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There exist many studies conducted to compare the performance of different production control mechanisms (PCMs) in order to determine which one performs the best under different situations. Nonetheless, most of these studies suffer from the problems that the PCMs are not compared with their optimal parameter settings in a truly multi-objective context. This paper describes how different PCMs can be compared under their optimal settings through generating the Pareto-optimal frontiers, in form of optimal trade-off curves in the performance space, by applying evolutionary multi-objective optimization to simulation models. This concept is illustrated with a bi-objective comparative study of the four most popular PCMs in the literature, namely Push, Kanban, CONWIP and DBR, on an unbalanced serial flow line in which both control parameters and buffer capacities are to be optimized. Additionally, it introduces the use of normalized hypervolume as the quantitative metric and confidence-based significant dominance as the statistical analysis method to verify the differences of the PCMs in the performance space. While the results from this unbalanced flow line cannot be generalized, it indicates clearly that a PCM may be preferable in certain regions of the performance space, but not others, which supports the argument that PCM comparative studies have to be performed within a Paretobased multi-objective context.

A critical issue in designing production systems is determining an effective or preferably the "optimal" mechanism controlling the material flow within the line. In the literature, these mechanisms are referred to as material flow control mechanisms, production and material flow control mechanisms, flow control mechanisms or, simply, production control mechanisms (PCMs). The term PCM is preferred in this paper, because this kind of mechanism not only addresses the problems of when to release material into the production line and its flow, but also when a workstation should be authorized to produce or remain idle in order to improve the performance of the whole line [START_REF] Graves | Literature review of material flow control mechanisms[END_REF].

Numerous PCMs have been proposed in the last two decades; see [START_REF] Graves | Literature review of material flow control mechanisms[END_REF] for an extensive literature survey. In general, PCMs are commonly classified into either push, pull or a hybrid form of these two. According to [START_REF] Spearman | CONWIP: A pull alternative to Kanban[END_REF], a push system schedules the release of work, while a pull system authorizes the release of work. A push schedule is prepared in advance on the basis of demand, while pull authorization depends on the plant status. A push strategy, sometimes described as an open system, releases new material into it at a constant rate (uniform release strategy) based on either a demand forecast or the desired throughput rate of the system, without considering the WIP level or machine status of the line. In contrast, a pull control mechanism, or a closed system, has a feedback loop within the structure so that material release is dependent on the status of the line. The authorization of work into a line is made either to synchronize the work flow in the line (e.g. Kanban) or to control the overall level of work in process (WIP).

Significant efforts have been made specifically to determine which pull mechanisms are the best. For example, one of the early studies was done by [START_REF] Bonvik | A comparison of production-line control mechanisms[END_REF]. Without using any optimization approach, they conducted experiments to enumerate all possible Kanban and hybrid configurations in order to determine the trade-off between service level and inventory (total WIP). In the last decade, more comparative studies have been conducted in order to determine which PCMs perform best in various scenarios (simple flow line, job shop, FMS, etc). However, the main drawback of many of these comparisons is that they were conducted without taking the optimal settings of the PCM for the particular system into account. For example, with the aim of comparing Hybrid Push/Pull proposed by [START_REF] Hodgson | Optimal hybrid push/pull control strategies for a parallel multi-stage system: Part I[END_REF] and CONWIP/Pull by [START_REF] Bonvik | A comparison of production-line control mechanisms[END_REF], Geraghty and Heavey (2003) asked "if the eight control policies evaluated in [START_REF] Hodgson | Optimal hybrid push/pull control strategies for a parallel multi-stage system: Part I[END_REF] are compared under optimal inventory and safety stock levels, will the same conclusions be drawn?"

As [START_REF] Framinan | The CONWIP production control system: review and research issues[END_REF] concluded, most of these comparisons suffer from the problems caused by the lack of a unified framework for comparison, such that some mechanisms are not augmented with the optimal parameter setting when applied to the system under testing. This problem is believed to explain the contradictory results found in the literature. Ideally, to achieve a fair comparison of different PCMs, the operating parameters of each mechanism must be the optimal setting with respect to certain performance metrics when applied to a particular system. While this concept seems to be trivial, it poses a number of practical challenges in designing real-world production systems which are usually too complicated to be optimized using analytical procedures [START_REF] Koh | Comparison of DBR with CONWIP in an unbalanced production line with three stations[END_REF]. In such cases, one has to use simulation approaches. On the other hand, it is clear that a particular mechanism can perform well when applied to a certain type of line design, but relatively poorly in another environment. For example, [START_REF] Chan | Comparative evaluations of buffer allocation strategies in a serial line[END_REF] have shown that a buffer allocation rule that performs well in one case may perform very poorly in others.

There is a question whether any PCM exists that is generally considered to be superior to others in all situations, especially when various multiple optimization objectives have to be taken into account. It is therefore argued that developing a method and the corresponding toolset, in order to compare different PCMs applied to a system configuration during the production system design and analysis stage, is in general more interesting than conducting comprehensive empirical studies to find the "best" PCM for all cases.

