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Abstract 

There exist many studies conducted to compare the performance of different production control mechanisms 

(PCMs) in order to determine which one performs the best under different situations. Nonetheless, most of 

these studies suffer from the problems that the PCMs are not compared with their optimal parameter settings 

in a truly multi-objective context. This paper describes how different PCMs can be compared under their 

optimal settings through generating the Pareto-optimal frontiers, in form of optimal trade-off curves in the 

performance space, by applying evolutionary multi-objective optimization to simulation models. This concept 

is illustrated with a bi-objective comparative study of the four most popular PCMs in the literature, namely 

Push, Kanban, CONWIP and DBR, on an unbalanced serial flow line in which both control parameters and 

buffer capacities are to be optimized. Additionally, it introduces the use of normalized hypervolume as the 

quantitative metric and confidence-based significant dominance as the statistical analysis method to verify the 

differences of the PCMs in the performance space. While the results from this unbalanced flow line cannot be 

generalized, it indicates clearly that a PCM may be preferable in certain regions of the performance space, but 

not others, which supports the argument that PCM comparative studies have to be performed within a Pareto-

based multi-objective context.  
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1. Introduction 

A critical issue in designing production systems is determining an effective or preferably the “optimal” 

mechanism controlling the material flow within the line. In the literature, these mechanisms are referred to as 

material flow control mechanisms, production and material flow control mechanisms, flow control 

mechanisms or, simply, production control mechanisms (PCMs). The term PCM is preferred in this paper, 

because this kind of mechanism not only addresses the problems of when to release material into the 

production line and its flow, but also when a workstation should be authorized to produce or remain idle in 

order to improve the performance of the whole line (Graves et al. 1995).  

Numerous PCMs have been proposed in the last two decades; see Graves et al. (1995) for an extensive 

literature survey. In general, PCMs are commonly classified into either push, pull or a hybrid form of these 

two. According to Spearman and Hopp (1990), a push system schedules the release of work, while a pull 

system authorizes the release of work. A push schedule is prepared in advance on the basis of demand, while 

pull authorization depends on the plant status. A push strategy, sometimes described as an open system, 

releases new material into it at a constant rate (uniform release strategy) based on either a demand forecast or 

the desired throughput rate of the system, without considering the WIP level or machine status of the line. In 

contrast, a pull control mechanism, or a closed system, has a feedback loop within the structure so that 

material release is dependent on the status of the line. The authorization of work into a line is made either to 

synchronize the work flow in the line (e.g. Kanban) or to control the overall level of work in process (WIP). 

Significant efforts have been made specifically to determine which pull mechanisms are the best. For 

example, one of the early studies was done by Bonvik et al. (1997). Without using any optimization approach, 

they conducted experiments to enumerate all possible Kanban and hybrid configurations in order to determine 

the trade-off between service level and inventory (total WIP). In the last decade, more comparative studies 

have been conducted in order to determine which PCMs perform best in various scenarios (simple flow line, 

job shop, FMS, etc). However, the main drawback of many of these comparisons is that they were conducted 

without taking the optimal settings of the PCM for the particular system into account. For example, with the 

aim of comparing Hybrid Push/Pull proposed by Hodgson and Wang (1991) and CONWIP/Pull by Bonvik et 

al. (1997), Geraghty and Heavey (2003) asked “if the eight control policies evaluated in Hodgson and Wang 

(1991) are compared under optimal inventory and safety stock levels, will the same conclusions be drawn?” 

As Framinan et al. (2003) concluded, most of these comparisons suffer from the problems caused by the lack 

of a unified framework for comparison, such that some mechanisms are not augmented with the optimal 

parameter setting when applied to the system under testing. This problem is believed to explain the 
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contradictory results found in the literature. Ideally, to achieve a fair comparison of different PCMs, the 

operating parameters of each mechanism must be the optimal setting with respect to certain performance 

metrics when applied to a particular system. While this concept seems to be trivial, it poses a number of 

practical challenges in designing real-world production systems which are usually too complicated to be 

optimized using analytical procedures (Koh and Bulfin 2004). In such cases, one has to use simulation 

approaches. On the other hand, it is clear that a particular mechanism can perform well when applied to a 

certain type of line design, but relatively poorly in another environment. For example, Chan and Ng (2002) 

have shown that a buffer allocation rule that performs well in one case may perform very poorly in others. 

There is a question whether any PCM exists that is generally considered to be superior to others in all 

situations, especially when various multiple optimization objectives have to be taken into account. It is 

therefore argued that developing a method and the corresponding toolset, in order to compare different PCMs 

applied to a system configuration during the production system design and analysis stage, is in general more 

interesting than conducting comprehensive empirical studies to find the “best” PCM for all cases.   

Based on the above mentioned motivations and arguments, this paper proposes a methodology for the 

comparison of PCMs within the context of Simulation-based multi-objective optimization (SMO). Different 

PCMs can be compared under their optimal settings through generating the Pareto-optimal frontiers by 

applying evolutionary multi-objective optimization (EMO) to simulation. The method is illustrated with a 

multi-objective comparative study of four different types of PCMs, namely Push, Kanban, CONWIP 

(Constant WIP) and DBR (Drum-Buffer-Rope), on an unbalanced serial flow line in which both control 

parameters and buffer capacities are the main decision variables. Although the method illustrated in this paper 

can be applied to problems with more than two objectives, for the sake of clarity, we limit the current 

investigations on a bi-objective optimization problem, namely simulateously maximizing throughput (TP) and 

minimizing cycle time (CT). Actually, by Little’s Law, TP = WIP/CT (Little 1992), minimizing CT infers that 

WIP will also be minimized (and this has been proved in the optimization results, see Section 4). The CT-TP 

bi-objective problem allows all the Pareto-optimal solutions generated to be effectively visualised in form of 

the CT-TP plots, as illustrated in Figure 1. The general aim of the comparison is to investigate whether the 

same TP can be attained with lower CT when a given PCM is applied to a production line. In Figure 1, two 

Pareto fronts are generated with SMO for the same production line, one with PCM A and the other with PCM 

B. For example, with the same level of CT (CT1), there is an optimal configuration of A (A1) which has higher 

TP than the optimal configuration using PCM B (B1). Similarly, by comparing A2 and B2, it can be said that 

for the same level of TP (TP2), PCM A can achieve shorter CT/WIP when compared with PCM B. In general, 

Page 3 of 43

http://mc.manuscriptcentral.com/tprs  Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

A.H.C. Ng et al. Page 4 of 22 

PCM A can be considered better than PCM B when applied to this particular line, because the optimal 

solutions from A outperform those from B. This conclusion can only be drawn by comparing the Pareto-

optimal solutions from A and B, and not with the non-optimal solutions (e.g. comparing B2 and A3 in Figure 

3).  

