ

f(s, t) dσ.

To approximate I(f), replace f with the quadratic polynomial given in (7) to
obtain

∫

σ

f(s, t) dσ ≈
6∑

i=1

wif(qi), wi =

∫

σ

li(s, t) dσ, (10)

where the weights w1, w2, and w3 are zero and w4, w5 and w6 are 1/6. The nodes
qi are given on page (3). Thus, (10) becomes

∫

σ

f(s, t) dσ ≈ 1

6

[
f

(
0,

1

2

)
+ f

(
1

2
,
1

2

)
+ f

(
1

2
, 0

)]
, (11)

which has degree of precision 2.

3.3 Approximating the surface

For most surfaces it is difficult to find ∂mk/∂s and ∂mk/∂t. Therefore, we approx-
imate mk(s, t) in terms of q1, . . . , q6 by

m̃k(s, t) =

6∑

j=1

mk(qj)lj(s, t), (s, t) ∈ σ. (12)

Thus, each m̃k is a polynomial of degree ≤ 2 in (s, t) and we have (cf. [2, p. 33])

max
k

max
(s,t)∈σ

|mk(s, t) − m̃k(s, t)| = O(δ̂3
n).

3.4 Solving integral equations of the first kind over an approximated surface

Let {q1, . . . , q6} be the interpolation nodes within σ and let

vk,i = m̃k(qi), i = 1, . . . , 6, k = 1, . . . , n,

which we collect in the set Vn = {v1 . . . , vnv
}. The previous approximation tech-

nique applied to the integral equation

∫

Γ

k(P,Q)f(Q) dΓQ = g(P ), P ∈ Γ (13)

yields the Nyström equation

nv∑

j=1

wjk(vi, vj)f(vj) = g(vi), i = 1, . . . , nv
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6 Andreas Kleefeld

with

wj =
∑

i,k

vj=mk(qi)

w̃i

∣∣∣∣
(

∂m̃k

∂s
× ∂m̃k

∂t

)
(qi)

∣∣∣∣ , w̃i =

∫

σ

li(s, t) dσ. (14)

The weights w̃1, w̃2, and w̃3 are zero and w̃4, w̃5 and w̃6 are 1/6. The weights wj

are listed in [19, Example 10]. Thus, (13) is approximated by the nv × nv linear
system

Kf = g

where K is the nv × nv matrix with the entries wjk(vi, vj), f is an nv-vector
[f(v1), . . . , f(vnv

)]T and g is an nv-vector [g(v1), . . . , g(vnv
)]T. Hence, the obtained

linear system is of smaller size.

4. Regularization methods

In this chapter we introduce a well-known method which produces a stable approx-
imation for linear ill-posed operator equations of the form

Kx = y, (15)

where K : X → Y is a linear and bounded operator between Hilbert spaces X and
Y and y ∈ R(X ). The regularization method is able to calculate approximations
even if the solution x does not depend continuously on the data y, which means
that the inverse of the operator is unbounded,

∥∥K−1
∥∥ = ∞. Furthermore, the data

are perturbed by noise δ which is assumed to be known, i.e.

∥∥yδ − y
∥∥
Y
≤ δ.

The method of interest is the Tikhonov regularization. For more details on regu-
larization theory for equations of the first kind as well as the Tikhonov method,
refer to [11, 14, 18, 24].

4.1 Tikhonov regularization

We want to solve (15) with noisy data yδ. A common way to obtain a solution is
to determine the best fit in the sense that we minimize the functional

J(x) =
∥∥Kx − yδ

∥∥2

Y

in X . However, the solution does not depend continuously on the data. To ensure
stability, we add a penalty term to the previous functional. This gives the Tikhonov
functional

Jα(x) =
∥∥Kx − yδ

∥∥2

Y
+ α ‖x‖2

Y for x ∈ X

with regularization parameter α > 0.
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Integral equations of the first kind 7

The Tikhonov functional is Fréchet differentiable for every α > 0 with the Fréchet
derivative

J ′
α(x)h = 2Re

〈
K∗(Kx − yδ) + αx, h

〉
,

since

Jα(x + h) − Jα(x) − J ′
α(x)h = ‖Kh‖2

Y + α ‖h‖2
Y

holds.
The Tikhonov functional Jα(x) has a unique minimum xα,δ in X for all yδ ∈ Y

and α > 0. This minimum is also the unique solution of the normal equation

(K∗K + αI)xα,δ = K∗yδ

where K∗ denotes the adjoint operator of K. The operator K∗K+ αI is boundedly
invertible; that means, xα,δ depends continuously on yδ.