Based on the above mentioned motivations and arguments, this paper proposes a methodology for the comparison of PCMs within the context of Simulation-based multi-objective optimization (SMO). Different PCMs can be compared under their optimal settings through generating the Pareto-optimal frontiers by applying evolutionary multi-objective optimization (EMO) to simulation. The method is illustrated with a multi-objective comparative study of four different types of PCMs, namely Push, Kanban, CONWIP (Constant WIP) and DBR (Drum-Buffer-Rope), on an unbalanced serial flow line in which both control parameters and buffer capacities are the main decision variables. Although the method illustrated in this paper can be applied to problems with more than two objectives, for the sake of clarity, we limit the current investigations on a bi-objective optimization problem, namely simulateously maximizing throughput (TP) and minimizing cycle time (CT). Actually, by Little's Law, TP = WIP/CT [START_REF] Little | Are there 'Laws' of Manufacturing, Manufacturing Systems? In Foundations of World-Class Practice[END_REF], minimizing CT infers that WIP will also be minimized (and this has been proved in the optimization results, see Section 4). The CT-TP bi-objective problem allows all the Pareto-optimal solutions generated to be effectively visualised in form of the CT-TP plots, as illustrated in Figure 1. The general aim of the comparison is to investigate whether the same TP can be attained with lower CT when a given PCM is applied to a production line. In Figure 1, two Pareto fronts are generated with SMO for the same production line, one with PCM A and the other with PCM B. For example, with the same level of CT (CT 1 ), there is an optimal configuration of A (A 1 ) which has higher TP than the optimal configuration using PCM B (B 1 ). Similarly, by comparing A 2 and B 2 , it can be said that for the same level of TP (TP 2 ), PCM A can achieve shorter CT/WIP when compared with PCM B. In general, PCM A can be considered better than PCM B when applied to this particular line, because the optimal solutions from A outperform those from B. This conclusion can only be drawn by comparing the Paretooptimal solutions from A and B, and not with the non-optimal solutions (e.g. comparing B 2 and A 3 in Figure 3). While the results from this case study may provide some useful insights into the performance of the PCM under study, the key point here is to illustrate the methodology for the comparison of the PCM within an SMO context. The remainder of this paper is organized as follows. Section 2 provides a literarure review of related work, mainly in the field of simulation-based optimization for production systems. The full details of the optimal buffer allocation problem used in this study are presented in Section 3. The optimization results and their analyses, using the new quantitative and statistical techniques for the comparison of the PCMs within the SMO context, are provided in Section 4, while the conclusions of the paper are presented in Section 5.

Literature Review

The impact of limited buffer spaces on the performance of production lines or other types of systems, so called optimal buffer allocation (OBA) problems, is studied extensively in the literature [START_REF] Buzacott | Stochastic models of manufacturing systems Englewood Cliffs[END_REF] [START_REF] Conway | The role of work-in-process inventory in serial production lines[END_REF]. Generally, OBA problems can be classified into either primal or dual [START_REF] Gershwin | An efficient decomposition method for the approximate evaluation of tandem queues with finite storage space and blocking[END_REF]. In a primal problem, the objective is to minimize the total buffer space subject to a production rate (throughput) constraint. In a dual problem, subject to a total buffer space constraint, maximization of the throughput is desired. [START_REF] Hillier | The effect of the coefficient of variation of operation times on the allocation of storage space in production line systems[END_REF] extensively studied how the coefficient of variation of the machine processing times on the operations affects the buffer allocation in a balanced flow line. More recently, OBA for balanced lines has been studied using various meta-heuristic search methods, including GA [START_REF] Bulgak | Buffer size optimization in asynchronous assembly systems using genetic algorithms[END_REF], Tabu Search [START_REF] Lutz | Determining buffer location and size in production line using Tabu search[END_REF], Simulated Annealing (Spinellis and Papadopoulos 2000a); an empirical comparison of different search algorithms can be found in Lacksonen (2001).

While a great deal of research has been conducted on the optimal allocation of buffer capacity in production systems for both types of OBA problems, there are a relatively small number of studies which address unbalanced (or bottlenecked) production systems. Scientific research investigating and comparing the characteristics and performance of CONWIP and DBR for unbalanced flow lines can be found in the work of [START_REF] Kim | An investigation of output flow control, bottleneck flow control and dynamic flow control mechanisms in various simple lines scenarios[END_REF], [START_REF] Koh | Comparison of DBR with CONWIP in an unbalanced production line with three stations[END_REF] and recently [START_REF] Takahashi | Comparing Kanban control with the theory of constraints using Markov chains[END_REF]. Koh and Bulfin proposed an approach using a continuous Markov process model and steady-state probability distributions to compare and optimize DBR and CONWIP on a three-station unbalanced line. The work concluded that DBR is better than CONWIP in terms of the trade-off between throughput and the cost function derived with WIP as a component. They restricted the investigations on a 3-workstation line with predetermined imbalance (processing time). As they concluded, it is difficult to study more complicated systems by analytic procedures and simulation approaches are needed.

Solving OBA problems using the simulation-based optimization (SBO) approach has become more popular in recent contributions. The focus of [START_REF] Altiparmak | Optimization of buffer sizes in assembly systems using intelligent techniques[END_REF][START_REF] Altiparmak | Buffer allocation and performance modeling in asynchronous assembly system operations: an artificial neural network metamodeling approach[END_REF] was mainly on using ANN-based metamodels to enhance the performance of the Simulated Annealing based search procedure. Very recently, [START_REF] Can | A comparative study of genetic algorithm components in simulation-based optimization[END_REF] have made a comparative study to explore the effect of different stochastic components of GA to solve an OBA problem. Their work has recognized that OBA problems characteristically exhibit conflicting objectives (high TP can lead to WIP accumulation), but the optimization study concerned only optimizing TP. At the same time, the effect of PCMs has not been considered in these SBO studies. [START_REF] Gaury | An evolutionary approach to select a pull system among Kanban, CONWIP and hybrid[END_REF] have devised a generic coding system to model Kanban, CONWIP and their Hybrid into a single genetic representation for the OBA problems. Using SBO, they tested with a simple balanced flow line containing 6, 8 or 10 workstations and found that Hybrid is the best strategy. Nevertheless, the optimization objective considered was to seek the optimal configuration that can minimize the WIP while simultaneously maintaining the 99.5% fill rate (service level). A penalty function was employed in the GA to avoid any solutions that have a measured fill rate below the targeted fill rate. In other words, their study was not concerned with finding Pareto-optimal solutions. Handling OBA problems with a three-objective, multicriteria concern using an analytical hierarchy process to analyze the simulation outputs generated from the design of experiments can be found in [START_REF] Andijani | Manufacturing blocking discipline: A multi-criterion approach for buffer allocations[END_REF]. Actually, the concept of comparing PCMs using simulation by seeking the best compromise of two or more objectives is not new: in the early work of [START_REF] Bonvik | A comparison of production-line control mechanisms[END_REF], experiments to enumerate all possible Kanban and hybrid configurations to determine the trade-off between service level and inventory (total WIP) were conducted through simulation.

