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. Our goal is to make option replication computationally tractable and hence more viable as a financial tool.

Introduction

It is well known that in reality markets are incomplete, that is perfect risk transfer is not possible since some payoffs cannot be replicated by trading in marketed securities. From the work of Ross in [START_REF] Ross | Options and efficiency[END_REF], it is evident that whenever the payoff of every call or put option can be replicated then the securities market is complete. In [START_REF] Aliprantis | Markets that don't replicate any option[END_REF], the authors came to the conclusion that Ross's result is, in fact, a negative result since it asserts that in an incomplete market one cannot expect to replicate the payoff of each option even if the underlying asset is traded. In the same paper, it is proved the following remarkable complementary result: If the number of securities is less than half the number of states of the world, then (generically) not a single option can be replicated by traded securities.

In this paper, we consider an incomplete market of primitive securities, meaning that some call and put options need not be marketed and our objective is to provide an efficient method for computing maximal submarkets that replicate any option. Even though, there are several important results on option replication they cannot provide a method for the determination of the replicated options. In [START_REF] Polyrakis | Maximal submarkets that replicate any option[END_REF], by using the theory of lattice-subspaces and positive bases it is provided a procedure in order to determine the set of securities with replicated options. In particular, it is shown that the union of all maximal replicated submarkets (i.e., submarkets Y , such that any option written on the elements of Y can be replicated and Y is as large as possible) defines a set of elements such that any option written on these elements is replicated.

In earlier work, [START_REF] Katsikis | Computation of vector sublattices and minimal lattice-subspaces[END_REF][START_REF] Katsikis | A Matlab-based rapid method for computing lattice-subspaces and vector sublattices of R n : Applications in portfolio insurance[END_REF][START_REF] Katsikis | Computational methods in lattice-subspaces of C[a, b] with applications in portfolio insurance[END_REF][START_REF] Katsikis | Computational methods in portfolio insurance[END_REF][START_REF] Katsikis | Computational and Mathematical Methods in Portfolio Insurance. A MATLAB-Based Approach[END_REF], we have shown that it is possible to construct computational methods in order to efficiently compute vector sublattices and latticesubspaces of R m as well as in the general case of C[a, b]. In addition, these methods has been successfully applied in portfolio insurance and completion of security markets.

Here we consider a two-period security market X with a finite number m of states and a finite number of primitive securities with payoffs in R m and we construct computational methods in order to determine maximal replicated submarkets of X by using the theory of vector sublattices and lattice-subspaces. In particular, in the theory of security markets it is a usual practice to take call and put options with respect to the riskless bond 1 = (1, 1, ..., 1). Then, the completion F 1 (X) of X by options is the subspace of R m generated by all options written on the elements of X ∪ {1}. Since the payoff space is R m , which is a vector lattice, in the case where 1 ∈ X then F 1 (X) is exactly the vector sublattice generated by X. If, in addition, X is a vector sublattice of R m then F 1 (X) = X therefore any option is replicated, unfortunately this situation is extremely rare. In [START_REF] Polyrakis | Maximal submarkets that replicate any option[END_REF], it is proved that the market X does not contain binary vectors if and only if X does not have non trivial maximal replicated subspaces (submarkets). The main objective of this work is to provide a computational tool in order to determine maximal subspaces that replicate any option by using the theoretical background provided in [START_REF] Polyrakis | Maximal submarkets that replicate any option[END_REF] as well as various techniques for the computation of positive bases and vector sublattices taken from [START_REF] Katsikis | Computation of vector sublattices and minimal lattice-subspaces[END_REF][START_REF] Katsikis | A Matlab-based rapid method for computing lattice-subspaces and vector sublattices of R n : Applications in portfolio insurance[END_REF][START_REF] Katsikis | Computational methods in lattice-subspaces of C[a, b] with applications in portfolio insurance[END_REF][START_REF] Katsikis | Computational methods in portfolio insurance[END_REF][START_REF] Katsikis | Computational and Mathematical Methods in Portfolio Insurance. A MATLAB-Based Approach[END_REF].