 

 

Figure 1. Comparing two PCMs with their Pareto-optimal settings in a CT-TP plot.  

 

While the results from this case study may provide some useful insights into the performance of the PCM 

under study, the key point here is to illustrate the methodology for the comparison of the PCM within an SMO 

context. The remainder of this paper is organized as follows. Section 2 provides a literarure review of related 

work, mainly in the field of simulation-based optimization for production systems. The full details of the 

optimal buffer allocation problem used in this study are presented in Section 3. The optimization results and 

their analyses, using the new quantitative and statistical techniques for the comparison of the PCMs within the 

SMO context, are provided in Section 4, while the conclusions of the paper are presented in Section 5.  

 

2. Literature Review 

The impact of limited buffer spaces on the performance of production lines or other types of systems, so 

called optimal buffer allocation (OBA) problems, is studied extensively in the literature (Buzacott and 

Shanthikumar 1993)(Conway et al. 1988). Generally, OBA problems can be classified into either primal or 

dual (Gershwin 1987). In a primal problem, the objective is to minimize the total buffer space subject to a 

production rate (throughput) constraint. In a dual problem, subject to a total buffer space constraint, 

maximization of the throughput is desired. Hillier and So (1991) extensively studied how the coefficient of 

variation of the machine processing times on the operations affects the buffer allocation in a balanced flow 

line. More recently, OBA for balanced lines has been studied using various meta-heuristic search methods, 

including GA (Bulgak 1995), Tabu Search (Lutz et al. 1998), Simulated Annealing (Spinellis and 

Papadopoulos 2000a); an empirical comparison of different search algorithms can be found in Lacksonen 

(2001). 

While a great deal of research has been conducted on the optimal allocation of buffer capacity in production 

systems for both types of OBA problems, there are a relatively small number of studies which address 
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unbalanced (or bottlenecked) production systems. Scientific research investigating and comparing the 

characteristics and performance of CONWIP and DBR for unbalanced flow lines can be found in the work of 

Kim et al. (2003), Koh and Bulfin (2004) and recently Takahashi et al. (2007). Koh and Bulfin proposed an 

approach using a continuous Markov process model and steady-state probability distributions to compare and 

optimize DBR and CONWIP on a three-station unbalanced line. The work concluded that DBR is better than 

CONWIP in terms of the trade-off between throughput and the cost function derived with WIP as a 

component. They restricted the investigations on a 3-workstation line with predetermined imbalance 

(processing time). As they concluded, it is difficult to study more complicated systems by analytic procedures 

and simulation approaches are needed.  

Solving OBA problems using the simulation-based optimization (SBO) approach has become more popular in 

recent contributions. The focus of Altiparmak et al. (2002)(2007) was mainly on using ANN-based 

metamodels to enhance the performance of the Simulated Annealing based search procedure. Very recently, 

Can et al. (2008) have made a comparative study to explore the effect of different stochastic components of 

GA to solve an OBA problem. Their work has recognized that OBA problems characteristically exhibit 

conflicting objectives (high TP can lead to WIP accumulation), but the optimization study concerned only 

optimizing TP. At the same time, the effect of PCMs has not been considered in these SBO studies. Gaury et 

al. (2000) have devised a generic coding system to model Kanban, CONWIP and their Hybrid into a single 

genetic representation for the OBA problems. Using SBO, they tested with a simple balanced flow line 

containing 6, 8 or 10 workstations and found that Hybrid is the best strategy. Nevertheless, the optimization 

objective considered was to seek the optimal configuration that can minimize the WIP while simultaneously 

maintaining the 99.5% fill rate (service level). A penalty function was employed in the GA to avoid any 

solutions that have a measured fill rate below the targeted fill rate. In other words, their study was not 

concerned with finding Pareto-optimal solutions. Handling OBA problems with a three-objective, multi-

criteria concern using an analytical hierarchy process to analyze the simulation outputs generated from the 

design of experiments can be found in Andijani and Anwarul (1997). Actually, the concept of comparing 

PCMs using simulation by seeking the best compromise of two or more objectives is not new: in the early 

work of Bonvik et al. (1997), experiments to enumerate all possible Kanban and hybrid configurations to 

determine the trade-off between service level and inventory (total WIP) were conducted through simulation. 

More recent studies that propose the generation of best trade-off curves to compare the performance of PCMs 

via simulation can be found in Enns (2007), Enns and Rogers (2008), and MacDonald and Gunn, (2008). 

However, all these approaches rely on experimental design and response surface methods to generate the 

Page 5 of 43

http://mc.manuscriptcentral.com/tprs  Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

A.H.C. Ng et al. Page 6 of 22 

trade-off curves. To our best knowledge, there exist no other studies that have considered the effects of PCMs 

in OBA problems, particularly for unbalanced production lines, in a truly Pareto-based multi-objective 

context.  