More recent studies that propose the generation of best trade-off curves to compare the performance of PCMs via simulation can be found in [START_REF] Enns | Pull" Replenishment performance as a function of demand rates and setup times under optimal settings[END_REF], [START_REF] Enns | Pull" Replenishment performance as a function of demand rates and setup times under optimal settings[END_REF][START_REF] Enns | Clarifying CONWIP versus push system behavior using simulation[END_REF][START_REF] Macdonald | A simulation based system for analysis and design of production control systems[END_REF][START_REF] Macdonald | A simulation based system for analysis and design of production control systems[END_REF]. However, all these approaches rely on experimental design and response surface methods to generate the trade-off curves. To our best knowledge, there exist no other studies that have considered the effects of PCMs in OBA problems, particularly for unbalanced production lines, in a truly Pareto-based multi-objective context.

The Case Study

The case study presented in this paper is designed to address a dual OBA problem for an unbalanced flow line, with the application of four different types of PCMs, namely Push, Kanban, CONWIP and DBR. In addition, by considering a flow line with a distinct bottleneck, it is interesting to investigate the effect of the position of the bottleneck on the overall performance of the system. This is done by explicitly setting a station to be a bottleneck with significantly longer processing time at three different positions (front, middle, rear) applied with different PCMs in different optimization runs for a production line of 15 workstations. With the number of stations, N, >12, this line is large enough to break most of the analytical methods (Spinellis and Papadopoulos 2000b). All the models were developed and optimized using FACTS Analyzer, an Internetenabled SBO tool specifically designed for factory flow design, analysis and optimization [START_REF] Ng | FACTS Analyser: An innovative tool for factory conceptual design using simulation[END_REF].

Besides the integrated SMO capability using MA-NSGA-II (see Section 3.5), FACTS Analyzer facilitates the rapid modeling of production lines with a list of predefined modeling objects, such as Kanban, MaxWIP and Takt 2 , which allow system designers to rapidly apply different PCMs to a production simulation model.

The Push Model

We consider a simple unbalanced asynchronous (unpaced) serial flow line with 15 workstations3 and 14 interstation buffers (Figure 2). An asynchronous flow line is one in which a part is passed from one workstation to another once its processing is completed. Inter-station buffers between two sequential stations are needed to decouple the machines in order to cope with process variability and/or disturbances due, for example, to machine breakdown. Since the machines are not paced, an upstream machine may subject to blocking if the 2 Takt time or Takt rate, commonly used in Lean Production as the time or rate that a completed product is finished. Takt control means here as using the predetermined takt time to control the flowing rate of parts from one workstation to another workstation in a synchronised manner. immediate downstream machine is occupied and the buffer between them is full. On the other hand, a downstream machine will be idle (starving) if it has finished the current part and the buffer in front of it is empty.

Figure 2. The push model with BN@M8.

Assumptions about the machines and buffers are described in the following:

• The flow line consists of 15 workstations with a mean processing time (t) of 4 minutes, except Machine 8 in the middle of the entire line, denoted as M8_BN in Figure 4, which is the bottleneck (6 minutes). In order to test the effect of the bottleneck on the line's performance, the basic push model with M8_BN can be easily modified by changing the bottleneck to M4 (front, closer to the upstream) or M12 (rear, closer to the downstream). The front, middle and rear bottleneck positions can hereafter be denoted as BN@M4, BN@M8 and BN@M12, respectively.

• Machine M1 can never be starved. This means a new part can always be accessed as long as M1 is not occupied. Similarly, machine M15 can never be blocked; a part can always leave from M15 when completed.

• Machine breakdown is not explicitly modeled, but the processing time at each machine is regarded to be an independent random variable following the log-normal probability distribution (pdf), commonly found in real-world processing time distribution [START_REF] Dudley | Work time distributions[END_REF]. In general, a line with long outages due to major breakdowns can be modeled using a pdf of high coefficient of variability (CV ≥ 1.33) (see Hopp and Spearman 2000, p.252). In order to test the effect of high variability on this OBA problem, CV=1.5 is chosen for all workstations.

• Buffer places can be allocated freely between any two machines as long as the total number of buffers = 150. In other words, this represents an OBA problem with the following constraints:

The equality of the constraint suggests that this is a dual OBA problem. Nevertheless, within the context of SMO, the objective is not simply to maximize TP but also to minimize CT. In this basic Push model, there is no PCM parameter and the buffer capacities are the only decision variables. The equality of the buffer constraint has posed a challenge in generating feasible solutions after the crossover and mutation operations during the evolutionary optimization process. A simple local optimizer, based on the simplex method, similar to the improvement method used in the scatter search procedure [START_REF] Laguna | Scatter search: Methodology and implementations in C[END_REF], has been embedded into MA-NSGA-II (see Section 3.5) to improve the randomly generated unfeasible solutions to the closest feasible solutions, in order to satisfy the buffer constraint.