The material in this paper is spread out in 6 sections. Section 2 is divided in two subsections, the first one gives the fundamental properties of lattice-subspaces and vector sublattices of R m and the second introduces us to the financial model of our analysis. In section 3, there are also two subsections where it is discussed the theoretical background for option replication followed by an algorithmic procedure in order to determine maximal replicated submarkets. Also, section 3 emphasis the most important interrelationship between positive bases, projection bases and the problem of option replication. The computational approach of the problem is presented in section 4 together with the proposed Matlab function and specific features about the code. Section 5 discusses the use of the proposed Matlab function through several examples for different subspaces and dimensions. Section 5 concludes with a subsection that includes the recorded time responses for all the tested marketed spaces. Conclusions are provided in Section 6.

Preliminaries

Mathematical background

Let R m = {x = (x(1), x(2), ..., x(m))|x(i) ∈ R, for each i}, where we view R m as an ordered space. The pointwise order relation in R m is defined by

x ≤ y if and only if x(i) ≤ y(i), for each i = 1, ..., m.
The positive cone of R m is defined by R m + = {x ∈ R m |x(i) ≥ 0, for each i} and if we suppose that X is a vector subspace of R m then X ordered by the pointwise ordering is an ordered subspace of R m with positive cone X + = X ∩ R m + . A point x ∈ R m is an upper bound (resp. lower bound) of a subset S ⊆ R m if and only if y ≤ x(resp. x ≤ y), for all y ∈ S. For a two-point set S = {x, y}, we denote by x ∨ y(resp. x ∧ y) the supremum of S i.e., its least upper bound(resp. the infimum of S i.e., its greatest lower bound). Thus, x ∨ y(resp. x ∧ y) is the componentwise maximum(resp. minimum) of x and y defined by

(x ∨ y)(i) = max{x(i), y(i)}((x ∧ y)(i) = min{x(i), y(i)}), for all i = 1, ..., m.
An ordered subspace X of R m is a lattice-subspace of R m if it is a vector lattice in the induced ordering, i.e., for any two vectors x, y ∈ X the supremum and the infimum of {x, y} both exist in X. Note that the supremum and the infimum of the set {x, y} are, in general, different in the subspace from the supremum and the infimum of this set in the initial space. An ordered subspace Z of R m is a vector sublattice or a Riesz subspace of R m if for any x, y ∈ Z the supremum and the infimum of the set {x, y} in R m belong to Z. Assume that X is an ordered subspace of R m and B = {b 1 , b 2 , ..., b n } is a basis for X. Then B is a positive basis of X if for each x ∈ X it holds that x is positive if and only if its coefficients in the basis B are positive. In other words, B is a positive basis of X if the positive cone X + of X has the form,

X + = {x = n i=1 λ i b i |λ i ≥ 0, for each i}.
Then, for any x = n i=1 λ i b i and y = n i=1 µ i b i we have x ≤ y if and only if λ i ≤ µ i for each i = 1, 2, ..., n.

Each element b i of the positive basis of X is an extremal point of X + thus a positive basis of X is unique in the sense of positive multiples. Recall that a nonzero element x 0 of X + is an extremal point of X + if, for any x ∈ X, 0 ≤ x ≤ x 0 implies x = λx 0 for a real number λ. The existence of positive bases is not always ensured, but in the case where X is a vector sublattice of R m then X always has a positive basis. Moreover, it holds that an ordered subspace of R m has a positive basis if and only if it is a lattice-subspace of R m . If B = {b 1 , b 2 , ..., b n } is a positive basis for a lattice-subspace (or a vector sublattice) X then the lattice operations in X, namely x y for the supremum and x y for the infimum of the set {x, y} in X, are given by

x y = n i=1 max{λ i , µ i }b i and x y = n i=1 min{λ i , µ i }b i , for each x = n i=1 λ i b i , y = n i=1 µ i b i ∈ X.
A vector sublattice is always a latticesubspace, but the converse is not true. Suppose that L is a finite dimensional subspace of C(Ω) generated by a set {z 1 , z 2 , ..., z r } of linearly independent positive vectors of C(Ω). If Z is the sublattice of C(Ω) generated by L and {b 1 , ..., b µ } is a positive basis for Z (µ = dim(Z)) then, a projection basis { b1 , b2 , ..., br } of Z is a basis for L such that its elements are projections of the elements of the positive basis {b 1 , ..., b µ }. The notion of projection basis has been defined in [START_REF] Polyrakis | Linear Optimization in C(Ω) and Portfolio Insurance[END_REF] for the case of C(Ω), in this article we consider that Ω = {1, 2, ..., m} hence

