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Linear Fredholm integral equations of the first kind over surfaces are less familiar than those of the second kind, although they arise in many applications like computer tomography, heat conduction, and inverse scattering. This article emphasizes their numerical treatment, since discretization usually leads to ill-conditioned linear systems. Strictly speaking, the matrix is nearly singular and ordinary numerical methods fail. However, there exists a numerical regularization method -the Tikhonov method -to deal with this ill-conditioning and to obtain accurate numerical results.

Integral equations arise in a variety of applications (cf. [START_REF] Lonseth | Sources and applications of integral equations[END_REF]). Depending on the field, one obtains Fredholm integro-differential equations (cf. [START_REF] Akyüz-Daşcioglu | A Taylor polynomial approach for solving high-order linear Fredholm integro-differential equations in the most general form[END_REF][START_REF] Dehghan | Chebyshev finite difference method for Fredholm integro-differential equation[END_REF]), Volterra integral equations (cf. [START_REF] Li | Modified method for determining an approximate solution of the Fredholm-Volterra integral equations by Taylor's expansion[END_REF]), or Fredholm integral equations (cf. [START_REF] Ghasemi | Numerical solution of linear Fredholm integral equations using sine-cosine wavelets[END_REF]). The latter case can be classified further into linear and nonlinear Fredholm integral equations of the first or second kind. Although a recent topic of research, linear Fredholm integral equations of the first kind are less familiar, since they are often ill-posed. They are usually considered only over an interval (cf. [START_REF] Groetsch | Integral equations of the first kind, inverse problems and regularization: a crash course[END_REF][START_REF] Reichel | Greedy Tikhonov regularization for large linear ill-posed problems[END_REF]).

In this article, we consider Fredholm integral equations of the first kind over surfaces in three dimensions with emphasis on their numerical treatment, since they arise in various applications in physics, computer tomography, and heat conduction problems (cf. [START_REF] Rieder | Keine Probleme mit inversen Problemen, Eine Einführung in Ihre stabile Lösung[END_REF]).

The inverse scattering problem is still under investigation with many unanswered questions (cf. [START_REF] Colton | Inverse Acoustic and Electromagnetic Scattering Theory[END_REF][START_REF] Hohage | Lecture Notes on Inverse Problems[END_REF][START_REF] Hohage | On the Numerical Solution of 3D Inverse Obstacle Scattering Problems[END_REF]). In the direct problem, the scattered field has to be calculated for a given obstacle and incident field. The inverse problem consists of finding the shape of an obstacle for given scattered and incident fields. This question arises in applications like sonar, radar, medical imaging, and geophysical exploration. The main issues are that the solution depends nonlinearly on the boundary and the reconstruction of the scattering wave from its far field is illposed.

There are several approaches to solve this inverse problem (cf. [START_REF] Kress | Numerical methods in inverse obstacle scattering[END_REF]). One method is to split the inverse scattering problem into two parts. In the linear ill-posed part, one must reconstruct the scattered wave from the far field pattern. The nonlinear well-posed part consists of finding the boundary of the object. More specifically, the integral equation of the first kind u ∞ (x) = 1 4π Γ e iκ x,y ϕ(y) dΓ y , x ∈ S 2 = x ∈ R 3 : |x| = 1 has to be solved for the density ϕ provided the far-field pattern u ∞ and a closed surface Γ is given (cf. [START_REF] Colton | Inverse Acoustic and Electromagnetic Scattering Theory[END_REF]). In order to attack this complex inverse scattering problem for arbitrary obstacles, we first consider the ill-posed part of this problem by looking at linear Fredholm integral equations of the first kind over surfaces.

The outline of this article is as follows. Section 2 gives the preliminaries about linear Fredholm integral equations of the first kind with a smooth kernel. Singular kernels are not considered here, since they are already discussed in [START_REF]An Empirical Study of the Numerical Solution of Integral Equations on Surfaces in R 3[END_REF] and [START_REF]The Numerical Solution of Integral Equations of the Second Kind[END_REF]. The next section discusses the boundary element method (BEM) for solving the first kind integral equations over a surface with emphasis on the numerical approximation. An integration scheme is presented which reduces the linear system dramatically. Another approach for more complex surfaces might be to consider meshless methods (see [START_REF] Mirzaei | A meshless based method for solution of integral equations[END_REF] for details and the description of the moving least squares (MLS) method). Section 4 is devoted to the Tikhonov regularization method and its usage. Furthermore, the discretization of the operator equation is given in detail. Section 5 illustrates numerical examples for the direct and inverse problem for several smooth and piecewise smooth surfaces and for different kernel and data functions. With the Nyström interpolation the solution can be obtained at every point. The last section gives a summary and an outlook for future work.