The Kanban Model

In a Kanban line, a machine may not begin any process on a new part unless the downstream machine or buffer requests it. The Kanban model simulates a Kanban-controlled pull mechanism by using the Kanban modeling object in FACTS Analyzer (see Figure 3). Similar to a real-world Kanban card, a Kanban object "authorizes" the production in the upstream machine if a product is pulled from the downstream buffer. The most important decision variables of a Kanban line are the number of Kanban cards in different processing stages, because the basic aim of using Kanban is to control and limit the total WIP. In a simple unpaced flow line with inter-station buffers, a Kanban therefore represents a signal that triggers the production of the immediate upstream machine, if a part leaves the buffer and provides a vacancy. Authorizing a machine to produce will also trigger the withdrawal of a part from the previous immediate buffer. In other words, the Kanban signals are propagated from downstream to upstream. This also implies that the buffer capacity required between two machines is determined by the number of Kanban cards. In other words, the OBA problem described in the basic model can be converted to be:

Where K i represents the number of Kanban cards between buffer B i and machine M i .

Figure 3. The Kanban model with BN@M8.

While this apparently shows no difference to the OBA problem for the basic Push model (replacing B with K), the real difference lies in the behavior of the model when Kanban objects are applied to connect the machines 0 , [1,14] the final goods inventory (FGI). In contrast, this information flow is missing in the Push model, where a part is "pushed" into a machine whenever it is not blocked, regardless of the status of the rest of the downstream machines and buffers. On the other hand, with the Kanban mechanism, a part can only be pulled when there is a demand in the downstream. Unlike a general comparison between Kanban and the Push model, the aim here is to investigate, with the help of SMO, whether a Kanban mechanism can achieve the same level of TP with lower CT. If there is any real difference in the performance, it is believed to be caused by the different effect of the blocking of the two mechanisms.
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The CONWIP model

The CONWIP mechanism was first proposed by [START_REF] Spearman | CONWIP: A pull alternative to Kanban[END_REF] as "a pull alternative to Kanban". The first machine in a line under CONWIP control is only authorized to begin production if the total number of parts (i.e. WIP) in the line is less than a predetermined WIP level, or WIP cap. Hence, a CONWIP line can be regarded as having a "long Kanban pull" that connects the end of the line to its beginning to maintain an almost constant level of WIP in the system. Based on this "long pull" concept, the object for modeling CONWIP in FACTS Analyzer is called "MaxWIP" because the WIP level is maintained at a maximum degree by a long pull mechanism, as shown in Figure 6. In the example model considered here, by connecting M15, the last machine, to the first machine, M1, a part leaving from M15 to the FGI will trigger the entry of a new part to M1. In the CONWIP model, as well as the buffer capacities (subject to the same buffer constraint as the push model), another important decision variable that must be optimized is the level of CONWIP. In other words, a solution vector for the SMO of the CONWIP model can be represented as (B 1 , B 2 , …, B N , C cap ), where C cap represents the WIP cap in a CONWIP line. The determination of the optimal CONWIP level is the most important parameter which influences the system performance, and a topic widely studied in the literature. Nevertheless, as the comprehensive review of [START_REF] Framinan | The CONWIP production control system: review and research issues[END_REF] indicates, the number of CONWIP "cards" to be employed should involve a compromise between the desired throughput rate (or service level) and other objectives, e.g. the WIP level. In general, many previous simulation studies have reported that CONWIP outperforms Kanban by having a higher system throughput for a given level of total WIP; for example, see (So 1990). However, the drawback that CONWIP does not take into account the impact a bottleneck workstation may have on the performance of a production line was not considered adequately [START_REF] Graves | Literature review of material flow control mechanisms[END_REF]. This topic can, however, be found in the literature that compares the application of CONWIP to unbalanced lines with distinct bottlenecks controlled by the DBR mechanism.

The DBR model

The DBR mechanism operates in the manner that a constant level of WIP is maintained between the bottleneck and the entrance of the line, instead of between the end of the line and the beginning of the line, as in a CONWIP system. In other words, the first machine is authorized to start production if a part leaves the bottleneck workstation. This mechanism is referred to as "drum-buffer-rope" because the bottleneck, as the constraint that restricts the performance of the whole line, using the terms of the Theory of Constraint [START_REF] Blackstone | Designing unbalanced lines -understanding protective capacity and protective inventory[END_REF], should be the workstation that controls the pace (as the drum) of the other workstations. The signaling mechanism that is connected from the bottleneck station to the front of the line, pulling new jobs to the constrained workstation is called the "rope". In this way, the operation of this "rope" is identical to the long CONWIP pull that keeps the WIP cap between the constraint and the first workstation.

Applying this to our 15-workstation case study, in order to simulate a DBR model, if M8 is the bottleneck station, then a MaxWIP object is used to act as the "drum" in the DBR controlled model; when a part leaves Machine M8, a new part can be released to the line. In FACTS Analyzer, a DBR model can be made by "wiring" the MaxWIP loop to the bottleneck machine (see Figure 5). capacity should be equal to 150, an additional constraint is added to the optimization to relate the buffer capacity between the bottleneck and the front of the line because there is no point in having a maximum level of WIP larger than the total sum of the buffer capacity and the number of machines before the immediate downstream buffer of the bottleneck workstation:

The simulation and optimization settings

All the results generated in this paper are based on the approach of dynamic replication analysis that computes the standard error of the output performance measures during the optimization processes. Simply put, instead of using a fixed n, the optimization algorithm used in FACTS Analyzer will request more replications to be run only if the computed error is found to be higher than the tolerable level. The relative precision approach is employed to calculate the ratio of standard error of the data and the mean of the data from n replications, based on the following formula: For the optimization results to be based on statistically robust output data, the standard error of the data should be relatively small in comparison to the sample mean. Hence, 0.01 was chosen to be the tolerable value of µ r for both of the most important performance measures considered in this paper, namely average TP and average CT. In order to be statistically correct, this implies all µ r calculated from the simulation runs must be lower than 0.009 (see [START_REF] Law | Simulation Modeling and Analysis[END_REF] for the mathematical proof).