To see this, let xα,δ be the minimum of the Tikhonov functional Jα(x). By
the Fréchet differentiability and by the definition of a local minimum, we obtain
J ′(xα,δ)h = 0 for all h ∈ X . Using h = K∗(Kx − yδ) + αx yields

(K∗K + αI)xα,δ = K∗yδ.

Note that the bounded invertibility of K∗K + αI follows from the Lax-Milgram
Theorem and from the inequality

Re 〈(K∗K + αI)x, x〉 = ‖Kx‖2
Y + α ‖x‖2

Y ≥ α ‖x‖2
Y .

Finally, we note that xα,δ, defined by xα,δ = (K∗K + αI)−1(K∗yδ) minimizes Jα.
Obviously, the function λ(t) = Jα(xα,δ + th) is a polynomial of degree two with
λ ≥ 0 and λ′(0) = 0 for all h ∈ X\{0}, and therefore λ(t) ≥ λ(0) for all t ∈ R with
equality only for t = 0.

In general, the regularization parameter α affects two different trends. If α is
chosen to be large, then the errors in yδ will be damped. Otherwise, if α is chosen
to be small, then Jα will be a good approximation of J , but the error affects the
solution. To choose a good regularization parameter, we use the Morozov’s discrep-

ancy principle. It says that one should take the largest regularization parameter
α = α(δ, yδ) such that the residual

∥∥Kxα,δ − yδ
∥∥
Y

is less than or equal to τδ for a
fixed τ ≥ 1. That is, we find

α(δ, yδ) = sup
{∥∥Kxα,δ − yδ

∥∥
Y
≤ τδ with α > 0

}

where τ ≥ 1 is fixed. That means, we should not satisfy the operator equation
more accurately than the known noise error δ. It can be shown that the function
α →

∥∥Kxα,δ − yδ
∥∥
Y

is monotonously increasing, thus we only need to find α such
that

τ1δ ≤
∥∥Kxα,δ − yδ

∥∥
Y
≤ τ2δ for 1 ≤ τ1 < τ2

holds. We can use the bisection method to find such α.
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4.2 Discretization of the integral operators K, K
∗ and K

∗
K

In order to use the previously described regularization methods, we have to dis-
cretize the operator K and its adjoint K∗ (cf. [19, Section 5.4]). We consider the
integral operator K : L2(Γ) → L2(Γ) given by

Kf(P ) =

∫

Γ

k(P,Q)f(Q) dΓQ, P ∈ Γ (16)

with kernel k ∈ L2(Γ × Γ) and f ∈ L2(Γ).
Discretizing (16) yields

Kf(P ) ≈
nv∑

j=1

wjk(P, vj)f(vj)

with weights wj given in (14) and node points Vn = {v1 . . . , vnv
}. Using the same

nodes, one obtains

Kf(vi) ≈
nv∑

j=1

wjk(vi, vj)f(vj), i = 1, . . . , nv. (17)

Thus, we obtain the nv × nv matrix K with entries wjk(vi, vj).
Next, we discretize the adjoint operator of K. For the surface Γ the integral

operator K∗ : L2(Γ) → L2(Γ) is given by

K∗g(Q) =

∫

Γ

k(P,Q)g(P ) dΓP , Q ∈ Γ (18)

with kernel k ∈ L2(Γ × Γ) and g ∈ L2(Γ).
Discretizing (18) yields

K∗g(Q) ≈
nv∑

j=1

wjk(vj , Q)g(vj)

with weights wj and node points Vn = {v1 . . . , vnv
}. Using the same nodes, one

obtains

K∗g(vi) ≈
nv∑

j=1

wjk(vj , vi)g(vj), i = 1, . . . , nv.

Thus, we obtain the nv × nv matrix K
∗ with entries wjk(vj , vi).

Finally, we calculate K∗ [Kf(P )] (Q), since we also need it for the regularization
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Integral equations of the first kind 9

methods. The discretization of K∗h(Q) with h(Q) = Kf(P ) results in

K∗h(Q) ≈
nv∑

m=1

wmk(vm, Q)h(vm)

≈
(17)

nv∑

m=1

wmk(vm, Q)

nv∑

j=1

wjk(vm, vj)f(vj)

=

nv∑

j=1

nv∑

m=1

wmk(vm, Q)wjk(vm, vj)f(vj).