 

3. The Case Study 

The case study presented in this paper is designed to address a dual OBA problem for an unbalanced flow 

line, with the application of four different types of PCMs, namely Push, Kanban, CONWIP and DBR. In 

addition, by considering a flow line with a distinct bottleneck, it is interesting to investigate the effect of the 

position of the bottleneck on the overall performance of the system. This is done by explicitly setting a station 

to be a bottleneck with significantly longer processing time at three different positions (front, middle, rear) 

applied with different PCMs in different optimization runs for a production line of 15 workstations. With the 

number of stations, N, >12, this line is large enough to break most of the analytical methods (Spinellis and 

Papadopoulos 2000b). All the models were developed and optimized using FACTS Analyzer, an Internet-

enabled SBO tool specifically designed for factory flow design, analysis and optimization (Ng et al. 2007). 

Besides the integrated SMO capability using MA-NSGA-II (see Section 3.5), FACTS Analyzer facilitates the 

rapid modeling of production lines with a list of predefined modeling objects, such as Kanban, MaxWIP and 

Takt
2
, which allow system designers to rapidly apply different PCMs to a production simulation model.  

 

 

3.1 The Push Model 

 

We consider a simple unbalanced asynchronous (unpaced) serial flow line with 15 workstations
3
 and 14 inter-

station buffers (Figure 2). An asynchronous flow line is one in which a part is passed from one workstation to 

another once its processing is completed. Inter-station buffers between two sequential stations are needed to 

decouple the machines in order to cope with process variability and/or disturbances due, for example, to 

machine breakdown. Since the machines are not paced, an upstream machine may subject to blocking if the 

                                                 
2
 Takt time or Takt rate, commonly used in Lean Production as the time or rate that a completed product is finished. Takt control 

means here as using the predetermined takt time to control the flowing rate of parts from one workstation to another workstation in a 

synchronised manner. 
 
3
 Since only single-machine workstations are considered, the word workstation and machine are used interchangeably in this paper. 
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immediate downstream machine is occupied and the buffer between them is full. On the other hand, a 

downstream machine will be idle (starving) if it has finished the current part and the buffer in front of it is 

empty.  

  

 

Figure 2. The push model with BN@M8. 

 

Assumptions about the machines and buffers are described in the following: 

• The flow line consists of 15 workstations with a mean processing time (t) of 4 minutes, except 

Machine 8 in the middle of the entire line, denoted as M8_BN in Figure 4, which is the bottleneck (6 

minutes). In order to test the effect of the bottleneck on the line’s performance, the basic push model 

with M8_BN can be easily modified by changing the bottleneck to M4 (front, closer to the upstream) 

or M12 (rear, closer to the downstream). The front, middle and rear bottleneck positions can hereafter 

be denoted as BN@M4, BN@M8 and BN@M12, respectively.  

• Machine M1 can never be starved. This means a new part can always be accessed as long as M1 is not 

occupied. Similarly, machine M15 can never be blocked; a part can always leave from M15 when 

completed.   

• Machine breakdown is not explicitly modeled, but the processing time at each machine is regarded to 

be an independent random variable following the log-normal probability distribution (pdf), commonly 

found in real-world processing time distribution (Dudley 1963). In general, a line with long outages 

due to major breakdowns can be modeled using a pdf of high coefficient of variability (CV ≥ 1.33) 

(see Hopp and Spearman 2000, p.252). In order to test the effect of high variability on this OBA 

problem, CV=1.5 is chosen for all workstations.  

• Buffer places can be allocated freely between any two machines as long as the total number of buffers 

= 150. In other words, this represents an OBA problem with the following constraints: 

 

 

 

 

The equality of the constraint suggests that this is a dual OBA problem. Nevertheless, within the context of 

SMO, the objective is not simply to maximize TP but also to minimize CT. In this basic Push model, there is 

0 , [1,14]

i

i i

b

b b i+

=

≥ ∈ ∀ ∈

∑
14

i=1

 150

   and   N  
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no PCM parameter and the buffer capacities are the only decision variables. The equality of the buffer 

constraint has posed a challenge in generating feasible solutions after the crossover and mutation operations 

during the evolutionary optimization process. A simple local optimizer, based on the simplex method, similar 

to the improvement method used in the scatter search procedure (Laguna and Martí 2003), has been embedded 

into MA-NSGA-II (see Section 3.5) to improve the randomly generated unfeasible solutions to the closest 

feasible solutions, in order to satisfy the buffer constraint.  

 

3.2 The Kanban Model 

 

In a Kanban line, a machine may not begin any process on a new part unless the downstream machine or 

buffer requests it. The Kanban model simulates a Kanban-controlled pull mechanism by using the Kanban 

modeling object in FACTS Analyzer (see Figure 3). Similar to a real-world Kanban card, a Kanban object 

“authorizes” the production in the upstream machine if a product is pulled from the downstream buffer. The 

most important decision variables of a Kanban line are the number of Kanban cards in different processing 

stages, because the basic aim of using Kanban is to control and limit the total WIP. In a simple unpaced flow 

line with inter-station buffers, a Kanban therefore represents a signal that triggers the production of the 

immediate upstream machine, if a part leaves the buffer and provides a vacancy. Authorizing a machine to 

produce will also trigger the withdrawal of a part from the previous immediate buffer. In other words, the 

Kanban signals are propagated from downstream to upstream.  This also implies that the buffer capacity 

required between two machines is determined by the number of Kanban cards. In other words, the OBA 

problem described in the basic model can be converted to be: 

 

 

 

 

Where Ki represents the number of Kanban cards between buffer Bi and machine Mi. 

 

Figure 3. The Kanban model with BN@M8. 