A variant of the NSGA-II algorithm [START_REF] Deb | A fast and elitist multi-objective genetic algorithm: NSGA-II[END_REF] The parameter settings used in the optimizations are shown in Table 1. Due to the stochastic searching of evolutionary algorithms, it is important to repeat the optimization runs. Five optimization replications were run for each of the models in this case study, and each optimization was replicated with some slight variation in the mutation rate and crossover probability.

Table 1. Setting of the optimization parameters MA-NSGA-II was run using an enlarged sampling space (µ+λ) selection strategy with the population sizes of parents and offspring each equal to 100 (i.e. µ=λ=100) in all the optimization runs. In every generation, the µ parents and the λ offspring competed for survival on the basis of CSD-based non-dominating sorting and crowded distance tournament selection. Furthermore, in every generation, 500 candidate solutions were generated. Rather than running expensive simulations for all of these candidate solutions, evaluations were made using the ANN meta-model, which is a back-propagation feedforward net with one hidden layer. A fast non-dominating sorting with CSD was employed to sort the candidates. The best λ candidates were then selected to be the offspring solutions on the basis of the estimated values in the multi-objective functions.

Simulation runs were then performed on these λ candidates for accurate evaluations.

Results and Analysis

The CT-TP plot of the Pareto fronts for the Push model with various bottleneck (BN) positions is shown in in the 5 optimization runs for that particular PCM and bottleneck location combination. This is called the best attainment surface in EMO literature [START_REF] Deb | Multi-objective optimization using evolutionary algorithms[END_REF]. The graph clearly indicates that the location of the bottleneck does have an effect on the line. For the Push model, the graph shows that if the slowest workstation is closer to the front of the line then the same TP can be achieved with shorter CT. This effect is clear in the lower and middle CT-TP regions, but not in the high CT-TP region where BN@M8 apparently seems to outperform BN@M4. In order to verify these differences, we will introduce some methods to test the statistical significance of the differences for the curves as well as between individual solutions in the CT-TP plots.

A plot of TP against WIP is provided in Figure 7. Despite WIP not being one of the multiple objectives in the optimization and the effect on the TP-WIP plot not being as pronounced as in the CT-TP plot, it is interesting to observe that the TP-WIP plot resembles the pattern of the CT-TP graph. An important observation concerning the characteristics of the Pareto-optimal solutions is apparent with the plot of CT against WIP, as shown in Figure 8. Here it can be seen that a perfectly straight line is formed in the WIP-CT plot with all the PF solutions. This linear relation between WIP and CT for the Pareto-optimal solutions not only exists for a particular line design but for all the models tested in this study. This observation can be easily explained with the help of Little's Law, TP=WIP/CT. PCMs, particularly in the middle and high CT-TP region. This implies that DBR performs best in terms of optimizing the trade-off between TP and CT, especially when the aim of the decision maker is to achieve high TP. Together with the plots on varying bottleneck positions, it can be concluded that using DBR with the slowest station closer to the upstream of a serial flow line is the best option in this case study.

• It is clear that Push is an inferior option, especially if the decision maker focuses on the lower CT-TP region. In Figures 10 and11, the lower CT-TP region indicates that the poor performance of Push is more pronounced when the bottleneck is closer to the end of the line; the Push control seems to be more sensitive to the location of the bottleneck when compared to the three other PCMs. The configuration of BN@M12 with Push control is the worst option in this comparison test.

• Kanban appears to be a good option if the aim of the decision maker is to have very low CT, but not if high TP is desired. This observation is made because Kanban generally outperforms in the lower CT-TP area (comparable to the performance of DBR), but produces poorly (with the same CT level) in the middle and high CT-TP regions. It is interesting to note that there appears to be a distinct intersection between the Push curve and the Kanban curve in the graph for BN@M12, as indicated in Figure 11.

• The effect of CONWIP is nearing DBR in the case of BN@M12. This is understandable because as the bottleneck position approaches the end of the line, the location of the "Drum" to which the "CONWIP signal" is sent will also be closer to the end of the line, and hence produces a similar effect as in the CONWIP configuration. Otherwise, it can be seen that CONWIP is not apparently better or even worse than Kanban in the lower CT-TP region.

While the optimization results indicate that PCM and the position of the bottleneck do affect the performance of the line, and various PCMs have different effects in different regions of the optimal CT-TP plots, conclusions about the PCM comparisons cannot be drawn simply by comparing the Pareto-optimal fronts visually. There are two important questions which suggest that further analyses of the optimization results are necessary for the PCM comparison.

• Can the Pareto fronts be compared using some quantitative metrics?

• How can the differences in the CT-TP curves be statistically verified?

These questions are answered with the introduction of the two methods in the following sub-sections. Quantitative assessment of PF solutions in comparing the performance of different EMO algorithms is not an easy task and there are many limitations in the performance indices proposed in EMO literature [START_REF] Zitzler | Why quality assessment of multiobjective optimizers is difficult[END_REF]. A common metric used in EMO research for comparing a set of Pareto fronts generated by different algorithms is the hypervolume, denoted as the S metric [START_REF] Zitzler | Multiobjective optimization using evolutionary algorithms -a comparative case study[END_REF]. Unlike many other performance metrics, the S metric does not require the PF true to be known for its computation. For a biobjective optimization problem, the S metric is equivalent to the summation of all the rectangular areas covered by the Pareto-optimal points, bounded by some reference point in the objective space.