Using the same nodes, one obtains

nv∑

j=1

nv∑

m=1

wmk(vm, vi)wjk(vm, vj)f(vj), i = 1, . . . , nv.

We get the nv × nv matrix K
∗
K with entries

nv∑

m=1

wmk(vm, vi)wjk(vm, vj).

Note that we obtain the same entries when we multiply K
∗ and K obtained from

above. To calculate the entries for K
∗
K at the position (i, j), we have to multiply

the ith row of the matrix K
∗ with the jth column of K. Thus, each entry of K

∗
K

is given by

nv∑

m=1

wmk(vm, vi)wjk(vm, vj).

5. Numerical results

In this section, numerical results for several linear Fredholm integral equations of
the first kind over different surfaces are presented. The considered integral equation
is

∫

Γ

k(P,Q)g(Q) dΓQ = f(P ), P ∈ Γ.

5.1 Notations

The components of the points P and Q on a surface are given by P = [px, py, pz ]
T

and Q = [qx, qy, qz]
T, respectively. The errors are measured in the discrete `2-norm

‖x‖`2 =

√√√√ 1

N

N∑

i=1

|xi|2,

where N denotes the number of midpoints of the triangulation. Furthermore, we
denote the normal distributed random error with mean µ = 0 and standard devi-
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Table 1. Absolute maximum error between the calculated solution gN and

the exact solution g and estimated order of convergence.

N Example 1 Example 2 Example 3

12 4.9224· 10−1

2.8
9.6014· 10−1

2.8
1.1394· 10−1

2.8
48 6.9362· 10−2

3.6
1.3301· 10−1

3.5
1.6225· 10−2

3.7
192 5.6772· 10−3

3.9
1.1427· 10−2

3.9
1.2309· 10−3

3.9
768 3.8181· 10−4

4.0
7.7630· 10−4

4.0
8.1183· 10−5

4.0
3072 2.4314· 10−5 4.9547· 10−5 5.1457· 10−6

ation σ on the right hand side function f(P ), P ∈ Γ with δ. We assume that

∥∥f δ − f
∥∥

`2
≤ δ,

where δ is a known noise level. We denote the error between the true solution
gT and the calculated solution gC by ε and the error of the defect with ε̂. The
parameters of the stopping rule of the Tikhonov method are τ1 = 1, τ2 = 1.1 and
the interval for α is [10−8, 1]. The number of bisection steps is denoted by B. The
discretization of the operators is performed as explained in Section 4.2, and the
colored surface represents the solution over the surface, since we cannot plot in 4D.

5.2 The direct problem

In this section, the direct problem is presented. We calculate the right hand side
function provided the kernel function and the true solution are known. This will
show that the integration over a surface works well as shown in Table 1. Note that
we observe superconvergence at the collocation nodes. Define the estimated order
of convergence (EOC) by

EOC = log2 (EN/E4N ) ,

where

EN =
∥∥g − gN

∥∥
∞

denotes the maximum error between the calculated solution gN and the exact
solution g. The EOC seems to converge to four as n is getting large; that is, we

obtain a rate of O
(
δ̂4
n

)
for smooth surfaces. This result has already been stated

in [6].

5.2.1 Example I

The kernel function K(P,Q) is 1 and ρ(Q) = q2
x. The surface is a sphere with

radius 1. It is easy to check with MAPLE c© that the right hand side function f(P )
is 4π/3.

5.2.2 Example II

The kernel function K(P,Q) is given by ∂
∂nQ

|P − Q|2 and ρ(Q) = 1. The surface

is an ellipsoid with a = 1, b = 0.75 and c = 0.5. The function f(P ) is given by
8πabc.

5.2.3 Example III

The kernel function K(P,Q) and the surface are the same as in Example II. The
function ρ(Q) is q2

z . The function f(P ) is 8πabc3/3.
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Table 2. The considered examples with different surfaces Γ, kernels k(P, Q), data f(P ) and solutions g(Q).