Fredholm integral equation of the first kind

In this section, the linear Fredholm integral equation of the first kind is presented. Fredholm integral equations of the first kind can be classified into two categories. The first has singular kernel functions, but those are not considered here. The second class consists of smooth functions k(x, y) with non-degenerate kernel. According to Hadamard, a problem is well-posed if it has a solution (existence), not more than one solution (uniqueness), and the solution depends continuously on the data (stability). Problems are called ill-posed, if they are not well-posed. Fredholm integral equations of the first kind are examples of such ill-posed problems. That is, small changes in the data cause huge changes in the unknown function f (cf. [START_REF] Groetsch | The Theory of Tikhonov Regularization for Fredholm Equations of the First Kind[END_REF]Section 1.1]). That means, the solution does not depend continuously on the data. Strictly speaking, the solution f is extremely sensitive to small changes in g(y). A method to solve an ill-posed problem approximately is called a regularization 

Kf = Γ k(x, y)f (x) dΓ x
is linear where the kernel is assumed to be smooth. For a discussion of existence and uniqueness of a solution f , refer to [START_REF] Groetsch | The Theory of Tikhonov Regularization for Fredholm Equations of the First Kind[END_REF][START_REF]Inverse Problems in the Mathematical Sciences[END_REF][START_REF] Wing | A Primer on Integral Equations of the First Kind: The Problem of Deconvolution and Unfolding[END_REF]. Note that Fredholm integral equations of the first kind over an interval are already discussed in [START_REF] Delves | Computational Methods for Integral Equations[END_REF][START_REF] Groetsch | The Theory of Tikhonov Regularization for Fredholm Equations of the First Kind[END_REF][START_REF] Kirsch | An Introduction to the Mathematical Theory of Inverse Problems[END_REF][START_REF] Rieder | Keine Probleme mit inversen Problemen, Eine Einführung in Ihre stabile Lösung[END_REF][START_REF] Wing | A Primer on Integral Equations of the First Kind: The Problem of Deconvolution and Unfolding[END_REF].

Boundary element method for solving integral equations

The boundary element method is discussed extensively in [START_REF]An Empirical Study of the Numerical Solution of Integral Equations on Surfaces in R 3[END_REF] and [START_REF]The Numerical Solution of Integral Equations of the Second Kind[END_REF] and we assume that the reader is familiar with the used notation. We briefly summarize the main points with emphasis on the numerical approximation of the Fredholm integral equation of the first kind over a surface.

Triangulation

Assume that Γ is a piecewise smooth surface in R 3 ; that means, Γ can be written as

Γ = Γ 1 ∪ • • • ∪ Γ J . (1) 
Each Γ j is divided into a triangular mesh and the collection of those is denoted by

T n = {∆ k | 1 ≤ k ≤ n} (2) 
with mesh size

δ n = max 1≤k≤n diam(∆ k ), diam(∆ k ) = max p,q∈∆ k |p -q|.
We assume, that δ n → 0 as n → ∞. Let the unit simplex in the st-plane be defined as

σ = {(s, t) | 0 ≤ s, t, s + t ≤ 1}.
Let {q 1 , . . . , q 6 } be the three vertices and three midpoints of σ given by q 1 = (0, 0), q 2 = (0, 1),

q 3 = (1, 0) q 4 = 0, 1 2 , q 5 = 1 2 , 1 2 , q 6 = 1 2 , 0 . (3) 
For each ∆ k , we assume there is a map

m k : σ 1-1 ----→ onto ∆ k , (4) 
which is used for interpolation and integration on ∆ k . Define the node points of ∆ k by v k,j = m k (q j ), j = 1, . . . , 6. The first three are the vertices and the last three are the midpoints of the sides of ∆ k . To obtain a triangulation (2) and the mapping (4), use a parametric representation for each region Γ j of (1). Assume that for each Γ j , there is a map