C(Ω) = R m .
For an extensive presentation of lattice-subspaces, positive bases and vector sublattices, we refer to [START_REF] Polyrakis | Linear Optimization in C(Ω) and Portfolio Insurance[END_REF][START_REF] Polyrakis | Finite-dimensional lattice-subspaces of C(Ω) and curves of R n[END_REF][START_REF] Polyrakis | Minimal lattice-subspaces[END_REF], for computational methods in positive bases theory we refer to [START_REF] Katsikis | Computation of vector sublattices and minimal lattice-subspaces[END_REF][START_REF] Katsikis | A Matlab-based rapid method for computing lattice-subspaces and vector sublattices of R n : Applications in portfolio insurance[END_REF][START_REF] Katsikis | Computational methods in lattice-subspaces of C[a, b] with applications in portfolio insurance[END_REF][START_REF] Katsikis | Computational methods in portfolio insurance[END_REF][START_REF] Katsikis | Computational and Mathematical Methods in Portfolio Insurance. A MATLAB-Based Approach[END_REF].

The economic model

In our economy there are two time periods, t = 0, 1, where t = 0 denotes the present and t = 1 denotes the future. We consider that at t=1 we have a finite number of states indexed by s = 1, 2, ..., m, while at t = 0 the state is known to be s=0.

Suppose that, agents trade x 1 , x 2 , ..., x n non-redundant securities in period t = 0, then the future payoffs of x 1 , x 2 , ..., x n are collected in a matrix

A = x i (j) j=1,2,...,m i=1,2,...n ∈ R m×n
where x i (j) is the payoff of one unit of security i in state j. In other words, A is the matrix whose columns are the non-redundant security vectors x 1 , x 2 , ..., x n . It is clear that the matrix A is of full rank and the asset span is denoted by X = Span(A). So, X is the vector subspace of R m generated by the vectors x i . That is, X consists of those income streams that can be generated by trading on the financial market. A portfolio is a column vector θ = (θ 1 , θ 2 , ..., θ n ) T of R n and the payoff of a portfolio θ is the vector x = Aθ ∈ R m which offers payoff x(i) in state i, where i = 1, ..., m. A vector in R m , is said to be marketed or replicated if x is the payoff of some portfolio θ (called the replicating portfolio of x), or equivalently if x ∈ X. If m = n, then markets are said to be complete and the asset span coincides with the space R m . On the other hand, if n < m, the markets are incomplete and some state contingent claim cannot be replicated by a portfolio. In the following, we assume that the riskless bond 1 = (1, 1, ..., 1) is contained in X (i.e., the riskless bond is marketed). A vector x is a binary vector if x = 0 = (0, 0, ..., 0), x = 1 and x(i) = 0 or x(i) = 1, for any i. The call option written on the vector x ∈ R m with exercise price α is the vector c(x, a) = (x -α1) + = (x -α1) ∨ 0. The put option written on the vector x ∈ R m with exercise price α is the vector p(x, a) = (α1

-x) + = (α1 -x) ∨ 0. It is clear that x -α1 = c(x, α) -p(x, α).
If both c(x, α) > 0 and p(x, α) > 0, we say that the call option c(x, α) and the put option p(x, α) are non trivial and the exercise price α is a non trivial exercise price of x. If c(x, α) and p(x, α) belong to X then we say that c(x, α) and p(x, α) are replicated.

For notation not defined here the interested reader may refer to [START_REF] Polyrakis | Maximal submarkets that replicate any option[END_REF] and the references therein.

Computation of maximal submarkets that replicate any option

Theoretical background

We present the theoretical background developed in [START_REF] Polyrakis | Maximal submarkets that replicate any option[END_REF] for the study of maximal replicated submarkets and we shall discuss some basic results, related to the theory of positive bases and projection bases.

Suppose that the security market X is generated by a given collection of linearly independent vectors x 1 , x 2 , ..., x n of R m and 1 ∈ X. Note that the vectors x 1 , x 2 , ..., x n are not presupposed to be positive. In [START_REF] Polyrakis | Maximal submarkets that replicate any option[END_REF] it is proved that a basic set of marketed securities (i.e., a set of linearly independent and positive vectors) of X always exist and that the sublattice of R m generated by a basic set of marketed securities is F 1 (X). In addition, F 1 (X) has a positive basis which is a partition of the unit.