While this apparently shows no difference to the OBA problem for the basic Push model (replacing B with K), 

the real difference lies in the behavior of the model when Kanban objects are applied to connect the machines 

0 , [1,14]

i

i i

K

K K i+

=

≥ ∈ ∀ ∈

∑
14

i=1

 150

   and   N  
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and buffers, as shown in Figure 3. As mentioned above, Kanban signals (information flow) are propagated 

from downstream to upstream. Hence, material flow is first triggered by the demand (information flow) from 

the final goods inventory (FGI). In contrast, this information flow is missing in the Push model, where a part 

is “pushed” into a machine whenever it is not blocked, regardless of the status of the rest of the downstream 

machines and buffers. On the other hand, with the Kanban mechanism, a part can only be pulled when there is 

a demand in the downstream. Unlike a general comparison between Kanban and the Push model, the aim here 

is to investigate, with the help of SMO, whether a Kanban mechanism can achieve the same level of TP with 

lower CT. If there is any real difference in the performance, it is believed to be caused by the different effect 

of the blocking of the two mechanisms.  

 

 

3.3 The CONWIP model 

 

The CONWIP mechanism was first proposed by Spearman et al. (1990) as “a pull alternative to Kanban”. The 

first machine in a line under CONWIP control is only authorized to begin production if the total number of 

parts (i.e. WIP) in the line is less than a predetermined WIP level, or WIP cap. Hence, a CONWIP line can be 

regarded as having a “long Kanban pull” that connects the end of the line to its beginning to maintain an 

almost constant level of WIP in the system. Based on this “long pull” concept, the object for modeling 

CONWIP in FACTS Analyzer is called “MaxWIP” because the WIP level is maintained at a maximum 

degree by a long pull mechanism, as shown in Figure 6. In the example model considered here, by connecting 

M15, the last machine, to the first machine, M1, a part leaving from M15 to the FGI will trigger the entry of a 

new part to M1. 

 

Figure 4. The CONWIP model with BN@M8. 

 

In the CONWIP model, as well as the buffer capacities (subject to the same buffer constraint as the push 

model), another important decision variable that must be optimized is the level of CONWIP. In other words, a 

solution vector for the SMO of the CONWIP model can be represented as (B1, B2, …, BN, Ccap), where Ccap 

represents the WIP cap in a CONWIP line. The determination of the optimal CONWIP level is the most 

important parameter which influences the system performance, and a topic widely studied in the literature. 
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Nevertheless, as the comprehensive review of Framinan et al. (2003) indicates, the number of CONWIP 

“cards” to be employed should involve a compromise between the desired throughput rate (or service level) 

and other objectives, e.g. the WIP level. In general, many previous simulation studies have reported that 

CONWIP outperforms Kanban by having a higher system throughput for a given level of total WIP; for 

example, see (So 1990). However, the drawback that CONWIP does not take into account the impact a 

bottleneck workstation may have on the performance of a production line was not considered adequately 

(Graves et al. 1995). This topic can, however, be found in the literature that compares the application of 

CONWIP to unbalanced lines with distinct bottlenecks controlled by the DBR mechanism.  

 

3.4 The DBR model 

 

The DBR mechanism operates in the manner that a constant level of WIP is maintained between the 

bottleneck and the entrance of the line, instead of between the end of the line and the beginning of the line, as 

in a CONWIP system. In other words, the first machine is authorized to start production if a part leaves the 

bottleneck workstation. This mechanism is referred to as “drum-buffer-rope” because the bottleneck, as the 

constraint that restricts the performance of the whole line, using the terms of the Theory of Constraint 

(Blackstone and Cox 2002), should be the workstation that controls the pace (as the drum) of the other 

workstations. The signaling mechanism that is connected from the bottleneck station to the front of the line, 

pulling new jobs to the constrained workstation is called the “rope”. In this way, the operation of this “rope” is 

identical to the long CONWIP pull that keeps the WIP cap between the constraint and the first workstation. 

Applying this to our 15-workstation case study, in order to simulate a DBR model, if M8 is the bottleneck 

station, then a MaxWIP object is used to act as the “drum” in the DBR controlled model; when a part leaves 

Machine M8, a new part can be released to the line. In FACTS Analyzer, a DBR model can be made by 

“wiring” the MaxWIP loop to the bottleneck machine (see Figure 5). 

 

Figure 5. The DBR model with BN@M8. 

 

The decision variables of the DBR models are the same as the CONWIP models, that is, solution vectors are 

in the form of (B1, B2, …, BN, Ccap). Unlike the decision variable Ccap in the CONWIP model, Ccap here 

represents the WIP level maintained between the bottleneck and M1. Besides the fact that the total buffer 
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capacity should be equal to 150, an additional constraint is added to the optimization to relate the buffer 

capacity between the bottleneck and the front of the line because there is no point in having a maximum level 

of WIP larger than the total sum of the buffer capacity and the number of machines before the immediate 

downstream buffer of the bottleneck workstation:  

  

 

 

 

 

3.5 The simulation and optimization settings 

All the results generated in this paper are based on the approach of dynamic replication analysis that computes 

the standard error of the output performance measures during the optimization processes. Simply put, instead 

of using a fixed n, the optimization algorithm used in FACTS Analyzer will request more replications to be 

run only if the computed error is found to be higher than the tolerable level. The relative precision approach is 

employed to calculate the ratio of standard error of the data and the mean of the data from n replications, 

based on the following formula: 

1,1
2

1,1
2

 relative precision  

 mean of the output performance measure  from the  replications

 standard deviation of  from the  replications

 Student-t distribution with 

n

r

r

n

t
n

x

where

x x n

x n

t

α

α

σ

µ

µ

σ

− −

− −

=

=

=

=

= degree of freedom 1 and probablity 1-
2

n
α

−

 

For the optimization results to be based on statistically robust output data, the standard error of the data should 

be relatively small in comparison to the sample mean. Hence, 0.01 was chosen to be the tolerable value of µr 

for both of the most important performance measures considered in this paper, namely average TP and 

average CT. In order to be statistically correct, this implies all µr calculated from the simulation runs must be 

lower than 0.009 (see Law and Kelton 2000 for the mathematical proof). 