F j : R j 1-1 ----→ onto Γ j , j = 1, . . . , J, (5) 
where R j is a polygonal region in the plane and F j ∈ C 3 (R j ). That is, a triangulation of R j is mapped onto a triangulation Γ j . Let ∆k,j be an element of the triangulation of R j with vertices vk,1 , vk,2 and vk,3 and mesh size δ. Then the map (4) is given by

m k (s, t) = F j (uv k,1 + tv k,2 + sv k,3 ), (s, t) ∈ σ, u = 1 -s -t. (6) 
Most smooth and piecewise smooth surfaces can be decomposed as in [START_REF] Akyüz-Daşcioglu | A Taylor polynomial approach for solving high-order linear Fredholm integro-differential equations in the most general form[END_REF]. Conforming triangulations satisfying T1-T3 are considered (cf. [5, p. 188]). The refinement of ∆ k ∈ T n is done by connecting the midpoints of the three sides of ∆k giving four new triangles. This also leads to symmetry in the triangulation and cancellation of errors occurs (cf. [5, p. 173]).

Interpolation and numerical integration

For quadratic interpolation on σ, let u = 1 -s -t and define the Lagrange basis functions l j (s, t), 1 ≤ j ≤ 6, by

l 1 (s, t) = u(2u -1), l 2 (s, t) = t(2t -1), l 3 (s, t) = s(2s -1) l 4 (s, t) = 4tu, l 5 (s, t) = 4st, l 6 (s, t) = 4su.
The corresponding basis functions {l j,k (q)} on ∆ k are

l j,k (m k (s, t)) = l j (s, t), 1 ≤ j ≤ 6, 1 ≤ k ≤ n.
For a function f ∈ C(Γ), define

P n f (q) = 6 j=1 f (v j,k )l j,k (q), q ∈ ∆ k , (7) 
the piecewise quadratic isoparametric function interpolating f on the nodes of the mesh

{∆ k } for Γ. For f ∈ C 3 (Γ i ), i = 1, . . . , J , we have (cf. [5, p. 165]) f -P n f ∞ = O( δ3 n ).
To reduce integration over ∆ k to σ, use the map

m k : σ → ∆ k to obtain ∆ k f (q) dΓ q = σ f (m k (s, t))J (s, t) dσ (8)
with the Jacobian For simplicity write the right hand side of (8) as

J (s, t) = ∂m k ∂s × ∂m k ∂t (s, t) . (9) 
I(f ) = σ f (s, t) dσ.
To approximate I(f ), replace f with the quadratic polynomial given in [START_REF] Colton | Inverse Acoustic and Electromagnetic Scattering Theory[END_REF] to obtain

σ f (s, t) dσ ≈ 6 i=1 w i f (q i ), w i = σ l i (s, t) dσ, (10) 
where the weights w 1 , w 2 , and w 3 are zero and w 4 , w 5 and w 6 are 1/6. The nodes q i are given on page (3). Thus, [START_REF] Ghasemi | Numerical solution of linear Fredholm integral equations using sine-cosine wavelets[END_REF] becomes

σ f (s, t) dσ ≈ 1 6 f 0, 1 2 + f 1 2 , 1 2 + f 1 2 , 0 , (11) 
which has degree of precision 2.

Approximating the surface

For most surfaces it is difficult to find ∂m k /∂s and ∂m k /∂t. Therefore, we approximate m k (s, t) in terms of q 1 , . . . , q 6 by

m k (s, t) = 6 j=1 m k (q j )l j (s, t), (s, t) ∈ σ. (12) 
Thus, each m k is a polynomial of degree ≤ 2 in (s, t) and we have (cf. [2, p. 33])

max k max (s,t)∈σ |m k (s, t) -m k (s, t)| = O( δ3 n ).