Let us denote then, the basic tool for our analysis is the following function, introduced in [START_REF] Polyrakis | Finite-dimensional lattice-subspaces of C(Ω) and curves of R n[END_REF],

h : {1, 2, ..., m} → R n such that h(i) = (x 1 (i), x 2 (i), ..., x n (i))
β : {1, 2, ..., m} → R n such that β(i) = h(i) h(i) 1 (1) 
for each i ∈ {1, 2, ..., m} with h(i) 1 = 0. We shall refer to β as the basic function of the vectors x 1 , x 2 , ..., x n . The set

R(β) = {β(i)|i = 1, 2, ..., m, with h(i) 1 = 0},
is the range of the basic function and the cardinal number, cardR(β), of R(β) is the number of different elements of R(β). Suppose that Z denotes the sublattice of R m generated by X = [x 1 , x 2 , ..., x n ]. We shall denote by P 1 , P 2 , ..., P n , P n+1 , ..., P µ an enumeration of R(β) such that the first n vertices P 1 , P 2 , ..., P n are linearly independent and µ = dim(Z). Also, A T denotes the transpose matrix of a matrix A. Then, a procedure in order to construct the sublattice Z is given by the following combination of theorems from [START_REF] Polyrakis | Minimal lattice-subspaces[END_REF]. We shall present these results, in a suitable form for our analysis. 

(b 1 , b 2 , ..., b n ) T = A -1 (x 1 , x 2 , ..., x n ) T ,
where A is the n × n matrix whose ith column is the vector P i , for each i = 1, 2, ..., n. It is clear that in such a case Z and X coincide. (ii) Let µ > n. If I s = β -1 (P s ), and

x s = i∈Is h(i) 1 e i , s = n + 1, n + 2, ..., µ, then Z = [x 1 , x 2 , ..., x n , x n+1 , ..., x µ ]
is the vector sublattice generated by x 1 , x 2 , ..., x n and dim Z = µ.

For a positive basis {b 1 , b 2 , ..., b µ } of Z, consider the basic function γ of {x 1 , x 2 , ..., x µ } with range, R(γ) = {P 1 , P 2 , ..., P µ }. Then, the relation

(b 1 , b 2 , ..., b µ ) T = B -1 (x 1 , x 2 , ..., x µ ) T ( 2 
)
where B is the µ × µ matrix with columns the vectors P 1 , P 2 , ..., P µ , defines a positive basis for Z.

The notion of the projection basis, as described in [START_REF] Polyrakis | Linear Optimization in C(Ω) and Portfolio Insurance[END_REF], is important for our study. In particular, in the following, we are interested for a projection basis that corresponds to a positive basis. Let {z 1 , z 2 , ..., z r } be a set of linearly independent and positive vectors of R m then by using Theorem 3. by the following theorem from [START_REF] Polyrakis | Linear Optimization in C(Ω) and Portfolio Insurance[END_REF]. We shall present this result, in a suitable form for our analysis. Theorem 3.2 [8, Theorem 9]. Suppose that β is the basic function of the vectors {z 1 , z 2 , ..., z r } and P 1 , P 2 , ..., P r , P r+1 , ..., P µ is an enumeration of the range of β such that the first r vectors P 1 , P 2 , ..., P r are linearly independent while the remaining vectors z r+1 , ..., z µ are the new vectors constructed in Theorem 3.1. If L = [z 1 , z 2 , ..., z r ] is the subspace of R m generated by the vectors z 1 , z 2 , ..., z r then,

(i) Z = L ⊕ [z r+1 , ..., z µ ], (ii) {b r+1 , b r+2 , ..., b µ } = {2z r+1 , 2z r+2 , ..., 2z µ }, (iii) If b i = b i + b i , with b i ∈ L and b i ∈ [z r+1 , ..., z µ ], for each i = 1, 2, ..., r, then { b 1 , b 2 , .
.., b r } is a basis for L which is given by the formula

( b 1 , b 2 , ..., b r ) T = A -1 (z 1 , z 2 , ..., z r ) T ,
where A is the r × r matrix whose ith column is the vector 

P i , for i = 1,
λ i b i ∈ L ⇒ x = r i=1 λ i b i
Let us assume that X is generated by a basic set of marketed securities, then from Theorem 3.1 it is possible to determine a positive basis {b 1 , b 2 , ..., b µ } of F 1 (X).