A variant of the NSGA-II algorithm (Deb et al. 2002), called MA-NSGA-II has been used to generate all the 

{ }

-1

max

4,8,12 ,

m

iC b m

m

≤ +

=

∑
i=1

where   position of the bottleneck.
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results presented in this paper. There are three major techniques that render the outstanding performance of 

NSGA-II (Ding et al. 2008): (1) a “fast” non-dominated sorting approach that reduces the O(mN
3
) complexity 

of MOGA to O(mN
2
) (Babbar et al. 2003); (2) a λ + µ elitism selection procedure and (3) the use of crowding 

distance, as a measure for comparison and selection after the non-dominated sorting, to preserve the diversity 

of the solutions in the population. In contrast to the original NSGA-II, MA-NSGA-II uses Artificial Neural 

Networks (ANN) as the meta-modeling techniques for the rapid evaluation of candidate offspring solutions 

for the purpose of filtering out those likely to be inferior. Additionally, MA-NSGA-II uses the Confidence-

based Significant Dominance (CSD) technique, first introduced in (Ng et al. 2008), to cope with the 

simulation output data uncertainty.  

The parameter settings used in the optimizations are shown in Table 1. Due to the stochastic searching of 

evolutionary algorithms, it is important to repeat the optimization runs. Five optimization replications were 

run for each of the models in this case study, and each optimization was replicated with some slight variation 

in the mutation rate and crossover probability.  

  

Table 1. Setting of the optimization parameters 

 

MA-NSGA-II was run using an enlarged sampling space (µ+λ) selection strategy with the population sizes of 

parents and offspring each equal to 100 (i.e. µ=λ=100) in all the optimization runs. In every generation, the µ 

parents and the λ offspring competed for survival on the basis of CSD-based non-dominating sorting and 

crowded distance tournament selection. Furthermore, in every generation, 500 candidate solutions were 

generated. Rather than running expensive simulations for all of these candidate solutions, evaluations were 

made using the ANN meta-model, which is a back-propagation feedforward net with one hidden layer. A fast 

non-dominating sorting with CSD was employed to sort the candidates. The best λ candidates were then 

selected to be the offspring solutions on the basis of the estimated values in the multi-objective functions. 

Simulation runs were then performed on these λ candidates for accurate evaluations.  

 

4. Results and Analysis 

The CT-TP plot of the Pareto fronts for the Push model with various bottleneck (BN) positions is shown in 

Figure 6. Every single curve in this CT-TP plot was obtained by collecting the best Pareto-optimal solutions 
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in the 5 optimization runs for that particular PCM and bottleneck location combination. This is called the best 

attainment surface in EMO literature (Deb 2001). The graph clearly indicates that the location of the 

bottleneck does have an effect on the line. For the Push model, the graph shows that if the slowest workstation 

is closer to the front of the line then the same TP can be achieved with shorter CT. This effect is clear in the 

lower and middle CT-TP regions, but not in the high CT-TP region where BN@M8 apparently seems to 

outperform BN@M4. In order to verify these differences, we will introduce some methods to test the 

statistical significance of the differences for the curves as well as between individual solutions in the CT-TP 

plots.  

A plot of TP against WIP is provided in Figure 7. Despite WIP not being one of the multiple objectives in the 

optimization and the effect on the TP-WIP plot not being as pronounced as in the CT-TP plot, it is interesting 

to observe that the TP-WIP plot resembles the pattern of the CT-TP graph. An important observation 

concerning the characteristics of the Pareto-optimal solutions is apparent with the plot of CT against WIP, as 

shown in Figure 8. Here it can be seen that a perfectly straight line is formed in the WIP-CT plot with all the 

PF solutions. This linear relation between WIP and CT for the Pareto-optimal solutions not only exists for a 

particular line design but for all the models tested in this study. This observation can be easily explained with 

the help of Little’s Law, TP=WIP/CT.  

 

Figure 6. CT-TP plot of the basic Push model with various bottleneck positions. 

Figure 7. WIP-TP plot of Push control with various bottleneck positions. 

Figure 8. WIP-CT plot of the Pareto-optimal solutions for the basic Push model with BN@M4. 

Figure 9. Optimal CT-TP plot of the BN@M4 model with varying PCMs. 

Figure 10. Optimal CT-TP plot of the BN@M8 model with varying PCMs. 

Figure 11. Optimal CT-TP plot of the BN@M12 model with varying PCMs. 

 

The effects of PCM on the line performance are further analyzed by visually comparing the optimal CT-TP 

plots provided in Figures 9 to 11. The comparison indicates several important points that may affect the 

selection of PCM for this particular 15-workstation production line under study: 

• In general, irrespective of the location of the slowest workstation, DBR outperforms the three other 
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PCMs, particularly in the middle and high CT-TP region. This implies that DBR performs best in 

terms of optimizing the trade-off between TP and CT, especially when the aim of the decision maker 

is to achieve high TP. Together with the plots on varying bottleneck positions, it can be concluded that 

using DBR with the slowest station closer to the upstream of a serial flow line is the best option in this 

case study.  

• It is clear that Push is an inferior option, especially if the decision maker focuses on the lower CT-TP 

region. In Figures 10 and 11, the lower CT-TP region indicates that the poor performance of Push is 

more pronounced when the bottleneck is closer to the end of the line; the Push control seems to be 

more sensitive to the location of the bottleneck when compared to the three other PCMs. The 

configuration of BN@M12 with Push control is the worst option in this comparison test.   

• Kanban appears to be a good option if the aim of the decision maker is to have very low CT, but not if 

high TP is desired. This observation is made because Kanban generally outperforms in the lower CT-

TP area (comparable to the performance of DBR), but produces poorly (with the same CT level) in the 

middle and high CT-TP regions. It is interesting to note that there appears to be a distinct intersection 

between the Push curve and the Kanban curve in the graph for BN@M12, as indicated in Figure 11. 

• The effect of CONWIP is nearing DBR in the case of BN@M12. This is understandable because as 

the bottleneck position approaches the end of the line, the location of the “Drum” to which the 

“CONWIP signal” is sent will also be closer to the end of the line, and hence produces a similar effect 

as in the CONWIP configuration. Otherwise, it can be seen that CONWIP is not apparently better or 

even worse than Kanban in the lower CT-TP region.    

