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We consider the following family of definite integrals:

Its explicit computation cannot be found in the traditional table books for general values of the parameters. It cannot be computed by algebraic manipulators either. Mathematica 7.0 computes the integral for some particular (low) values of m. In this paper we compute this family of integrals for general values of the parameters in terms of well known special functions: Gamma and Exponential integrals. From this computation, it is then straightforward to design a code for its evaluation with Mathematica and incorporate those integrals to the Mathematica library of integrals. We have compared the speed of computation of that integral for m = 1, 3 by using our code on the one hand and the command Integrate of Mathematica 7.0 on the other hand, concluding that our code is much faster.

Introduction

Because of its frequent use in many branches of pure and applied sciences, it is interesting to have at our disposal a data base of integrals as large as possible. Important table books of integrals like for example [START_REF] Gradstein | Tables of Series, Products and Integrals[END_REF] or [START_REF] Prudnikov | Integrals and series[END_REF] contain many integrals that frequently appear in practice, although obviously those books are far from being exhaustive. The symbolic manipulator Mathematica incorporates most of the integrals contained in the table books: a large selection of definite and indefinite integrals of elementary as well as special functions. The purpose of this paper is to enlarge that selection of known integrals, adding the following family of integrals to the list:

Ω m n,k (x, λ) := ∞ 0 t n (t -λ) k e -xt m dt,
x > 0, m, k ∈ N, λ ∈ C \ {R + ∪ 0}, n = 0, 1, 2 . . . This family of integrals contains two complex parameters and three integer parameters. The computation of these integrals has an interest on its own because of the simplicity of the integrand. This family of integrals is the generalized Stieltjes transform [START_REF] Zayed | Handbook of Functions and Generalized Function Transformations[END_REF] of the generalized gamma distribution t n e -xt m . These integrals also have an interest in the design of asymptotic methods for integrals of the form

C e -xf (t) g(t)dt, x > 0, |x| → ∞, (2) 
with C a real interval or complex path. Traditional text books in asymptotic like for example [START_REF] Blestein | Asymptotic Expansions of Integrals[END_REF] or [START_REF] Wong | Asymptotic Approximations of Integrals[END_REF] contain several chapters devoted to this kind of integrals (Laplace and saddle point methods). Many special functions have integral representations of the form (2). These facts justify the interest on the approximation of this kind of integrals. More precisely, in [START_REF] López | A systematic "saddle point near a pole" asymptotic method with application to the Gauss Hypergeometric function[END_REF] we have designed a new method to calculate asymptotic expansions of this kind of integrals whose phase function f (t) has a minimum near of a pole of the function g(t) (they are also allowed to coalesce). And this asymptotic method requires the computation of the family of integrals (1) because the coefficients of the asymptotic expansion are given in terms of (1). The family of integrals (1) satisfy the following properties:

1. Consider m, k ∈ N and n = 0, 1, 2, . . ..

1.1. For λ = 0, x > 0 and n + 1 > k, Ω m n,k (x, 0) = 1 m Γ n -k + 1 m x k-n-1 m . (3) 
1.2. For x = 0, λ ∈ C \ {R + ∪ 0} and n + 1 < k,

Ω m n,k (0, λ) = (-λ) n-k+1 β(n + 1, k -n -1). ( 4 
) 1.3. For x > 0, λ ∈ C \ {R + ∪ 0} and m = 1, Ω 1 n,k (x, λ) = n! (-λ) n-k+1 U (n + 1, n + 2 -k, -xλ). (5) 1 
.4. For x > 0, λ ∈ C \ {R + ∪ 0} and k = 1, Ω m n,1 (x, λ) = λ n m   m-1 j=0 λ j x j/m Γ(1 -j/m) e λ m x E 1-j/m [-λ m x] + n j=0 Γ(j/m) λ j x j/m   . (6) 
In these equations U (a, b, x) is the confluent hypergeometric function of the second kind [[1], Chap. 13] and E a [x] is the Generalized exponential integral [ [START_REF] Abramowitz | Handbook of mathematical functions[END_REF], eq. (5.1.4), p. 228]:

E r [z] := ∞ 1 e -z t t r dt, z > 0, r ∈ C. 2. For x > 0, λ ∈ C \ {R + ∪ 0}, m, k ∈ N and n = 0, 1, 2, . . ., ∂ r ∂x r Ω m n,k (x, λ) = (-1) r Ω m n+r•m,k (x, λ) , ∀r ∈ N (7) 
and 

∂ r ∂λ r Ω m n,k (x, λ) = (k) r Ω m n,k+r (x, λ) , ∀r ∈ N. (8 
Ω m n,k (x, λ) = m x n + 1 Ω m n+m,k (x, λ) + k n + 1 Ω m n+1,k+1 (x, λ) (9) 
and