As we have already mentioned, the sublattice Z, generated by a basic set of marketed securities, is exactly F 1 (X) and F 1 (X) has a positive basis which is a partition of the unit, i.e., µ i=1 b i = 1. This is possible since the notion of a positive basis is unique in the sense of positive multiples therefore we are able to extract from the positive basis {b 1 , b 2 , ..., b µ } another positive basis {d 1 , d 2 , ..., d µ } of F 1 (X) which is a partition of the unit. Therefore, let us denote by {d 1 , d 2 , ..., d µ } a positive basis of F 1 (X) which is a partition of the unit. Then, by Theorem 3.2, if

( d 1 , d 2 , ..., d r ) T = A -1 (z 1 , z 2 , ..., z r ) T ,
where A is the r × r matrix whose ith column is the vector P i , for i = 1, 2, ..., r then { d 1 , d 2 , ..., d r } is a projection basis of F 1 (X). The projection basis { d 1 , d 2 , ..., d r } is called the projection basis of X corresponding to the basis {d 1 , d 2 , ..., d µ }. The following proposition clarifies the situation. Proposition 3.3 [7, Proposition 1] Suppose that {d i } is the basis of F 1 (X) given by equation (2) of Theorem 3.1 and { d i } is the projection basis of X corresponding to the basis {d i }.

Then {b i = di di ∞ |i = 1, 2, .
.., µ} is the positive basis of F 1 (X) which is a partition of the unit and

{ b i = e di di ∞ |i = 1, 2, ..., n} is the projection basis of X corresponding to the basis {b i } of F 1 (X).
Suppose that Y is a subspace of X, then if F 1 (Y ) ⊆ X we say that Y is replicated. If, in addition, for any subspace Z of X with Y Z we have that X F 1 (Z) then Y is a maximal replicated subspace or a maximal replicated submarket of X. Note that, the replicated kernel of the market, i.e., the union of all maximal replicated subspaces of the market is the set of all elements x of X so that any option written on x is replicated. Definition 3.4 Let {b i i = 1, 2, ..., µ} be a positive basis of F 1 (X) which is a partition of the unit and let { b i i = 1, 2, ..., n} be the projection basis of X corresponding to the basis {b i }. A partition δ = {σ i |i = 1, 2, ..., k} of {1, 2, ..., n} is proper if for any r = 1, 2, ..., k, the vector w r = i∈σr b i is a binary vector with k r=1 w r = 1. If there is no proper partition of {1, 2, ..., n} strictly finer than δ, then we say that δ is a maximal proper partition of {1, 2, ..., n}.

The following theorem gives us the possibility to determine the set of securities with replicated options by using the theory of vector lattices and positive bases. Theorem 3.5 [START_REF] Polyrakis | Maximal submarkets that replicate any option[END_REF]Theorem 6] Let {b i , i = 1, 2, ..., µ} be the positive basis of F 1 (X) which is a partition of the unit and let { b i , i = 1, 2, ..., n} be the projection basis of X corresponding to the basis {b i }. If Y is a subspace of X, the following are equivalent:

(i) Y is a maximal replicated subspace of X, (ii) there exists a maximal proper partition δ = {σ i |i = 1, 2, ..., k} of {1, 2, ..., n} so that Y is the sublattice of R m generated by δ.

The set of maximal replicated submarkets of X is nonempty.

Algorithmic development of option replication

Before giving a detailed statement of the computational method, we describe the main steps of the underlying algorithmic procedure that enables us to determine maximal submarkets that replicate any option. Recall that X is the security market generated by a collection {x 1 , x 2 , ..., x n } of linearly independent vectors (not necessarily positive) of R m . Also, we have already mentioned at the beginning of subsection 3.1, if 1 ∈ X then it is possible to determine a basic set of marketed securities i.e., a set of linearly independent and positive vectors of X. This is possible through the following easy lemma: Lemma 3.6 [7, Lemma 1] If a = max{ x i ∞ |i = 1, 2, ..., n}, then at least one of the two sets of positive vectors of X

{y i = a1 -x i |i = 1, 2, ..., n}, {z i = 2a1 -x i |i = 1, 2, ..., n},

consists of linearly independent vectors.

The basic steps of an algorithmic process that will accurately implement the ideas of the previous discussion and that will lead us to the maximal replicated submarkets are the following:

(1) Use Lemma 3.6 in order to determine a basic set {y 1 , y 2 , ..., y n } of marketed securities. (2) Use Equation (1) in order to determine the basic curve β of the vectors y i .