Mathematically, the hypervolume can generally be described as below [START_REF] Coello Coello | Evolutionary algorithms for solving multi-objective problems[END_REF]:

{ } i i known i S area vec PF = ∈ U
Where vec i is a non-dominated vector in the Pareto Front found in the optimization (PF known ) and area i is the area between vector vec i and the reference point (see Figure 12). The S metric is especially useful for comparing both the convergence and the diversity of the PF generated for real-world complex optimization problems in which the PF true is unknown. Furthermore, it offers many advantages such as multidimensionality, i.e., able to cope with "many" objectives (>3) solution sets; compatibility with the outperformance relations; capability for the differentiation between different degrees of complete outperformance of two sets under comparison as well as scaling independency (Knowles and Corne 2001). A novelty introduced in this study is that instead of using the S metric to compare the performance of different EMO algorithms, it can be used to quantitatively compare the performance achieved when different PCMs are applied to the same production line. This can be illustrated by the attainment surfaces in Figure 12, which show the hypervolume produced by applying PCM A and PCM B on the CT-TP plot. An attainment surface is the generated envelope for a set of non-dominating solutions, which is identical to the surface used to calculate S [START_REF] Deb | Multi-objective optimization using evolutionary algorithms[END_REF]. By observing the attainment surfaces generated for the flow line using the PCM A and PCM B under comparison, it can be seen that the comparison can be quantitatively made by comparing the hypevolume that the PF has spread. In other words, the larger the S metric value, the higher the TP/CT ratio, indicating that higher TP can be achieved with the same CT. With the example in Figure 12, the fact that PCM A outperforms PCM B (see also Figure 1) can now be quantitatively verified by showing S A > S B . In contrast to the technique that calculates the Trade-off Curves Areas (denoted as ∆ ) by assuming straight line segments between the points along the trade-off curves [START_REF] Enns | Pull" Replenishment performance as a function of demand rates and setup times under optimal settings[END_REF] (Enns and Roger 2008), hypervolume can be readily applied to deal with problems that have more than two objectives. At the same time, without knowing the existence of possible points between two consecutive solutions lying next to each other on the Pareto front, it can be argued that assuming a straight line would increase the estimation error (Knowles 2008). It can obviously be seen that both the S and ∆ values for a Pareto front will also be dependent on the position of the reference point selected by the decision maker, based on his/her region of interest in the objective space.

The statistical accuracy of the S and ∆ metric required for the comparison is ensured by using the best attainment surfaces obtained from the replicated optimization runs. At the same time, before the computation of S and ∆ , normalizations have been done on the CT and TP values. This implies the maximum normalized S or ∆ that can be obtained is of the value 1. For the 5 optimization runs (replications) carried out for each PCM and BN combination, the normalized S and ∆ is therefore denoted as norm S and norm

∆

. In contrast to the original S calculation that uses only one reference point, another user-defined reference point is needed as the base point for the normalizations (Reference point 2 in Figure 12). For a bi-objective min-min problem, (0,0) can be selected as the base point by default, but this is not suitable for the CT-TP plot which is a min-max problem. At the same time, the option of the reference points depends on the region of interest of the decision maker in the comparison. The norm S and norm ∆ values of all the 60 optimization runs are shown in Tables 2 to 4 below. All of them were taken using the reference points (11000, 10.5) and (5000, 12.5) in the CT-TP space. The results in Tables 6 to 8 can be interpreted as follows: if R > R p, then the extreme values in the comparison set are significantly different from each other. In many of the cases, it can be concluded from these statistical tests that there are significant differences between the norm S (and norm

∆

) spread by the solutions in PF known . It has confirmed that the observed differences resulting from the application of different PCMs are significant after considering the replicated optimization runs. In general, DBR gives a significantly larger TP/CT ratio, and is thus more desirable than the other three PCMs. CONWIP and Kanban are significantly better than Push, but the difference between the CONWIP and Kanban cannot be statistically confirmed. Although the stochastic nature of the evolutionary algorithms can be handled by multiple optimization runs when using S or ∆ , neither of these two methods has considered the uncertainty of individual optimal solutions due to the randomness of simulation outputs in the objective space. In this paper, an innovative comparison method, based on post-optimal analysis using CSD [START_REF] Ng | Multi-Objective Simulation Optimization and Significant Dominance for Comparing Production Control Mechanisms[END_REF], is proposed. This method is based on performing pairwise comparisons for all the solutions from the different models and PCM combinations by applying the CSD sorting to all of the Pareto-optimal solutions from different Pareto sets. In this case, the difference in the performance of different PCMs on the CT-TP plot can be statistically verified and visualised. This method, called CSD-based post-optimal analysis, is particularly useful to statistically verify the differences in the CT-TP curves which are close to each other or even apparently overlapping in the objective space. In the results analysis done for the graph of BN@M12 in Figure 11, it indictaes that the effect of CONWIP is very close to DBR in the BN@M12 model. At the same time, there appears to be a crossover point between the Push curve and the Kanban curve in the graph of Figure 11. Two CSD-based post-optimal analyses were therefore carried out for the BN@M12 model: (1) to collect all the solutions from the four Pareto sets and (2) only the solutions from the Push and Kanban models. The aim of the first analysis was to verify the outstanding behavior of DBR, the result of which is plotted in Figure 13. Despite the fact that there seems to be some overlapping between the CONWIP and DBR curves, the CSD-based comparison proves that most of the DBR solutions are significantly better than any other PCMs, including CONWIP, except in the low CT-TP region where Kanban solutions dominate. This also verifies the superiority of Kanban in the lower CT-TP area, as observed in the earlier results analysis for Figure 11.