While the optimization results indicate that PCM and the position of the bottleneck do affect the performance 

of the line, and various PCMs have different effects in different regions of the optimal CT-TP plots, 

conclusions about the PCM comparisons cannot be drawn simply by comparing the Pareto-optimal fronts 

visually. There are two important questions which suggest that further analyses of the optimization results are 

necessary for the PCM comparison.  

• Can the Pareto fronts be compared using some quantitative metrics?  

• How can the differences in the CT-TP curves be statistically verified? 

These questions are answered with the introduction of the two methods in the following sub-sections. 
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4.1. Comparison using hypervolume and area under curve  

Quantitative assessment of PF solutions in comparing the performance of different EMO algorithms is not an 

easy task and there are many limitations in the performance indices proposed in EMO literature (Zitzler et al. 

2002). A common metric used in EMO research for comparing a set of Pareto fronts generated by different 

algorithms is the hypervolume, denoted as the S metric (Zitzler and Thiele 1998). Unlike many other 

performance metrics, the S metric does not require the PFtrue to be known for its computation. For a bi-

objective optimization problem, the S metric is equivalent to the summation of all the rectangular areas 

covered by the Pareto-optimal points, bounded by some reference point in the objective space. 

Mathematically, the hypervolume can generally be described as below (Coello et al. 2007):     

{ }                       i i known
i

S area vec PF= ∈U  

Where veci is a non-dominated vector in the Pareto Front found in the optimization (PFknown) and areai is the 

area between vector veci and the reference point (see Figure 12). The S metric is especially useful for 

comparing both the convergence and the diversity of the PF generated for real-world complex optimization 

problems in which the PFtrue is unknown. Furthermore, it offers many advantages such as multi-

dimensionality, i.e., able to cope with “many” objectives (>3) solution sets; compatibility with the 

outperformance relations; capability for the differentiation between different degrees of complete 

outperformance of two sets under comparison as well as scaling independency (Knowles and Corne 2001).  

 

Figure 12. Calculating hypervolume for PCM comparison. 

 

A novelty introduced in this study is that instead of using the S metric to compare the performance of different 

EMO algorithms, it can be used to quantitatively compare the performance achieved when different PCMs are 

applied to the same production line. This can be illustrated by the attainment surfaces in Figure 12, which 

show the hypervolume produced by applying PCM A and PCM B on the CT-TP plot. An attainment surface is 

the generated envelope for a set of non-dominating solutions, which is identical to the surface used to 

calculate S (Deb 2001). By observing the attainment surfaces generated for the flow line using the PCM A and 

PCM B under comparison, it can be seen that the comparison can be quantitatively made by comparing the 

hypevolume that the PF has spread. In other words, the larger the S metric value, the higher the TP/CT ratio, 

indicating that higher TP can be achieved with the same CT. With the example in Figure 12, the fact that 

PCM A outperforms PCM B (see also Figure 1) can now be quantitatively verified by showing SA > SB. In 
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contrast to the technique that calculates the Trade-off Curves Areas (denoted as ∆ ) by assuming straight line 

segments between the points along the trade-off curves (Enns 2007)(Enns and Roger 2008), hypervolume can 

be readily applied to deal with problems that have more than two objectives. At the same time, without 

knowing the existence of possible points between two consecutive solutions lying next to each other on the 

Pareto front, it can be argued that assuming a straight line would increase the estimation error (Knowles 

2008). It can obviously be seen that both the S and ∆  values for a Pareto front will also be dependent on the 

position of the reference point selected by the decision maker, based on his/her region of interest in the 

objective space. 

The statistical accuracy of the S and ∆  metric required for the comparison is ensured by using the best 

attainment surfaces obtained from the replicated optimization runs. At the same time, before the computation 

of S and ∆ , normalizations have been done on the CT and TP values. This implies the maximum normalized 

S or ∆  that can be obtained is of the value 1. For the 5 optimization runs (replications) carried out for each 

PCM and BN combination, the normalized S and ∆ is therefore denoted as 
normS  and 

norm∆ . In contrast to the 

original S calculation that uses only one reference point, another user-defined reference point is needed as the 

base point for the normalizations (Reference point 2 in Figure 12). For a bi-objective min-min problem, (0,0) 

can be selected as the base point by default, but this is not suitable for the CT-TP plot which is a min-max 

problem. At the same time, the option of the reference points depends on the region of interest of the decision 

maker in the comparison. The 
normS  and 

norm∆  values of all the 60 optimization runs are shown in Tables 2 to 

4 below. All of them were taken using the reference points (11000, 10.5) and (5000, 12.5) in the CT-TP space. 

  

Table 2.  
normS  and 

norm∆  values for the BN@M4 model with various PCMs. 

 

Table 3.  
normS  and 

norm∆  values for the BN@M8 model with various PCMs. 

 

Table 4.  
normS  and 

norm∆  values for the BN@M12 model with various PCMs. 

 

An analysis of the variance (ANOVA) test of the significance level α=0.05 was done to detect the significance 

of the difference in the average of the normalized S and ∆  values, or normS  and norm∆  respectively, obtained 

from the replicated optimization runs. With all the F-statistic values >50 and p-value≈0, a significant 

difference in performance can be deduced in the effect of the CT-TP plot when the four different PCMs are 

applied. A post-ANOVA analysis, called the Duncan’s multiple range test, which is well-known for its 

Page 16 of 43

http://mc.manuscriptcentral.com/tprs  Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

A.H.C. Ng et al. Page 17 of 22 

sensitivity to small differences between population sample means (see Mathews 2005, p.164), was applied to 

determine which pairs of normS values are significantly different. The results obtained from the multiple range 

test are summarized in Tables 5 to 7, where the value R is the calculated range of the values in a comparison 

set and Rp is the Duncan’s least significant range value, determined by using the following equation:   

 

, ,

, ,

                                              

where

standard error of the ANOVA

 no. of replications

 critical value for the test

 

p df

p

p df

s r
R

n

s

n

r

ε

ε

ε α

ε

α

=

=

=

=

  

r is a value that depends on the significance level α = 0.05, the number of items in the comparison set, 

p={4,3,2}, and the error degree of freedom dfε =16 for the ANOVA.    