(3) Determine the range R(β) of β. (4) Use Theorem 3.1 in order to construct the vector sublattice generated by y 1 , y 2 , ..., y n , which is exactly the completion by options F 1 (X) of X. Then, determine a positive basis {d 1 , d 2 , ..., d µ } for F 1 (X). ( 5 • Determine a basic set of marketed securities.

• Find the completion F 1 (X) of X by options in R m or find the vector sublattice generated by a finite collection of linearly independent vectors of R m . • Calculate a positive basis and a projection basis for a finite dimensional vector sublattice.

In the last part of the code, entitled Maximal proper partitions -Maximal replicated subspaces, the user can change the way that the mrsubspace function understands the values 0 and 1, according to his/her knowledge and needs. Numerical examples are presented to illustrate how the mrsubspace function operates and how to type the initial information. The user should simply retype in the same spaces the input information of his/her own working problem. We illustrate examples 1, 2 featured in [START_REF] Polyrakis | Maximal submarkets that replicate any option[END_REF] as well as some additional examples for various collections of securities in higher dimensional spaces. Recall that, since in the theory of security markets it is usual practice to take call and put options with respect to the riskless bond 1 = (1, 1, ..., 1), we consider X such that 1 ∈ X. In the special case where the initial space is a vector sublattice then the program responds with the output, X is a vector sublattice hence any option is replicated Also, in the case where Y 1 , Y 2 , ..., Y k are maximal replicated subspaces then the replicated kernel of the market is the subspace

Y = ∪ k i=1 Y i . Example 5.1 Consider the following three vectors x 1 , x 2 , x 3 in R 5 ,   x 1 x 2 x 3   =   1 0 -1 0 0 1 -1 0 2 2 0 -1 -2 -1 -1   and X = [x 1 , x 2 , x 3 ]
is the marketed space.

Note that 1 = x 1x 3 . In order to determine the maximal replicated subspaces for the above collection of vectors we use the following simple code:

>> X = [1,1,0;0,-1,-1;-1,0,-2;0,2,-1;0,2,-1]; >> [Npb,Cprb] =mrsubspace(X)
as a result we get

The 1 partition(s) are:

{1 2} {3} ReplicatedSubspace = 1 1 0 0 0 0 0 1 1 1
The 1 partition(s) are:

F o r P e e r R e v i e w O n l y {1} {2 3} ReplicatedSubspace = 1 0 0 1 1 0 1 1 0 0 Npb = 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 Cprb = 1 0 0 1 1 0 1 0 -1 -1 0 0 1 1 1 
Therefore, for the given set {x 1 , x 2 , x 3 } of primitive securities we conclude that the marketed space X has two maximal replicated subspaces. In particular, we have that {1 2} {3} is a maximal proper partition with corresponding maximal replicated subspace the subspace Y 1 = [(1, 1, 0, 0, 0), (0, 0, 1, 1, 1)] and {1} {2 3} is a maximal proper partition with corresponding maximal replicated subspace the subspace Y 2 = [(1, 0, 0, 1, 1), (0, 1, 1, 0, 0)]. The rows of the matrices Npb and Cprb are the elements of the normalized positive basis and the corresponding projection basis, respectively. Also, the replicated kernel of the market is the union

Y 1 ∪ Y 2 .
Example 5.2 Consider the following four vectors

x 1 , x 2 , x 3 , x 4 in R 6 ,     x 1 x 2 x 3 x 4     =     1 1 1 1 2 1 2 3 1 1 1 1 2 2 2 1 3 1 1 1 1 2 0 2     and X = [x 1 , x 2 , x 3 , x 4 ] is the marketed space.
Note that 1 = x3+x4 3 . As before, we apply the mrsubspace function to the given collection by using the code: The 1 partition(s) are:

>> X = [1,2,2,1;1,3,2,1;1,1,2,1;1,1,1,2;2,1,3,0;1,1,1,2]; >> [Npb,Cprb] =mrsubspace(X)
{1 2} {3 4} ReplicatedSubspace = 1 1 1 0 0 0 0 0 0 1 1 1 Npb = 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 0 Cprb = 1 0 2 0 0 0 0 1 -1 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0
Therefore, the marketed space X has one maximal replicated subspace, {1 2} {3} {4} is a maximal proper partition with corresponding maximal replicated subspace the subspace Y = [(1, 1, 1, 0, 0, 0), (0, 0, 0, 1, 0, 1), (0, 0, 0, 0, 1, 0)] and the rows of the matrices Npb and Cprb are the elements of the normalized positive basis and the corresponding projection basis, respectively. Also, the replicated kernel of the market is Y . 

         x 1 x 2 x 3 x 4 x 5 x 6 x 7           =          
0 -1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1

         
and X = [x 1 , x 2 , ..., x 7 ] is the marketed space.