Surface Γ Kernel k(P, Q) Data f(P )a Solution g(Q) Error δ

Sphere
r = 1 (px − qx)10 + (py − qy)10 + (pz − qz)10 f1(P ) q2

z δ = 0.1%

Ellipsoid
a = 1.1, b = c = 1 (px − qx)10 + (py − qy)10 + (pz − qz)10 f2(P ) q2

z
δ = 0.1%

Cube

r = 1 |P × Q|2 f3(P ) q2
x

+ q2
y

+ q2
z

δ = 0.1%

L–blockb

|P × Q|2 f4(P ) q2
x

+ q2
y

+ q2
z

δ = 0.1%

Tetrahedron

r = 1 |P − Q|2 f5(P ) q2
z

δ = 0.1%

Paraboloid
a = b = c = 1 (px − qx)3 + (py − qy)3 + (pz − qz)3 f6(P ) q2

x δ = 0.1%

aSee the Appendix A for the detailed data functions.

bThe L–shaped surface can be described by [0, 1] × {[0, 1] × [0, 2] ∪ [0, 2] × [0, 1]}.

Table 3. Results

Surface Γ (N) B α ε̂ ε κ

Sphere (768) 8 5.8594· 10−3 0.00105482 0.0037 1.6563· 1020

Ellipsoid (768) 8 5.8594· 10−3 0.00105368 0.0093 3.9516· 1020

Cube (1152) 10 4.8829· 10−4 0.00101308 4.8387· 10−4 1.7210· 1023

L–block (672) 9 2.9297· 10−3 0.00106680 4.4179· 10−4 4.8135· 1022

Tetrahedron (384) 11 7.3243· 10−4 0.00104142 0.0493 7.1267· 1019

Paraboloid (768) 8 1.9531· 10−3 0.00107592 0.0015 6.2739· 1020

5.3 The inverse problem

In this section, the inverse problem is considered. We will see that we can obtain a
stable approximation of the function ρ(Q) for different surfaces, kernels, and right
hand sides with the Tikhonov method.

Next, we consider a spherical, ellipsoidal, cubical, L-shaped, tetrahedral, and
elliptic paraboloidal surface. For the setup for each example refer to Table 2. There
one finds the description of the surface, the used kernel, data and solution functions,
and the added error. The details of the data functions are listed in Appendix A to
not impede the reading flow.

The numerical results for the six different surfaces are listed in Table 3. In this
table the number of midpoints of the surface, the number of bisection steps, the
regularization parameter, the error of the defect and the absolute error between
the calculated and true solution are listed. In addition, the condition number of
the discretized kernel matrix is presented. For more surfaces refer to [19].

As one can see in Table 3 the numerical results are very accurate, although
the linear system is severely ill-conditioned. For a graphical presentation of the
calculated solutions compared to the true solutions refer to the Figures 1, 2, 3, 4,
5, and 6, respectively.

5.4 Nyström interpolation

Note that by using Tikhonov regularization we obtain an integral equation of the
second kind

(K∗K + αI) ρ = K∗f. (19)
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(a) True solution q2
z

which is to be
determined.
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(b) Calculated solution with the
Tikhonov method, α = 5.8594· 10−3,
and error δ = 0.1%.

Figure 1. An ill-posed inverse problem over a spherical surface.
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(a) True solution q2
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(b) Calculated solution with the
Tikhonov method, α = 5.8594· 10−3,
and error δ = 0.1%.

Figure 2. An ill-posed inverse problem over an ellipsoidal surface.
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(b) Calculated solution with the
Tikhonov method, α = 4.8829· 10−4,
and error δ = 0.1%.

Figure 3. An ill-posed inverse problem over a cubic surface.

That means, we can apply the Nyström interpolation (cf. [5, Section 5.4.1]) to (19)
to obtain the solution at every point P ∈ Γ. Discretizing (19) yields

αρ(P ) +

nv∑

j=1

wjk(vj , P )

nv∑

m=1

wmk(vj , vm)ρ(vm) =

nv∑

j=1

wjk(vj , P )f(vj)

⇔ ρ(P ) =
1

α

nv∑

j=1

wjk(vj , P )

[
f(vj) −

nv∑

m=1

wmk(vj , vm)ρ(vm)

]
(20)
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(b) Calculated solution with the
Tikhonov method, α = 2.9297· 10−3,
and error δ = 0.1%.

Figure 4. An ill-posed inverse problem over a L-shaped surface.
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(b) Calculated solution with the
Tikhonov method, α = 7.3243· 10−4,
and error δ = 0.1%.