Solving integral equations of the first kind over an approximated surface

Let {q 1 , . . . , q 6 } be the interpolation nodes within σ and let

v k,i = m k (q i ), i = 1, . . . , 6, k = 1, . . . , n, which we collect in the set V n = {v 1 . . . , v n v }.
The previous approximation technique applied to the integral equation

Γ k(P, Q)f (Q) dΓ Q = g(P ), P ∈ Γ ( 13 
)
yields the Nyström equation with

n v j=1 w j k(v i , v j )f (v j ) = g(v i ), i = 1, . . . ,
w j = i,k v j =m k (q i ) w i ∂ m k ∂s × ∂ m k ∂t (q i ) , w i = σ l i (s, t) dσ. ( 14 
)
The weights w 1 , w 2 , and w 3 are zero and w 4 , w 5 and w 6 are 1/6. The weights w j are listed in [START_REF] Kleefeld | Numerical results of linear Fredholm integral equations of the first kind over surfaces[END_REF]Example 10]. Thus, ( 13) is approximated by the n v × n v linear system Kf = g where K is the n v × n v matrix with the entries

w j k(v i , v j ), f is an n v -vector [f (v 1 ), . . . , f (v n v )] T and g is an n v -vector [g(v 1 ), . . . , g(v n v )] T .
Hence, the obtained linear system is of smaller size.

Regularization methods

In this chapter we introduce a well-known method which produces a stable approximation for linear ill-posed operator equations of the form

Kx = y, (15) 
where K : X → Y is a linear and bounded operator between Hilbert spaces X and Y and y ∈ R(X ). The regularization method is able to calculate approximations even if the solution x does not depend continuously on the data y, which means that the inverse of the operator is unbounded, K -1 = ∞. Furthermore, the data are perturbed by noise δ which is assumed to be known, i.e.

y δ -y Y ≤ δ.
The method of interest is the Tikhonov regularization. For more details on regularization theory for equations of the first kind as well as the Tikhonov method, refer to [START_REF] Groetsch | The Theory of Tikhonov Regularization for Fredholm Equations of the First Kind[END_REF][START_REF] Hanke | Conjugate Gradient Type Methods for Ill Posed Problems[END_REF][START_REF] Kirsch | An Introduction to the Mathematical Theory of Inverse Problems[END_REF][START_REF] Rieder | Keine Probleme mit inversen Problemen, Eine Einführung in Ihre stabile Lösung[END_REF].

Tikhonov regularization

We want to solve [START_REF] Hohage | Lecture Notes on Inverse Problems[END_REF] with noisy data y δ . A common way to obtain a solution is to determine the best fit in the sense that we minimize the functional

J (x) = Kx -y δ 2
Y in X . However, the solution does not depend continuously on the data. To ensure stability, we add a penalty term to the previous functional. This gives the Tikhonov functional

J α (x) = Kx -y δ 2 Y + α x 2 Y for x ∈ X
with regularization parameter α > 0. The Tikhonov functional is Fréchet differentiable for every α > 0 with the Fréchet derivative

J α (x)h = 2Re K * (Kx -y δ ) + αx, h , since J α (x + h) -J α (x) -J α (x)h = Kh 2 Y + α h 2 Y holds.
The Tikhonov functional J α (x) has a unique minimum x α,δ in X for all y δ ∈ Y and α > 0. This minimum is also the unique solution of the normal equation

(K * K + αI)x α,δ = K * y δ
where K * denotes the adjoint operator of K. The operator K * K + αI is boundedly invertible; that means, x α,δ depends continuously on y δ .

To see this, let x α,δ be the minimum of the Tikhonov functional J α (x). By the Fréchet differentiability and by the definition of a local minimum, we obtain J (x α,δ )h = 0 for all h ∈ X . Using h = K * (Kx -y δ ) + αx yields

(K * K + αI)x α,δ = K * y δ .
Note that the bounded invertibility of K * K + αI follows from the Lax-Milgram Theorem and from the inequality

Re (K * K + αI)x, x = Kx 2 Y + α x 2 Y ≥ α x 2 Y .
Finally, we note that x α,δ , defined by x α,δ = (K * K + αI) -1 (K * y δ ) minimizes J α .