Note that 1 = 1 3 (x 1 + 2x 2 + x 6 + 2x 7 ) + x 3 + x 4 + x 5 . Following the same procedure, as before, one gets X is a vector sublattice hence any option is replicated Example 5.4 Consider the following 5 vectors

x 1 , x 2 , x 3 , x 4 , x 5 in R 6 ,       x 1 x 2 x 3 x 4 x 5       =       1 2 3 4 5 6 2 0 1 0 0 1 1 1 1 1 1 1 2 1 1 3 0 0 0 0 0 0 5 4      
where following the same procedure, as before, one gets

The 1 partition(s) are:

{1 2 3 5} {4} ReplicatedSubspace = 1 1 1 0 1 1 0 0 0 1 0 0 Npb = 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 Cprb = 1 0 0 0 0 -0.2 0 1 0 0 0 -1 0 0 1 0 0 1.4 0 0 0 1 0 0 0 0 0 0 1 0.8
Therefore, the marketed space X has one maximal replicated subspace, {1 

     x 1 x 2 x 3 x 4 x 5       =       0 1 0 1 1 1 1 2 2 1 1 1 1 2 1 1 1 2 1 2 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 2 2 1 2 1 2 1 1 1 1 1 1 1      
and X = [x 1 , x 2 , ..., x 5 ] is the marketed space.

Note that 1 = x 5x 4 + x 1 . Following the same procedure, as before, and after removing irrelevant Matlab output one gets

The 1 partition(s) are: responding maximal replicated subspaces the subspaces Y 1 = [(1, 0, 1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 1, 1, 1, 1, 0, 0, 0), (0, 0, 0, 0, 0, 0, 0, 1, 1, 0), (0, 0, 0, 0, 0, 0, 0, 0, 0, 1)] and Y 2 = [(1, 0, 1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 1, 1, 1, 0, 1, 0), (0, 0, 0, 1, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 0, 0, 0, 1)],

{1} {2 3} {4} {5} ReplicatedSubspace = 1 0 1 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 The 1 partition(s) are: {1} {2} {3 4} {5} ReplicatedSubspace = 1 0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 Npb = 1 0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0 0 0 0 1 
respectively. The replicated kernel of the market is Y = Y 1 ∪ Y 2 .

Execution Times

For the purpose of monitoring the performance, we present a table with the execution times of the mrsubspace function for all the presented examples. All the numerical tasks have been performed by using the Matlab R2009a environment on an Intel(R) Pentium(R) Dual CPU T23101.46 GHz 1.47 GHz 32-bit system with 2 GB of RAM memory running on the Windows Vista Home Premium Operating System. The cumulative results are presented in Table 1 while, it is evident that the proposed numerical method, based on the introduction of the mrsubspace function, enable us to perform fast estimations for a variety of dimensions. A closer look at Example 5.4 and Example 5.5 can tell us that a manual procedure in order to determine the maximal replicated subspaces can easily be a prohibited task, while by using the mrsubspace function, an interested user, can solve the problem of option replication within a few seconds.

Conclusions

In this paper, new computational methods for option replication are presented.

In order to reach our goal, we determine those subspaces of the marketed subspace that replicate any option by introducing a Matlab function, namely mrsubspace.The results of this work can give us an important tool in order to study the interesting problem of option replication of a two-period security market in which the space of marketed securities is a subspace of R m . The experiment results, in section 5, show that our algorithm performs well. 