 

Table 5. Duncan’s multiple range test on normS  and norm∆  for BN@M4   

 

Table 6. Duncan’s multiple range test on normS  and norm∆  for BN@M8   

 

Table 7. Duncan’s multiple range test on normS  and norm∆  or BN@M12   

 

The results in Tables 6 to 8 can be interpreted as follows: if R > Rp, then the extreme values in the comparison 

set are significantly different from each other. In many of the cases, it can be concluded from these statistical 

tests that there are significant differences between the normS  (and norm∆ ) spread by the solutions in PFknown. It 

has confirmed that the observed differences resulting from the application of different PCMs are significant 

after considering the replicated optimization runs. In general, DBR gives a significantly larger TP/CT ratio, 

and is thus more desirable than the other three PCMs. CONWIP and Kanban are significantly better than 

Push, but the difference between the CONWIP and Kanban cannot be statistically confirmed.  
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4.2 Comparison using CSD-based post-optimal analysis 

Although the stochastic nature of the evolutionary algorithms can be handled by multiple optimization runs 

when using S or ∆ , neither of these two methods has considered the uncertainty of individual optimal 

solutions due to the randomness of simulation outputs in the objective space. In this paper, an innovative 

comparison method, based on post-optimal analysis using CSD (Ng et al. 2008), is proposed. This method is 

based on performing pairwise comparisons for all the solutions from the different models and PCM 

combinations by applying the CSD sorting to all of the Pareto-optimal solutions from different Pareto sets. In 

this case, the difference in the performance of different PCMs on the CT-TP plot can be statistically verified 

and visualised. This method, called CSD-based post-optimal analysis, is particularly useful to statistically 

verify the differences in the CT-TP curves which are close to each other or even apparently overlapping in the 

objective space.  In the results analysis done for the graph of BN@M12 in Figure 11, it indictaes that the 

effect of CONWIP is very close to DBR in the BN@M12 model. At the same time, there appears to be a 

crossover point between the Push curve and the Kanban curve in the graph of Figure 11. Two CSD-based 

post-optimal analyses were therefore carried out for the BN@M12 model: (1) to collect all the solutions from 

the four Pareto sets and (2) only the solutions from the Push and Kanban models. The aim of the first analysis 

was to verify the outstanding behavior of DBR, the result of which is plotted in Figure 13. Despite the fact 

that there seems to be some overlapping between the CONWIP and DBR curves, the CSD-based comparison 

proves that most of the DBR solutions are significantly better than any other PCMs, including CONWIP, 

except in the low CT-TP region where Kanban solutions dominate. This also verifies the superiority of 

Kanban in the lower CT-TP area, as observed in the earlier results analysis for Figure 11.  

The crossover between the Push and Kanban curves is verified by the CSD-based comparison, illustrated in 

Figure 14, showing which solutions in the Push and Kanban Pareto sets significantly dominate. It clearly 

shows that Kanban excels in the CT-TP trade-off below the (8000, 11.45) point, but Push solutions dominate 

thereafter. This result is particularly interesting to demonstrate the importance of comparing PCMs in a 

Pareto-optimal context, because a PCM may be preferable in a certain region but not others, depending on the 

level of the primary interest of the decision maker (who may prefer low CT than high TP in some situations). 

It is therefore necessary to generate the Pareto fronts and then study the performance behavior of the PCM in 

different areas of the objective space. 

Figure 13. CSD-based analysis for all the optimal solutions of the BN@M12 model with different varying PCMs. 

Figure 14. CSD-based analysis for all the optimal solutions of the BN@M12 Push and Kanban models. 
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6. Conclusions and Outlook 

The paper has illustrated the concept of comparing PCMs in their optimal parameter setting in a Pareto-based 

multi-objective context using a case study of a buffer allocation problem in an unbalanced flow line. While 

the numerical results of the case study cannot be generalized, there are two important conclusions that can be 

drawn from the SMO results: (1) in terms of optimizing the trade-off between production rate and cycle time, 

PCM plays a significant role; for example, this case study has shown that DBR generally outperforms Push 

and classical pull mechanisms, such as Kanban and CONWIP; (2) comparing PCMs in a multi-objective 

context is important, because a PCM may be preferable in certain regions, in the performance space, but not 

others, depending on the primary interest of the decision maker. For example, in contrast to the common 

understanding that Pull-based PCM is always better than Push, it has been shown in this case study that Push 

outperforms Kanban if the target of the decision maker is on high production rate. 

This paper has also introduced the use of hypervolume, a common performance metric for comparing the 

performance of EMO algorithms, for the quantitative comparison of PCMs in the performance space. The 

CSD-based post-optimality analysis is useful to complement such a quantitative test to statistically verify and 

visualize the differences in the performance space, in particular when the solutions in the Pareto sets are close 

to each other or even seemingly overlapping. The CSD-based analysis was particularly useful in this case 

study in verifying the crossover point between Kanban and Push in the performance space.  