Obviously, the function λ(t) = J α (x α,δ + th) is a polynomial of degree two with λ ≥ 0 and λ (0) = 0 for all h ∈ X \{0}, and therefore λ(t) ≥ λ(0) for all t ∈ R with equality only for t = 0. In general, the regularization parameter α affects two different trends. If α is chosen to be large, then the errors in y δ will be damped. Otherwise, if α is chosen to be small, then J α will be a good approximation of J , but the error affects the solution. To choose a good regularization parameter, we use the Morozov's discrepancy principle. It says that one should take the largest regularization parameter α = α(δ, y δ ) such that the residual Kx α,δ -y δ Y is less than or equal to τ δ for a fixed τ ≥ 1. That is, we find

α(δ, y δ ) = sup Kx α,δ -y δ Y ≤ τ δ with α > 0
where τ ≥ 1 is fixed. That means, we should not satisfy the operator equation more accurately than the known noise error δ. It can be shown that the function α → Kx α,δ -y δ Y is monotonously increasing, thus we only need to find α such that

τ 1 δ ≤ Kx α,δ -y δ Y ≤ τ 2 δ for 1 ≤ τ 1 < τ 2
holds. We can use the bisection method to find such α. In order to use the previously described regularization methods, we have to discretize the operator K and its adjoint K * (cf. [START_REF] Kleefeld | Numerical results of linear Fredholm integral equations of the first kind over surfaces[END_REF]Section 5.4]). We consider the integral operator K : L 2 (Γ) → L 2 (Γ) given by

Kf (P ) = Γ k(P, Q)f (Q) dΓ Q , P ∈ Γ (16) with kernel k ∈ L 2 (Γ × Γ) and f ∈ L 2 (Γ).
Discretizing [START_REF] Hohage | On the Numerical Solution of 3D Inverse Obstacle Scattering Problems[END_REF] yields

Kf (P ) ≈ n v j=1 w j k(P, v j )f (v j )
with weights w j given in ( 14) and node points V n = {v 1 . . . , v n v }. Using the same nodes, one obtains

Kf (v i ) ≈ n v j=1 w j k(v i , v j )f (v j ), i = 1, . . . , n v . (17) 
Thus, we obtain the n v × n v matrix K with entries w j k(v i , v j ).

Next, we discretize the adjoint operator of K. For the surface Γ the integral operator

K * : L 2 (Γ) → L 2 (Γ) is given by K * g(Q) = Γ k(P, Q)g(P ) dΓ P , Q ∈ Γ ( 18 
)
with kernel k ∈ L 2 (Γ × Γ) and g ∈ L 2 (Γ). Discretizing (18) yields

K * g(Q) ≈ n v j=1 w j k(v j , Q)g(v j )
with weights w j and node points V n = {v 1 . . . , v n v }. Using the same nodes, one obtains

K * g(v i ) ≈ n v j=1 w j k(v j , v i )g(v j ), i = 1, . . . , n v .
Thus, we obtain the n v × n v matrix K * with entries w j k(v j , v i ). Finally, we calculate K * [Kf (P )] (Q), since we also need it for the regularization 

K * h(Q) ≈ n v m=1 w m k(v m , Q)h(v m ) ≈ (17) n v m=1 w m k(v m , Q) n v j=1 w j k(v m , v j )f (v j ) = n v j=1 n v m=1 w m k(v m , Q)w j k(v m , v j )f (v j ).
Using the same nodes, one obtains

n v j=1 n v m=1 w m k(v m , v i )w j k(v m , v j )f (v j ), i = 1, . . . , n v .
We get the n v × n v matrix K * K with entries

n v m=1 w m k(v m , v i )w j k(v m , v j ).
Note that we obtain the same entries when we multiply K * and K obtained from above. To calculate the entries for K * K at the position (i, j), we have to multiply the i th row of the matrix K * with the j th column of K. Thus, each entry of K * K is given by

n v m=1 w m k(v m , v i )w j k(v m , v j ).

Numerical results

In this section, numerical results for several linear Fredholm integral equations of the first kind over different surfaces are presented. The considered integral equation is

Γ k(P, Q)g(Q) dΓ Q = f (P ), P ∈ Γ.