The crossover between the Push and Kanban curves is verified by the CSD-based comparison, illustrated in Pareto-optimal context, because a PCM may be preferable in a certain region but not others, depending on the level of the primary interest of the decision maker (who may prefer low CT than high TP in some situations).

It is therefore necessary to generate the Pareto fronts and then study the performance behavior of the PCM in different areas of the objective space.

Figure 13. CSD-based analysis for all the optimal solutions of the BN@M12 model with different varying PCMs.

Figure 14. CSD-based analysis for all the optimal solutions of the BN@M12 Push and Kanban models. The paper has illustrated the concept of comparing PCMs in their optimal parameter setting in a Pareto-based multi-objective context using a case study of a buffer allocation problem in an unbalanced flow line. While the numerical results of the case study cannot be generalized, there are two important conclusions that can be drawn from the SMO results: (1) in terms of optimizing the trade-off between production rate and cycle time, PCM plays a significant role; for example, this case study has shown that DBR generally outperforms Push and classical pull mechanisms, such as Kanban and CONWIP;

(2) comparing PCMs in a multi-objective context is important, because a PCM may be preferable in certain regions, in the performance space, but not others, depending on the primary interest of the decision maker. For example, in contrast to the common understanding that Pull-based PCM is always better than Push, it has been shown in this case study that Push outperforms Kanban if the target of the decision maker is on high production rate.

This paper has also introduced the use of hypervolume, a common performance metric for comparing the performance of EMO algorithms, for the quantitative comparison of PCMs in the performance space. The CSD-based post-optimality analysis is useful to complement such a quantitative test to statistically verify and visualize the differences in the performance space, in particular when the solutions in the Pareto sets are close to each other or even seemingly overlapping. The CSD-based analysis was particularly useful in this case study in verifying the crossover point between Kanban and Push in the performance space.

The case study presented in this paper addresses a bi-objective dual OBA problem. It should be noted that the same method can readily be applied to include other objectives, such as to minimize the total number of buffers, for the purpose of minimizing the investment of buffers for a given desirable production rate and KANBAN 0.5668 0.5629 0.5705 0.5529 0.5649 0.5433 0.5707 0.5523 0.5673 0.5431 CONWIP 0.5627 0.5562 0.5668 0.5498 0.5662 0.5493 0.5631 0.5427 0.561 0.5414 DBR KANBAN 0.4816 0.4771 0.5055 0.4953 0.5004 0.4883 0.5053 0.4926 0.5049 0.4914 CONWIP 0.5154 0.513 0.5249 0.5061 0.5242 0.5109 0.5225 0.5064 0.5242 0.5102 DBR 
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 1 Figure 1. Comparing two PCMs with their Pareto-optimal settings in a CT-TP plot.
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  buffers, as shown in Figure 3. As mentioned above, Kanban signals (information flow) are propagated from downstream to upstream. Hence, material flow is first triggered by the demand (information flow) from

Figure 4 .

 4 Figure 4. The CONWIP model with BN@M8.
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Figure 5 .

 5 Figure 5. The DBR model with BN@M8.

  , called MA-NSGA-II has been used to generate all the .C.Ng et al. Page 12 of 22 results presented in this paper. There are three major techniques that render the outstanding performance of NSGA-II[START_REF] Ding | Stochastic multi-objective production-distribution network design using simulation-based optimization[END_REF]): (1) a "fast" non-dominated sorting approach that reduces the O(mN 3 ) complexity of MOGA to O(mN 2 )[START_REF] Babbar | A modified NSGA-II to solve noisy multiobjective problems[END_REF]; (2) a λ + µ elitism selection procedure and (3) the use of crowding distance, as a measure for comparison and selection after the non-dominated sorting, to preserve the diversity of the solutions in the population. In contrast to the original NSGA-II, MA-NSGA-II uses Artificial Neural Networks (ANN) as the meta-modeling techniques for the rapid evaluation of candidate offspring solutions for the purpose of filtering out those likely to be inferior. Additionally, MA-NSGA-II uses the Confidencebased Significant Dominance (CSD) technique, first introduced in[START_REF] Ng | Multi-Objective Simulation Optimization and Significant Dominance for Comparing Production Control Mechanisms[END_REF], to cope with the simulation output data uncertainty.
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 6 Figure 6. Every single curve in this CT-TP plot was obtained by collecting the best Pareto-optimal solutions
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 6 Figure 6. CT-TP plot of the basic Push model with various bottleneck positions.
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 7 Figure 7. WIP-TP plot of Push control with various bottleneck positions.
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 8 Figure8. WIP-CT plot of the Pareto-optimal solutions for the basic Push model with BN@M4.
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 9 Figure 9. Optimal CT-TP plot of the BN@M4 model with varying PCMs.

Figure 10 .

 10 Figure 10. Optimal CT-TP plot of the BN@M8 model with varying PCMs.

Figure 11 .

 11 Figure 11. Optimal CT-TP plot of the BN@M12 model with varying PCMs.

  Comparison using hypervolume and area under curve

Figure 12 .