  Theorem 3.1 [10, Theorem 3.3, Theorem 3.6, Theorem 3.19]. Suppose that the above assumptions are satisfied. Then, (i) X is a vector sublattice of R m if and only if R(β) has exactly n points (i.e., µ = n). Then a positive basis b 1 , b 2 , ..., b n for X is defined by the formula

  1 we construct the sublattice Z of R m generated by these vectors. If dim(Z) = µ, by Theorem 3.1, a positive basis {b 1 , b 2 , ..., b µ } of Z can be determined. The basic result for calculating the projection basis that corresponds to the positive basis {b 1 , b 2 , ..., b µ } of Z is given

2 ,

 2 ..., r. This basis, { b 1 , b 2 , ..., b r } is called the projection basis of L and has the property: The r first coordinates of any element x ∈ L expressed in terms of the basis {b 1 , b 2 , ..., b µ } coincide with the corresponding coordinates of x in the projection basis, i.e., x = µ i=1

5. Use of the mrsubspace function and numerical examples 5 . 1

 51 Numerical examples

Example 5 . 3

 53 Consider the following 7 vectors x 1 , x 2 , ..., x 7 in R 10 , 

  3 5} {4} is a maximal proper partition with corresponding maximal replicated subspace the subspace Y = [(1, 1, 1, 0, 1, 1), (0, 0, 0, 1, 0, 0)]. Also, Y coincides with Taylor & Francis and I.T. Consultant the replicated kernel of the market. Example 5.5 Consider the following 5 vectors x 1 , x 2 , ..., x 5 in R 10 , 

  Therefore, the marketed space X has two maximal replicated subspaces, {1} {2 3} {4} {5} and {1} {2} {3 4} {5} are maximal proper partitions with cor-

  ) Use Theorem 3.2 in order to determine a projection basis { d 1 , d 2 , ..., d n } of X.

	can isolate a part of the code according to his/her special needs to solve different
	problems like
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Table 1 .

 1 Computation times

	Example	Execution times Dimension of the marketed space
	5.1	0.007559	5
	5.2	0.011226	6
	5.3	0.023679	10
	5.4	0.014259	6
	5.5	0.029922	10
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 [START_REF] Katsikis | Computational and Mathematical Methods in Portfolio Insurance. A MATLAB-Based Approach[END_REF]Use Proposition 3.3 in order to determine a positive basis {b 1 , b 2 , ..., b µ } of F 1 (X) which is a partition of the unit and the corresponding projection basis { b 1 , b 2 , ..., b n }. [START_REF] Polyrakis | Maximal submarkets that replicate any option[END_REF] Calculate all the possible proper partitions of the set {1, 2, ..., n}. [START_REF] Polyrakis | Linear Optimization in C(Ω) and Portfolio Insurance[END_REF] Decide which of the proper partitions created in step [START_REF] Polyrakis | Maximal submarkets that replicate any option[END_REF] are maximal proper partitions and determine the corresponding maximal replicated submarkets.

In the following section, we present the translation followed by the implementation of this algorithm in R m within a Matlab-based function named mrsubspace. In section 5, computational experiments will assess the effectiveness of this function and we shall see that the mrsubspace function provides an important tool in order to investigate replicated subspaces and produces reliable results within short CPU times.

The computational approach

We shall present the proposed computational method that enables us to determine maximal submarkets that replicate any option. The standard method used currently to determine the maximal replicated submarkets, as described in [START_REF] Polyrakis | Maximal submarkets that replicate any option[END_REF], is based on a manual processing. From section 3, it is evident that the required number of verifications for this process can be of significant size even in a relatively low-dimensional space, thus rendering the problem too difficult to solve. Our numerical method is based on the introduction of the mrsubspace function, that allow us to perform fast testing for a variety of dimensions and subspaces. The structure of the code ensures flexibility, meaning that it is convenient for applications as well as for research and educational purposes. The given security market X, generated by the linearly independent vectors x 1 , x 2 , ..., x n , must be given under a matrix notation with columns the vectors x 1 , x 2 , ..., x n . The mrsubspace function must be stored in a Matlab-accessible directory and then the input data, i.e., the matrix X, can be typed directly in the Matlab's environment. Under the following command, mrsubspace(X); the program solves the problem of option replication and prints out the maximal proper partitions as well as the corresponding maximal replicated subspaces. If X is a vector sublattice, then X = F 1 (X) and any option is replicated. In the case where the initial space X is not a vector sublattice, it is possible to produce the normalized positive basis and the corresponding projection basis with the following code, [Npb,Cprb] = mrsubspace(X)

Inside the code there are several explanations that indicate the implemented part of the algorithm. The correct performance of the mrsubspace requires the use of a set partition package created by Bruno Luong 1 . In particular, from this package, we have used the SetPartition function that lists all the partitions of a finite set and the DispPartObj function that displays the list of partitions. A user proficient in Matlab can easily use the code and modify it if needed. Especially, the user