Notations

The components of the points P and Q on a surface are given by P = [p x , p y , p z ] T and Q = [q x , q y , q z ] T , respectively. The errors are measured in the discrete 2 -norm

x 2 = 1 N N i=1 |x i | 2 ,
where N denotes the number of midpoints of the triangulation. Furthermore, we denote the normal distributed random error with mean µ = 0 and standard devi- ation σ on the right hand side function f (P ), P ∈ Γ with δ. We assume that

f δ -f 2 ≤ δ,
where δ is a known noise level. We denote the error between the true solution g T and the calculated solution g C by and the error of the defect with ˆ . The parameters of the stopping rule of the Tikhonov method are τ 1 = 1, τ 2 = 1.1 and the interval for α is [10 -8 , 1]. The number of bisection steps is denoted by B. The discretization of the operators is performed as explained in Section 4.2, and the colored surface represents the solution over the surface, since we cannot plot in 4D.

The direct problem

In this section, the direct problem is presented. We calculate the right hand side function provided the kernel function and the true solution are known. This will show that the integration over a surface works well as shown in Table 1. Note that we observe superconvergence at the collocation nodes. Define the estimated order of convergence (EOC) by

EOC = log 2 (E N /E 4N ) ,
where

E N = g -g N ∞
denotes the maximum error between the calculated solution g N and the exact solution g. The EOC seems to converge to four as n is getting large; that is, we obtain a rate of O δ4 n for smooth surfaces. This result has already been stated in [START_REF] Chien | Piecewise polynomial collocation for integral equations with a smooth kernel on surfaces in three dimensions[END_REF].

Example I

The kernel function

K(P, Q) is 1 and ρ(Q) = q 2
x . The surface is a sphere with radius 1. It is easy to check with MAPLE c that the right hand side function f (P ) is 4π/3.

Example II

The kernel function K(P, Q) is given by ∂ ∂n Q |P -Q| 2 and ρ(Q) = 1. The surface is an ellipsoid with a = 1, b = 0.75 and c = 0.5. The function f (P ) is given by 8πabc.

Example III

The kernel function K(P, Q) and the surface are the same as in Example II. The function ρ(Q) is q 2 z . The function f (P ) is 8πabc 

q 2 z δ = 0.1% Ellipsoid a = 1.1, b = c = 1 (px -qx) 10 + (py -qy) 10 + (pz -qz) 10 f 2 (P ) q 2 z δ = 0.1% Cube r = 1 |P × Q| 2 f 3 (P ) q 2 x + q 2 y + q 2 z δ = 0.1% L-block b |P × Q| 2 f 4 (P ) q 2 x + q 2 y + q 2 z δ = 0.1% Tetrahedron r = 1 |P -Q| 2 f 5 (P ) q 2 z δ = 0.1% Paraboloid a = b = c = 1 (px -qx) 3 + (py -qy) 3 + (pz -qz) 3 f 6 (P ) q 2 x δ = 0.1%
a See the Appendix A for the detailed data functions.

b The L-shaped surface can be described by 

[0, 1] × {[0, 1] × [0, 2] ∪ [0, 2] × [0, 1]}.

The inverse problem

In this section, the inverse problem is considered. We will see that we can obtain a stable approximation of the function ρ(Q) for different surfaces, kernels, and right hand sides with the Tikhonov method.

Next, we consider a spherical, ellipsoidal, cubical, L-shaped, tetrahedral, and elliptic paraboloidal surface. For the setup for each example refer to Table 2. There one finds the description of the surface, the used kernel, data and solution functions, and the added error. The details of the data functions are listed in Appendix A to not impede the reading flow.

The numerical results for the six different surfaces are listed in Table 3. In this table the number of midpoints of the surface, the number of bisection steps, the regularization parameter, the error of the defect and the absolute error between the calculated and true solution are listed. In addition, the condition number of the discretized kernel matrix is presented. For more surfaces refer to [START_REF] Kleefeld | Numerical results of linear Fredholm integral equations of the first kind over surfaces[END_REF].

As one can see in Table 3 the numerical results are very accurate, although the linear system is severely ill-conditioned. For a graphical presentation of the calculated solutions compared to the true solutions refer to the Figures 1, 2, 3, 4, 5, and 6, respectively.