 12 Figure 12. Calculating hypervolume for PCM comparison.
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  An analysis of the variance (ANOVA) test of the significance level α=0.05 was done to detect the significance of the difference in the average of the normalized S and ∆ values, or norm S and norm ∆ respectively, obtained from the replicated optimization runs. With all the F-statistic values >50 and p-value≈0, a significant difference in performance can be deduced in the effect of the CT-TP plot when the four different PCMs are applied. A post-ANOVA analysis, called the Duncan's multiple range test, which is well-known for its differences between population sample means (see Mathews 2005, p.164), was applied to determine which pairs of norm S values are significantly different. The results obtained from the multiple range test are summarized in Tables5 to 7, where the value R is the calculated range of the values in a comparison set and R p is the Duncan's least significant range value, determined by using the following equation: is a value that depends on the significance level α = 0.05, the number of items in the comparison set, p={4,3,2}, and the error degree of freedom df ε =16 for the ANOVA.

  using CSD-based post-optimal analysis
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 14 Figure 14, showing which solutions in the Push and Kanban Pareto sets significantly dominate. It clearly shows that Kanban excels in the CT-TP trade-off below the (8000, 11.45) point, but Push solutions dominate thereafter. This result is particularly interesting to demonstrate the importance of comparing PCMs in a
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 4 Figure 3. The Kanban model with BN@M8.
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 67891011 Figure 5. The DBR model with BN@M8.
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 1314 Figure13. CSD-based analysis for all the optimal solutions of the BN@M12 model with different varying PCMs.
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 2 

	. norm S	and norm ∆	values for the BN@M4 model with various PCMs.
	Table 3. norm S	and norm ∆	values for the BN@M8 model with various PCMs.
	Table 4. norm S	and norm ∆	values for the BN@M12 model with various PCMs.

Table 5 .

 5 Duncan's multiple range test on norm

	S	and norm ∆	for BN@M4

Table 1 .

 1 Setting of the optimization parameters

	Page 37 of 43	
	Total number of simulations 5000
	Population size (µ)	100
	Child population size (λ)	100
	Number of candidates	500
	Mutation rate	0.05-0.15 (with step in 0.05)
	Crossover probability	0.5-0.7 (with step of 0.1)
	Crossover operator	Uniform
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Table 2 .

 2 norm S and norm ∆ values for the BN@M4 model with various PCMs. Push 0.5574 0.5541 0.5635 0.5431 0.5584 0.5427 0.5621 0.5427 0.5608 0.5424

			Run1			Run2			Run3			Run4			Run5	
	BN4	∆	norm	S	norm	∆	norm	S	norm	∆	norm	S	norm	∆	norm	S	norm	∆	norm	S	norm

Table 3 .

 3 norm S and norm ∆ values for the BN@M8 model with various PCMs. Push 0.4736 0.4699 0.4856 0.4764 0.4853 0.4759 0.4854 0.4738 0.4846 0.474

	0.6057 0.6031 0.6076 0.5924 0.6071 0.591	0.6051 0.5909 0.6072 0.5917
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	Page 39 of 43	
	F o
	r
		P
		e e r
	0.572 0.569	0.5798 0.5643 0.5766 0.5627 0.5758 0.5612 0.5783 0.5621 R e v i e w
		O n
		l y
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Table 4 .

 4 norm Sand norm ∆ values for the BN@M12 model with various PCMs.

			Run1			Run2			Run3			Run4			Run5	
	BN12	∆	norm	S	norm	∆	norm	S	norm	∆	norm	S	norm	∆	norm	S	norm	∆	norm	S	norm
	Push	0.4077 0.4032 0.3948 0.329	0.3923 0.326	0.402	0.389	0.398	0.3197
	KANBAN 0.4077 0.4018 0.3882 0.3731 0.3829 0.3655 0.3818 0.3657 0.3609 0.3353
	CONWIP 0.5038 0.5009 0.4639 0.4491 0.4638 0.4487 0.4625 0.4444 0.4622 0.4461
	DBR	0.5229 0.52	0.4829 0.4595 0.4835 0.4628 0.4842 0.4673 0.4828 0.4667
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Table 5 .

 5 Duncan's multiple range test on norm S

			and norm ∆	for BN@M4
		S	norm	∆	norm
	Comparison set	R	R > R p R	R > R p
	DBR, CONWIP, Kanban,	0.0488 Yes	0.0461 Yes
	Push			
	DBR, CONWIP, Kanban	0.0459 Yes	0.0426 Yes
	DBR, CONWIP	0.0429 Yes	0.0426 Yes
	CONWIP, Kanban	0.0030 No	0.0030 Yes
	Kanban, Push	0.0076 Yes	0.0059 No

Table 6 .

 6 Duncan's multiple range test on norm S

			and norm ∆	for BN@M8
		S	norm	∆	norm
	Comparison set	R	R > R p R	R > R p
	DBR, CONWIP, Kanban,	0.0899 Yes	0.0936 Yes
	Push			
	DBR, CONWIP, Kanban	0.0749 Yes	0.077	Yes
	DBR, CONWIP	0.0545 Yes	0.543	Yes
	CONWIP, Kanban	0.0204 Yes	0.0227 Yes
	Kanban, Push	0.0149 Yes	0.0166 Yes

Table 7 .

 7 Duncan's multiple range test on norm S

			and norm ∆	or BN@M12
		S	norm	∆	norm
	Comparison set	R	R > R p R	R > R p
	DBR, CONWIP, Kanban,	0.1219 Yes	0.107	Yes
	Push			
	DBR, CONWIP, Kanban	0.107 Yes	0.0923 Yes
	DBR, CONWIP	0.0174 No	0.02	No
	CONWIP, Kanban	0.0896 Yes	0.0869 Yes
	Kanban, Push	0.0149 No	0.0146 No
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Since only single-machine workstations are considered, the word workstation and machine are used interchangeably in this paper.