Figure 5. An ill-posed inverse problem over a tetrahedral surface.
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(b) Calculated solution with the
Tikhonov method, α = 1.9531· 10−3,
and error δ = 0.1%.

Figure 6. An ill-posed inverse problem over an elliptic paraboloidal surface.

which can be solved for any point P on the surface Γ as shown in [19, Section
6.2.13].

When we use the spherical example, we have obtained the solution ρ at 768 mid-
points with α = 5.8594· 10−3 and ε = 0.0037. Using the interpolation (20), we are
able to calculate the solution at the remaining 258 vertices of the triangulation of
the surface Γ. The maximum error between the solution at those vertices compared
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with the true solution is given by 0.00371.

6. Summary and outlook

A program written in Matlab is used to approximate linear Fredholm integral
equations of the first kind over surfaces with the Nyström method. It is based on a
boundary element package (BIEPACK) written in Fortran which solves Fredholm
integral equations of the second kind. The direct problem is solved accurately as
illustrated in §5.2.

The constructed examples in §5.3 are extremely ill-posed linear integral equa-
tions of the first kind. Using standard methods, one would fail to obtain accurate
numerical results. But the Tikhonov method yields accurate results, although the
right hand side function is disturbed by δ = 0.1%. The regularization parameter
α is calculated automatically by a simple bisection method which uses the interval
[10−8, 1]. Every example fulfills the stopping rule and yields accurate results. The
number of iteration steps of the bisection method varies between 6 and 11. Because
the Tikhonov method yields a linear integral equation of the second kind over a
surface Γ, we can calculate the solution at every point P ∈ Γ by the Nyström
interpolation.

The numerical results of the L-shaped block and the cubical surface examples are
very accurate compared to the curved surface examples, although the discretized
matrix has a large condition number and we have small errors on the right hand side
functions. Also, the numerical results over the curved surfaces are very accurate.

In future work we would like to apply this idea to integral equations obtained by
solving the inverse scattering problems (cf. [7, 22]).
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Appendix A. The data functions

f1(P ) =
4

33
r4π

[
3r10 + 15r8c1 + 110r6c2 + 198r4c3 + 99r2c4 + 11c5

]
,

c1 = p2
x + p2

y + 9p2
z, c2 = p4

x + p4
y + 7p4

z,
c3 = p6

x + p6
y + 5p6

z, c4 = p8
x + p8

y + 3p8
z,

c5 = p10
x + p10

y + p10
z ,

where r denotes the radius of the sphere.

f2(P ) =
4

429
ab3π

[
c1 + 143c2 + 1430c3 + 195c4 + 2574b4c5 + 1287c6 + c7 + c8

]
,

c1 = 36b10 + 3a10, c2 = p10
x + p10

y + p10
z ,

c3 = a6p4
x + b6p4

y, c4 = a8p2
x + b8p2

y,
c5 = p6

y + 5p6
z, c6 = a2p8

x + b2p8
y,

c7 = 2574a4p6
x + 3861b2p8

z, c8 = 10010b6p4
z + 1755b8p2

z,

where a, b and c are constants describing the ellipsoid.

f3(P ) =
1

90
r6(−465pxpy − 465pxpz − 465pypz + 644p2

y + 644p2
x + 644p2

z),

where r denotes the side length of the cube.

f4(P ) =
388

5
p2

y +
1082

9
p2

x − 265

6
pxpz +

388

5
p2

z −
389

6
pypz −

265

6
pxpy

f5(P ) =
1

180
r4c1(2r

2 + 30c2 + 2
√

3rc3 − 15
√

3c4 + 6rc5),

c1 = 7 + 4
√

3, c2 = p2
x + p2

y + p2
z,

c3 = 5 − 9px − 9py + pz, c4 = p2
x + p2

y + p2
z,

c5 = 5px + 5py − 6pz,

where r denotes the side length of the tetrahedron.

f6(P ) =
1

110880
π(c1 + c2 + c3 +

√
5(c4 + c5 + c6)),

c1 = 28644(p3
x + p3

y + p3
z), c2 = 41283px + 13761py + 83226pz ,

c3 = −27716 − 82764p2
z , c4 = 23100(p3

x + p3
y + p3

z),
c5 = 12375py + 37950pz , c6 = 37125px − 49500p2

z − 10300.
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