The case study presented in this paper addresses a bi-objective dual OBA problem. It should be noted that the 

same method can readily be applied to include other objectives, such as to minimize the total number of 

buffers, for the purpose of minimizing the investment of buffers for a given desirable production rate and 

cycle time. Applying the SMO methodology proposed in this paper, a comprehensive empirical study is now 

underway using FACTS Analyzer. Other than the combination of PCMs and the locations of the bottleneck 

tested in the current paper, we are particularly interested in examining how other factors would affect the 

performance of an unbalanced production system. These factors include: (1) the number of 

workstation/process steps (N) of the flow line; (2) the “strength” of the bottleneck; (3) the variability of the 

line’s processing time following distribution other than log-normal and (4) including a downtime modeled 

explicitly in both exponential and non-exponential distribution.  
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Figure 1. Comparing two PCMs with their Pareto-optimal settings in a CT-TP plot.  
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Figure 2. The push model with BN@M8. 
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Figure 3. The Kanban model with BN@M8. 
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Figure 4. The CONWIP model with BN@M8. 
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Figure 5. The DBR model with BN@M8. 
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Figure 6. CT-TP plot of the basic Push model with various bottleneck positions. 
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Figure 7. WIP-TP plot of Push control with various bottleneck positions. 
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Figure 8. WIP-CT plot of the Pareto-optimal solutions for the basic Push model with BN@M4. 
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Figure 9. Optimal CT-TP plot of the BN@M4 model with varying PCMs. 
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Figure 10. Optimal CT-TP plot of the BN@M8 model with varying PCMs. 
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Figure 11. Optimal CT-TP plot of the BN@M12 model with varying PCMs. 
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Figure 12. Calculating hypervolume for PCM comparison. 
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Figure 13. CSD-based analysis for all the optimal solutions of the BN@M12 model with different varying PCMs. 
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Figure 14. CSD-based analysis for all the optimal solutions of the BN@M12 Push and Kanban models. 
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Table 1. Setting of the optimization parameters 

Total number of simulations 5000 

Population size (µ) 100 

Child population size (λ) 100 

Number of candidates 500 

Mutation rate 0.05-0.15 (with step in 0.05) 

Crossover probability 0.5-0.7 (with step of 0.1) 

Crossover operator Uniform 
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Table 2.  
norm

S  and 
norm

∆  values for the BN@M4 model with various PCMs. 

 

 Run1 Run2 Run3 Run4 Run5 

BN4 
norm

∆  
norm

S  
norm

∆  
norm

S  
norm

∆  
norm

S  
norm

∆  
norm

S  
norm

∆  
norm

S  

Push 0.5574 0.5541 0.5635 0.5431 0.5584 0.5427 0.5621 0.5427 0.5608 0.5424 

KANBAN 0.5668 0.5629 0.5705 0.5529 0.5649 0.5433 0.5707 0.5523 0.5673 0.5431 

CONWIP 0.5627 0.5562 0.5668 0.5498 0.5662 0.5493 0.5631 0.5427 0.561 0.5414 

DBR 0.6057 0.6031 0.6076 0.5924 0.6071 0.591 0.6051 0.5909 0.6072 0.5917 
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Table 3.  
norm

S  and 
norm

∆  values for the BN@M8 model with various PCMs. 

 

 Run1 Run2 Run3 Run4 Run5 

BN8 
norm

∆  
norm

S  
norm

∆  
norm

S  
norm

∆  
norm

S  
norm

∆  
norm

S  
norm

∆  
norm

S  

Push 0.4736 0.4699 0.4856 0.4764 0.4853 0.4759 0.4854 0.4738 0.4846 0.474 

KANBAN 0.4816 0.4771 0.5055 0.4953 0.5004 0.4883 0.5053 0.4926 0.5049 0.4914 

CONWIP 0.5154 0.513 0.5249 0.5061 0.5242 0.5109 0.5225 0.5064 0.5242 0.5102 

DBR 0.572 0.569 0.5798 0.5643 0.5766 0.5627 0.5758 0.5612 0.5783 0.5621 
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Table 4.  
norm

S  and 
norm

∆  values for the BN@M12 model with various PCMs. 

 

 Run1 Run2 Run3 Run4 Run5 

BN12 
norm

∆  
norm

S  
norm

∆  
norm

S  
norm

∆  
norm

S  
norm

∆  
norm

S  
norm

∆  
norm

S  

Push 0.4077 0.4032 0.3948 0.329 0.3923 0.326 0.402 0.389 0.398 0.3197 

KANBAN 0.4077 0.4018 0.3882 0.3731 0.3829 0.3655 0.3818 0.3657 0.3609 0.3353 

CONWIP 0.5038 0.5009 0.4639 0.4491 0.4638 0.4487 0.4625 0.4444 0.4622 0.4461 

DBR 0.5229 0.52 0.4829 0.4595 0.4835 0.4628 0.4842 0.4673 0.4828 0.4667 
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Table 5. Duncan’s multiple range test on normS  and norm∆  for BN@M4   

 
normS  norm∆  

Comparison set R R > Rp R R > Rp 

DBR, CONWIP, Kanban, 

Push 

0.0488 Yes 0.0461 Yes 

DBR, CONWIP, Kanban 0.0459 Yes 0.0426 Yes 

DBR, CONWIP 0.0429 Yes 0.0426 Yes 

CONWIP, Kanban 0.0030 No 0.0030 Yes 

Kanban, Push 0.0076 Yes 0.0059 No 
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Table 6. Duncan’s multiple range test on normS  and norm∆  for BN@M8   

 
normS  norm∆  

Comparison set R R > Rp R R > Rp 

DBR, CONWIP, Kanban, 

Push 

0.0899 Yes 0.0936 Yes 

DBR, CONWIP, Kanban 0.0749 Yes 0.077 Yes 

DBR, CONWIP 0.0545 Yes 0.543 Yes 

CONWIP, Kanban 0.0204 Yes 0.0227 Yes 

Kanban, Push 0.0149 Yes 0.0166 Yes 
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Table 7. Duncan’s multiple range test on normS  and norm∆  or BN@M12   

 
normS  norm∆  

Comparison set R R > Rp R R > Rp 

DBR, CONWIP, Kanban, 

Push 

0.1219 Yes 0.107 Yes 

DBR, CONWIP, Kanban 0.107 Yes 0.0923 Yes 

DBR, CONWIP 0.0174 No 0.02 No 

CONWIP, Kanban 0.0896 Yes 0.0869 Yes 

Kanban, Push 0.0149 No 0.0146 No 
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