Nyström interpolation

Note that by using Tikhonov regularization we obtain an integral equation of the second kind z which is to be determined. z which is to be determined. x + q 2 y + q 2 z which is to be determined. That means, we can apply the Nyström interpolation (cf. [START_REF]The Numerical Solution of Integral Equations of the Second Kind[END_REF]Section 5.4.1]) to [START_REF] Kleefeld | Numerical results of linear Fredholm integral equations of the first kind over surfaces[END_REF] to obtain the solution at every point P ∈ Γ. Discretizing [START_REF] Kleefeld | Numerical results of linear Fredholm integral equations of the first kind over surfaces[END_REF] yields x + q 2 y + q 2 z which is to be determined. z which is to be determined. x which is to be determined. which can be solved for any point P on the surface Γ as shown in [START_REF] Kleefeld | Numerical results of linear Fredholm integral equations of the first kind over surfaces[END_REF]Section 6.2.13].

(K * K + αI) ρ = K * f. (19) 
αρ(P ) + n v j=1 w j k(v j , P ) n v m=1 w m k(v j , v m )ρ(v m ) = n v j=1 w j k(v j , P )f (v j ) ⇔ ρ(P ) = 1 α n v j=1 w j k(v j , P ) f (v j ) - n v m=1 w m k(v j , v m )ρ(v m ) (20 
When we use the spherical example, we have obtained the solution ρ at 768 midpoints with α = 5.8594• 10 -3 and = 0.0037. Using the interpolation [START_REF] Lonseth | Sources and applications of integral equations[END_REF], we are able to calculate the solution at the remaining 258 vertices of the triangulation of the surface Γ. The maximum error between the solution at those vertices compared 

with the true solution is given by 0.00371.

Summary and outlook

A program written in Matlab is used to approximate linear Fredholm integral equations of the first kind over surfaces with the Nyström method. It is based on a boundary element package (BIEPACK) written in Fortran which solves Fredholm integral equations of the second kind. The direct problem is solved accurately as illustrated in §5.2.

The constructed examples in §5.3 are extremely ill-posed linear integral equations of the first kind. Using standard methods, one would fail to obtain accurate numerical results. But the Tikhonov method yields accurate results, although the right hand side function is disturbed by δ = 0.1%. The regularization parameter α is calculated automatically by a simple bisection method which uses the interval [10 -8 , 1]. Every example fulfills the stopping rule and yields accurate results. The number of iteration steps of the bisection method varies between 6 and 11. Because the Tikhonov method yields a linear integral equation of the second kind over a surface Γ, we can calculate the solution at every point P ∈ Γ by the Nyström interpolation.

The numerical results of the L-shaped block and the cubical surface examples are very accurate compared to the curved surface examples, although the discretized matrix has a large condition number and we have small errors on the right hand side functions. Also, the numerical results over the curved surfaces are very accurate.

In future work we would like to apply this idea to integral equations obtained by solving the inverse scattering problems (cf. [START_REF] Colton | Inverse Acoustic and Electromagnetic Scattering Theory[END_REF][START_REF] Kress | Numerical methods in inverse obstacle scattering[END_REF]). 
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 21 Fredholm integral equation of the first kind)We denote the equation of the formΓ k(x, y)f (x) dΓ x = g(y), y ∈ Γa Fredholm integral equation of the first kind, where Γ is a closed and bounded surface in R 3 . The given functions k(x, y) and g(y) are called the kernel of the equation and the data, respectively. The solution f is an unknown function which is to be determined.

4 . 2

 42 Discretization of the integral operators K, K * and K * K

  discretization of K * h(Q) with h(Q) = Kf (P ) results in

  True solution q 2

  Calculated solution with the Tikhonov method, α = 5.8594• 10 -3 , and error δ = 0.1%.

Figure 1 .

 1 Figure 1. An ill-posed inverse problem over a spherical surface.

  True solution q 2

  Calculated solution with the Tikhonov method, α = 5.8594• 10 -3 , and error δ = 0.1%.

Figure 2 .

 2 Figure 2. An ill-posed inverse problem over an ellipsoidal surface.

  Calculated solution with the Tikhonov method, α = 4.8829• 10 -4 , and error δ = 0.1%.

Figure 3 .

 3 Figure 3. An ill-posed inverse problem over a cubic surface.

  True solution q 2

  Calculated solution with the Tikhonov method, α = 2.9297• 10 -3 , and error δ = 0.1%.

Figure 4 .

 4 Figure 4. An ill-posed inverse problem over a L-shaped surface.

  Calculated solution with the Tikhonov method, α = 7.3243• 10 -4 , and error δ = 0.1%.

Figure 5 .