Ω m n,k (x, λ) = Ω m n+1,k+1 (x, λ) -λ Ω m n,k+1 (x, λ). ( 10 
) 4. For x > 0, λ ∈ C \ {R + ∪ 0}, m, k ∈ N and n = 0, 1, 2, . . ., Ω m n,k (x, λ) verifies the following linear partial differential equation λ ∂ ∂ λ Ω m n,k (x, λ) -mx ∂ ∂ x Ω m n,k (x, λ) = (n -k + 1) Ω m n,k (x, λ). (11) 
In the following section we prove the properties listed above. Section 3 is the core of the paper, where we give an elementary formula to compute Ω m n,k (x, λ) in terms of exponential integrals or incomplete gamma functions. Finally, in Section 4 of we propose an elementary Mathematica code based on that formula to compute Ω m n,k (x, λ). Also in Section 4, for m = 1, 3 and using Mathematica 7.0, we compare the speed of computation of this code and the speed of computation of the command Integrate.

2 Proof of properties 1-4. 1.2. Formula (4) is obtained after the change of variable 5) is trivial if we consider the integral representation of the confluent hypergeometric function of the second kind [ [START_REF] Abramowitz | Handbook of mathematical functions[END_REF], eq.(13.2.5)].

t t -λ → z in Ω m n,k (0, λ) = ∞ 0 t n (t -λ) k dt. 1.3. Formula (
1.4. Formula ( 6) can be proved by induction over n. It's trivial to see that it holds for n = 0. Now, suppose that ( 6) is true for a given n > 0 and write

Ω m n+1,1 (x, λ) = ∞ 0 e -xt m t -λ t n+1 dt = ∞ 0 e -xt m t -λ (t -λ + λ) t n dt.
Split the last integral in two integrals:

Ω m n+1,1 (x, λ) = λ ∞ 0 e -xt m t -λ t n dt + ∞ 0 e -xt m t n dt.
The first integral above is Ω m n,1 (x, λ) and the last integral is a gamma function. From here, we immediately find that ( 6) is also true with n replaced by n + 1. 3. Formula ( 9) is obtained from (1) integrating by parts:

∞ 0 t n e -xt m (t -λ) k dt = e -xt m t n+1 (n + 1)(t -λ) k ∞ 0 + m x n + 1 ∞ 0 e -xt m t n+m (t -λ) k dt+ k n + 1 ∞ 0 e -xt m t n+1 (t -λ) k+1 dt.
Formula (10) is obtained from (1) multiplying numerator and denominator in the integrand by (t -λ) and separating into two integrals.

4. From formula [START_REF] Prudnikov | Integrals and series[END_REF]:

Ω m n+m,k (x, λ) = - ∂ ∂ x Ω m n,k (x, λ).
From the recurrence relation [START_REF] Zayed | Handbook of Functions and Generalized Function Transformations[END_REF]:

Ω m n+1,k+1 (x, λ) = Ω m n,k (x, λ) + λ Ω m n,k+1 (x, λ) . Applying formula (8): Ω m n,k+1 (x, λ) = 1 k ∂ ∂ λ Ω m n,k (x, λ).
If we insert these last three results into (9) we obtain (11).

Evaluation of the integral (1)

The computation of the family of integrals ( 1) is given in Theorem 1 below. That computation requires the following two preliminary lemmas.

Lemma 1 For x > 0, m ∈ N and λ ∈ C \ {R + ∪ 0} the following identity holds:

∞ 0 e -xt m t -λ dt = 1 m m-1 j=0 λ j x j/m Γ(1 -j/m) e λ m x E 1-j/m [-λ m x]. (12) 
Proof. Denote

I m (x) := ∞ 0 e -xt m t -λ dt
and derive with respect to x under the integral sign. It is straightforward to see that I m (x) is a solution of the following linear differential equation:

y (x) + λ m y(x) = F m (x), (13) 
with

F m (x) := - m-1 j=0 λ j ∞ 0 e -x t m t m-j-1 dt = - m-1 j=0 λ j Γ(1 -j/m) m x 1-j/m .
The integral I m (x) also satisfies the boundary condition:

lim x→∞ I m (x) = 0, ∀ m ∈ N, λ ∈ C \ {R + ∪ 0}. ( 14 
)
The general solution of the differential equation ( 13) is: The integral I m (x) is one of these solutions, the solution that we select by imposing the boundary condition ( 14). This condition imposes K = 0 and then we obtain (12).

y(x) = m-1 j=0 λ j Γ(1 -j/m) m e λ m x x j/m E 1-j/m [-λ m x] + K , K ∈ R .
Remark 1. By using the relation E n [z] = z n-1 Γ(1 -n, z) (see for example [START_REF] Abramowitz | Handbook of mathematical functions[END_REF], equation (5.1.45), p. 230), we have that I m (x) can be cast in terms of the Incomplete Gamma functions instead of exponential integrals:

∞ 0 e -xt m t -λ dt = m-1 j=0 λ j Γ(1 -j/m) m (-λ m ) j/m e λ m x Γ(j/m, -λ m x). Lemma 2 Consider the generalized Stieltjes transform on [0, ∞) of a function f (t) ∈ L 1 [0, ∞): F (λ , k) = ∞ 0 f (t) (t -λ) k dt, k = 1, 2, 3 . . . Then F (λ , k) = 1 (k -1)! ∂ k-1 F (λ , 1) ∂λ k-1 , ∀ k = 2, 3 . . . (15) 
Proof. It proceeds by induction over k. By deriving F (λ , 1) (under the integral sign) with respect to λ we can see that (15) holds for k = 2. Now, suppose that ( 15) is true for a given k > 2:

∞ 0 f (t) (t -λ) k dt = 1 (k -1)! ∂ k-1 F (λ , 1) ∂λ k-1 .
If we derive both sides of the above equation with respect to λ,

k ∞ 0 f (t) (t -λ) k+1 dt = 1 (k -1)! ∂ k F (λ , 1)
∂λ k , we find that (15) is also true with k replaced by k + 1.

Theorem 1 For λ ∈ C \ {R + ∪ 0} and x > 0, the family of integrals Ω m n,k (x, λ) defined in (1) may be computed in terms of exponential integrals: 

1. For k = 1 and ∀ m = 1, 2, . . ., 1.1. Ω m 0,1 (x, λ) = 1 m m-1 j=0 λ j x j/m Γ(1 -j/m) e λ m x E 1-j/m [-λ m x]. 1.2. Ω m n,1 (x, λ) = Γ(n/m) m x n/m + λ Ω m n-1,1 (x, λ) , ∀ n = 1, 2, . . .
• Ω m n,k (x, λ) = 1 (k -1)! ∂ k-1 Ω m n,1 (x, λ) ∂λ k-1 , n = 0, 1, 2, . . . Proof. Case 1.1 is proved in Lemma 1. To prove case 1.2 we write Ω m n,1 (x, λ) = ∞ 0 e -xt m t -λ t n dt = ∞ 0 e -xt m t -λ (t -λ + λ) t n-1 dt
and split the last integral in two integrals:

Ω m n,1 (x, λ) = λ ∞ 0 e -xt m t -λ t n-1 dt + ∞ 0 e -xt m t n-1 dt.
The first integral above is Ω m n-1,1 (x, λ) and the last integral is a gamma function. From here, we immediately obtain the recurrence relation 1.2.

Case 2 is proved in Lemma 2 with f (t) = t n e -xt m .

Implementation in Mathematica

As discussed above, the family of integrals (1) does not appear in the classical table books of integrals for general values of the parameters. It appears only for special cases, like for example in [START_REF] Gradstein | Tables of Series, Products and Integrals[END_REF], equations (3.353.2), or (3.353.5), for m = 1. Likewise, Mathematica 7.0 only computes Ω m n,k (x, λ) for some particular (small) values of m. Theorem 1 invites to implement the following code in Mathematica:

In [ With this code we can enlarge the data base of integrals that Mathematica can compute analytically. But moreover, we improve the speed of computation of the Mathematica command Integrate for this family of integrals. To illustrate this fact, in the following tables we compare the time of computation of the integral (1) using the command Integrate of Mathematica 7.0 and the time of computation of (1) using our code. Each entry contains two values: the first value is the computing time of Integrate and the second value is the computing time of our code. In general, our algorithm is about 10 14 faster than the command Integrate. These times have been calculated by Mathematica 7.0 using the command Timing in a processor Intel Core 2 Duo E6420 / 2.13 GHz . The word No Result appearing in some entrances means that Mathematica has not found an analytical expression for Ω m n,k (x, λ) for the particular values of k and n there detailed. 
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	Out[10]//TableForm=		
	k 1	k 2	k 3
	n 0 0.766, 10 16	1.125, 1.13798 10 15	1., 10 16
	n 1 0.86, 10 16	4.985, 2.30371 10 15	5.343, 10 16
	n 2 1.032, 10 16	6.234, 10 16	10.265, 10 16
	n 3 1.125, 10 16	18.625, 10 16	No Result, 7.64666 10 15
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Table 1 :

 1 Computation time required by our CPU to calculate the analytical expression of the integral (1) for m = 1, several values of n and k and general values of x and λ.

	Out[7]//TableForm=		
	k 1	k 2	k 3
	n 0 1.016, 10 16	5.078, 1.1241 10 15	9.641, 10 16
	n 1 1.109, 10 16	9.234, 10 16	9.281, 10 16
	n 2 0.953, 1.1241 10 15	9.641, 10 16	12.031, 4.08007 10 15
	n 3 5.047, 9.99201 10 15	5.719, 4.08007 10 15	5.812, 10 16

Table 2 :

 2 This table contains the time that our CPU takes to calculate the analytical expression of the integral (1) for m = 3, several values of n and k and general values of x and λ.
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