 5 Figure 5. An ill-posed inverse problem over a tetrahedral surface.

  True solution q 2

  Calculated solution with the Tikhonov method, α = 1.9531• 10 -3 , and error δ = 0.1%.

Figure 6 .

 6 Figure 6. An ill-posed inverse problem over an elliptic paraboloidal surface.

f 5 (c 2 = p 2 x + p 2 y + p 2 z , c 3 = 5 -

 52235 9p x -9p y + p z , c 4 = p 2 x + p 2 y + p 2 z , c 5 = 5p x + 5p y -6p z ,where r denotes the side length of the tetrahedron.

f 6 ( 1 + c 2 + c 3 + √ 5 (c 4 +

 61254 c 5 + c 6 )), c 1 = 28644(p 3 x + p 3 y + p 3 z ), c 2 = 41283p x + 13761p y + 83226p z , c 3 = -27716 -82764p 2 z , c 4 = 23100(p 3 x + p 3 y + p 3 z ), c 5 = 12375p y + 37950p z , c 6 = 37125p x -49500p 2 z -10300. Page 16 of 16 URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com International Journal of Computer Mathematics

Table 1 .

 1 Absolute maximum error between the calculated solution g N and the exact solution g and estimated order of convergence.

	N	Example 1		Example 2		Example 3	
	12 48 192 768 3072	4.9224• 10 -1 6.9362• 10 -2 5.6772• 10 -3 3.8181• 10 -4 2.4314• 10 -5	2.8 3.6 3.9 4.0	9.6014• 10 -1 1.3301• 10 -1 1.1427• 10 -2 7.7630• 10 -4 4.9547• 10 -5	2.8 3.5 3.9 4.0	1.1394• 10 -1 1.6225• 10 -2 1.2309• 10 -3 8.1183• 10 -5 5.1457• 10 -6	2.8 3.7 3.9 4.0

Table 2 .

 2 The considered examples with different surfaces Γ, kernels k(P, Q), data f (P ) and solutions g(Q). qx) 10 + (pyqy) 10 + (pzqz) 10 f 1 (P )
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Table 3 .

 3 Results

	Surface Γ (N )	B	α	ˆ		κ
	Sphere (768)	8	5.8594• 10 -3	0.00105482	0.0037	1.6563• 10 20
	Ellipsoid (768)	8	5.8594• 10 -3	0.00105368	0.0093	3.9516• 10 20
	Cube (1152)	10	4.8829• 10 -4	0.00101308	4.8387• 10 -4	1.7210• 10 23
	L-block (672)	9	2.9297• 10 -3	0.00106680	4.4179• 10 -4	4.8135• 10 22
	Tetrahedron (384)	11	7.3243• 10 -4	0.00104142	0.0493	7.1267• 10 19
	Paraboloid (768)	8	1.9531• 10 -3	0.00107592	0.0015	6.2739• 10 20

  3r 10 + 15r 8 c 1 + 110r 6 c 2 + 198r 4 c 3 + 99r 2 c 4 + 11c 5 , c 1 = p 2 x + p 2 y + 9p 2 z , c 2 = p 4 x + p 4 y + 7p 4 z , c 3 = p 6 x + p 6 y + 5p 6 z , c 4 = p 8 x + p 8 y + 3p 8 z , c 5 = p 10 x + p 10 y + p 10 z , where r denotes the radius of the sphere. f 2 (P ) = 4 429 ab 3 π c 1 + 143c 2 + 1430c 3 + 195c 4 + 2574b 4 c 5 + 1287c 6 + c 7 + c 8 , c 1 = 36b 10 + 3a 10 , c 2 = p 10 x + p 10 y + p 10 z , c 3 = a 6 p 4 x + b 6 p 4 y , c 4 = a 8 p 2 x + b 8 p 2 y , c 5 = p 6 y + 5p 6 z , c 6 = a 2 p 8 x + b 2 p 8 y , c 7 = 2574a 4 p 6 x + 3861b 2 p 8 z , c 8 = 10010b 6 p 4 z + 1755b 8 p 2 z , where a, b and c are constants describing the ellipsoid. (-465p x p y -465p x p z -465p y p z + 644p 2 y + 644p 2 x + 644p 2 z ), where r denotes the side length of the cube.
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